1
|
Karakousi T, Mudianto T, Lund AW. Lymphatic vessels in the age of cancer immunotherapy. Nat Rev Cancer 2024; 24:363-381. [PMID: 38605228 DOI: 10.1038/s41568-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lymphatic transport maintains homeostatic health and is necessary for immune surveillance, and yet lymphatic growth is often associated with solid tumour development and dissemination. Although tumour-associated lymphatic remodelling and growth were initially presumed to simply expand a passive route for regional metastasis, emerging research puts lymphatic vessels and their active transport at the interface of metastasis, tumour-associated inflammation and systemic immune surveillance. Here, we discuss active mechanisms through which lymphatic vessels shape their transport function to influence peripheral tissue immunity and the current understanding of how tumour-associated lymphatic vessels may both augment and disrupt antitumour immune surveillance. We end by looking forward to emerging areas of interest in the field of cancer immunotherapy in which lymphatic vessels and their transport function are likely key players: the formation of tertiary lymphoid structures, immune surveillance in the central nervous system, the microbiome, obesity and ageing. The lessons learnt support a working framework that defines the lymphatic system as a key determinant of both local and systemic inflammatory networks and thereby a crucial player in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Triantafyllia Karakousi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
2
|
Wang J, Dong D, Zhao W, Wang J. Intravital microscopy visualizes innate immune crosstalk and function in tissue microenvironment. Eur J Immunol 2024; 54:e2350458. [PMID: 37830252 DOI: 10.1002/eji.202350458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/14/2023]
Abstract
Significant advances have been made in the field of intravital microscopy (IVM) on myeloid cells due to the growing number of validated fluorescent probes and reporter mice. IVM provides a visualization platform to directly observe cell behavior and deepen our understanding of cellular dynamics, heterogeneity, plasticity, and cell-cell communication in native tissue environments. This review outlines the current studies on the dynamic interaction and function of innate immune cells with a focus on those that are studied with IVM and covers the advances in data analysis with emerging artificial intelligence-based algorithms. Finally, the prospects of IVM on innate immune cells are discussed.
Collapse
Affiliation(s)
- Jin Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong Dong
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenying Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Immune-related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Du X, Li M, Huan C, Lv G. Dendritic cells in liver transplantation immune response. Front Cell Dev Biol 2023; 11:1277743. [PMID: 37900282 PMCID: PMC10606587 DOI: 10.3389/fcell.2023.1277743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Dendritic cells (DCs) are the most powerful antigen presenting cells (APCs), they are considered one of the key regulatory factors in the liver immune system. There is currently much interest in modulating DC function to improve transplant immune response. In liver transplantation, DCs participate in both the promotion and inhibition of the alloreponse by adopting different phenotypes and function. Thus, in this review, we discussed the origin, maturation, migration and pathological effects of several DC subsets, including the conventional DC (cDC), plasmacytoid DC (pDC) and monocyte-derived DC (Mo-DC) in liver transplantation, and we summarized the roles of these DC subsets in liver transplant rejection and tolerance. In addition, we also outlined the latest progress in DC-based related treatment regimens. Overall, our discussion provides a beneficial resource for better understanding the biology of DCs and their manipulation to improve the immune adaptability of patients in transplant status.
Collapse
Affiliation(s)
- Xiaodong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Chen Huan
- Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Aoki M, Jin ZW, Ueda K, Kamimura G, Takeda-Harada A, Murakami G, Sato M. Localization of macrophages and dendritic cells in human thoracic lymph nodes: An immunohistochemical study using surgically obtained specimens. J Anat 2023; 243:504-516. [PMID: 37024113 PMCID: PMC10439373 DOI: 10.1111/joa.13870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Both dendritic cells (DCs) and macrophages are bone marrow-derived cells that perform antigen presentation. The distribution of DCs and CD68-positive macrophages were immunohistochemically examined in 103 thoracic nodes obtained from 23 lung cancer patients (50-84 years old) without metastasis. Among three antibodies tested initially-CD209/DCsign, fascin, and CD83-DCsign was chosen as the DC marker. For comparison, 137 nodes from 12 patients with cancer metastasis were also examined histologically. In patients without metastasis, DCs were found as (1) clusters along the subcapsular sinus and in a border area between the medullary sinus and cortex (mean sectional area of multiple nodes at one site, 8.4%) and, (2) rosette-like structures in the cortex (mean number in multiple nodes at one site, 20.5). Notably, DC clusters and rosettes contained no or few macrophages and were surrounded by smooth muscle actin (SMA)-positive, endothelium-like cells. The subcapsular linear cluster corresponded to 5%-85% (mean, 34.0%) of the nodal circumferential length and was shorter in older patients (p = 0.009). DC rosettes, solitary, or communicating with a cluster, were usually connected to a paracortical lymph sinus. Few differences were found between nodes with or without metastasis, but DC cluster sometimes contained abundant macrophages in cancer metastasis patients. The subcapsular DC cluster is not known in the rodent model, in which the subcapsular sinus is filled with macrophages. This quite different, even complementary, distribution suggests no, or less, cooperation between DCs and macrophages in humans.
Collapse
Affiliation(s)
- Masaya Aoki
- Department of General Thoracic Surgery, Kagoshima University School of Medicine, Kagoshima, Japan
| | - Zhe-Wu Jin
- Department of Anatomy, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kazuhiro Ueda
- Department of General Thoracic Surgery, Kagoshima University School of Medicine, Kagoshima, Japan
| | - Go Kamimura
- Department of General Thoracic Surgery, Kagoshima University School of Medicine, Kagoshima, Japan
| | - Aya Takeda-Harada
- Department of General Thoracic Surgery, Kagoshima University School of Medicine, Kagoshima, Japan
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | - Masami Sato
- Department of General Thoracic Surgery, Kagoshima University School of Medicine, Kagoshima, Japan
| |
Collapse
|
5
|
Baker ML, Cantley LG. The Lymphatic System in Kidney Disease. KIDNEY360 2023; 4:e841-e850. [PMID: 37019177 PMCID: PMC10371377 DOI: 10.34067/kid.0000000000000120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
The high-capacity vessels of the lymphatic system drain extravasated fluid and macromolecules from nearly every part of the body. However, far from merely a passive conduit for fluid removal, the lymphatic system also plays a critical and active role in immune surveillance and immune response modulation through the presentation of fluid, macromolecules, and trafficking immune cells to surveillance cells in regional draining lymph nodes before their return to the systemic circulation. The potential effect of this system in numerous disease states both within and outside of the kidney is increasingly being explored for their therapeutic potential. In the kidneys, the lymphatics play a critical role in both fluid and macromolecule removal to maintain oncotic and hydrostatic pressure gradients for normal kidney function, as well as in shaping kidney immunity, and potentially in balancing physiological pathways that promote healthy organ maintenance and responses to injury. In many states of kidney disease, including AKI, the demand on the preexisting lymphatic network increases for clearance of injury-related tissue edema and inflammatory infiltrates. Lymphangiogenesis, stimulated by macrophages, injured resident cells, and other drivers in kidney tissue, is highly prevalent in settings of AKI, CKD, and transplantation. Accumulating evidence points toward lymphangiogenesis being possibly harmful in AKI and kidney allograft rejection, which would potentially position lymphatics as another target for novel therapies to improve outcomes. However, the extent to which lymphangiogenesis is protective rather than maladaptive in the kidney in various settings remains poorly understood and thus an area of active research.
Collapse
Affiliation(s)
- Megan L Baker
- Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
6
|
Bauer A, Tatliadim H, Halin C. Leukocyte Trafficking in Lymphatic Vessels. Cold Spring Harb Perspect Med 2022; 12:a041186. [PMID: 35379657 PMCID: PMC9524389 DOI: 10.1101/cshperspect.a041186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To ensure proper immune function, most leukocytes constantly move within tissues or between them using the blood and lymphatic vessels as transport routes. While afferent lymphatic vessels transfer leukocytes from peripheral tissues to draining lymph nodes (dLNs), efferent lymphatics return lymphocytes from LNs back into the blood vascular circulation. Over the last decades, great progress has been made in our understanding of leukocyte migration into and within the lymphatic compartment, leading to the approval of new drugs targeting this process. In this review, we first introduce the anatomy of the lymphatic vasculature and the main cell types migrating through lymphatics. We primarily focus on dendritic cells (DCs) and T cells, the most prominent lymph-borne cell types, and discuss the functional significance as well as the main molecules and steps involved in their migration. Additionally, we provide an overview of the different techniques used to study lymphatic trafficking.
