1
|
Seale TS, Li L, Bruner JK, Chou M, Nguyen B, Seo J, Zhu R, Levis MJ, Pratilas CA, Small D. Targeting rapid TKI-induced AXL upregulation overcomes adaptive ERK reactivation and exerts antileukemic effects in FLT3/ITD acute myeloid leukemia. Mol Oncol 2024. [PMID: 39395205 DOI: 10.1002/1878-0261.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/04/2024] [Accepted: 09/26/2024] [Indexed: 10/14/2024] Open
Abstract
Acute myeloid leukemia (AML) patients with the FMS-related receptor tyrosine kinase 3 internal tandem duplication (FLT3/ITD) mutation have a poorer prognosis, and treatment with FLT3 tyrosine kinase inhibitors (TKIs) has been hindered by resistance mechanisms. One such mechanism is known as adaptive resistance, in which downstream signaling pathways are reactivated after initial inhibition. Past work has shown that FLT3/ITD cells undergo adaptive resistance through the reactivation of extracellular signal-regulated kinase (ERK) signaling within 24 h of sustained FLT3 inhibition. We investigated the mechanism(s) responsible for this ERK reactivation and hypothesized that targeting tyrosine-protein kinase receptor UFO (AXL), another receptor tyrosine kinase that has been implicated in cancer resistance, may overcome the adaptive ERK reactivation. Experiments revealed that AXL is upregulated and activated in FLT3/ITD cell lines mere hours after commencing TKI treatment. AXL inhibition combined with FLT3 inhibition to decrease the ERK signal rebound and to exert greater anti-leukemia effects than with either treatment alone. Finally, we observed that TKI-induced AXL upregulation occurs in patient samples, and combined inhibition of both AXL and FLT3 increased efficacy in our in vivo models. Taken together, these data suggest that AXL plays a role in adaptive resistance in FLT3/ITD AML and that combined AXL and FLT3 inhibition might improve FLT3/ITD AML patient outcomes.
Collapse
Affiliation(s)
- Tessa S Seale
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Li Li
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Kyle Bruner
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Melody Chou
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bao Nguyen
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaesung Seo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruiqi Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark J Levis
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christine A Pratilas
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Small
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Vandewalle N, De Beule N, De Becker A, De Bruyne E, Menu E, Vanderkerken K, Breckpot K, Devoogdt N, De Veirman K. AXL as immune regulator and therapeutic target in Acute Myeloid Leukemia: from current progress to novel strategies. Exp Hematol Oncol 2024; 13:99. [PMID: 39367387 PMCID: PMC11453060 DOI: 10.1186/s40164-024-00566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, treatment options for patients diagnosed with Acute Myeloid Leukemia (AML) were limited and predominantly relied on various combinations, dosages, or schedules of traditional chemotherapeutic agents. Patients with advanced age, relapsed/refractory disease or comorbidities were often left without effective treatment options. Novel advances in the understanding of leukemogenesis at the molecular and genetic levels, alongside recent progress in drug development, have resulted in the emergence of novel therapeutic agents and strategies for AML patients. Among these innovations, the receptor tyrosine kinase AXL has been established as a promising therapeutic target for AML. AXL is a key regulator of several cellular functions, including epithelial-to-mesenchymal transition in tumor cells, immune regulation, apoptosis, angiogenesis and the development of chemoresistance. Clinical studies of AXL inhibitors, as single agents and in combination therapy, have demonstrated promising efficacy in treating AML. Additionally, novel AXL-targeted therapies, such as AXL-specific antibodies or antibody fragments, present potential solutions to overcome the limitations associated with traditional small-molecule AXL inhibitors or multikinase inhibitors. This review provides a comprehensive overview of the structure and biological functions of AXL under normal physiological conditions, including its role in immune regulation. We also summarize AXL's involvement in cancer, with a specific emphasis on its role in the pathogenesis of AML, its contribution to immune evasion and drug resistance. Moreover, we discuss the AXL inhibitors currently undergoing (pre)clinical evaluation for the treatment of AML.
Collapse
Affiliation(s)
- Niels Vandewalle
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Nathan De Beule
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Hematology Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Ann De Becker
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Hematology Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eline Menu
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karin Vanderkerken
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center (TORC), Team Laboratory of Cellular and Molecular Therapy (LMCT), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Nick Devoogdt
- Laboratory of Molecular Imaging and Therapy (MITH), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Kim De Veirman
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium.
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Hematology Department, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, Brussels, 1090, Belgium.
| |
Collapse
|
3
|
Shao D, Liu C, Wang Y, Lin J, Cheng X, Han P, Li Z, Jian D, Nie J, Jiang M, Wei Y, Xing J, Guo Z, Wang W, Yi X, Tang H. DNMT1 determines osteosarcoma cell resistance to apoptosis by associatively modulating DNA and mRNA cytosine-5 methylation. FASEB J 2023; 37:e23284. [PMID: 37905981 DOI: 10.1096/fj.202301306r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/17/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
Cellular apoptosis is a central mechanism leveraged by chemotherapy to treat human cancers. 5-Methylcytosine (m5C) modifications installed on both DNA and mRNA are documented to regulate apoptosis independently. However, the interplay or crosstalk between them in cellular apoptosis has not yet been explored. Here, we reported that promoter methylation by DNMT1 coordinated with mRNA methylation by NSun2 to regulate osteosarcoma cell apoptosis. DNMT1 was induced during osteosarcoma cell apoptosis triggered by chemotherapeutic drugs, whereas NSun2 expression was suppressed. DNMT1 was found to repress NSun2 expression by methylating the NSun2 promoter. Moreover, DNMT1 and NSun2 regulate the anti-apoptotic genes AXL, NOTCH2, and YAP1 through DNA and mRNA methylation, respectively. Upon exposure to cisplatin or doxorubicin, DNMT1 elevation drastically reduced the expression of these anti-apoptotic genes via enhanced promoter methylation coupled with NSun2 ablation-mediated attenuation of mRNA methylation, thus rendering osteosarcoma cells to apoptosis. Collectively, our findings establish crosstalk of importance between DNA and RNA cytosine methylations in determining osteosarcoma resistance to apoptosis during chemotherapy, shedding new light on future treatment of osteosarcoma, and adding additional layers to the control of gene expression at different epigenetic levels.
Collapse
Affiliation(s)
- Dongxing Shao
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Cihang Liu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Yingying Wang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Jing Lin
- Department of Laboratory Medicine, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaolei Cheng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Pei Han
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhen Li
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
| | - Dongdong Jian
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junwei Nie
- R&D Department, Vazyme Biotech Co., Ltd, Nanjing, China
| | | | - Yuanzhi Wei
- R&D Department, Vazyme Biotech Co., Ltd, Nanjing, China
| | - Junyue Xing
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiping Guo
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xia Yi
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hao Tang
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, China
- Henan Key Laboratory of Chronic Disease Management, Department of Health Management Center, Henan Provincial People's Hospital, Department of Health Management Center of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Meng F, Song C, Liu J, Chen F, Zhu Y, Fang X, Cao Q, Ma D, Wang Y, Zhang C. Chlorogenic Acid Modulates Autophagy by Inhibiting the Activity of ALKBH5 Demethylase, Thereby Ameliorating Hepatic Steatosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15073-15086. [PMID: 37805933 DOI: 10.1021/acs.jafc.3c03710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Chlorogenic acid (CGA) is a naturally occurring plant component with the purpose of alleviating hepatic lipid deposition biological activities. However, the molecular mechanism behind this ability of CGA remains unelucidated. Consequently, we investigated the effect of CGA on hepatic lipid accumulation and elucidated its underlying mechanism. Our study used a high-fat diet (HFD)-induced mouse nonalcoholic fatty liver disease (NAFLD) model in mice to investigate the impact of CGA on hepatic lipid accumulation. The results revealed that the oral administration of CGA can ameliorate HFD-induced hepatic lipid deposition, reduce the NAFLD activity score (NAS), enhance liver autophagy, mitigate liver cell structural damage, and inhibit the MAPK/ERK signaling pathway. Meanwhile, CGA treatment increased the LC3B:LC3B ratio and decreased P62 expression. Cell experiments demonstrated that autophagy contributes to the ability of CGA to alleviate lipid deposition. Further analysis revealed that CGA specifically binds to ALKBH5 and inhibits its m6A methylase activity. The inhibition of ALKBH5 activity significantly reduces AXL mRNA stability in liver cells. The AXL downregulation resulted in suppressing ERK signaling pathway activation. Overall, this study demonstrates that CGA can alleviate hepatic steatosis by regulating autophagy through the inhibition of ALKBH5 activity inhibition.
Collapse
Affiliation(s)
- Fantong Meng
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| | - Chengchuang Song
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| | - Jia Liu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| | - Fang Chen
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| | - YuHua Zhu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xingtang Fang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| | - Qinghe Cao
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu Province 221004, China
| | - Daifu Ma
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
- Sweetpotato Research Institute, Chinese Academy of Agricultural Sciences, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu Province 221004, China
| | - Yanhong Wang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| | - Chunlei Zhang
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, Institute of Cellular and Molecular Biology, College of Life Science, Jiangsu Normal University, Xuzhou Jiangsu Province, 221116, China
| |
Collapse
|
5
|
Wu RH, Zhu CY, Yu PH, Ma Y, Hussain L, Naranmandura H, Wang QQ. The landscape of novel strategies for acute myeloid leukemia treatment: Therapeutic trends, challenges, and future directions. Toxicol Appl Pharmacol 2023; 473:116585. [PMID: 37302559 DOI: 10.1016/j.taap.2023.116585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous subtype of hematological malignancies with a wide spectrum of cytogenetic and molecular abnormalities, which makes it difficult to manage and cure. Along with the deeper understanding of the molecular mechanisms underlying AML pathogenesis, a large cohort of novel targeted therapeutic approaches has emerged, which considerably expands the medical options and changes the therapeutic landscape of AML. Despite that, resistant and refractory cases caused by genomic mutations or bypass signalling activation remain a great challenge. Therefore, discovery of novel treatment targets, optimization of combination strategies, and development of efficient therapeutics are urgently required. This review provides a detailed and comprehensive discussion on the advantages and limitations of targeted therapies as a single agent or in combination with others. Furthermore, the innovative therapeutic approaches including hyperthermia, monoclonal antibody-based therapy, and CAR-T cell therapy are also introduced, which may provide safe and viable options for the treatment of patients with AML.
Collapse
Affiliation(s)
- Ri Han Wu
- College of Life Sciences, Changchun Normal University, Changchun 130032, China
| | - Chen Ying Zhu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Pei Han Yu
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yafang Ma
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan
| | - Hua Naranmandura
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Qian Qian Wang
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
6
|
Nasimian A, Al Ashiri L, Ahmed M, Duan H, Zhang X, Rönnstrand L, Kazi JU. A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia. Int J Mol Sci 2023; 24:ijms24043830. [PMID: 36835239 PMCID: PMC9959897 DOI: 10.3390/ijms24043830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Despite incredible progress in cancer treatment, therapy resistance remains the leading limiting factor for long-term survival. During drug treatment, several genes are transcriptionally upregulated to mediate drug tolerance. Using highly variable genes and pharmacogenomic data for acute myeloid leukemia (AML), we developed a drug sensitivity prediction model for the receptor tyrosine kinase inhibitor sorafenib and achieved more than 80% prediction accuracy. Furthermore, by using Shapley additive explanations for determining leading features, we identified AXL as an important feature for drug resistance. Drug-resistant patient samples displayed enrichment of protein kinase C (PKC) signaling, which was also identified in sorafenib-treated FLT3-ITD-dependent AML cell lines by a peptide-based kinase profiling assay. Finally, we show that pharmacological inhibition of tyrosine kinase activity enhances AXL expression, phosphorylation of the PKC-substrate cyclic AMP response element binding (CREB) protein, and displays synergy with AXL and PKC inhibitors. Collectively, our data suggest an involvement of AXL in tyrosine kinase inhibitor resistance and link PKC activation as a possible signaling mediator.