Collapse
Affiliation(s)
- Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Hazal Tatliadim
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
7
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Krmeská V, Aggio JB, Nylén S, Wowk PF, Rothfuchs AG. Cyclooxygenase-Derived Prostaglandin E 2 Drives IL-1-Independent Mycobacterium bovis Bacille Calmette-Guérin-Triggered Skin Dendritic Cell Migration to Draining Lymph Node. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2549-2557. [PMID: 35523455 PMCID: PMC9161203 DOI: 10.4049/jimmunol.2100981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
Inoculation of Mycobacterium bovis Bacille Calmette-Guérin (BCG) in the skin mobilizes local dendritic cells (DC) to the draining lymph node (dLN) in a process that remains incompletely understood. In this study, a mouse model of BCG skin infection was used to investigate mechanisms of skin DC migration to dLNs. We found enhanced transcription of cyclooxygenase (COX)-2 and production of COX-derived PGE2 early after BCG infection in skin. Animals treated with antagonists for COX or the PGE2 receptors EP2 and EP4 displayed a marked reduction in the entry of skin DCs and BCG to dLNs, uncovering an important contribution of COX-derived PGE2 in this migration process. In addition, live BCG bacilli were needed to invoke DC migration through this COX-PGE2 pathway. Having previously shown that IL-1R partially regulates BCG-induced relocation of skin DCs to dLNs, we investigated whether PGE2 release was under control of IL-1. Interestingly, IL-1R ligands IL-1α/β were not required for early transcription of COX-2 or production of PGE2 in BCG-infected skin, suggesting that the DC migration-promoting role of PGE2 is independent of IL-1α/β in our model. In DC adoptive transfer experiments, EP2/EP4, but not IL-1R, was needed on the moving DCs for full-fledged migration, supporting different modes of action for PGE2 and IL-1α/β. In summary, our data highlight an important role for PGE2 in guiding DCs to dLNs in an IL-1–independent manner. BCG-triggered PGE2 release mobilizes skin DCs to the draining lymph node. Migrating DCs use EP2 and EP4 to relocate to the draining lymph node. Live BCG bacilli are needed for PGE2-mediated DC migration.
Collapse
Affiliation(s)
- Veronika Krmeská
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; and
| | - Juliana Bernardi Aggio
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; and.,Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; and
| | - Pryscilla Fanini Wowk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; and.,Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, Brazil
| | | |
Collapse
|
9
|
Tumor draining lymph nodes, immune response, and radiotherapy: Towards a revisal of therapeutic principles. Biochim Biophys Acta Rev Cancer 2022; 1877:188704. [DOI: 10.1016/j.bbcan.2022.188704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022]
|
10
|
Guenther C. β2-Integrins - Regulatory and Executive Bridges in the Signaling Network Controlling Leukocyte Trafficking and Migration. Front Immunol 2022; 13:809590. [PMID: 35529883 PMCID: PMC9072638 DOI: 10.3389/fimmu.2022.809590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Leukocyte trafficking is an essential process of immunity, occurring as leukocytes travel within the bloodstream and as leukocyte migration within tissues. While it is now established that leukocytes can utilize the mesenchymal migration mode or amoeboid migration mode, differences in the migratory behavior of leukocyte subclasses and how these are realized on a molecular level in each subclass is not fully understood. To outline these differences, first migration modes and their dependence on parameters of the extracellular environments will be explained, as well as the intracellular molecular machinery that powers migration in general. Extracellular parameters are detected by adhesion receptors such as integrins. β2-integrins are surface receptors exclusively expressed on leukocytes and are essential for leukocytes exiting the bloodstream, as well as in mesenchymal migration modes, however, integrins are dispensable for the amoeboid migration mode. Additionally, the balance of different RhoGTPases - which are downstream of surface receptor signaling, including integrins - mediate formation of membrane structures as well as actin dynamics. Individual leukocyte subpopulations have been shown to express distinct RhoGTPase profiles along with their differences in migration behavior, which will be outlined. Emerging aspects of leukocyte migration include signal transduction from integrins via actin to the nucleus that regulates DNA status, gene expression profiles and ultimately leukocyte migratory phenotypes, as well as altered leukocyte migration in tumors, which will be touched upon.
Collapse
Affiliation(s)
- Carla Guenther
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Hong W, Yang B, He Q, Wang J, Weng Q. New Insights of CCR7 Signaling in Dendritic Cell Migration and Inflammatory Diseases. Front Pharmacol 2022; 13:841687. [PMID: 35281921 PMCID: PMC8914285 DOI: 10.3389/fphar.2022.841687] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
CCR7, collaborated with its ligands CCL19 and CCL21, controls extensive migratory events in the immune system. CCR7-bearing dendritic cells can swarm into T-cell zones in lymph nodes, initiating the antigen presentation and T-cell response. Abnormal expression of CCR7 in dendritic cells will cause a series of inflammatory diseases due to the chaotic dendritic cell trafficking. In this review, we take an in-depth look at the structural–functional domains of CCR7 and CCR7-bearing dendritic cell trajectory to lymph nodes. Then, we summarize the regulatory network of CCR7, including transcriptional regulation, translational and posttranslational regulation, internalization, desensitization, and recycling. Furthermore, the potential strategies of targeting the CCR7 network to regulate dendritic cell migration and to deal with inflammatory diseases are integrated, which not only emphasizes the possibility of CCR7 to be a potential target of immunotherapy but also has an implication on the homing of dendritic cells to benefit inflammatory diseases.
Collapse
Affiliation(s)
- Wenxiang Hong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Qinjie Weng, ; Jiajia Wang,
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Qinjie Weng, ; Jiajia Wang,
| |
Collapse
|
12
|
Frattolin J, Watson DJ, Bonneuil WV, Russell MJ, Fasanella Masci F, Bandara M, Brook BS, Nibbs RJB, Moore JE. The Critical Importance of Spatial and Temporal Scales in Designing and Interpreting Immune Cell Migration Assays. Cells 2021; 10:3439. [PMID: 34943947 PMCID: PMC8700135 DOI: 10.3390/cells10123439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/08/2023] Open
Abstract
Intravital microscopy and other direct-imaging techniques have allowed for a characterisation of leukocyte migration that has revolutionised the field of immunology, resulting in an unprecedented understanding of the mechanisms of immune response and adaptive immunity. However, there is an assumption within the field that modern imaging techniques permit imaging parameters where the resulting cell track accurately captures a cell's motion. This notion is almost entirely untested, and the relationship between what could be observed at a given scale and the underlying cell behaviour is undefined. Insufficient spatial and temporal resolutions within migration assays can result in misrepresentation of important physiologic processes or cause subtle changes in critical cell behaviour to be missed. In this review, we contextualise how scale can affect the perceived migratory behaviour of cells, summarise the limited approaches to mitigate this effect, and establish the need for a widely implemented framework to account for scale and correct observations of cell motion. We then extend the concept of scale to new approaches that seek to bridge the current "black box" between single-cell behaviour and systemic response.
Collapse
Affiliation(s)
- Jennifer Frattolin
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Daniel J. Watson
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Willy V. Bonneuil
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| | - Matthew J. Russell
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.R.); (B.S.B.)
| | - Francesca Fasanella Masci
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - Mikaila Bandara
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - Bindi S. Brook
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (M.J.R.); (B.S.B.)
| | - Robert J. B. Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (F.F.M.); (M.B.); (R.J.B.N.)
| | - James E. Moore
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK; (J.F.); (D.J.W.); (W.V.B.)
| |
Collapse
|
13
|
Bošnjak B, Do KTH, Förster R, Hammerschmidt SI. Imaging dendritic cell functions. Immunol Rev 2021; 306:137-163. [PMID: 34859450 DOI: 10.1111/imr.13050] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155) Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | | |
Collapse
|
14
|
Tan Y, Tey HL, Chong SZ, Ng LG. Skin-ny deeping: Uncovering immune cell behavior and function through imaging techniques. Immunol Rev 2021; 306:271-292. [PMID: 34859448 DOI: 10.1111/imr.13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022]
Abstract
As the largest organ of the body, the skin is a key barrier tissue with specialized structures where ongoing immune surveillance is critical for protecting the body from external insults. The innate immune system acts as first-responders in a coordinated manner to react to injury or infections, and recent developments in intravital imaging techniques have made it possible to delineate dynamic immune cell responses in a spatiotemporal manner. We review here key studies involved in understanding neutrophil, dendritic cell and macrophage behavior in skin and further discuss how this knowledge collectively highlights the importance of interactions and cellular functions in a systems biology manner. Furthermore, we will review emerging imaging technologies such as high-content proteomic screening, spatial transcriptomics and three-dimensional volumetric imaging and how these techniques can be integrated to provide a systems overview of the immune system that will further our current knowledge and lead to potential exciting discoveries in the upcoming decades.
Collapse
Affiliation(s)
- Yingrou Tan
- Singapore Immunology Network, Singapore, Singapore.,National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Hong Liang Tey
- National Skin Centre, National Healthcare Group, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Lai Guan Ng
- Singapore Immunology Network, Singapore, Singapore.,National Skin Centre, National Healthcare Group, Singapore, Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
15
|
Kim J, Archer PA, Thomas SN. Innovations in lymph node targeting nanocarriers. Semin Immunol 2021; 56:101534. [PMID: 34836772 DOI: 10.1016/j.smim.2021.101534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022]
Abstract
Lymph nodes are secondary lymphoid tissues in the body that facilitate the co-mingling of immune cells to enable and regulate the adaptive immune response. They are also tissues implicated in a variety of diseases, including but not limited to malignancy. The ability to access lymph nodes is thus attractive for a variety of therapeutic and diagnostic applications. As nanotechnologies are now well established for their potential in translational biomedical applications, their high relevance to applications that involve lymph nodes is highlighted. Herein, established paradigms of nanocarrier design to enable delivery to lymph nodes are discussed, considering the unique lymph node tissue structure as well as lymphatic system physiology. The influence of delivery mechanism on how nanocarrier systems distribute to different compartments and cells that reside within lymph nodes is also elaborated. Finally, current advanced nanoparticle technologies that have been developed to enable lymph node delivery are discussed.
Collapse
Affiliation(s)
- Jihoon Kim
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA
| | - Paul A Archer
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Susan N Thomas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr NW, Atlanta, GA 30332, USA; Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
16
|
Collado-Diaz V, Medina-Sanchez JD, Gkountidi AO, Halin C. Imaging leukocyte migration through afferent lymphatics. Immunol Rev 2021; 306:43-57. [PMID: 34708414 PMCID: PMC9298274 DOI: 10.1111/imr.13030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Afferent lymphatics mediate the transport of antigen and leukocytes, especially of dendritic cells (DCs) and T cells, from peripheral tissues to draining lymph nodes (dLNs). As such they play important roles in the induction and regulation of adaptive immunity. Over the past 15 years, great advances in our understanding of leukocyte trafficking through afferent lymphatics have been made through time‐lapse imaging studies performed in tissue explants and in vivo, allowing to visualize this process with cellular resolution. Intravital imaging has revealed that intralymphatic leukocytes continue to actively migrate once they have entered into lymphatic capillaries, as a consequence of the low flow conditions present in this compartment. In fact, leukocytes spend considerable time migrating, patrolling and interacting with the lymphatic endothelium or with other intralymphatic leukocytes within lymphatic capillaries. Cells typically only start to detach once they arrive in downstream‐located collecting vessels, where vessel contractions contribute to enhanced lymph flow. In this review, we will introduce the biology of afferent lymphatic vessels and report on the presumed significance of DC and T cell migration via this route. We will specifically highlight how time‐lapse imaging has contributed to the current model of lymphatic trafficking and the emerging notion that ‐ besides transport – lymphatic capillaries exert additional roles in immune modulation.
Collapse
Affiliation(s)
| | | | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Lucas ED, Schafer JB, Matsuda J, Kraus M, Burchill MA, Tamburini BAJ. PD-L1 Reverse Signaling in Dermal Dendritic Cells Promotes Dendritic Cell Migration Required for Skin Immunity. Cell Rep 2021; 33:108258. [PMID: 33053342 PMCID: PMC7688291 DOI: 10.1016/j.celrep.2020.108258] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/06/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022] Open
Abstract
Although the function of the extracellular region of programmed death ligand 1 (PD-L1) through its interactions with PD-1 on T cells is well studied, little is understood regarding the intracellular domain of PD-L1. Here, we outline a major role for PD-L1 intracellular signaling in the control of dendritic cell (DC) migration from the skin to the draining lymph node (dLN). Using a mutant mouse model, we identify a TSS signaling motif within the intracellular domain of PD-L1. The TSS motif proves critical for chemokine-mediated DC migration to the dLN during inflammation. This loss of DC migration, in the PD-L1 TSS mutant, leads to a significant decline in T cell priming when DC trafficking is required for antigen delivery to the dLN. Finally, the TSS motif is required for chemokine receptor signaling downstream of the Gα subunit of the heterotrimeric G protein complex, ERK phosphorylation, and actin polymerization in DCs. Lucas et al. define three residues within the cytoplasmic tail of PD-L1 that are required for proper dendritic cell migration from the skin to the lymph node. These three-amino-acid residues promote chemokine signaling in dendritic cells and productive T cell responses to skin infections.
Collapse
Affiliation(s)
- Erin D Lucas
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Johnathon B Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | | | - Madison Kraus
- Gates Summer Research Program, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Matthew A Burchill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA.
| |
Collapse
|
18
|
Kilian LS, Frank D, Rangrez AY. RhoA Signaling in Immune Cell Response and Cardiac Disease. Cells 2021; 10:1681. [PMID: 34359851 PMCID: PMC8306393 DOI: 10.3390/cells10071681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Chronic inflammation, the activation of immune cells and their cross-talk with cardiomyocytes in the pathogenesis and progression of heart diseases has long been overlooked. However, with the latest research developments, it is increasingly accepted that a vicious cycle exists where cardiomyocytes release cardiocrine signaling molecules that spiral down to immune cell activation and chronic state of low-level inflammation. For example, cardiocrine molecules released from injured or stressed cardiomyocytes can stimulate macrophages, dendritic cells, neutrophils and even T-cells, which then subsequently increase cardiac inflammation by co-stimulation and positive feedback loops. One of the key proteins involved in stress-mediated cardiomyocyte signal transduction is a small GTPase RhoA. Importantly, the regulation of RhoA activation is critical for effective immune cell response and is being considered as one of the potential therapeutic targets in many immune-cell-mediated inflammatory diseases. In this review we provide an update on the role of RhoA at the juncture of immune cell activation, inflammation and cardiac disease.
Collapse
Affiliation(s)
- Lucia Sophie Kilian
- Department of Internal Medicine III, Cardiology, Angiology, Intensive Care, University Medical Center Kiel, 24105 Kiel, Germany;
- DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III, Cardiology, Angiology, Intensive Care, University Medical Center Kiel, 24105 Kiel, Germany;
- DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III, Cardiology, Angiology, Intensive Care, University Medical Center Kiel, 24105 Kiel, Germany;
- DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, 24105 Kiel, Germany
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Hou Y, Bock F, Hos D, Cursiefen C. Lymphatic Trafficking in the Eye: Modulation of Lymphatic Trafficking to Promote Corneal Transplant Survival. Cells 2021; 10:1661. [PMID: 34359831 PMCID: PMC8306557 DOI: 10.3390/cells10071661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
(Lymph)angiogenesis into the cornea prior to and after corneal transplantation is a critical risk factor for allograft rejection. Lymphatic vessels even more than blood vessels seem important in mediating immune responses, as they facilitate allograft sensitization in the draining lymph nodes. Thus, the concept of modulating lymphatic trafficking to promote corneal graft survival seems promising. A variety of approaches has been developed to inhibit progressive lymphangiogenesis in experimental settings. Recently, additionally to pharmacological approaches, clinically available techniques such as UVA-based corneal collagen crosslinking and fine needle diathermy were reported to be effective in regressing lymphatic vessels and to experimentally promote graft survival. Clinical pilot studies also suggest the efficacy of blocking antigen presenting cell trafficking to regional lymph nodes by regressing corneal lymphatic vessels to enhance allograft survival in high-risk eyes. In this article, we will give an overview of current strategies to modulate lymphatic trafficking with a special focus on recently reported strategies, which may be easy to translate into clinical practice. This novel concept of temporary, pretransplant regression of lymphatic vessels at the site of transplantation to promote subsequent corneal transplant survival ("lymphangioregressive preconditioning") may also be applicable to other transplantation sites later.
Collapse
Grants
- German Research Foundation (DFG) FOR2240 "(Lymph)angiogenesis and Cellular Immunity in Inflammatory Diseases of the Eye", HO 5556/1-2 (DH), Cu 47/4-2 (CC), Cu 47/6-1 (CC), Cu 47/9-1 (CC), Cu 47/12-1(www.for2240.de); German Research Foundation (DFG) FOR2240 "(Lymph)angiogenesis and Cellular Immunity in Inflammatory Diseases of the Eye", HO 5556/1-2 (DH), Cu 47/4-2 (CC), Cu 47/6-1 (CC), Cu 47/9-1 (CC), Cu 47/12-1(www.for2240.de);
- EU COST BM1302 EU COST BM1302 (DH, CC; www.biocornea.eu);
- EU Horizon 2020 ARREST BLINDNESS (CC; www.arrestblindness.eu); EU Horizon 2020 ARREST BLINDNESS (CC; www.arrestblindness.eu);
- EU COST Aniridia (CC; www.aniridia-net.eu); EU COST Aniridia (CC; www.aniridia-net.eu);
- Center for Molecular Medicine Cologne, University of Cologne (DH, CC; www.cmmc-uni-koeln.de/home/); Center for Molecular Medicine Cologne, University of Cologne (DH, CC; www.cmmc-uni-koeln.de/home/);
- Shanghai Sailing Program Shanghai Sailing Program
Collapse
Affiliation(s)
- Yanhong Hou
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Disease, National Clinical Research Center for Eye Diseases, Shanghai 200080, China
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (Y.H.); (F.B.); (D.H.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
20
|
Structure and Immune Function of Afferent Lymphatics and Their Mechanistic Contribution to Dendritic Cell and T Cell Trafficking. Cells 2021; 10:cells10051269. [PMID: 34065513 PMCID: PMC8161367 DOI: 10.3390/cells10051269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Afferent lymphatic vessels (LVs) mediate the transport of antigen and leukocytes to draining lymph nodes (dLNs), thereby serving as immunologic communication highways between peripheral tissues and LNs. The main cell types migrating via this route are antigen-presenting dendritic cells (DCs) and antigen-experienced T cells. While DC migration is important for maintenance of tolerance and for induction of protective immunity, T cell migration through afferent LVs contributes to immune surveillance. In recent years, great progress has been made in elucidating the mechanisms of lymphatic migration. Specifically, time-lapse imaging has revealed that, upon entry into capillaries, both DCs and T cells are not simply flushed away with the lymph flow, but actively crawl and patrol and even interact with each other in this compartment. Detachment and passive transport to the dLN only takes place once the cells have reached the downstream, contracting collecting vessel segments. In this review, we describe how the anatomy of the lymphatic network supports leukocyte trafficking and provide updated knowledge regarding the cellular and molecular mechanisms responsible for lymphatic migration of DCs and T cells. In addition, we discuss the relevance of DC and T cell migration through afferent LVs and its presumed implications on immunity.