Collapse
Affiliation(s)
- Ahmad Nasimian
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Hongzhi Duan
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Xiaoyue Zhang
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, 22185 Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Correspondence: ; Tel.: +46-462226407
| |
Collapse
|
7
|
Zhang Y, Wang P, Wang Y, Shen Y. Sitravatinib as a potent FLT3 inhibitor can overcome gilteritinib resistance in acute myeloid leukemia. Biomark Res 2023; 11:8. [PMID: 36691065 PMCID: PMC9872318 DOI: 10.1186/s40364-022-00447-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Gilteritinib is the only drug approved as monotherapy for acute myeloid leukemia (AML) patients harboring FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation throughout the world. However, drug resistance inevitably develops in clinical. Sitravatinib is a multi-kinase inhibitor under evaluation in clinical trials of various solid tumors. In this study, we explored the antitumor activity of sitravatinib against FLT3-ITD and clinically-relevant drug resistance in FLT3 mutant AML. METHODS Growth inhibitory assays were performed in AML cell lines and BaF3 cells expressing various FLT3 mutants to evaluate the antitumor activity of sitravatinib in vitro. Immunoblotting was used to examine the activity of FLT3 and its downstream pathways. Molecular docking was performed to predict the binding sites of FLT3 to sitravatinib. The survival benefit of sitravatinib in vivo was assessed in MOLM13 xenograft mouse models and mouse models of transformed BaF3 cells harboring different FLT3 mutants. Primary patient samples and a patient-derived xenograft (PDX) model were also used to determine the efficacy of sitravatinib. RESULTS Sitravatinib inhibited cell proliferation, induced cell cycle arrest and apoptosis in FLT3-ITD AML cell lines. In vivo studies showed that sitravatinib exhibited a better therapeutic effect than gilteritinib in MOLM13 xenograft model and BaF3-FLT3-ITD model. Unlike gilteritinib, the predicted binding sites of sitravatinib to FLT3 did not include F691 residue. Sitravatinib displayed a potent inhibitory effect on FLT3-ITD-F691L mutation which conferred resistance to gilteritinib and all other FLT3 inhibitors available, both in vitro and in vivo. Compared with gilteritinib, sitravatinib retained effective activity against FLT3 mutation in the presence of cytokines through the more potent and steady inhibition of p-ERK and p-AKT. Furthermore, patient blasts harboring FLT3-ITD were more sensitive to sitravatinib than to gilteritinib in vitro and in the PDX model. CONCLUSIONS Our study reveals the potential therapeutic role of sitravatinib in FLT3 mutant AML and provides an alternative inhibitor for the treatment of AML patients who are resistant to current FLT3 inhibitors.
Collapse
Affiliation(s)
- Yvyin Zhang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Peihong Wang
- Department of Hematology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000 China
| | - Yang Wang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yang Shen
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
8
|
Song MK, Park BB, Uhm JE. Clinical Efficacies of FLT3 Inhibitors in Patients with Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms232012708. [PMID: 36293564 PMCID: PMC9604443 DOI: 10.3390/ijms232012708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
FLT3 mutations are the most common genomic alteration detected in acute myeloid leukemia (AML) with a worse clinical prognosis. The highly frequent FLT3 mutations, together with the side effects associated with clinical prognosis, make FLT3 promising treatment targets and have provoked the advancement of FLT3 inhibitors. Recently, numerous FLT3 inhibitors were actively developed, and thus the outcomes of this aggressive subtype of AML were significantly improved. Recently, midostaurin and gilteritinib were approved as frontline treatment of AML and as therapeutic agents in the recurred disease by the United States Food and Drug Administration. Recently, numerous promising clinical trials attempted to seek appropriate management in frontline settings, in relapsed/refractory disease, or after stem cell transplantation in AML. This review follows numerous clinical trials about the usefulness of FLT3 inhibitors as frontline therapy, as relapsed/refractory conditioning, and as maintenance therapy of stem cell transplantation. The cumulative data of FLT3 inhibitors would be important clinical evidence for further management with FLT3 inhibitors in AML patients with FLT3 mutations.
Collapse
Affiliation(s)
- Moo-Kon Song
- Department of Hematology-Oncology, Hanyang University Hanmaeum Changwon Hospital, Changwon 51497, Korea
| | - Byeong-Bae Park
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2290-8114; Fax: +82-2-2290-7112
| | - Ji-Eun Uhm
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul 04763, Korea
| |
Collapse
|
9
|
Kantarcı EN, Eşkazan AE. Gilteritinib in the management of acute myeloid leukemia: Current evidence and future directions. Leuk Res 2022; 114:106808. [DOI: 10.1016/j.leukres.2022.106808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/22/2022]
|
10
|
Yang M, Pan Z, Huang K, Büsche G, Liu H, Göhring G, Rumpel R, Dittrich-Breiholz O, Talbot S, Scherr M, Chaturvedi A, Eder M, Skokowa J, Zhou J, Welte K, von Neuhoff N, Liu L, Ganser A, Li Z. A unique role of p53 haploinsufficiency or loss in the development of acute myeloid leukemia with FLT3-ITD mutation. Leukemia 2022; 36:675-686. [PMID: 34732858 PMCID: PMC8885416 DOI: 10.1038/s41375-021-01452-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/29/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
With an incidence of ~50%, the absence or reduced protein level of p53 is much more common than TP53 mutations in acute myeloid leukemia (AML). AML with FLT3-ITD (internal tandem duplication) mutations has an unfavorable prognosis and is highly associated with wt-p53 dysfunction. While TP53 mutation in the presence of FLT3-ITD does not induce AML in mice, it is not clear whether p53 haploinsufficiency or loss cooperates with FLT3-ITD in the induction of AML. Here, we generated FLT3-ITD knock-in; p53 knockout (heterozygous and homozygous) double-transgenic mice and found that both alterations strongly cooperated in the induction of cytogenetically normal AML without increasing the self-renewal potential. At the molecular level, we found the strong upregulation of Htra3 and the downregulation of Lin28a, leading to enhanced proliferation and the inhibition of apoptosis and differentiation. The co-occurrence of Htra3 overexpression and Lin28a knockdown, in the presence of FLT3-ITD, induced AML with similar morphology as leukemic cells from double-transgenic mice. These leukemic cells were highly sensitive to the proteasome inhibitor carfilzomib. Carfilzomib strongly enhanced the activity of targeting AXL (upstream of FLT3) against murine and human leukemic cells. Our results unravel a unique role of p53 haploinsufficiency or loss in the development of FLT3-ITD + AML.
Collapse
Affiliation(s)
- Min Yang
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zengkai Pan
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany ,grid.16821.3c0000 0004 0368 8293Present Address: National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kezhi Huang
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany ,grid.12981.330000 0001 2360 039XPresent Address: Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guntram Büsche
- grid.10423.340000 0000 9529 9877Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Hongyun Liu
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Gudrun Göhring
- grid.10423.340000 0000 9529 9877Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Regina Rumpel
- grid.10423.340000 0000 9529 9877Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Oliver Dittrich-Breiholz
- grid.10423.340000 0000 9529 9877Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Steven Talbot
- grid.10423.340000 0000 9529 9877Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Michaela Scherr
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Anuhar Chaturvedi
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Matthias Eder
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Julia Skokowa
- grid.10392.390000 0001 2190 1447Department of Hematology, Oncology, Clinical Immunology, University of Tübingen, Tübingen, Germany
| | - Jianfeng Zhou
- grid.33199.310000 0004 0368 7223Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Karl Welte
- grid.488549.cUniversity Children’s Hospital, Department of General Pediatrics and Pediatric Hematology and Oncology, Tübingen, Germany
| | - Nils von Neuhoff
- grid.5718.b0000 0001 2187 5445AML Diagnostic Laboratory, Department of Pediatric Hematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Ligen Liu
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Arnold Ganser
- grid.10423.340000 0000 9529 9877Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Zhixiong Li
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
11
|
Spohr C, Poggio T, Andrieux G, Schönberger K, Cabezas-Wallscheid N, Boerries M, Halbach S, Illert AL, Brummer T. Gab2 deficiency prevents Flt3-ITD driven acute myeloid leukemia in vivo. Leukemia 2022; 36:970-982. [PMID: 34903841 PMCID: PMC8979819 DOI: 10.1038/s41375-021-01490-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/09/2022]
Abstract
Internal tandem duplications (ITD) of the FMS-like tyrosine kinase 3 (FLT3) predict poor prognosis in acute myeloid leukemia (AML) and often co-exist with inactivating DNMT3A mutations. In vitro studies implicated Grb2-associated binder 2 (GAB2) as FLT3-ITD effector. Utilizing a Flt3-ITD knock-in, Dnmt3a haploinsufficient mouse model, we demonstrate that Gab2 is essential for the development of Flt3-ITD driven AML in vivo, as Gab2 deficient mice displayed prolonged survival, presented with attenuated liver and spleen pathology and reduced blast counts. Furthermore, leukemic bone marrow from Gab2 deficient mice exhibited reduced colony-forming unit capacity and increased FLT3 inhibitor sensitivity. Using transcriptomics, we identify the genes encoding for Axl and the Ret co-receptor Gfra2 as targets of the Flt3-ITD/Gab2/Stat5 axis. We propose a pathomechanism in which Gab2 increases signaling of these receptors by inducing their expression and by serving as downstream effector. Thereby, Gab2 promotes AML aggressiveness and drug resistance as it incorporates these receptor tyrosine kinases into the Flt3-ITD signaling network. Consequently, our data identify GAB2 as a promising biomarker and therapeutic target in human AML.
Collapse
Affiliation(s)
- Corinna Spohr
- grid.5963.9Institute of Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany ,grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany ,grid.5963.9Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Teresa Poggio
- grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany ,grid.5963.9Department of Medicine I, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Geoffroy Andrieux
- grid.5963.9Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Katharina Schönberger
- grid.5963.9Faculty of Biology, University of Freiburg, Freiburg, Germany ,grid.429509.30000 0004 0491 4256Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany ,grid.4372.20000 0001 2105 1091International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Nina Cabezas-Wallscheid
- grid.429509.30000 0004 0491 4256Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany ,Centre for Integrative Biological Signaling Studies (CIBSS), 79104 Freiburg, Germany
| | - Melanie Boerries
- grid.5963.9Institute of Medical Bioinformatics and Systems Medicine, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany ,grid.5963.9Comprehensive Cancer Center Freiburg (CCCF), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sebastian Halbach
- grid.5963.9Institute of Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Anna L. Illert
- grid.5963.9Department of Medicine I, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany ,grid.5963.9Comprehensive Cancer Center Freiburg (CCCF), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany. .,Comprehensive Cancer Center Freiburg (CCCF), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany. .,Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
12
|
Yan D, Earp HS, DeRyckere D, Graham DK. Targeting MERTK and AXL in EGFR Mutant Non-Small Cell Lung Cancer. Cancers (Basel) 2021; 13:5639. [PMID: 34830794 PMCID: PMC8616094 DOI: 10.3390/cancers13225639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
MERTK and AXL are members of the TAM family of receptor tyrosine kinases and are abnormally expressed in 69% and 93% of non-small cell lung cancers (NSCLCs), respectively. Expression of MERTK and/or AXL provides a survival advantage for NSCLC cells and correlates with lymph node metastasis, drug resistance, and disease progression in patients with NSCLC. The TAM receptors on host tumor infiltrating cells also play important roles in the immunosuppressive tumor microenvironment. Thus, MERTK and AXL are attractive biologic targets for NSCLC treatment. Here, we will review physiologic and oncologic roles for MERTK and AXL with an emphasis on the potential to target these kinases in NSCLCs with activating EGFR mutations.
Collapse
Affiliation(s)
- Dan Yan
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, Department of Medicine, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; (D.Y.); (D.D.)
| |
Collapse
|
13
|
Dumas PY, Villacreces A, Guitart AV, El-Habhab A, Massara L, Mansier O, Bidet A, Martineau D, Fernandez S, Leguay T, Pigneux A, Vigon I, Pasquet JM, Desplat V. Dual Inhibition of FLT3 and AXL by Gilteritinib Overcomes Hematopoietic Niche-Driven Resistance Mechanisms in FLT3-ITD Acute Myeloid Leukemia. Clin Cancer Res 2021; 27:6012-6025. [PMID: 34400415 DOI: 10.1158/1078-0432.ccr-20-3114] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 06/14/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE AXL has been shown to play a pivotal role in the selective response of FLT3-ITD acute myeloid leukemia (AML) cells to FLT3 tyrosine kinase inhibitors (TKI), particularly within the bone marrow microenvironment. EXPERIMENTAL DESIGN Herein, we compared the effect of dual FLT3/AXL-TKI gilteritinib with quizartinib through in vitro models mimicking hematopoietic niche conditions, ex vivo in primary AML blasts, and in vivo with dosing regimens allowing plasma concentration close to those used in clinical trials. RESULTS We observed that gilteritinib maintained a stronger proapoptotic effect in hypoxia and coculture with bone marrow stromal cells compared with quizartinib, linked to a dose-dependent inhibition of AXL phosphorylation. In vivo, use of the MV4-11 cell line with hematopoietic engraftment demonstrated that gilteritinib was more effective than quizartinib at targeting leukemic cells in bone marrow. Finally, FLT3-ITD AML patient-derived xenografts revealed that this effect was particularly reproducible in FLT3-ITD AML with high allelic ratio in primary and secondary xenograft. Moreover, gilteritinib and quizartinib displayed close toxicity profile on normal murine hematopoiesis, particularly at steady state. CONCLUSIONS Overall, these findings suggest that gilteritinib as a single agent, compared with quizartinib, is more likely to reach leukemic cells in their protective microenvironment, particularly AML clones highly dependent on FLT3-ITD signaling.