Collapse
|
21
|
Arasa J, Collado-Diaz V, Kritikos I, Medina-Sanchez JD, Friess MC, Sigmund EC, Schineis P, Hunter MC, Tacconi C, Paterson N, Nagasawa T, Kiefer F, Makinen T, Detmar M, Moser M, Lämmermann T, Halin C. Upregulation of VCAM-1 in lymphatic collectors supports dendritic cell entry and rapid migration to lymph nodes in inflammation. J Exp Med 2021; 218:212103. [PMID: 33988714 PMCID: PMC8129804 DOI: 10.1084/jem.20201413] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/22/2021] [Accepted: 04/14/2021] [Indexed: 01/03/2023] Open
Abstract
Dendritic cell (DC) migration to draining lymph nodes (dLNs) is a slow process that is believed to begin with DCs approaching and entering into afferent lymphatic capillaries. From capillaries, DCs slowly crawl into lymphatic collectors, where lymph flow induced by collector contraction supports DC detachment and thereafter rapid, passive transport to dLNs. Performing a transcriptomics analysis of dermal endothelial cells, we found that inflammation induces the degradation of the basement membrane (BM) surrounding lymphatic collectors and preferential up-regulation of the DC trafficking molecule VCAM-1 in collectors. In crawl-in experiments performed in ear skin explants, DCs entered collectors in a CCR7- and β1 integrin–dependent manner. In vivo, loss of β1-integrins in DCs or of VCAM-1 in lymphatic collectors had the greatest impact on DC migration to dLNs at early time points when migration kinetics favor the accumulation of rapidly migrating collector DCs rather than slower capillary DCs. Taken together, our findings identify collector entry as a critical mechanism enabling rapid DC migration to dLNs in inflammation.
Collapse
Affiliation(s)
- Jorge Arasa
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Ioannis Kritikos
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Neil Paterson
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Friedemann Kiefer
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.,European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Taija Makinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Markus Moser
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Institute of Experimental Hematology, Technical University Munich, Munich, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Steele MM, Lund AW. Afferent Lymphatic Transport and Peripheral Tissue Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 206:264-272. [PMID: 33397740 DOI: 10.4049/jimmunol.2001060] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
Lymphatic vessels provide an anatomical framework for immune surveillance and adaptive immune responses. Although appreciated as the route for Ag and dendritic cell transport, peripheral lymphatic vessels are often not considered active players in immune surveillance. Lymphatic vessels, however, integrate contextual cues that directly regulate transport, including changes in intrinsic pumping and capillary remodeling, and express a dynamic repertoire of inflammatory chemokines and adhesion molecules that facilitates leukocyte egress out of inflamed tissue. These mechanisms together contribute to the course of peripheral tissue immunity. In this review, we focus on context-dependent mechanisms that regulate fluid and cellular transport out of peripheral nonlymphoid tissues to provide a framework for understanding the effects of afferent lymphatic transport on immune surveillance, peripheral tissue inflammation, and adaptive immunity.
Collapse
Affiliation(s)
- Maria M Steele
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY 10016
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY 10016; .,Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016; and.,Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
23
|
In Sickness and in Health: The Immunological Roles of the Lymphatic System. Int J Mol Sci 2021; 22:ijms22094458. [PMID: 33923289 PMCID: PMC8123157 DOI: 10.3390/ijms22094458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are distinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific functions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mechanisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and chronic inflammation, and subsequent resolution.
Collapse
|
24
|
Johnson LA, Banerji S, Lagerholm BC, Jackson DG. Dendritic cell entry to lymphatic capillaries is orchestrated by CD44 and the hyaluronan glycocalyx. Life Sci Alliance 2021; 4:4/5/e202000908. [PMID: 33687996 PMCID: PMC8008951 DOI: 10.26508/lsa.202000908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
CD44 anchors the hyaluronan glycocalyx on migrating dendritic cells to permit docking to the endothelial receptor LYVE-1, thus orchestrating lymphatic trafficking through modulating glycocalyx density. DCs play a vital role in immunity by conveying antigens from peripheral tissues to draining lymph nodes, through afferent lymphatic vessels. Critical to the process is initial docking to the lymphatic endothelial receptor LYVE-1 via its ligand hyaluronan on the DC surface. How this relatively weak binding polymer is configured for specific adhesion to LYVE-1, however, is unknown. Here, we show that hyaluronan is anchored and spatially organized into a 400–500 nm dense glycocalyx by the leukocyte receptor CD44. Using gene knockout and by modulating CD44-hyaluronan interactions with monoclonal antibodies in vitro and in a mouse model of oxazolone-induced skin inflammation, we demonstrate that CD44 is required for DC adhesion and transmigration across lymphatic endothelium. In addition, we present evidence that CD44 can dynamically control the density of the hyaluronan glycocalyx, regulating the efficiency of DC trafficking to lymph nodes. Our findings define a previously unrecognized role for CD44 in lymphatic trafficking and highlight the importance of the CD44:HA:LYVE-1 axis in its regulation.
Collapse
Affiliation(s)
- Louise A Johnson
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Suneale Banerji
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - B Christoffer Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David G Jackson
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Feng M, Zhou S, Yu Y, Su Q, Li X, Lin W. Regulation of the Migration of Distinct Dendritic Cell Subsets. Front Cell Dev Biol 2021; 9:635221. [PMID: 33681216 PMCID: PMC7933215 DOI: 10.3389/fcell.2021.635221] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs), a class of antigen-presenting cells, are widely present in tissues and apparatuses of the body, and their ability to migrate is key for the initiation of immune activation and tolerogenic immune responses. The importance of DCs migration for their differentiation, phenotypic states, and immunologic functions has attracted widespread attention. In this review, we discussed and compared the chemokines, membrane molecules, and migration patterns of conventional DCs, plasmocytoid DCs, and recently proposed DC subgroups. We also review the promoters and inhibitors that affect DCs migration, including the hypoxia microenvironment, tumor microenvironment, inflammatory factors, and pathogenic microorganisms. Further understanding of the migration mechanisms and regulatory factors of DC subgroups provides new insights for the treatment of diseases, such as infection, tumors, and vaccine preparation.
Collapse
Affiliation(s)
- Meng Feng
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuping Zhou
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yong Yu
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghong Su
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaofan Li
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Lin
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
26
|
Munir H, Mazzaglia C, Shields JD. Stromal regulation of tumor-associated lymphatics. Adv Drug Deliv Rev 2020; 161-162:75-89. [PMID: 32783989 DOI: 10.1016/j.addr.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Recent advances have identified a growing array of roles played by lymphatics in the tumor microenvironment, from providing a route of metastasis to immune modulation. The tumor microenvironment represents an exceptionally complex, dynamic niche comprised of a diverse mixture of cancer cells and normal host cells termed the stroma. This review discusses our current understanding of stromal elements and how they regulate lymphatic growth and functional properties in the tumor context.
Collapse
Affiliation(s)
- Hafsa Munir
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ
| | - Corrado Mazzaglia
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ
| | - Jacqueline D Shields
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ.
| |
Collapse
|
27
|
de Winde CM, Munday C, Acton SE. Molecular mechanisms of dendritic cell migration in immunity and cancer. Med Microbiol Immunol 2020; 209:515-529. [PMID: 32451606 PMCID: PMC7395046 DOI: 10.1007/s00430-020-00680-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous population of antigen-presenting cells that act to bridge innate and adaptive immunity. DCs are critical in mounting effective immune responses to tissue damage, pathogens and cancer. Immature DCs continuously sample tissues and engulf antigens via endocytic pathways such as phagocytosis or macropinocytosis, which result in DC activation. Activated DCs undergo a maturation process by downregulating endocytosis and upregulating surface proteins controlling migration to lymphoid tissues where DC-mediated antigen presentation initiates adaptive immune responses. To traffic to lymphoid tissues, DCs must adapt their motility mechanisms to migrate within a wide variety of tissue types and cross barriers to enter lymphatics. All steps of DC migration involve cell-cell or cell-substrate interactions. This review discusses DC migration mechanisms in immunity and cancer with a focus on the role of cytoskeletal processes and cell surface proteins, including integrins, lectins and tetraspanins. Understanding the adapting molecular mechanisms controlling DC migration in immunity provides the basis for therapeutic interventions to dampen immune activation in autoimmunity, or to improve anti-tumour immune responses.