Collapse
Affiliation(s)
- Pierre-Yves Dumas
- Service d'Hématologie et Thérapie Cellulaire, CHU Bordeaux, Bordeaux, France.
- BMGIC, U1035 INSERM, University of Bordeaux, Bordeaux, France
| | | | | | - Ali El-Habhab
- BMGIC, U1035 INSERM, University of Bordeaux, Bordeaux, France
| | - Layal Massara
- BMGIC, U1035 INSERM, University of Bordeaux, Bordeaux, France
| | - Olivier Mansier
- INSERM U1034, Institut National de la Santé et de la Recherche Médicale, University of Bordeaux, Bordeaux, France
- Service d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - Audrey Bidet
- Service d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - Delphine Martineau
- Service d'Hématologie et Thérapie Cellulaire, CHU Bordeaux, Bordeaux, France
- BMGIC, U1035 INSERM, University of Bordeaux, Bordeaux, France
| | | | - Thibaut Leguay
- Service d'Hématologie et Thérapie Cellulaire, CHU Bordeaux, Bordeaux, France
| | - Arnaud Pigneux
- Service d'Hématologie et Thérapie Cellulaire, CHU Bordeaux, Bordeaux, France
- BMGIC, U1035 INSERM, University of Bordeaux, Bordeaux, France
| | - Isabelle Vigon
- BMGIC, U1035 INSERM, University of Bordeaux, Bordeaux, France
| | | | - Vanessa Desplat
- BMGIC, U1035 INSERM, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
14
|
Pandya BJ, Qi CZ, Garnham A, Yang H, Shah MV, Zeidan AM. Cost-effectiveness of gilteritinib for relapsed/refractory FLT3mut+ acute myeloid leukemia. J Manag Care Spec Pharm 2021; 27:1469-1481. [PMID: 34595955 PMCID: PMC10391321 DOI: 10.18553/jmcp.2021.27.10.1469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND: Patients with relapsed or refractory (R/R) acute myeloid leukemia (AML) and confirmed feline McDonough sarcoma (FMS)-like tyrosine kinase 3 gene mutations (FLT3mut+) have a poor prognosis and limited effective treatment options. Gilteritinib is the first targeted therapy approved in the United States and Europe for R/R FLT3mut+ AML with significantly improved efficacy compared with existing treatments. OBJECTIVE: To evaluate gilteritinib against salvage chemotherapy (SC) and best supportive care (BSC) over a lifetime horizon among adult patients with R/R FLT3mut+ AML from a US third-party payer's perspective. METHODS: The model structure of this cost-effectiveness analysis included a decision tree to stratify patients based on their hematopoietic stem cell transplantation (HSCT) status, followed by 2 separate 3-state partitioned survival models to predict the long-term health status conditional on HSCT status. The ADMIRAL trial data and literature were used to predict probabilities of patients being in different health states until a conservative cure point at year 3. Afterwards, living patients followed the survival outcomes of long-term survivors with AML. Model inputs for utilities, medical resource use, and costs were based on the ADMIRAL trial, published literature, and public sources. All costs were inflated to 2019 US dollars (USD). Total incremental costs (in 2019 USD), life-years (LYs), quality-adjusted LYs (QALYs), and incremental cost-effectiveness ratios (ICERs) were calculated. Deterministic sensitivity analyses and probabilistic sensitivity analyses were performed. RESULTS: Over a lifetime horizon with a 3.0% annual discount rate, the base-case model estimated that gilteritinib led to an increase of 1.29 discounted QALYs at an additional cost of $148,106 vs SC, corresponding to an ICER of $115,192 per QALY; for BSC, results were an increase of 2.32 discounted QALYs, $249,674, and $107,435, respectively. The base-case findings were robust in sensitivity analyses. The estimated probabilities of gilteritinib being cost-effective vs SC and BSC were 90.5% and 99.8%, respectively, in the probabilistic sensitivity analyses, based on a willingness-to-pay threshold of $150,000 per QALY. CONCLUSIONS: Gilteritinib is a cost-effective novel treatment for patients with R/R FLT3mut+ AML in the United States. DISCLOSURES: This work was supported by Astellas Pharma, Inc., which was involved in all stages of the research and manuscript development. Garnham, Pandya, and Shah are employees of Astellas and hold stock/stock options. Zeidan consulted and received personal fees/honoraria and research funding from Astellas. Zeidan also has received research funding from Celgene/BMS, Abbvie, Astex, Pfizer, Medimmune/AstraZeneca, Boehringer-Ingelheim, Trovagene/Cardiff Oncology, Incyte, Takeda, Novartis, Amgen, Aprea, and ADC Therapeutics; has participated in advisory boards; has consulted with and/or received honoraria from AbbVie, Otsuka, Pfizer, Celgene/BMS, Jazz, Incyte, Agios, Boehringer-Ingelheim, Novartis, Acceleron, Daiichi Sankyo, Taiho, Seattle Genetics, BeyondSpring, Cardiff Oncology, Takeda, Ionis, Amgen, Janssen, Syndax, Gilead, Kura, Aprea, Lox Oncology, Genentech, Servier, Jasper, Tyme, and Epizyme; has served on clinical trial committees for Novartis, Abbvie, Geron, Gilead, Kura, Lox Oncology, BioCryst, and Celgene/BMS; and has received travel support for meetings from Pfizer, Novartis, and Cardiff Oncology. Qi and Yang are employees of Analysis Group, Inc., which received consulting fees from Astellas for work on this study. Part of this material was presented at the American Society of Hematology (ASH) Annual Meeting; December 7-10, 2019; Orlando, FL.
Collapse
Affiliation(s)
| | | | - Andy Garnham
- Astellas Pharma Global Development, Inc., Northbrook, IL, and Clear Health Economics, London, United Kingdom
| | | | - Manasee V Shah
- Astellas Pharma Global Development, Inc., Northbrook, IL
| | - Amer M Zeidan
- Department of Internal Medicine, Section of Hematology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
15
|
Abstract
BACKGROUND AND OBJECTIVE Gilteritinib is a novel, highly selective tyrosine kinase inhibitor approved in the USA, Canada, Europe, Brazil, Korea, and Japan for the treatment of FLT3 mutation-positive acute myeloid leukemia. This article describes the clinical pharmacokinetic profile of gilteritinib. METHODS The pharmacokinetic profile of gilteritinib was assessed from five clinical studies. RESULTS Dose-proportional pharmacokinetics was observed following once-daily gilteritinib administration (dose range 20-450 mg). Median maximum concentration was reached 2-6 h following single and repeat dosing of gilteritinib; mean elimination half-life was 113 h. Elimination was primarily via feces. Exposure to gilteritinib was comparable under fasted and fed conditions. Gilteritinib is primarily metabolized via cytochrome P450 (CYP) 3A4; coadministration of gilteritinib with itraconazole (a strong P-glycoprotein inhibitor and CYP3A4 inhibitor) or rifampicin (a strong P-glycoprotein inducer and CYP3A inducer) significantly affected the gilteritinib pharmacokinetic profile. No clinically relevant interactions were observed when gilteritinib was coadministered with midazolam (a CYP3A4 substrate) or cephalexin (a multidrug and toxin extrusion 1 substrate). Unbound gilteritinib exposure was similar between subjects with hepatic impairment and normal hepatic function. CONCLUSIONS Gilteritinib exhibits a dose-proportional pharmacokinetic profile in healthy subjects and in patients with relapsed/refractory acute myeloid leukemia. Gilteritinib exposure is not significantly affected by food. Moderate-to-strong CYP3A inhibitors demonstrated a significant effect on gilteritinib exposure. Coadministration of gilteritinib with CYP3A4 or multidrug and toxin extrusion 1 substrates did not impact substrate concentrations. Unbound gilteritinib was comparable between subjects with hepatic impairment and normal hepatic function; dose adjustment is not warranted for patients with hepatic impairment. CLINICAL TRIAL REGISTRATION NCT02014558, NCT02456883, NCT02571816.
Collapse
|
16
|
Geng K. Post-translational modifications of the ligands: Requirement for TAM receptor activation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 357:35-55. [PMID: 33234244 DOI: 10.1016/bs.ircmb.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Tyro3, Axl, and MerTK (TAM) receptors are three homologous Type I Receptor Tyrosine Kinases that have important homeostatic functions in multicellular organisms by regulating the clearance of apoptotic cells (efferocytosis). Pathologically, TAM receptors are overexpressed in a wide array of human cancers, and often associated with aggressive tumor grade and poor overall survival. In addition to their expression on tumor cells, TAMs are also expressed on infiltrating myeloid-derived cells in the tumor microenvironment, where they appear to act akin to negative immune checkpoints that impair host anti-tumor immunity. The ligands for TAMs are two endogenous proteins, Growth Arrest-Specific 6 (Gas6) and Protein S (Pros1), that function as bridging molecules between externalized phosphatidylserine (PtdSer) on apoptotic cells and the TAM ectodomains. One interesting feature of TAMs biology is that their ligand proteins require specific post-translational modifications to acquire activities. This chapter summarized these important modifications and explained the molecular mechanisms behind such phenomenon. Current evidences suggest that these modifications help Gas6/Pros1 to achieve optimal PtdSer-binding capacities. In addition, this chapter included recent discovery of regulating machineries of PtdSer dynamic across the plasma membrane, as well as their potential impacts in the tumor microenvironment. Taken together, this review highlights the importance of the upstream PtdSer and Gas6 in regulating TAMs' function and hope to provide researchers with new perspectives to inspire future studies of TAM receptors in human disease models.
Collapse
Affiliation(s)
- Ke Geng
- Public Health Research Institute, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, United States.
| |
Collapse
|
17
|
Cerchione C, Peleteiro Raíndo A, Mosquera Orgueira A, Mosquera Torre A, Bao Pérez L, Marconi G, Isidori A, Pérez Encinas MM, Martinelli G. Safety of FLT3 inhibitors in patients with acute myeloid leukemia. Expert Rev Hematol 2021; 14:851-865. [PMID: 34424108 DOI: 10.1080/17474086.2021.1969911] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Acute myeloblastic leukemia (AML) is the most frequent type of acute leukemia in adults with an incidence of 4.2 cases per 100,000 inhabitants and poor 5-year survival. Patients with mutations in the FMS-like tyrosine kinase 3 (FLT3) gene have poor survival and higher relapse rates compared with wild-type cases.Areas covered: Several FLT3 inhibitors have been proved in FLT3mut AML patients, with differences in their pharmacokinetics, kinase inhibitory and adverse events profiles. First-generation multi-kinase inhibitors (midostaurin, sorafenib, lestaurtinib) target multiple proteins, whereassecond-generation inhibitors (crenolanib, quizartinib, gilteritinib) are more specific and potent inhibitors of FLT3, so they are associated with less off-target toxic effects. All of these drugs have primary and acquired mechanisms of resistance, and therefore their combinations with other drugs (checkpoint inhibitors, hypomethylating agents, standard chemotherapy) and its application in different clinical settings are under study.Expert opinion: The recent clinical development of various FLT3 inhibitors for the treatment of FLT3mut AML is an effective therapeutic strategy. However, there are unique toxicities and drug-drug interactions that need to be resolved. It is necessary to understand the mechanisms of toxicity in order to recognize and manage them adequately.