Collapse
Affiliation(s)
- Charlotte M de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Clare Munday
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
28
|
Jamali A, Harris DL, Blanco T, Lopez MJ, Hamrah P. Resident plasmacytoid dendritic cells patrol vessels in the naïve limbus and conjunctiva. Ocul Surf 2020; 18:277-285. [PMID: 32109562 PMCID: PMC7397780 DOI: 10.1016/j.jtos.2020.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/15/2020] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) constitute a unique population of bone marrow-derived cells that play a pivotal role in linking innate and adaptive immune responses. While peripheral tissues are typically devoid of pDCs during steady state, few tissues do host resident pDCs. In the current study, we aim to assess presence and distribution of pDCs in naïve murine limbus and bulbar conjunctiva. Immunofluorescence staining followed by confocal microscopy revealed that the naïve bulbar conjunctiva of wild-type mice hosts CD45+ CD11clow PDCA-1+ pDCs. Flow cytometry confirmed the presence of resident pDCs in the bulbar conjunctiva through multiple additional markers, and showed that they express maturation markers, the T cell co-inhibitory molecules PD-L1 and B7-H3, and minor to negligible levels of T cell co-stimulatory molecules CD40, CD86, and ICAM-1. Epi-fluorescent microscopy of DPE-GFP×RAG1-/- transgenic mice with GFP-tagged pDCs indicated lower density of pDCs in the bulbar conjunctiva compared to the limbus. Further, intravital multiphoton microscopy revealed that resident pDCs accompany the limbal vessels and patrol the intravascular space. In vitro multiphoton microscopy showed that pDCs are attracted to human umbilical vein endothelial cells and interact with them during tube formation. In conclusion, our study shows that the limbus and bulbar conjunctiva are endowed with resident pDCs during steady state, which express maturation and classic T cell co-inhibitory molecules, engulf limbal vessels, and patrol intravascular spaces.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomas Blanco
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Maria J Lopez
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Program in Immunology, School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
29
|
Bros M, Haas K, Moll L, Grabbe S. RhoA as a Key Regulator of Innate and Adaptive Immunity. Cells 2019; 8:cells8070733. [PMID: 31319592 PMCID: PMC6678964 DOI: 10.3390/cells8070733] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
RhoA is a ubiquitously expressed cytoplasmic protein that belongs to the family of small GTPases. RhoA acts as a molecular switch that is activated in response to binding of chemokines, cytokines, and growth factors, and via mDia and the ROCK signaling cascade regulates the activation of cytoskeletal proteins, and other factors. This review aims to summarize our current knowledge on the role of RhoA as a general key regulator of immune cell differentiation and function. The contribution of RhoA for the primary functions of innate immune cell types, namely neutrophils, macrophages, and conventional dendritic cells (DC) to (i) get activated by pathogen-derived and endogenous danger signals, (ii) migrate to sites of infection and inflammation, and (iii) internalize pathogens has been fairly established. In activated DC, which constitute the most potent antigen-presenting cells of the immune system, RhoA is also important for the presentation of pathogen-derived antigen and the formation of an immunological synapse between DC and antigen-specific T cells as a prerequisite to induce adaptive T cell responses. In T cells and B cells as the effector cells of the adaptive immune system Rho signaling is pivotal for activation and migration. More recently, mutations of Rho and Rho-modulating factors have been identified to predispose for autoimmune diseases and as causative for hematopoietic malignancies.
Collapse
Affiliation(s)
- Matthias Bros
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Katharina Haas
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Lorna Moll
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- University Medical Center Mainz, Department of Dermatology, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
30
|
Abstract
Lymphatic vessels collect interstitial fluid that has extravasated from blood vessels and return it to the circulatory system. Another important function of the lymphatic network is to facilitate immune cell migration and antigen transport from the periphery to draining lymph nodes. This migration plays a crucial role in immune surveillance, initiation of immune responses and tolerance. Here we discuss the significance and mechanisms of lymphatic migration of innate and adaptive immune cells in homeostasis, inflammation and cancer.
Collapse
Affiliation(s)
| | - Tatyana Chtanova
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales Sydney, Kensington, NSW, Australia
| |
Collapse
|
31
|
Abbadi D, Laroumanie F, Bizou M, Pozzo J, Daviaud D, Delage C, Calise D, Gaits-Iacovoni F, Dutaur M, Tortosa F, Renaud-Gabardos E, Douin-Echinard V, Prats AC, Roncalli J, Parini A, Pizzinat N. Local production of tenascin-C acts as a trigger for monocyte/macrophage recruitment that provokes cardiac dysfunction. Cardiovasc Res 2019; 114:123-137. [PMID: 29136112 DOI: 10.1093/cvr/cvx221] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023] Open
Abstract
Aims Tenascin-C (TNC) is an endogenous danger signal molecule strongly associated with inflammatory diseases and with poor outcome in patients with cardiomyopathies. Its function within pathological cardiac tissue during pressure overload remains poorly understood. Methods and results We showed that TNC accumulates after 1 week of transverse aortic constriction (TAC) in the heart of 12-week-old male mice. By cross bone marrow transplantation experiments, we determined that TNC deposition relied on cardiac cells and not on haematopoietic cells. The expression of TNC induced by TAC, or by administration of a recombinant lentivector coding for TNC, triggered a pro-inflammatory cardiac microenvironment, monocyte/macrophage (MO/MΦ) accumulation, and systolic dysfunction. TNC modified macrophage polarization towards the pro-inflammatory phenotype and stimulated RhoA/Rho-associated protein kinase (ROCK) pathways to promote mesenchymal to amoeboid transition that enhanced macrophage migration into fibrillar collagen matrices. The amplification of inflammation and MO/MΦ recruitment by TNC was abrogated by genetic invalidation of TNC in knockout mice. These mice showed less ventricular remodelling and an improved cardiac function after TAC as compared with wild-type mice. Conclusions By promoting a pro-inflammatory microenvironment and macrophage migration, TNC appears to be a key factor to enable the MO/MΦ accumulation within fibrotic hearts leading to cardiac dysfunction. As TNC is highly expressed during inflammation and sparsely during the steady state, its inhibition could be a promising therapeutic strategy to control inflammation and immune cell infiltration in heart disease.
Collapse
Affiliation(s)
- Dounia Abbadi
- I2MC, Toulouse University, Inserm, UPS, Toulouse, France
| | | | - Mathilde Bizou
- I2MC, Toulouse University, Inserm, UPS, Toulouse, France
| | - Joffrey Pozzo
- I2MC, Toulouse University, Inserm, UPS, Toulouse, France.,Department of Cardiology, University Hospital of Rangueil, Toulouse, France
| | | | - Christine Delage
- UMS006-Microsurgery Facility, 1, avenue du Professeur Jean Poulhés, Toulouse, France
| | - Denis Calise
- UMS006-Microsurgery Facility, 1, avenue du Professeur Jean Poulhés, Toulouse, France
| | | | | | | | | | | | | | - Jerome Roncalli
- I2MC, Toulouse University, Inserm, UPS, Toulouse, France.,Department of Cardiology, University Hospital of Rangueil, Toulouse, France
| | - Angelo Parini
- I2MC, Toulouse University, Inserm, UPS, Toulouse, France
| | | |
Collapse
|
32
|
Willrodt AH, Salabarria AC, Schineis P, Ignatova D, Hunter MC, Vranova M, Golding-Ochsenbein AM, Sigmund E, Romagna A, Strassberger V, Fabbi M, Ferrini S, Cursiefen C, Neri D, Guenova E, Bock F, Halin C. ALCAM Mediates DC Migration Through Afferent Lymphatics and Promotes Allospecific Immune Reactions. Front Immunol 2019; 10:759. [PMID: 31031759 PMCID: PMC6473055 DOI: 10.3389/fimmu.2019.00759] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM, CD166) is a cell adhesion molecule of the immunoglobulin superfamily and has been implicated in diverse pathophysiological processes including T cell activation, leukocyte trafficking, and (lymph)angiogenesis. However, exploring the therapeutic potential of ALCAM blockade in immune-mediated inflammatory disorders has been difficult due to the lack of antibodies with blocking activity toward murine ALCAM. In this study, we identified and characterized a monoclonal antibody with high affinity and specificity for murine ALCAM. This antibody reduced in vitro T cell activation induced by antigen-presenting dendritic cells (DCs) as well as (trans)migration of murine DCs across lymphatic endothelial monolayers. Moreover, it reduced emigration of DCs from in vitro-cultured human skin biopsies. Similarly, antibody-based blockade of ALCAM reduced (lymph)angiogenic processes in vitro and decreased developmental lymphangiogenesis in vivo to levels observed in ALCAM-deficient mice. Since corneal allograft rejection is an important medical condition that also involves (lymph)angiogenesis, DC migration and T cell activation, we investigated the therapeutic potential of ALCAM blockade in murine corneal disease. Blocking ALCAM lead to DC retention in corneas and effectively prevented corneal allograft rejection. Considering that we also detected ALCAM expression in human corneal DCs and lymphatics, our findings identify ALCAM as a potential novel therapeutic target in human corneal allograft rejection.
Collapse
Affiliation(s)
| | | | - Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Desislava Ignatova
- Department of Dermatology, University Hospital of Zürich, University of Zurich, Zurich, Switzerland
| | | | - Martina Vranova
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | | | - Elena Sigmund
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Annatina Romagna
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | | | - Marina Fabbi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Cologne, Germany.,Center Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Dario Neri
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital of Zürich, University of Zurich, Zurich, Switzerland
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Cologne, Germany.,Center Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
33
|
Hunter MC, Teijeira A, Montecchi R, Russo E, Runge P, Kiefer F, Halin C. Dendritic Cells and T Cells Interact Within Murine Afferent Lymphatic Capillaries. Front Immunol 2019; 10:520. [PMID: 30967863 PMCID: PMC6440485 DOI: 10.3389/fimmu.2019.00520] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/26/2019] [Indexed: 11/13/2022] Open
Abstract
Afferent lymphatic vessels contribute to immunity by transporting antigen and leukocytes to draining lymph nodes (LNs) and are emerging as new players in the regulation of peripheral tolerance. Performing intravital microscopy in inflamed murine ear skin we found that migrating dendritic cells (DCs) and antigen-experienced effector T cells spend considerable time arresting or clustering within afferent lymphatic capillaries. We also observed that intralymphatic T cells frequently interacted with DCs. When imaging polyclonal T cells during an ongoing contact-hypersensitivity response, most intralymphatic DC-T cell interactions were short-lived. Conversely, during a delayed-type-hypersensitivity response, cognate antigen-bearing DCs engaged in long-lived MHCII-(I-A/I-E)-dependent interactions with antigen-specific T cells. Long-lived intralymphatic DC-T cell interactions reduced the speed of DC crawling but did not delay overall DC migration to draining LNs. While further consequences of these intralymphatic interactions still need to be explored, our findings suggest that lymphatic capillaries represent a unique compartment in which adaptive immune interaction and modulation occur.
Collapse
Affiliation(s)
| | - Alvaro Teijeira
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | | | - Erica Russo
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Peter Runge
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| | - Friedemann Kiefer
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.,European Institute for Molecular Imaging - EIMI, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
34
|
Jackson DG. Leucocyte Trafficking via the Lymphatic Vasculature- Mechanisms and Consequences. Front Immunol 2019; 10:471. [PMID: 30923528 PMCID: PMC6426755 DOI: 10.3389/fimmu.2019.00471] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 01/15/2023] Open
Abstract
The lymphatics fulfill a vital physiological function as the conduits through which leucocytes traffic between the tissues and draining lymph nodes for the initiation and modulation of immune responses. However, until recently many of the molecular mechanisms controlling such migration have been unclear. As a result of careful research, it is now apparent that the process is regulated at multiple stages from initial leucocyte entry and intraluminal crawling in peripheral tissue lymphatics, through to leucocyte exit in draining lymph nodes where the migrating cells either participate in immune responses or return to the circulation via efferent lymph. Furthermore, it is increasingly evident that most if not all leucocyte populations migrate in lymph and that such migration is not only important for immune modulation, but also for the timely repair and resolution of tissue inflammation. In this article, I review the latest research findings in these areas, arising from new insights into the distinctive ultrastructure of lymphatic capillaries and lymph node sinuses. Accordingly, I highlight the emerging importance of the leucocyte glycocalyx and its novel interactions with the endothelial receptor LYVE-1, the intricacies of endothelial chemokine secretion and sequestration that direct leucocyte trafficking and the significance of the process for normal immune function and pathology.
Collapse
Affiliation(s)
- David G Jackson
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Louie DAP, Liao S. Lymph Node Subcapsular Sinus Macrophages as the Frontline of Lymphatic Immune Defense. Front Immunol 2019; 10:347. [PMID: 30891035 PMCID: PMC6413714 DOI: 10.3389/fimmu.2019.00347] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/11/2019] [Indexed: 01/12/2023] Open
Abstract
Lymphatic vessels collect and transport lymph and pathogens to the draining lymph node (LN) to generate proper immune protection. A layer of macrophages that strategically line the LN subcapsular sinus (SCS) is directly exposed to the afferent lymph and are denoted as SCS macrophages. These macrophages are the frontline of immune defense that interact with lymph-borne antigens. The importance of these macrophages in limiting the spread of pathogens has been demonstrated in both viral and bacterial infection. In anti-microbial responses, these macrophages can directly or indirectly activate other LN innate immune cells to fight against pathogens, as well as activate T cells or B cells for adaptive immunity. As the first layer of immune cells embracing the tumor-derived antigens, SCS macrophages also actively participate in cancer immune regulation. Recent studies have shown that the LNs' SCS macrophage layer is interrupted in disease models. Despite their importance in fighting the spread of pathogens and in activating anti-tumor immunity, the mechanism and the immunological functional consequences for their disruption are not well-understood. Understanding the mechanism of these macrophages will enhance their capability for therapeutic targeting.
Collapse
Affiliation(s)
- Dante Alexander Patrick Louie
- Department of Microbiology, Immunology and Infectious Diseases, The Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shan Liao
- Department of Microbiology, Immunology and Infectious Diseases, The Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
37
|
Schineis P, Runge P, Halin C. Cellular traffic through afferent lymphatic vessels. Vascul Pharmacol 2018; 112:31-41. [PMID: 30092362 DOI: 10.1016/j.vph.2018.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/26/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
The lymphatic system has long been known to serve as a highway for migrating leukocytes from peripheral tissue to draining lymph nodes (dLNs) and back to circulation, thereby contributing to the induction of adaptive immunity and immunesurveillance. Lymphatic vessels (LVs) present in peripheral tissues upstream of a first dLN are generally referred to as afferent LVs. In contrast to migration through blood vessels (BVs), the detailed molecular and cellular requirements of cellular traffic through afferent LVs have only recently started to be unraveled. Progress in our ability to track the migration of lymph-borne cell populations, in combination with cutting-edge imaging technologies, nowadays allows the investigation and visualization of lymphatic migration of endogenous leukocytes, both at the population and at the single-cell level. These studies have revealed that leukocyte trafficking through afferent LVs generally follows a step-wise migration pattern, relying on the active interplay of numerous molecules. In this review, we will summarize and discuss current knowledge of cellular traffic through afferent LVs. We will first outline how the structure of the afferent LV network supports leukocyte migration and highlight important molecules involved in the migration of dendritic cells (DCs), T cells and neutrophils, i.e. the most prominent cell types trafficking through afferent LVs. Additionally, we will describe how tumor cells hijack the lymphatic system for their dissemination to draining LNs. Finally, we will summarize and discuss our current understanding of the functional significance as well as the therapeutic implications of cell traffic through afferent LVs.
Collapse
Affiliation(s)
| | - Peter Runge
- Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland.
| |
Collapse
|
38
|
Saraiva AL, Veras FP, Peres RS, Talbot J, de Lima KA, Luiz JP, Carballido JM, Cunha TM, Cunha FQ, Ryffel B, Alves-Filho JC. Succinate receptor deficiency attenuates arthritis by reducing dendritic cell traffic and expansion of T h17 cells in the lymph nodes. FASEB J 2018; 32:fj201800285. [PMID: 29894669 DOI: 10.1096/fj.201800285] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rheumatoid arthritis is a chronic inflammatory disease that leads to significant changes in metabolic activity. Succinate, an intermediate of the tricarboxylic acid cycle, has emerged as a metabolic mediator of the innate immune response. However, the involvement of succinate in the generation of the adaptive immune response and establishment of autoimmune response has not been addressed thus far. Here we demonstrated that the succinate-sensing receptor (Sucnr1/GPR91) plays a critical role in the development of immune-mediated arthritis. We found that Sucnr1 acts as a chemotactic gradient sensor that guides dendritic cells (DCs) into the lymph nodes, orchestrating the expansion of the T helper (Th)17-cell population and the development of experimental antigen-induced arthritis. Sucnr1-/- mice show reduced articular hyperalgesia, neutrophil infiltration and inflammatory cytokines in the joint, and reduced frequency of Th17 cells in draining lymph nodes. Adoptive transfer of wild-type (WT) DCs into Sucnr1-/- mice restored the development of arthritis. Moreover, DC-depleted mice transferred with Sucnr1-/- DCs developed less arthritis than mice transferred with WT DCs. In contrast, succinate given together with the immunization boosted the recruitment of DCs and the frequency of Th17 cells in draining lymph nodes, increasing arthritis severity. Therefore, the blockade of Sucnr1 may represent a novel therapeutic target of arthritis.-Saraiva, A. L., Veras, F. P., Peres, R. S., Talbot, J., de Lima, K. A., Luiz, J. P., Carballido, J. M., Cunha, T. M., Cunha, F. Q., Ryffel, B., Alves-Filho, J. C. Succinate receptor deficiency attenuates arthritis by reducing dendritic cell traffic and expansion of Th17 cells in the lymph nodes.
Collapse
Affiliation(s)
- André L Saraiva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Flávio P Veras
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Raphael S Peres
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Jhimmy Talbot
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Kalil A de Lima
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - João P Luiz
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Thiago M Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Bernhard Ryffel
- Molecular and Experimental Immunology and Neurogenetics, Unité Mixte de Recherche 7355 Centre National de la Recherche Scientifique, University of Orleans, Orleans, France
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
- Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
39
|
Combined Rho-kinase inhibition and immunogenic cell death triggers and propagates immunity against cancer. Nat Commun 2018; 9:2165. [PMID: 29867097 PMCID: PMC5986820 DOI: 10.1038/s41467-018-04607-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/11/2018] [Indexed: 01/12/2023] Open
Abstract
Activation of T cell immune response is critical for the therapeutic efficacy of cancer immunotherapy. Current immunotherapies have shown remarkable clinical success against several cancers; however, significant responses remain restricted to a minority of patients. Here, we show a therapeutic strategy that combines enhancing the phagocytic activity of antigen-presenting cells with immunogenic cell death to trigger efficient antitumour immunity. Rho-kinase (ROCK) blockade increases cancer cell phagocytosis and induces antitumour immunity through enhancement of T cell priming by dendritic cells (DCs), leading to suppression of tumour growth in syngeneic tumour models. Combining ROCK blockade with immunogenic chemotherapy leads to increased DC maturation and synergistic CD8+ cytotoxic T cell priming and infiltration into tumours. This therapeutic strategy effectively suppresses tumour growth and improves overall survival in a genetic mouse mammary tumour virus/Neu tumour model. Collectively, these results suggest that boosting intrinsic cancer immunity using immunogenic killing and enhanced phagocytosis is a promising therapeutic strategy for cancer immunotherapy. Activation of an immune response is critical for the efficacy of cancer therapies. Here, the authors show that combination of ROCK inhibitor with chemotherapeutics that induce immunogenic cell death of cancer cells leads to increased dendritic cells’ maturation and synergistic CD8+ cytotoxic T cell priming and infiltration into the tumours, leading to suppressed tumour growth and improved overall survival in syngeneic and genetically engineered tumour models.