Collapse
Affiliation(s)
- Claudio Cerchione
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Andrés Peleteiro Raíndo
- Health Research Institute of Santiago De Compostela (Idis), Santiago De Compostela, Spain.,Division of Hematology, Complejo Hospitalario Universitario De Santiago (Chus), Santiago De Compostela, Spain
| | - Adrián Mosquera Orgueira
- Health Research Institute of Santiago De Compostela (Idis), Santiago De Compostela, Spain.,Division of Hematology, Complejo Hospitalario Universitario De Santiago (Chus), Santiago De Compostela, Spain
| | - Alicia Mosquera Torre
- Health Research Institute of Santiago De Compostela (Idis), Santiago De Compostela, Spain.,Division of Hematology, Complejo Hospitalario Universitario De Santiago (Chus), Santiago De Compostela, Spain
| | - Laura Bao Pérez
- Health Research Institute of Santiago De Compostela (Idis), Santiago De Compostela, Spain.,Division of Hematology, Complejo Hospitalario Universitario De Santiago (Chus), Santiago De Compostela, Spain
| | - Giovanni Marconi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alessandro Isidori
- Hematology and Stem Cell Transplant Center, Aormn Hospital, Pesaro, Italy
| | - Manuel Mateo Pérez Encinas
- Health Research Institute of Santiago De Compostela (Idis), Santiago De Compostela, Spain.,Division of Hematology, Complejo Hospitalario Universitario De Santiago (Chus), Santiago De Compostela, Spain.,University of Santiago De Compostela, Santiago De Compostela, Spain
| | - Giovanni Martinelli
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
18
|
Hogan FL, Williams V, Knapper S. FLT3 Inhibition in Acute Myeloid Leukaemia - Current Knowledge and Future Prospects. Curr Cancer Drug Targets 2021; 20:513-531. [PMID: 32418523 DOI: 10.2174/1570163817666200518075820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/12/2020] [Accepted: 03/29/2020] [Indexed: 12/20/2022]
Abstract
Activating mutations of FMS-like tyrosine kinase 3 (FLT3) are present in 30% of acute myeloid leukaemia (AML) patients at diagnosis and confer an adverse clinical prognosis. Mutated FLT3 has emerged as a viable therapeutic target and a number of FLT3-directed tyrosine kinase inhibitors have progressed through clinical development over the last 10-15 years. The last two years have seen United States Food and Drug Administration (US FDA) approvals of the multi-kinase inhibitor midostaurin for newly-diagnosed FLT3-mutated patients, when used in combination with intensive chemotherapy, and of the more FLT3-selective agent gilteritinib, used as monotherapy, for patients with relapsed or treatment-refractory FLT3-mutated AML. The 'second generation' agents, quizartinib and crenolanib, are also at advanced stages of clinical development. Significant challenges remain in negotiating a variety of potential acquired drug resistance mechanisms and in optimizing sequencing of FLT3 inhibitory drugs with existing and novel treatment approaches in different clinical settings, including frontline therapy, relapsed/refractory disease, and maintenance treatment. In this review, the biology of FLT3, the clinical challenge posed by FLT3-mutated AML, the developmental history of the key FLT3-inhibitory compounds, mechanisms of disease resistance, and the future outlook for this group of agents, including current and planned clinical trials, is discussed.
Collapse
Affiliation(s)
- Francesca L Hogan
- Department of Haematology, University Hospital of Wales, Cardiff, United Kingdom
| | - Victoria Williams
- Department of Haematology, University Hospital of Wales, Cardiff, United Kingdom
| | - Steven Knapper
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
19
|
FLT3 Tyrosine Kinase Inhibitors for the Treatment of Fit and Unfit Patients with FLT3-Mutated AML: A Systematic Review. Int J Mol Sci 2021; 22:ijms22115873. [PMID: 34070902 PMCID: PMC8198781 DOI: 10.3390/ijms22115873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
FLT3-mutated acute myeloid leukemia accounts for around 30% of acute myeloid leukemia (AML). The mutation carried a poor prognosis until the rise of tyrosine kinase inhibitors (TKIs). New potent and specific inhibitors have successfully altered the course of the disease, increasing the complete response rate and the survival of patients with FLT3-mutated AML. The aim of this article is to review all the current knowledge on these game-changing drugs as well as the unsolved issues raised by their use for fit and unfit FLT3-mutated AML patients. To this end, we analyzed the results of phase I, II, III clinical trials evaluating FLT3-TKI both in the first-line, relapse monotherapy or in combination referenced in the PubMed, the American Society of Hematology, the European Hematology Association, and the Clinicaltrials.gov databases, as well as basic science reports on TKI resistance from the same databases. The review follows a chronological presentation of the different trials that allowed the development of first- and second-generation TKI and ends with a review of the current lines of evidence on leukemic blasts resistance mechanisms that allow them to escape TKI.
Collapse
|
20
|
Gilteritinib: potent targeting of FLT3 mutations in AML. Blood Adv 2021; 4:1178-1191. [PMID: 32208491 DOI: 10.1182/bloodadvances.2019000174] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/26/2020] [Indexed: 01/13/2023] Open
Abstract
Since the discovery of FMS-like tyrosine kinase-3 (FLT3)-activating mutations as genetic drivers in acute myeloid leukemia (AML), investigators have tried to develop tyrosine kinase inhibitors that could effectively target FLT3 and alter the disease trajectory. Giltertinib (formerly known as ASP2215) is a novel compound that entered the field late, but moved through the developmental process with remarkable speed. In many ways, this drug's rapid development was facilitated by the large body of knowledge gained over the years from efforts to develop other FLT3 inhibitors. Single-agent gilteritinib, a potent and selective oral FLT3 inhibitor, improved the survival of patients with relapsed or refractory FLT3-mutated AML compared with standard chemotherapy. This continues to validate the approach of targeting FLT3 itself and establishes a new backbone for testing combination regimens. This review will frame the preclinical and clinical development of gilteritinib in the context of the lessons learned from its predecessors.
Collapse
|
21
|
Xu J, Xue Y, Zhou R, Shi PY, Li H, Zhou J. Drug repurposing approach to combating coronavirus: Potential drugs and drug targets. Med Res Rev 2021; 41:1375-1426. [PMID: 33277927 PMCID: PMC8044022 DOI: 10.1002/med.21763] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 01/18/2023]
Abstract
In the past two decades, three highly pathogenic human coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus, and, recently, SARS-CoV-2, have caused pandemics of severe acute respiratory diseases with alarming morbidity and mortality. Due to the lack of specific anti-CoV therapies, the ongoing pandemic of coronavirus disease 2019 (COVID-19) poses a great challenge to clinical management and highlights an urgent need for effective interventions. Drug repurposing is a rapid and feasible strategy to identify effective drugs for combating this deadly infection. In this review, we summarize the therapeutic CoV targets, focus on the existing small molecule drugs that have the potential to be repurposed for existing and emerging CoV infections of the future, and discuss the clinical progress of developing small molecule drugs for COVID-19.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Richard Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Hongmin Li
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
22
|
Liu Y, Wei J, Liu J, Ma W, Duan Y, Liu D. Novel AXL-targeted agents overcome FLT3 inhibitor resistance in FLT3-ITD + acute myeloid leukemia cells. Oncol Lett 2021; 21:397. [PMID: 33777220 PMCID: PMC7988696 DOI: 10.3892/ol.2021.12658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/10/2021] [Indexed: 01/02/2023] Open
Abstract
AXL receptor tyrosine kinase (AXL) upregulation mediates drug resistance in several types of human cancer and has become a therapeutic target worthy of exploration. The present study investigated AXL antigen expression and the effects of novel AXL-targeted agents in acute myeloid leukemia (AML) cells. AXL antigen expression in drug-sensitive and drug-resistant human AML cell lines, and AML blast cells from 57 patients with different clinical characteristics, was analyzed by flow cytometry and compared. Furthermore, the effects of the novel AXL antibody DAXL-88, antibody-drug conjugate DAXL-88-monomethyl auristatin E (MMAE), AXL small molecule inhibitor R428 and their combination with FMS-like tyrosine kinase 3 (FLT3) inhibitor quizartinib (AC220) in AML cells were analyzed by Cell Counting Kit-8 assay, flow cytometry and western blotting. The present study revealed that AXL antigen expression was upregulated in FLT3-internal tandem duplication (ITD)/tyrosine kinase domain mutation-positive (TKD)+ AML blast cells compared with FLT3-ITD/TKD- AML cells. Additionally, AXL antigen expression was markedly upregulated in the AC220-resistant FLT3-ITD+ MV4-11 cell line (MV4-11/AC220) and in FLT3 inhibitor-resistant blast cells from a patient with FLT3-ITD+ AML compared with parental sensitive cells. The AXL-targeted agents DAXL-88, DAXL-88-MMAE and R428 exhibited dose-dependent cytotoxic effects on FLT3-mutant AML cell lines (THP-1, MV4-11 and MV4-11/AC220) and blast cells from patients with FLT3-ITD+ AML. Combinations of AXL-targeted agents with AC220 exerted synergistic cytotoxic effects and induced apoptosis in MV4-11/AC220 cells and FLT3 inhibitor-resistant blast cells. The antileukemic effect of DAXL-88 and DAXL-88-MMAE may rely on their ability to block AXL, FLT3 and their downstream signaling pathways. The present study demonstrated the association between AXL antigen expression upregulation and drug resistance in FLT3-ITD+ AML, and proposed a method for overcoming FLT3 inhibitor resistance of FLT3-ITD+ AML using novel AXL-targeted agents.
Collapse
Affiliation(s)
- Yi Liu
- Department of Hematology, Chinese PLA Medical School, Beijing 100853, P.R. China.,Department of Hematology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Jing Wei
- Department of Hematology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Jiaxin Liu
- Department of Hematology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Weina Ma
- Department of Hematology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, P.R. China
| | - Yanting Duan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China.,Beijing Key Laboratory of Therapeutic Gene Engineering Antibody, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Daihong Liu
- Department of Hematology, Chinese PLA Medical School, Beijing 100853, P.R. China.,Department of Hematology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
23
|
Post SM, Andreeff M, DiNardo C, Khoury JD, Ruvolo PP. TAM kinases as regulators of cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118992. [PMID: 33647320 DOI: 10.1016/j.bbamcr.2021.118992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/16/2023]
Abstract
Receptor Tyrosine Kinases are critical regulators of signal transduction that support cell survival, proliferation, and differentiation. Dysregulation of normal Receptor Tyrosine Kinase function by mutation or other activity-altering event can be oncogenic or can impact the transformed malignant cell so it becomes particularly resistant to stress challenge, have increased proliferation, become evasive to immune surveillance, and may be more prone to metastasis of the tumor to other organ sites. The TAM family of Receptor Tyrosine Kinases (TYRO3, AXL, MERTK) is emerging as important components of malignant cell survival in many cancers. The TAM kinases are important regulators of cellular homeostasis and proper cell differentiation in normal cells as receptors for their ligands GAS6 and Protein S. They also are critical to immune and inflammatory processes. In malignant cells, the TAM kinases can act as ligand independent co-receptors to mutant Receptor Tyrosine Kinases and in some cases (e.g. FLT3-ITD mutant) are required for their function. They also have a role in immune checkpoint surveillance. At the time of this review, the Covid-19 pandemic poses a global threat to world health. TAM kinases play an important role in host response to many viruses and it is suggested the TAM kinases may be important in aspects of Covid-19 biology. This review will cover the TAM kinases and their role in these processes.
Collapse
Affiliation(s)
- Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Peter P Ruvolo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America; Section of Molecular Hematology and Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America.
| |
Collapse
|
24
|
Molecular Targeted Therapy in Myelodysplastic Syndromes: New Options for Tailored Treatments. Cancers (Basel) 2021; 13:cancers13040784. [PMID: 33668555 PMCID: PMC7917605 DOI: 10.3390/cancers13040784] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Myelodysplastic syndromes (MDS) are a group of diseases in which bone marrow stem cells acquire genetic alterations and can initiate leukemia, blocking the production of mature blood cells. It is of crucial importance to identify those genetic abnormalities because some of them can be the targeted. To date only very few drugs are approved for patients manifesting this group of disorders and there is an urgent need to develop new effective therapies. This review gives an overview of the genetic of MDS and the therapeutic options available and in clinical experimentation. Abstract Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic disorders characterized by ineffective hematopoiesis, progressive cytopenias and increased risk of transformation to acute myeloid leukemia. The improved understanding of the underlying biology and genetics of MDS has led to better disease and risk classification, paving the way for novel therapeutic opportunities. Indeed, we now have a vast pipeline of targeted agents under pre-clinical and clinical development, potentially able to modify the natural history of the diverse disease spectrum of MDS. Here, we review the latest therapeutic approaches (investigational and approved agents) for MDS treatment. A deep insight will be given to molecularly targeted therapies by reviewing new agents for individualized precision medicine.
Collapse
|
25
|
Bhatia P, Singh M, Singh A, Sharma P, Trehan A, Varma N. Epigenetic analysis reveals significant differential expression of miR-378C and miR-128-2-5p in a cohort of relapsed pediatric B-acute lymphoblastic leukemia cases. Int J Lab Hematol 2021; 43:1016-1023. [PMID: 33538126 DOI: 10.1111/ijlh.13477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION AND OBJECTIVE Epigenetic changes play a major role in mediating chemoresistance and relapse in pediatric ALL, and hence in current pilot study, we tried to identify DNA methylation, miRNA expression, and copy number variations (CNVs) in a cohort of relapse pediatric B-ALL cases. METHODOLOGY DNA methylation, miRNA expression, and CNV analysis were performed in a total of 14, 16, and 18 cases as diagnosis-relapse samples. Briefly, DNA methylation was performed using Infinium HumanMethylation850 chip and data analyzed using RnBeads. miRNA was sequenced on illumina NextSeq500 platform for 20M 75bp SE reads and analyzed by DESeq2. CNVs were assessed by MLPA assay using the ALL P-335 probemix kit and analyzed by coffalyzer.net. RESULTS On methylation analysis, oncogenes MYCN, MYB, and EGFR and tumor suppressor genes MDM4 & BCL11B were found differentially expressed as compared to controls (p-0.03). In addition, protooncogenes-AXL, HCK, MED12, and ETS2-were hypomethylated/overexpressed in 4 or more cases (P < .05). miRNA analysis revealed significant differential expression of miR-128-2-5p and miR-378C (p-4.4e-15 and p-6.4E-12) in relapse samples. CNV analysis revealed that frequency of good and intermediate/poor risk CNV profile at diagnosis was nearly equal (40% vs 60%). However, CDKN2A/2B and IKZF1 gene CNVs if present in initial diagnostic clone usually persisted in relapse clone. DISCUSSION AND CONCLUSION Our pilot study highlights two miRNAs (miR-128-2-5p and miR-378C) as possible candidate biomarkers of relapsed B-ALL. However, these miRNAs and hypomethylated protooncogene signature noted in our data needs validation in a larger series of B-ALL.
Collapse
Affiliation(s)
- Prateek Bhatia
- Department of Pediatrics, Pediatric Hematology Oncology Unit, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Minu Singh
- Department of Pediatrics, Pediatric Hematology Oncology Unit, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Aditya Singh
- Department of Pediatrics, Pediatric Hematology Oncology Unit, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Pankaj Sharma
- Department of Pediatrics, Pediatric Hematology Oncology Unit, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Amita Trehan
- Department of Pediatrics, Pediatric Hematology Oncology Unit, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Neelam Varma
- Department of Hematology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
26
|
Pandya BJ, Yang H, Schmeichel C, Qi CZ, Shah MV. A budget impact analysis of gilteritinib for the treatment of relapsed or refractory FLT3 mut+ acute myeloid leukemia in a US health plan. J Med Econ 2021; 24:19-28. [PMID: 33280474 DOI: 10.1080/13696998.2020.1851698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS To estimate the economic impact of the introduction of gilteritinib for the treatment of relapsed/refractory (R/R) FLT3 mutation-positive (FLT3 mut+) acute myeloid leukemia (AML) from a US payer's perspective. METHODS A budget impact model (BIM) was developed to evaluate the 3-year total budgetary impact of treating adults with R/R FLT3 mut+ AML eligible for gilteritinib in a hypothetical US health plan. Total costs (drugs/administration, hospitalization, monitoring, adverse events, transfusions, subsequent hematopoietic stem cell transplantation, post-progression, and FLT3 testing) were estimated before and after gilteritinib entry. The budget impact was the total cost difference between the two scenarios. The target population size and cost inputs were based on public data or published literature, drug market share was informed by market research data, and the model included recommended treatments for R/R FLT3 mut+ AML per clinical guidelines. Deterministic sensitivity analyses (DSAs) and scenario analyses varying key model inputs and assumptions were conducted to test for robustness. RESULTS In a hypothetical health plan with 1 million members, 20.9 adults with R/R FLT3 mut+ AML were estimated to be eligible for gilteritinib. Of these, it was assumed 30.0% would be treated with gilteritinib in Year 1 following gilteritinib entry, increasing the total plan budget by $663,795 and the per-member-per-month (PMPM) cost by $0.055. In Years 2-3, the market share of gilteritinib increased to 45.0%, increasing the total plan budget impact by $1,078,371 and $1,087,230, and the PMPM cost by $0.090 and $0.091, respectively. The model results remained robust in DSAs and scenario analyses, with the largest impact observed when the projected uptake of gilteritinib was changed. LIMITATIONS The results of this BIM are contingent upon the model's assumptions and inputs. CONCLUSIONS Adding gilteritinib to the formulary for the treatment of adults with R/R FLT3 mut+ AML had a minimal budget impact from a US payer's perspective.
Collapse
Affiliation(s)
- Bhavik J Pandya
- Astellas Pharma Global Development, Inc, Northbrook, IL, USA
| | | | | | | | - Manasee V Shah
- Astellas Pharma Global Development, Inc, Northbrook, IL, USA
| |
Collapse
|
27
|
Suknuntha K, Choi YJ, Jung HS, Majumder A, Shah S, Slukvin I, Ranheim EA. Megakaryocytic Expansion in Gilteritinib-Treated Acute Myeloid Leukemia Patients Is Associated With AXL Inhibition. Front Oncol 2020; 10:585151. [PMID: 33363015 PMCID: PMC7756118 DOI: 10.3389/fonc.2020.585151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 01/09/2023] Open
Abstract
Numerous recurrent genetic mutations are known to occur in acute myeloid leukemia (AML). Among these common mutations, Fms-like tyrosine kinase 3 remains as one of the most frequently mutated genes in AML. We observed apparent marrow expansion of megakaryocytes in three out of six patients with Flt3-mutated AML following treatment with a recently FDA-approved Flt3 inhibitor, gilteritinib which possesses activity against internal tandem duplication and tyrosine kinase domain Flt3 mutations and also inhibits tyrosine kinase AXL. To assess whether biopsy findings can be attributed to promotion of megakaryocytic (Mk) differentiation with gilteritinib, we devised a cellular assay by overexpressing double mutated Flt3-ITDY591F/Y919F in chronic myeloid leukemia cell line K562 to study Mk differentiation in the presence of Flt3 and AXL inhibitors with non-mutually exclusive mechanisms. These experiments demonstrated the lack of direct effect Flt3 inhibitors gilteritinib and quizartinib on megakaryocytic differentiation at either transcriptional or phenotypic levels, and highlighted antileukemic effects of AXL receptor tyrosine kinase inhibitor and its potential role in megakaryocytic development.
Collapse
Affiliation(s)
- Kran Suknuntha
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States.,Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States.,Chakri Naruebodindra Medical Institute, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Yoon Jung Choi
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Ho Sun Jung
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Aditi Majumder
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Sujal Shah
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| | - Igor Slukvin
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States.,Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, United States
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
28
|
Wang KH, Ding DC. Dual targeting of TAM receptors Tyro3, Axl, and MerTK: Role in tumors and the tumor immune microenvironment. Tzu Chi Med J 2020; 33:250-256. [PMID: 34386362 PMCID: PMC8323642 DOI: 10.4103/tcmj.tcmj_129_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 11/06/2022] Open
Abstract
In both normal and tumor tissues, receptor tyrosine kinases (RTKs) may be pleiotropically expressed. The RTKs not only regulate ordinary cellular processes, including proliferation, survival, adhesion, and migration, but also have a critical role in the development of many types of cancer. The Tyro3, Axl, and MerTK (TAM) family of RTKs (Tyro3, Axl, and MerTK) plays a pleiotropic role in phagocytosis, inflammation, and normal cellular processes. In this article, we highlight the cellular activities of TAM receptors and discuss their roles in cancer and immune cells. We also discuss cancer therapies that target TAM receptors. Further research is needed to elucidate the function of TAM receptors in immune cells toward the development of new targeted immunotherapies for cancer.
Collapse
Affiliation(s)
- Kai-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
29
|
Chew S, Mackey MC, Jabbour E. Gilteritinib in the treatment of relapsed and refractory acute myeloid leukemia with a FLT3 mutation. Ther Adv Hematol 2020; 11:2040620720930614. [PMID: 32547718 PMCID: PMC7271272 DOI: 10.1177/2040620720930614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is a malignancy of uncontrolled proliferation of immature myeloid blasts characterized by clonal evolution and genetic heterogeneity. FMS-like tyrosine kinase 3 (FLT3) mutations occur in up to a third of AML cases and are associated with highly proliferative disease, shorter duration of remission, and increased rates of disease relapse. The known impact of activating mutations in FLT3 in AML on disease pathogenesis, prognosis, and response to therapy has led to the development of tyrosine kinase inhibitors targeting FLT3. Gilteritinib is a potent, second generation inhibitor of both FLT3 and AXL, designed to address the limitations of other FLT3 inhibitors, particularly in targeting mechanisms of resistance to other drugs. In this review, we present comprehensive data on recent and ongoing studies evaluating the role of gilteritinib in the relapsed and refractory FLT3 mutated AML setting.
Collapse
Affiliation(s)
- Serena Chew
- University of Texas, MD Anderson Cancer Center,
Houston, TX, USA
| | | | - Elias Jabbour
- Department of Leukemia, The University of Texas
MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 428, Houston, TX
77030, USA
| |
Collapse
|
30
|
Leukemogenic Chromatin Alterations Promote AML Leukemia Stem Cells via a KDM4C-ALKBH5-AXL Signaling Axis. Cell Stem Cell 2020; 27:81-97.e8. [PMID: 32402251 DOI: 10.1016/j.stem.2020.04.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/13/2020] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
N6-methyladenosine (m6A) is a commonly present modification of mammalian mRNAs and plays key roles in various cellular processes. m6A modifiers catalyze this reversible modification. However, the underlying mechanisms by which these m6A modifiers are regulated remain elusive. Here we show that expression of m6A demethylase ALKBH5 is regulated by chromatin state alteration during leukemogenesis of human acute myeloid leukemia (AML), and ALKBH5 is required for maintaining leukemia stem cell (LSC) function but is dispensable for normal hematopoiesis. Mechanistically, KDM4C regulates ALKBH5 expression via increasing chromatin accessibility of ALKBH5 locus, by reducing H3K9me3 levels and promoting recruitment of MYB and Pol II. Moreover, ALKBH5 affects mRNA stability of receptor tyrosine kinase AXL in an m6A-dependent way. Thus, our findings link chromatin state dynamics with expression regulation of m6A modifiers and uncover a selective and critical role of ALKBH5 in AML that might act as a therapeutic target of specific targeting LSCs.
Collapse
|
31
|
Lin D, Kang X, Shen L, Tu S, Lenahan C, Chen Y, Wang X, Shao A. Efferocytosis and Its Associated Cytokines: A Light on Non-tumor and Tumor Diseases? MOLECULAR THERAPY-ONCOLYTICS 2020; 17:394-407. [PMID: 32346605 PMCID: PMC7186127 DOI: 10.1016/j.omto.2020.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Billions of cells undergo turnover and die via apoptosis throughout our lifetime. A prompt clearance of these apoptotic cells and debris by phagocytic cells, a process known as efferocytosis, is important in maintaining tissue homeostasis. Accordingly, impaired efferocytosis due to the defective clearance and disrupted stages can lead to a growing number of inflammation- and immune-related diseases. Although numerous studies have shown the mechanisms of efferocytosis, its role in disorders, such as non-tumor and tumor diseases, remains poorly understood. This review summarizes the processes and signal molecules in efferocytosis, and efferocytosis-related functions in non-tumor (e.g., atherosclerosis, lung diseases) and tumor diseases (e.g., breast cancer, prostate cancer), as well as describes the role of involved cytokines. Of note, there is a dual role of efferocytosis in the abovementioned disorders, and a paradoxical effect among non-tumor and tumor diseases in terms of inflammation resolution, immune response, and disease progression. Briefly, intact efferocytosis and cytokines promote tissue repair, while they contribute to tumor progression via the tumor microenvironment and macrophage politzerization. Additionally, this review provides potential targets associated with TAM (TYRO3, AXL, MERTK) receptors and cytokines, such as tumor necrosis factor α and CXCL5, suggesting potential novel therapeutic ways in treating diseases.