Collapse
|
40
|
Cougoule C, Lastrucci C, Guiet R, Mascarau R, Meunier E, Lugo-Villarino G, Neyrolles O, Poincloux R, Maridonneau-Parini I. Podosomes, But Not the Maturation Status, Determine the Protease-Dependent 3D Migration in Human Dendritic Cells. Front Immunol 2018; 9:846. [PMID: 29760696 PMCID: PMC5936769 DOI: 10.3389/fimmu.2018.00846] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/05/2018] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DC) are professional Antigen-Presenting Cells scattered throughout antigen-exposed tissues and draining lymph nodes, and survey the body for pathogens. Their ability to migrate through tissues, a 3D environment, is essential for an effective immune response. Upon infection, recognition of Pathogen-Associated Molecular Patterns (PAMP) by Toll-like receptors (TLR) triggers DC maturation. Mature DC (mDC) essentially use the protease-independent, ROCK-dependent amoeboid mode in vivo, or in collagen matrices in vitro. However, the mechanisms of 3D migration used by human immature DC (iDC) are still poorly characterized. Here, we reveal that human monocyte-derived DC are able to use two migration modes in 3D. In porous matrices of fibrillar collagen I, iDC adopted the amoeboid migration mode. In dense matrices of gelled collagen I or Matrigel, iDC used the protease-dependent, ROCK-independent mesenchymal migration mode. Upon TLR4 activation by LPS, mDC-LPS lose the capacity to form podosomes and degrade the matrix along with impaired mesenchymal migration. TLR2 activation by Pam3CSK4 resulted in DC maturation, podosome maintenance, and efficient mesenchymal migration. Under all these conditions, when DC used the mesenchymal mode in dense matrices, they formed 3D podosomes at the tip of cell protrusions. Using PGE2, known to disrupt podosomes in DC, we observed that the cells remained in an immature status and the mesenchymal migration mode was abolished. We also observed that, while CCL5 (attractant of iDC) enhanced both amoeboid and mesenchymal migration of iDC, CCL19 and CCL21 (attractants of mDC) only enhanced mDC-LPS amoeboid migration without triggering mesenchymal migration. Finally, we examined the migration of iDC in tumor cell spheroids, a tissue-like 3D environment. We observed that iDC infiltrated spheroids of tumor cells using both migration modes. Altogether, these results demonstrate that human DC adopt the mesenchymal mode to migrate in 3D dense environments, which relies on their capacity to form podosomes independent of their maturation status, paving the way of further investigations on in vivo DC migration in dense tissues and its regulation during infections.
Collapse
Affiliation(s)
- Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Lastrucci
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Romain Guiet
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rémi Mascarau
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Etienne Meunier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Renaud Poincloux
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Isabelle Maridonneau-Parini
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
41
|
Jackson DG. Hyaluronan in the lymphatics: The key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol 2018; 78-79:219-235. [PMID: 29425695 DOI: 10.1016/j.matbio.2018.02.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/25/2022]
Abstract
LYVE-1, a close relative of the leucocyte receptor, CD44, is the main receptor for hyaluronan (HA) in lymphatic vessel endothelium and a widely used marker for distinguishing between blood and lymphatic vessels. Enigmatic for many years because of its anomalous HA-binding characteristics, the function of LYVE-1 has just recently been identified as that of a lymphatic docking receptor for dendritic cells, selectively engaging with their surface HA glycocalyx to regulate entry to peripheral lymphatics and migration to downstream lymph nodes for immune activation. Furthermore, LYVE-1 mediates the trafficking of macrophages, and is also exploited by HA-encapsulated Group A streptococci for lymphatic invasion and host dissemination. Consistent with a role in lymphatic trafficking, the interaction of LYVE-1 with HA and its degradation products can also activate intracellular signalling pathways for endothelial junctional retraction and lymphatic endothelial proliferation. Here we outline the latest findings on the receptor in the context of its peculiar biochemical properties and speculate on how the interaction of LYVE-1 with different HA sizes and conformations might variably influence cell function as a consequence of avidity and receptor crosslinking. Finally, we evaluate evidence that LYVE-1 can also bind growth factors and associate with kinase-linked growth factor receptors and conclude on how the LYVE-1·HA axis may be exploited as a target to either block inflammation or tissue allograft rejection, or potentiate vaccine and drug delivery.
Collapse
Affiliation(s)
- David G Jackson
- University of Oxford, MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
| |
Collapse
|
42
|
Liang H, Liao M, Zhao W, Zheng X, Xu F, Wang H, Huang J. CXCL16/ROCK1 signaling pathway exacerbates acute kidney injury induced by ischemia-reperfusion. Biomed Pharmacother 2018; 98:347-356. [DOI: 10.1016/j.biopha.2017.12.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 01/21/2023] Open
|
43
|
T Cell Migration from Inflamed Skin to Draining Lymph Nodes Requires Intralymphatic Crawling Supported by ICAM-1/LFA-1 Interactions. Cell Rep 2017; 18:857-865. [PMID: 28122237 DOI: 10.1016/j.celrep.2016.12.078] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/02/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
T cells are the most abundant cell type found in afferent lymph, but their migration through lymphatic vessels (LVs) remains poorly understood. Performing intravital microscopy in the murine skin, we imaged T cell migration through afferent LVs in vivo. T cells entered into and actively migrated within lymphatic capillaries but were passively transported in contractile collecting vessels. Intralymphatic T cell number and motility were increased during contact-hypersensitivity-induced inflammation and dependent on ICAM-1/LFA-1 interactions. In vitro, blockade of endothelial cell-expressed ICAM-1 reduced T cell adhesion, crawling, and transmigration across lymphatic endothelium and decreased T cell advancement from capillaries into lymphatic collectors in skin explants. In vivo, T cell migration to draining lymph nodes was significantly reduced upon ICAM-1 or LFA-1 blockade. Our findings indicate that T cell migration through LVs occurs in distinct steps and reveal a key role for ICAM-1/LFA-1 interactions in this process.
Collapse
|
44
|
Tiefenboeck P, Kim JA, Trunk F, Eicher T, Russo E, Teijeira A, Halin C, Leroux JC. Microinjection for the ex Vivo Modification of Cells with Artificial Organelles. ACS NANO 2017; 11:7758-7769. [PMID: 28777538 DOI: 10.1021/acsnano.7b01404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microinjection is extensively used across fields to deliver material intracellularly. Here we address the fundamental aspects of introducing exogenous organelles into cells to endow them with artificial functions. Nanocarriers encapsulating biologically active cargo or extreme intraluminal pH were injected directly into the cytosol of cells, where they bypassed subcellular processing pathways and remained intact for several days. Nanocarriers' size was found to dictate their intracellular distribution pattern upon injection, with larger vesicles adopting polarized agglomerated distributions and smaller colloids spreading evenly in the cytosol. This in turn determined the symmetry or asymmetry of their dilution following cell division, ultimately affecting the intracellular dose at a cell population level. As an example of microinjection's applicability, a cell type relevant for cell-based therapies (dendritic cells) was injected with vesicles, and its migratory properties were studied in a co-culture system mimicking lymphatic capillaries.
Collapse
Affiliation(s)
- Peter Tiefenboeck
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Jong Ah Kim
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Ferdinand Trunk
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Tamara Eicher
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Erica Russo
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Alvaro Teijeira
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zürich , 8093 Zürich, Switzerland
| |
Collapse
|
45
|
Johnson LA, Banerji S, Lawrance W, Gileadi U, Prota G, Holder KA, Roshorm YM, Hanke T, Cerundolo V, Gale NW, Jackson DG. Dendritic cells enter lymph vessels by hyaluronan-mediated docking to the endothelial receptor LYVE-1. Nat Immunol 2017; 18:762-770. [PMID: 28504698 DOI: 10.1038/ni.3750] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/24/2017] [Indexed: 02/07/2023]
Abstract
Trafficking of tissue dendritic cells (DCs) via lymph is critical for the generation of cellular immune responses in draining lymph nodes (LNs). In the current study we found that DCs docked to the basolateral surface of lymphatic vessels and transited to the lumen through hyaluronan-mediated interactions with the lymph-specific endothelial receptor LYVE-1, in dynamic transmigratory-cup-like structures. Furthermore, we show that targeted deletion of the gene Lyve1, antibody blockade or depletion of the DC hyaluronan coat not only delayed lymphatic trafficking of dermal DCs but also blunted their capacity to prime CD8+ T cell responses in skin-draining LNs. Our findings uncovered a previously unknown function for LYVE-1 and show that transit through the lymphatic network is initiated by the recognition of leukocyte-derived hyaluronan.