Collapse
Affiliation(s)
- Danfeng Lin
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodiao Kang
- Department of Orthopedics Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Shen
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.,Center for Neuroscience Research, School of Medicine, Loma Linda University, CA, USA
| | - Yiding Chen
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Reed DR, Sen JM, Pierce EJ, Elsarrag RZ, K Keng M. Gilteritinib: An FMS-like tyrosine kinase 3/AXL tyrosine kinase inhibitor for the treatment of relapsed or refractory acute myeloid leukemia patients. J Oncol Pharm Pract 2020; 26:1200-1212. [PMID: 32338136 DOI: 10.1177/1078155220918006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Acute myeloid leukemia has recently undergone a significant transition into identifying and successfully inhibiting driver mutations leading to disease. One of the most common mutations in acute myeloid leukemia involves the protein FMS-like tyrosine kinase 3 (FLT3), which leads to ligand-independent activation of intracellular signaling cascades leading to the survival and proliferation of the acute leukemia blast cell. Preclinical studies have demonstrated the presence of two dominant types of mutations of this protein: internal tandem duplication and tyrosine kinase domain mutations. Successful inhibition of this protein has proven to be challenging. While FLT3 has been shown to be successfully inhibited and shown to improve overall survival in the frontline therapy of acute myeloid leukemia in combination with cytarabine and anthracycline, relapsed and refractory (R/R) patients have not been shown to be a successful population until recently. A phase III trial (ADMIRAL trial) demonstrated significant overall survival benefit in patients receiving gilteritinib compared to patients receiving salvage chemotherapy. This review will provide an overview of the preclinical, clinical, and practical use of gilteritinib in the treatment of patients with relapsed and refractory acute myeloid leukemia with FLT3 mutation.
Collapse
Affiliation(s)
- Daniel R Reed
- Division of Hematology/Oncology, Department of Medicine, University of Virginia, Charlottesville, USA
| | - Jeremy M Sen
- Department of Pharmacy Services, University of Virginia, Charlottesville, USA
| | - Eric J Pierce
- Department of Medicine, University of Virginia, Charlottesville, USA
| | - Ramey Z Elsarrag
- School of Medicine, University of Virginia, Charlottesville, USA
| | - Michael K Keng
- Division of Hematology/Oncology, Department of Medicine, University of Virginia, Charlottesville, USA
| |
Collapse
|
33
|
Fletcher L, Joshi SK, Traer E. Profile of Quizartinib for the Treatment of Adult Patients with Relapsed/Refractory FLT3-ITD-Positive Acute Myeloid Leukemia: Evidence to Date. Cancer Manag Res 2020; 12:151-163. [PMID: 32021432 PMCID: PMC6955578 DOI: 10.2147/cmar.s196568] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/05/2019] [Indexed: 01/16/2023] Open
Abstract
Acute myeloid leukemia (AML) is a clonal hematologic neoplasm characterized by rapid, uncontrolled cell growth of immature myeloid cells (blasts). There are numerous genetic abnormalities in AML, many of which are prognostic, but an increasing number are targets for drug therapy. One of the most common genetic abnormalities in AML are activating mutations in the FMS-like tyrosine kinase 3 receptor (FLT3). As a receptor tyrosine kinase, FLT3 was the first targetable genetic abnormality in AML. The first generation of FLT3 inhibitors were broad-spectrum kinase inhibitors that inhibited FLT3 among other proteins. Although clinically active, first-generation FLT3 inhibitors had limited success as single agents. This led to the development of a second generation of more selective FLT3 inhibitors. This review focuses on quizartinib, a potent second-generation FLT3 inhibitor. We discuss the clinical trial development, mechanisms of resistance, and the recent FDA decision to deny approval for quizartinib as a single agent in relapsed/refractory AML.
Collapse
Affiliation(s)
- Luke Fletcher
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sunil K Joshi
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA.,School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elie Traer
- Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
34
|
Palmieri R, Paterno G, De Bellis E, Mercante L, Buzzatti E, Esposito F, Del Principe MI, Maurillo L, Buccisano F, Venditti A. Therapeutic Choice in Older Patients with Acute Myeloid Leukemia: A Matter of Fitness. Cancers (Basel) 2020; 12:cancers12010120. [PMID: 31906489 PMCID: PMC7016986 DOI: 10.3390/cancers12010120] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/19/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023] Open
Abstract
Acute myeloid leukemia (AML), with an incidence increasing with age, is the most common acute leukemia in adults. Concurrent comorbidities, mild to severe organ dysfunctions, and low performance status (PS) are frequently found in older patients at the onset, conditioning treatment choice and crucially influencing the outcome. Although anthracyclines plus cytarabine-based chemotherapy, also called “7 + 3” regimen, remains the standard of care in young adults, its use in patients older than 65 years should be reserved to selected cases because of higher incidence of toxicity. These adverse features of AML in the elderly underline the importance of a careful patient assessment at diagnosis as a critical tool in the decision-making process of treatment choice. In this review, we will describe selected recently approved drugs as well as examine prognostic algorithms that may be helpful to assign treatment in elderly patients properly.
Collapse
Affiliation(s)
- Raffaele Palmieri
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Giovangiacinto Paterno
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Eleonora De Bellis
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Lisa Mercante
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Elisa Buzzatti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Fabiana Esposito
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Maria Ilaria Del Principe
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Luca Maurillo
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Francesco Buccisano
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, 00133 Rome, Italy; (R.P.); (G.P.); (E.D.B.); (L.M.); (E.B.); (F.E.); (M.I.D.P.); (F.B.)
- Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-0620903226
| |
Collapse
|
35
|
Kiyoi H, Kawashima N, Ishikawa Y. FLT3 mutations in acute myeloid leukemia: Therapeutic paradigm beyond inhibitor development. Cancer Sci 2019; 111:312-322. [PMID: 31821677 PMCID: PMC7004512 DOI: 10.1111/cas.14274] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a type III receptor tyrosine kinase that plays an important role in hematopoietic cell survival, proliferation and differentiation. The most clinically important point is that mutation of the FLT3 gene is the most frequent genetic alteration and a poor prognostic factor in acute myeloid leukemia (AML) patients. There are two major types of FLT3 mutations: internal tandem duplication mutations in the juxtamembrane domain (FLT3-ITD) and point mutations or deletion in the tyrosine kinase domain (FLT3-TKD). Both mutant FLT3 molecules are activated through ligand-independent dimerization and trans-phosphorylation. Mutant FLT3 induces the activation of multiple intracellular signaling pathways, mainly STAT5, MAPK and AKT signals, leading to cell proliferation and anti-apoptosis. Because high-dose chemotherapy and allogeneic hematopoietic stem cell transplantation cannot sufficiently improve the prognosis, clinical development of FLT3 kinase inhibitors expected. Although several FLT3 inhibitors have been developed, it takes more than 20 years from the first identification of FLT3 mutations until FLT3 inhibitors become clinically available for AML patients with FLT3 mutations. To date, three FLT3 inhibitors have been clinically approved as monotherapy or combination therapy with conventional chemotherapeutic agents in Japan and/or Europe and United states. However, several mechanisms of resistance to FLT3 inhibitors have already become apparent during their clinical trials. The resistance mechanisms are complex and emerging resistant clones are heterogenous. Further basic and clinical studies are required to establish the best therapeutic strategy for AML patients with FLT3 mutations.
Collapse
Affiliation(s)
- Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naomi Kawashima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
36
|
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease in which prognosis is determined by cytogenetic and molecular aberrations as well as patient-related factors, including age, prior haematologic disorders, and comorbidities. Despite the diverse disease biology, the standard of care for remission induction therapy has changed very little since its inception in 1973. Next generation sequencing has helped to increase our knowledge of the disease pathogenesis, allowing us to develop targeted and possibly more effective treatment options. Seven new agents have been approved for the treatment of AML since 2017, all of which are directed toward a specific molecular subtype or patient population. With the advent of these therapies, a more optimal, patient-specific approach rather than the historical 'one-size fits all' model can be utilised. This review will discuss the role of these novel therapies in the remission induction setting.
Collapse
Affiliation(s)
- Shilpa Paul
- Department of Clinical Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caitlin R Rausch
- Department of Clinical Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias J Jabbour
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Yan S, Vandewalle N, De Beule N, Faict S, Maes K, De Bruyne E, Menu E, Vanderkerken K, De Veirman K. AXL Receptor Tyrosine Kinase as a Therapeutic Target in Hematological Malignancies: Focus on Multiple Myeloma. Cancers (Basel) 2019; 11:E1727. [PMID: 31694201 PMCID: PMC6896070 DOI: 10.3390/cancers11111727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 01/13/2023] Open
Abstract
AXL belongs to the TAM (TYRO3, AXL, and MERTK) receptor family, a unique subfamily of the receptor tyrosine kinases. Their common ligand is growth arrest-specific protein 6 (GAS6). The GAS6/TAM signaling pathway regulates many important cell processes and plays an essential role in immunity, hemostasis, and erythropoiesis. In cancer, AXL overexpression and activation has been associated with cell proliferation, chemotherapy resistance, tumor angiogenesis, invasion, and metastasis; and has been correlated with a poor prognosis. In hematological malignancies, the expression and function of AXL is highly diverse, not only between the different tumor types but also in the surrounding tumor microenvironment. Most research and clinical evidence has been provided for AXL inhibitors in acute myeloid leukemia. However, recent studies also revealed an important role of AXL in lymphoid leukemia, lymphoma, and multiple myeloma. In this review, we summarize the basic functions of AXL in various cell types and the role of AXL in different hematological cancers, with a focus on AXL in the dormancy of multiple myeloma. In addition, we provide an update on the most promising AXL inhibitors currently in preclinical/clinical evaluation and discuss future perspectives in this emerging field.
Collapse
Affiliation(s)
- Siyang Yan
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
- Department of Hematology, Tianjin Medical University, Tianjin 300060, China
| | - Niels Vandewalle
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Nathan De Beule
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Sylvia Faict
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090 Brussel, Belgium; (S.Y.); (N.V.); (N.D.B.); (S.F.); (K.M.); (E.D.B.); (E.M.); (K.V.)
| |
Collapse
|
38
|
AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer 2019; 18:153. [PMID: 31684958 PMCID: PMC6827209 DOI: 10.1186/s12943-019-1090-3] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023] Open
Abstract
Molecular targeted therapy for cancer has been a research hotspot for decades. AXL is a member of the TAM family with the high-affinity ligand growth arrest-specific protein 6 (GAS6). The Gas6/AXL signalling pathway is associated with tumour cell growth, metastasis, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance, immune regulation and stem cell maintenance. Different therapeutic agents targeting AXL have been developed, typically including small molecule inhibitors, monoclonal antibodies (mAbs), nucleotide aptamers, soluble receptors, and several natural compounds. In this review, we first provide a comprehensive discussion of the structure, function, regulation, and signalling pathways of AXL. Then, we highlight recent strategies for targeting AXL in the treatment of cancer.AXL-targeted drugs, either as single agents or in combination with conventional chemotherapy or other small molecule inhibitors, are likely to improve the survival of many patients. However, future investigations into AXL molecular signalling networks and robust predictive biomarkers are warranted to select patients who could receive clinical benefit and to avoid potential toxicities.
Collapse
|
39
|
Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, Paolini S, Montesinos P, Baer MR, Larson RA, Ustun C, Fabbiano F, Erba HP, Di Stasi A, Stuart R, Olin R, Kasner M, Ciceri F, Chou WC, Podoltsev N, Recher C, Yokoyama H, Hosono N, Yoon SS, Lee JH, Pardee T, Fathi AT, Liu C, Hasabou N, Liu X, Bahceci E, Levis MJ. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N Engl J Med 2019; 381:1728-1740. [PMID: 31665578 DOI: 10.1056/nejmoa1902688] [Citation(s) in RCA: 778] [Impact Index Per Article: 155.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Patients with relapsed or refractory acute myeloid leukemia (AML) with mutations in the FMS-like tyrosine kinase 3 gene (FLT3) infrequently have a response to salvage chemotherapy. Gilteritinib is an oral, potent, selective FLT3 inhibitor with single-agent activity in relapsed or refractory FLT3-mutated AML. METHODS In a phase 3 trial, we randomly assigned adults with relapsed or refractory FLT3-mutated AML in a 2:1 ratio to receive either gilteritinib (at a dose of 120 mg per day) or salvage chemotherapy. The two primary end points were overall survival and the percentage of patients who had complete remission with full or partial hematologic recovery. Secondary end points included event-free survival (freedom from treatment failure [i.e., relapse or lack of remission] or death) and the percentage of patients who had complete remission. RESULTS Of 371 eligible patients, 247 were randomly assigned to the gilteritinib group and 124 to the salvage chemotherapy group. The median overall survival in the gilteritinib group was significantly longer than that in the chemotherapy group (9.3 months vs. 5.6 months; hazard ratio for death, 0.64; 95% confidence interval [CI], 0.49 to 0.83; P<0.001). The median event-free survival was 2.8 months in the gilteritinib group and 0.7 months in the chemotherapy group (hazard ratio for treatment failure or death, 0.79; 95% CI, 0.58 to 1.09). The percentage of patients who had complete remission with full or partial hematologic recovery was 34.0% in the gilteritinib group and 15.3% in the chemotherapy group (risk difference, 18.6 percentage points; 95% CI, 9.8 to 27.4); the percentages with complete remission were 21.1% and 10.5%, respectively (risk difference, 10.6 percentage points; 95% CI, 2.8 to 18.4). In an analysis that was adjusted for therapy duration, adverse events of grade 3 or higher and serious adverse events occurred less frequently in the gilteritinib group than in the chemotherapy group; the most common adverse events of grade 3 or higher in the gilteritinib group were febrile neutropenia (45.9%), anemia (40.7%), and thrombocytopenia (22.8%). CONCLUSIONS Gilteritinib resulted in significantly longer survival and higher percentages of patients with remission than salvage chemotherapy among patients with relapsed or refractory FLT3-mutated AML. (Funded by Astellas Pharma; ADMIRAL ClinicalTrials.gov number, NCT02421939.).
Collapse
Affiliation(s)
- Alexander E Perl
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Giovanni Martinelli
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Jorge E Cortes
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Andreas Neubauer
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Ellin Berman
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Stefania Paolini
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Pau Montesinos
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Maria R Baer
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Richard A Larson
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Celalettin Ustun
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Francesco Fabbiano
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Harry P Erba
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Antonio Di Stasi
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Robert Stuart
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Rebecca Olin
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Margaret Kasner
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Fabio Ciceri
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Wen-Chien Chou
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Nikolai Podoltsev
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Christian Recher
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Hisayuki Yokoyama
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Naoko Hosono
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Sung-Soo Yoon
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Je-Hwan Lee
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Timothy Pardee
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Amir T Fathi
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Chaofeng Liu
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Nahla Hasabou
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Xuan Liu
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Erkut Bahceci
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| | - Mark J Levis
- From the Abramson Cancer Center, University of Pennsylvania (A.E.P.), and Thomas Jefferson University (M.K.) - both in Philadelphia; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola (G.M.), L. and A. Seràgnoli Institute of Hematology, Bologna University Medical School, Bologna (S.P.), Ospedali Riuniti Villa Sofia-Cervello, Palermo (F.F.), and IRCCS San Raffaele Scientific Institute, Milan (F.C.) - all in Italy; University of Texas M.D. Anderson Cancer Center, Houston (J.E.C.); Universitätsklinikum Giessen und Marburg, Marburg, Germany (A.N.); Memorial Sloan Kettering Cancer Center, New York (E. Berman); Hospital Universitari i Politècnic La Fe, Valencia, and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto Carlos III, Madrid - both in Spain (P.M.); University of Maryland Greenebaum Comprehensive Cancer Center (M.R.B.) and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University (M.J.L.) - both in Baltimore; University of Chicago, Chicago (R.A.L.), and Astellas Pharma, Northbrook (C.L., N. Hasabou, X.L., E. Bahceci) - both in Illinois; University of Minnesota, Minneapolis (C.U.); University of Alabama at Birmingham, Birmingham (H.P.E., A.D.S.); Hollings Cancer Center, Medical University of South Carolina, Charleston (R.S.); University of California, San Francisco, San Francisco (R.O.); National Taiwan University, Taipei City, Taiwan (W.-C.C.); Yale University School of Medicine, New Haven, CT (N.P.); Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Toulouse, France (C.R.); Sendai Medical Center, National Hospital Organization, Sendai (H.Y.), and University of Fukui, Fukui (N. Hosono) - both in Japan; Seoul National University (S.-S.Y.) and Asan Medical Center, University of Ulsan College of Medicine (J.-H.L.) - both in Seoul, South Korea; Wake Forest Baptist Medical Center, Winston-Salem, NC (T.P.); and Massachusetts General Hospital, Harvard Medical School, Boston (A.T.F.)
| |
Collapse
|
40
|
Kawase T, Nakazawa T, Eguchi T, Tsuzuki H, Ueno Y, Amano Y, Suzuki T, Mori M, Yoshida T. Effect of Fms-like tyrosine kinase 3 (FLT3) ligand (FL) on antitumor activity of gilteritinib, a FLT3 inhibitor, in mice xenografted with FL-overexpressing cells. Oncotarget 2019; 10:6111-6123. [PMID: 31692922 PMCID: PMC6817455 DOI: 10.18632/oncotarget.27222] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Therapeutic effects of FLT3 inhibitors have been reported in acute myeloid leukemia (AML) with constitutively activating FLT3 mutations, including internal tandem duplication (ITD) and point mutation, which are found in approximately one-third of AML patients. One of the critical issues of treatment with FLT3 inhibitors in FLT3-mutated AML is drug resistance. FLT3 ligand (FL) represents a mechanism of resistance to FLT3 inhibitors, including quizartinib, midostaurin, and sorafenib, in AML cells harboring both wild-type and mutant FLT3 (FLT3wt/FLT3mut). Here, we investigated the effect of FL on the efficacy of gilteritinib, a FLT3 inhibitor, in AML-derived cells in vitro and in mice. In contrast to other FLT3 inhibitors, FL stimulation had little effect on growth inhibition or apoptosis induction by gilteritinib. The antitumor activity of gilteritinib was also comparable between xenograft mouse models injected with FL-expressing and mock MOLM-13 cells. In the FLT3 signaling analyses, gilteritinib inhibited FLT3wt and FLT3-ITD to a similar degree in HEK293 and Ba/F3 cells, and similarly suppressed FLT3 downstream signaling molecules (including ERK1/2 and STAT5) in both the presence and absence of FL in MOLM-13 cells. Co-crystal structure analysis showed that gilteritinib bound to the ATP-binding pocket of FLT3. These results suggest that gilteritinib has therapeutic potential in FLT3-mutated AML patients with FL overexpression.
Collapse
Affiliation(s)
- Tatsuya Kawase
- Drug Discovery Research, Astellas Pharma, Tsukuba-shi, Ibaraki, Japan
| | - Taisuke Nakazawa
- Drug Discovery Research, Astellas Pharma, Tsukuba-shi, Ibaraki, Japan
| | - Tomohiro Eguchi
- Drug Discovery Research, Astellas Pharma, Tsukuba-shi, Ibaraki, Japan
| | - Hirofumi Tsuzuki
- Drug Discovery Research, Astellas Pharma, Tsukuba-shi, Ibaraki, Japan
| | - Yoko Ueno
- Drug Discovery Research, Astellas Pharma, Tsukuba-shi, Ibaraki, Japan
| | - Yasushi Amano
- Drug Discovery Research, Astellas Pharma, Tsukuba-shi, Ibaraki, Japan
| | - Tomoyuki Suzuki
- Drug Discovery Research, Astellas Pharma, Tsukuba-shi, Ibaraki, Japan
| | - Masamichi Mori
- Drug Discovery Research, Astellas Pharma, Tsukuba-shi, Ibaraki, Japan
| | - Taku Yoshida
- Drug Discovery Research, Astellas Pharma, Tsukuba-shi, Ibaraki, Japan
| |
Collapse
|
41
|
Paul S, DiPippo AJ, Ravandi F, Kadia TM. Quizartinib in the treatment of FLT3-internal-tandem duplication-positive acute myeloid leukemia. Future Oncol 2019; 15:3885-3894. [PMID: 31559849 DOI: 10.2217/fon-2019-0353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
FLT3 mutations, characterized by an internal-tandem duplication or missense mutations in the tyrosine kinase domain, are observed in a third of patients with newly diagnosed acute myeloid leukemia. FLT3-ITD mutations are associated with high relapse rates and short overall survival with conventional chemotherapy. Several tyrosine kinase inhibitors targeting FLT3 have been developed in an effort to improve survival and therapeutic options. This review focuses on quizartinib, a second-generation FLT3 inhibitor that has demonstrated efficacy and safety as a single agent and in combination with chemotherapy. We discuss its clinical development as well as its place in the treatment of FLT3-mutated acute myeloid leukemia among the other FLT3 inhibtors currently available and its mechanisms of resistance.
Collapse
Affiliation(s)
- Shilpa Paul
- Department of Clinical Pharmacy, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0377, Houston, TX 77030, USA
| | - Adam J DiPippo
- Department of Clinical Pharmacy, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0377, Houston, TX 77030, USA
| | - Farhad Ravandi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0428 Houston, TX 77030, USA
| | - Tapan M Kadia
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0428 Houston, TX 77030, USA
| |
Collapse
|
42
|
McMahon CM, Perl AE. Gilteritinib for the treatment of relapsed and/or refractory FLT3-mutated acute myeloid leukemia. Expert Rev Clin Pharmacol 2019; 12:841-849. [PMID: 31454267 DOI: 10.1080/17512433.2019.1657009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Introduction: The receptor tyrosine kinase FLT3 is the most commonly mutated gene in acute myeloid leukemia (AML). FLT3-internal tandem duplication mutations are associated with an increased risk of relapse, and a number of small molecule inhibitors of FLT3 have been developed. The highly potent and selective FLT3 kinase inhibitor gilteritinib is the first tyrosine kinase inhibitor approved as monotherapy for the treatment of relapsed and/or refractory FLT3-mutated AML. Areas covered: We review the biology and prognostic significance of FLT3 mutations in AML and discuss the pharmacology, clinical efficacy, and toxicity profile of gilteritinib. We also summarize important differences among the various FLT3 inhibitors that are currently approved or under development and highlight areas of ongoing research. Expert opinion: Gilteritinib has been shown to improve survival compared to salvage chemotherapy in relapsed and/or refractory FLT3-mutated AML. Gilteritinib is orally available with a favorable toxicity profile and as such is quickly becoming the standard of care for this patient population. Ongoing clinical trials are evaluating gilteritinib in combination with frontline chemotherapy, in combination with other agents such as venetoclax and azacitidine for patients who are ineligible for standard induction therapy, and as a maintenance agent.
Collapse
Affiliation(s)
- Christine M McMahon
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | - Alexander E Perl
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
43
|
Targeting Tyrosine Kinases in Acute Myeloid Leukemia: Why, Who and How? Int J Mol Sci 2019; 20:ijms20143429. [PMID: 31336846 PMCID: PMC6679203 DOI: 10.3390/ijms20143429] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) is a myeloid malignancy carrying a heterogeneous molecular panel of mutations participating in the blockade of differentiation and the increased proliferation of myeloid hematopoietic stem and progenitor cells. The historical "3 + 7" treatment (cytarabine and daunorubicin) is currently challenged by new therapeutic strategies, including drugs depending on the molecular landscape of AML. This panel of mutations makes it possible to combine some of these new treatments with conventional chemotherapy. For example, the FLT3 receptor is overexpressed or mutated in 80% or 30% of AML, respectively. Such anomalies have led to the development of targeted therapies using tyrosine kinase inhibitors (TKIs). In this review, we document the history of TKI targeting, FLT3 and several other tyrosine kinases involved in dysregulated signaling pathways.
Collapse
|
44
|
Tallis E, Borthakur G. Novel treatments for relapsed/refractory acute myeloid leukemia with FLT3 mutations. Expert Rev Hematol 2019; 12:621-640. [PMID: 31232619 DOI: 10.1080/17474086.2019.1635882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: Mutations in the gene encoding for the FMS-like tyrosine kinase 3 (FLT3) are present in about 30% of adults with AML and are associated with shorter disease-free and overall survival after initial therapy. Prognosis of relapsed/refractory AML with FLT3 mutations is even more dismal with median overall survival of a few months only. Areas covered: This review will cover current and emerging treatments for relapsed/refractory AML with FLT3 mutations, preclinical rationale and clinical trials with new encouraging data for this particularly challenging population. The authors discuss mechanisms of resistance to FLT3 inhibitors and how these insights serve to identify current and future treatments. As allogeneic stem cell transplant in the first remission is the preferred therapy for newly diagnosed AML patients with FLT3 mutations, the authors discuss the role of maintenance after SCT for the prevention of relapse. Expert opinion: Relapsed/refractory AML with FLT3 mutations remains a therapeutic challenge with currently available treatments. However, the evolution of targeted therapies with next-generation FLT3 inhibitors and their combinations with chemotherapy is showing much promise. Moreover, growing understanding of the pathways of resistance to treatment has led to the identification of various targeted therapies currently being explored, which in time will improve outcomes.