Collapse
Affiliation(s)
- Louise A Johnson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Suneale Banerji
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - William Lawrance
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Gennaro Prota
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kayla A Holder
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yaowaluck M Roshorm
- Division of Biotechnology, School of Bioresources and Technology, King Monkut's University of Technology, Thonburi, Thailand
| | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, UK
- International Research Centre for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - David G Jackson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
46
|
Moore TL, Hauser D, Gruber T, Rothen-Rutishauser B, Lattuada M, Petri-Fink A, Lyck R. Cellular Shuttles: Monocytes/Macrophages Exhibit Transendothelial Transport of Nanoparticles under Physiological Flow. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18501-18511. [PMID: 28517937 DOI: 10.1021/acsami.7b03479] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A major hurdle in the development of biomedical nanoparticles (NP) is understanding how they interact with complex biological systems and navigate biological barriers to arrive at pathological targets. It is becoming increasingly evident that merely controlling particle physicochemical properties may not be sufficient to mediate particle biodistribution in dynamic environments. Thus, researchers are increasingly turning toward more complex but likewise more physiological in vitro systems to study particle--cell/particle-system interactions. An emerging paradigm is to utilize naturally migratory cells to act as so-called "Trojan horses" or cellular shuttles. We report here the use of monocytes/macrophages to transport NP across a confluent endothelial cell layer using a microfluidic in vitro model. With a custom-built flow chamber, we showed that physiological shear stress, when compared to low flow or static conditions, increased NP uptake by macrophages. We further provided a mathematical explanation for the effect of flow on NP uptake, namely that the physical exposure times of NP to cells is dictated by shear stress (i.e., flow rate) and results in increased particle uptake under flow. This study was extended to a multicellular, hydrodynamic in vitro model. Because monocytes are cells that naturally translocate across biological barriers, we utilized a monocyte/macrophage cell line as cellular NP transporters across an endothelial layer. In this exploratory study, we showed that monocyte/macrophage cells adhere to an endothelial layer and dynamically interact with the endothelial cells. The monocytes/macrophages took up NP and diapedesed across the endothelial layer with NP accumulating within the cellular uropod. These data illustrate that monocytes/macrophages may therefore act as active shuttles to deliver particles across endothelial barriers.
Collapse
Affiliation(s)
| | | | - Thomas Gruber
- Theodor Kocher Institute, Universität Bern , 3000 Bern, Switzerland
| | | | | | | | - Ruth Lyck
- Theodor Kocher Institute, Universität Bern , 3000 Bern, Switzerland
| |
Collapse
|
47
|
Endogenous TNFα orchestrates the trafficking of neutrophils into and within lymphatic vessels during acute inflammation. Sci Rep 2017; 7:44189. [PMID: 28287124 PMCID: PMC5347029 DOI: 10.1038/srep44189] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are recognised to play a pivotal role at the interface between innate and acquired immunities following their recruitment to inflamed tissues and lymphoid organs. While neutrophil trafficking through blood vessels has been extensively studied, the molecular mechanisms regulating their migration into the lymphatic system are still poorly understood. Here, we have analysed neutrophil-lymphatic vessel interactions in real time and in vivo using intravital confocal microscopy applied to inflamed cremaster muscles. We show that antigen sensitisation of the tissues induces a rapid but transient entry of tissue-infiltrated neutrophils into lymphatic vessels and subsequent crawling along the luminal side of the lymphatic endothelium. Interestingly, using mice deficient in both TNF receptors p55 and p75, chimeric animals and anti-TNFα antibody blockade we demonstrate that tissue-release of TNFα governs both neutrophil migration through the lymphatic endothelium and luminal crawling. Mechanistically, we show that TNFα primes directly the neutrophils to enter the lymphatic vessels in a strictly CCR7-dependent manner; and induces ICAM-1 up-regulation on lymphatic vessels, allowing neutrophils to crawl along the lumen of the lymphatic endothelium in an ICAM-1/MAC-1-dependent manner. Collectively, our findings demonstrate a new role for TNFα as a key regulator of neutrophil trafficking into and within lymphatic system in vivo.
Collapse
|
48
|
Hunter MC, Teijeira A, Halin C. T Cell Trafficking through Lymphatic Vessels. Front Immunol 2016; 7:613. [PMID: 28066423 PMCID: PMC5174098 DOI: 10.3389/fimmu.2016.00613] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/05/2016] [Indexed: 01/06/2023] Open
Abstract
T cell migration within and between peripheral tissues and secondary lymphoid organs is essential for proper functioning of adaptive immunity. While active T cell migration within a tissue is fairly slow, blood vessels and lymphatic vessels (LVs) serve as speedy highways that enable T cells to travel rapidly over long distances. The molecular and cellular mechanisms of T cell migration out of blood vessels have been intensively studied over the past 30 years. By contrast, less is known about T cell trafficking through the lymphatic vasculature. This migratory process occurs in one manner within lymph nodes (LNs), where recirculating T cells continuously exit into efferent lymphatics to return to the blood circulation. In another manner, T cell trafficking through lymphatics also occurs in peripheral tissues, where T cells exit the tissue by means of afferent lymphatics, to migrate to draining LNs and back into blood. In this review, we highlight how the anatomy of the lymphatic vasculature supports T cell trafficking and review current knowledge regarding the molecular and cellular requirements of T cell migration through LVs. Finally, we summarize and discuss recent insights regarding the presumed relevance of T cell trafficking through afferent lymphatics.
Collapse
Affiliation(s)
- Morgan C. Hunter
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Alvaro Teijeira
- Immunology and Immunotherapy Department, CIMA, Universidad de Navarra, Pamplona, Spain
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
49
|
Pflugfelder SC, Stern M, Zhang S, Shojaei A. LFA-1/ICAM-1 Interaction as a Therapeutic Target in Dry Eye Disease. J Ocul Pharmacol Ther 2016; 33:5-12. [PMID: 27906544 PMCID: PMC5240001 DOI: 10.1089/jop.2016.0105] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dry eye disease (DED) is a common ocular disorder associated with inflammation of the lacrimal gland and ocular surface. The interaction of the integrin lymphocyte function-associated antigen-1 (LFA-1) with its cognate ligand intercellular adhesion molecule-1 (ICAM-1) is known to have important roles in the interaction of a variety of cells involved in immune responses and inflammation, including those prominent in ocular surface inflammation. Lifitegrast, an LFA-1 antagonist that blocks binding of ICAM-1 to LFA-1, has recently been approved in the United States for the treatment of signs and symptoms of DED. In this review, we evaluate research findings to explore the potential role of LFA-1/ICAM-1 interaction in the pathophysiology of DED, and the evidence supporting LFA-1/ICAM-1 interaction as a rational therapeutic target in DED. The results of our review suggest that LFA-1/ICAM-1 interaction may play important roles in the cell-mediated immune response and inflammation associated with DED, including facilitating the homing of dendritic cells to the lymph nodes, interaction of dendritic cells with T cells and subsequent T cell activation/differentiation, migration of activated CD4+ T cells from the lymph nodes to the ocular surface, reactivation of T cells by resident antigen-presenting cells at the ocular surface, and recruitment and retention of LFA-1-expressing T cells in the conjunctival epithelium. Based on the available evidence, inhibition of LFA-1/ICAM-1 interaction represents a rational targeted approach in treating DED. Notably, inhibition of LFA-1/ICAM-1 binding with lifitegrast offers a novel approach to reducing ocular surface inflammation in this condition.
Collapse
|
50
|
Nitti MD, Hespe GE, Kataru RP, García Nores GD, Savetsky IL, Torrisi JS, Gardenier JC, Dannenberg AJ, Mehrara BJ. Obesity-induced lymphatic dysfunction is reversible with weight loss. J Physiol 2016; 594:7073-7087. [PMID: 27619475 DOI: 10.1113/jp273061] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Obesity induces lymphatic leakiness, decreases initial lymphatic vessel density, impairs collecting vessel pumping and decreases transport of macromolecules. Obesity results in perilymphatic inducible nitric oxide synthase (iNOS) expression and accumulation of T cells and macrophages. Deleterious effects of obesity on the lymphatic system correlate with weight gain. Weight loss restores lymphatic function in obese animals and decreases perilymphatic iNOS and inflammatory cell accumulation. ABSTRACT Although clinical and experimental studies have shown that obesity results in lymphatic dysfunction, it remains unknown whether these changes are permanent or reversible with weight loss. In the current study, we used a mouse model of diet-induced obesity to identify putative cellular mechanisms of obesity-induced lymphatic dysfunction, determine whether there is a correlation between these deleterious effects and increasing weight gain, and finally examine whether lymphatic dysfunction is reversible with diet-induced weight loss. We report that obesity is negatively correlated with cutaneous lymphatic collecting vessel pumping rate (r = -0.9812, P < 0.0005) and initial lymphatic vessel density (r = -0.9449, P < 0.005). In addition, we show a significant positive correlation between weight gain and accumulation of perilymphatic inflammatory cells (r = 0.9872, P < 0.0005) and expression of inducible nitric oxide synthase (iNOS; r = 0.9986, P < 0.0001). Weight loss resulting from conversion to a normal chow diet for 8 weeks resulted in more than a 25% decrease in body weight and normalized cutaneous lymphatic collecting vessel pumping rate, lymphatic vessel density, lymphatic leakiness, and lymphatic macromolecule clearance (all P < 0.05). In addition, weight loss markedly decreased perilymphatic inflammation and iNOS expression. Taken together, our findings show that obesity is linearly correlated with lymphatic dysfunction, perilymphatic inflammation and iNOS expression, and that weight loss via dietary modification effectively reverses these deleterious effects.
Collapse
Affiliation(s)
- Matthew D Nitti
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Geoffrey E Hespe
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Raghu P Kataru
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Gabriela D García Nores
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Ira L Savetsky
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Jeremy S Torrisi
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Jason C Gardenier
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Andrew J Dannenberg
- The Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Babak J Mehrara
- The Department of Surgery, Division of Plastic and Reconstructive Surgery, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| |
Collapse
|