Collapse
Affiliation(s)
- Eran Tallis
- a Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Gautam Borthakur
- a Department of Leukemia, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
45
|
Clinical considerations for the use of FLT3 inhibitors in acute myeloid leukemia. Crit Rev Oncol Hematol 2019; 141:125-138. [PMID: 31279288 DOI: 10.1016/j.critrevonc.2019.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/22/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022] Open
Abstract
Internal tandem duplications and tyrosine kinase mutations in the fms-like tyrosine kinase 3 (FLT3) receptor can occur in acute myeloid leukemia (AML) and portend a poor prognosis. Midostaurin, a multikinase inhibitor that targets FLT3, demonstrated a survival benefit in FLT3-mutated AML in combination with front-line chemotherapy. Despite this advancement, the use of FLT3 inhibitors in clinical practice is complicated by significant drug-drug interactions and uncertainty about optimal timing, duration, and sequencing of therapy. As monotherapy, the utility of FLT3 inhibitors was initially limited by incomplete and transient clinical responses and the development of acquired resistance. This led to the development of more potent and selective FLT3 inhibitors designed to overcome common resistance mechanisms. One of these second generation FLT3 inhibitors, gilteritinib, is now FDA-approved for the treatment of relapsed or refractory AML. Now that multiple FLT3 inhibitors are commercially available, it is important to further delineate the role of these agents in the AML population. This review aims to provide a comprehensive overview of the role of FLT3 inhibitors in AML and apply the current literature to clinical practice.
Collapse
|
46
|
Yuan T, Qi B, Jiang Z, Dong W, Zhong L, Bai L, Tong R, Yu J, Shi J. Dual FLT3 inhibitors: Against the drug resistance of acute myeloid leukemia in recent decade. Eur J Med Chem 2019; 178:468-483. [PMID: 31207462 DOI: 10.1016/j.ejmech.2019.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/16/2019] [Accepted: 06/02/2019] [Indexed: 01/18/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disease characterized by abnormal growth and differentiation of hematopoietic stem cells. Although the pathogenesis has not been fully elucidated, many specific gene mutations have been found in AML. Fms-like tyrosine kinase 3 (FLT3) is recognized as a drug target for the treatment of AML, and the activation mutations of FLT3 were found in about 30% of AML patients. Targeted inhibition of FLT3 receptor tyrosine kinase has shown promising results in the treatment of FLT3 mutation AML. Unfortunately, the therapeutic effects of FLT3 tyrosine kinase inhibitors used as AML monotherapy are usually accompanied by the high risk of resistance development within a few months after treatment. FLT3 dual inhibitors were generated with the co-inhibition of FLT3 and another target, such as CDK4, JAK2, MEK, Mer, Pim, etc., to solve the problems mentioned above. As a result, the therapeutic effect of the drug is significantly improved, while the toxic and side effects are reduced. Besides, the life quality of AML patients with FLT3 mutation has been effectively improved. In this paper, we reviewed the studies of dual FLT3 inhibitors that have been discovered in recent years for the treatment of AML.
Collapse
Affiliation(s)
- Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Baowen Qi
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Wenjuan Dong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jiying Yu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
47
|
Bohl SR, Bullinger L, Rücker FG. New Targeted Agents in Acute Myeloid Leukemia: New Hope on the Rise. Int J Mol Sci 2019; 20:E1983. [PMID: 31018543 PMCID: PMC6515298 DOI: 10.3390/ijms20081983] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
The therapeutic approach for acute myeloid leukemia (AML) remains challenging, since over the last four decades a stagnation in standard cytotoxic treatment has been observed. But within recent years, remarkable advances in the understanding of the molecular heterogeneity and complexity of this disease have led to the identification of novel therapeutic targets. In the last two years, seven new targeted agents (midostaurin, gilteritinib, enasidenib, ivosidenib, glasdegib, venetoclax and gemtuzumab ozogamicin) have received US Food and Drug Administration (FDA) approval for the treatment of AML. These drugs did not just prove to have a clinical benefit as single agents but have especially improved AML patient outcomes if they are combined with conventional therapy. In this review, we will focus on currently approved and promising upcoming agents and we will discuss controversial aspects and limitations of targeted treatment strategies.
Collapse
Affiliation(s)
- Stephan R Bohl
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany.
| | - Lars Bullinger
- Department of Hematology, Oncology and Tumorimmunology, Charité University Medicine, 13353 Berlin, Germany.
| | - Frank G Rücker
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany.
| |
Collapse
|
48
|
Affiliation(s)
- Kiran Naqvi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
Dumas PY, Naudin C, Martin-Lannerée S, Izac B, Casetti L, Mansier O, Rousseau B, Artus A, Dufossée M, Giese A, Dubus P, Pigneux A, Praloran V, Bidet A, Villacreces A, Guitart A, Milpied N, Kosmider O, Vigon I, Desplat V, Dusanter-Fourt I, Pasquet JM. Hematopoietic niche drives FLT3-ITD acute myeloid leukemia resistance to quizartinib via STAT5-and hypoxia-dependent upregulation of AXL. Haematologica 2019; 104:2017-2027. [PMID: 30923103 PMCID: PMC6886433 DOI: 10.3324/haematol.2018.205385] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/21/2019] [Indexed: 12/28/2022] Open
Abstract
Internal tandem duplication in Fms-like tyrosine kinase 3 (FLT3-ITD) is the most frequent mutation observed in acute myeloid leukemia (AML) and correlates with poor prognosis. FLT3 tyrosine kinase inhibitors are promising for targeted therapy. Here, we investigated mechanisms dampening the response to the FLT3 inhibitor quizartinib, which is specific to the hematopoietic niche. Using AML primary samples and cell lines, we demonstrate that convergent signals from the hematopoietic microenvironment drive FLT3-ITD cell resistance to quizartinib through the expression and activation of the tyrosine kinase receptor AXL. Indeed, cytokines sustained phosphorylation of the transcription factor STAT5 in quizartinib-treated cells, which enhanced AXL expression by direct binding of a conserved motif in its genomic sequence. Likewise, hypoxia, another well-known hematopoietic niche hallmark, also enhanced AXL expression. Finally, in a xenograft mouse model, inhibition of AXL significantly increased the response of FLT3-ITD cells to quizartinib exclusively within a bone marrow environment. These data highlight a new bypass mechanism specific to the hematopoietic niche that hampers the response to quizartinib through combined upregulation of AXL activity. Targeting this signaling offers the prospect of a new therapy to eradicate resistant FLT3-ITD leukemic cells hidden within their specific microenvironment, thereby preventing relapses from FLT3-ITD clones.
Collapse
Affiliation(s)
- Pierre-Yves Dumas
- Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, F-33000 Bordeaux.,CHU Bordeaux, Service d'Hématologie Clinique et Thérapie cellulaire, F-33000, Bordeaux
| | - Cécile Naudin
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale INSERM U1016, Centre National de la Recherche Scientifique CNRS UMR8104, F-75014 Paris
| | - Séverine Martin-Lannerée
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale INSERM U1016, Centre National de la Recherche Scientifique CNRS UMR8104, F-75014 Paris
| | - Brigitte Izac
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale INSERM U1016, Centre National de la Recherche Scientifique CNRS UMR8104, F-75014 Paris
| | - Luana Casetti
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale INSERM U1016, Centre National de la Recherche Scientifique CNRS UMR8104, F-75014 Paris
| | - Olivier Mansier
- Service de Biologie des Tumeurs and Laboratoire d'Hématologie Biologique, Centre Hospitalo-Universitaire CHU Bordeaux, F-33000, Bordeaux
| | - Benoît Rousseau
- Service Commun des Animaleries, Animalerie A2, Université de Bordeaux, Bordeaux
| | - Alexandre Artus
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale INSERM U1016, Centre National de la Recherche Scientifique CNRS UMR8104, F-75014 Paris
| | - Mélody Dufossée
- Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, F-33000 Bordeaux
| | - Alban Giese
- Institut National de la Santé et de la Recherche Médicale INSERM U1218, and UMS005 TBM Core, Plateforme d'Histopathologie Expérimentale, Université de Bordeaux, F33000 Bordeaux
| | - Pierre Dubus
- Institut National de la Santé et de la Recherche Médicale INSERM U1218, and UMS005 TBM Core, Plateforme d'Histopathologie Expérimentale, Université de Bordeaux, F33000 Bordeaux.,Institut National de la Santé et de la Recherche Médicale, INSERM U1053, F33000 Bordeaux
| | - Arnaud Pigneux
- Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, F-33000 Bordeaux.,CHU Bordeaux, Service d'Hématologie Clinique et Thérapie cellulaire, F-33000, Bordeaux
| | - Vincent Praloran
- Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, F-33000 Bordeaux.,CHU Bordeaux, Service d'Hématologie Clinique et Thérapie cellulaire, F-33000, Bordeaux
| | - Audrey Bidet
- Service de Biologie des Tumeurs and Laboratoire d'Hématologie Biologique, Centre Hospitalo-Universitaire CHU Bordeaux, F-33000, Bordeaux
| | - Arnaud Villacreces
- Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, F-33000 Bordeaux
| | - Amélie Guitart
- Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, F-33000 Bordeaux
| | - Noël Milpied
- Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, F-33000 Bordeaux.,CHU Bordeaux, Service d'Hématologie Clinique et Thérapie cellulaire, F-33000, Bordeaux
| | - Olivier Kosmider
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale INSERM U1016, Centre National de la Recherche Scientifique CNRS UMR8104, F-75014 Paris.,Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Paris, France
| | - Isabelle Vigon
- Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, F-33000 Bordeaux
| | - Vanessa Desplat
- Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, F-33000 Bordeaux
| | - Isabelle Dusanter-Fourt
- Université de Paris, Institut Cochin, Institut National de la Santé et de la Recherche Médicale INSERM U1016, Centre National de la Recherche Scientifique CNRS UMR8104, F-75014 Paris
| | - Jean-Max Pasquet
- Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale INSERM U1035, F-33000 Bordeaux
| |
Collapse
|
50
|
Huang R, Liao X, Li J, Wei J, Su X, Lai X, Liu B, Zhu F, Huang Y, Li Q. Genome-scale integrated analysis to identify prospective molecular mechanisms and therapeutic targets in isocitrate dehydrogenase 2 R140Q-mutated acute myeloid leukemia. Oncol Rep 2019; 41:2876-2888. [PMID: 30896832 PMCID: PMC6448125 DOI: 10.3892/or.2019.7075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/07/2019] [Indexed: 01/16/2023] Open
Abstract
The aim of the present study was to identify potential molecular mechanisms and therapeutic targets in regards to isocitrate dehydrogenase 2 (IDH2) R140Q-mutated acute myeloid leukemia (AML). An RNA sequencing dataset of IDH2 wild-type and R140Q-mutated adult de novo AML bone marrow samples was obtained from The Cancer Genome Atlas (TCGA) database. The edgeR package was used to screen for the differentially expressed genes (DEGs), and the potential molecular mechanisms and therapeutic targets were identified using Database for Annotation, Visualization, and Integrated Discovery (DAVID) v6.8, Biological Networks Gene Ontology tool, Connectivity Map (CMap), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and GeneMANIA. A total of 230 DEGs were identified between the bone marrow tissues of IDH2 R140Q-mutated and wild-type AML patients, of which 31 were significantly associated with overall survival (OS). Functional assessment of DEGs showed significant enrichment in multiple biological processes, including angiogenesis and cell differentiation. STRING and GeneMANIA were used to identify the hub genes of these DEGs. CMap analysis identified 13 potential small-molecule drugs against IDH2 R140Q-mutated adult de novo AML. Genome-wide co-expression network analysis identified several IDH2 R140Q co-expressed genes, of which 56 were significantly associated with AML OS. The difference in IDH2 mRNA expression levels and OS between the IDH2 R140Q-mutated and wild-type AML were not statistically significant in our cohort. In conclusion, we identified several co-expressing genes and potential molecular mechanisms that are instrumental in IDH2 R140Q-mutated adult de novo AML, along with 13 candidate targeted therapeutic drugs.
Collapse
Affiliation(s)
- Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021
| | - Jing Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiemin Wei
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiayun Su
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaoxuan Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Beicai Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Fangxiao Zhu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yumei Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|