1
|
Young KA, Telpoukhovskaia MA, Hofmann J, Mistry JJ, Kokkaliaris KD, Trowbridge JJ. Variation in mesenchymal KITL/SCF and IGF1 expression in middle age underlies steady-state hematopoietic stem cell aging. Blood 2024; 144:378-391. [PMID: 38598841 PMCID: PMC11302459 DOI: 10.1182/blood.2024024275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
ABSTRACT Intrinsic molecular programs and extrinsic factors including proinflammatory molecules are understood to regulate hematopoietic aging. This is based on foundational studies using genetic perturbation to evaluate causality. However, individual organisms exhibit natural variation in the hematopoietic aging phenotypes and the molecular basis of this heterogeneity is poorly understood. Here, we generated individual single-cell transcriptomic profiles of hematopoietic and nonhematopoietic cell types in 5 young adult and 9 middle-aged C57BL/6J female mice, providing a web-accessible transcriptomic resource for the field. Among all assessed cell types, hematopoietic stem cells (HSCs) exhibited the greatest phenotypic variation in expansion among individual middle-aged mice. We computationally pooled samples to define modules representing the molecular signatures of middle-aged HSCs and interrogated, which extrinsic regulatory cell types and factors would predict the variance in these signatures between individual middle-aged mice. Decline in signaling mediated by adiponectin, kit ligand (KITL) and insulin-like growth factor 1 (IGF1) from mesenchymal stromal cells (MSCs) was predicted to have the greatest transcriptional impact on middle-aged HSCs, as opposed to signaling mediated by endothelial cells or mature hematopoietic cell types. In individual middle-aged mice, lower expression of Kitl and Igf1 in MSCs was highly correlated with reduced lymphoid lineage commitment of HSCs and increased signatures of differentiation-inactive HSCs. These signatures were independent of expression of aging-associated proinflammatory cytokines including interleukin-1β (IL-1β), IL-6, tumor necrosis factor α and RANTES. In sum, we find that Kitl and Igf1 expression are coregulated and variable between individual mice at the middle age and expression of these factors is predictive of HSC activation and lymphoid commitment independently of inflammation.
Collapse
Affiliation(s)
| | | | - Johanna Hofmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department 15, Biosciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | | | - Konstantinos D. Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt and German Cancer Consortium, Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | | |
Collapse
|
2
|
Scherer M, Singh I, Braun M, Szu-Tu C, Kardorff M, Rühle J, Frömel R, Beneyto-Calabuig S, Raffel S, Rodriguez-Fraticelli A, Velten L. Somatic epimutations enable single-cell lineage tracing in native hematopoiesis across the murine and human lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587514. [PMID: 38617287 PMCID: PMC11014487 DOI: 10.1101/2024.04.01.587514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Current approaches to lineage tracing of stem cell clones require genetic engineering or rely on sparse somatic DNA variants, which are difficult to capture at single-cell resolution. Here, we show that targeted single-cell measurements of DNA methylation at single-CpG resolution deliver joint information about cellular differentiation state and clonal identities. We develop EPI-clone, a droplet-based method for transgene-free lineage tracing, and apply it to study hematopoiesis, capturing hundreds of clonal trajectories across almost 100,000 single-cells. Using ground-truth genetic barcodes, we demonstrate that EPI-clone accurately identifies clonal lineages throughout hematopoietic differentiation. Applied to unperturbed hematopoiesis, we describe an overall decline of clonal complexity during murine ageing and the expansion of rare low-output stem cell clones. In aged human donors, we identified expanded hematopoietic clones with and without genetic lesions, and various degrees of clonal complexity. Taken together, EPI-clone enables accurate and transgene-free single-cell lineage tracing at scale.
Collapse
Affiliation(s)
- Michael Scherer
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Indranil Singh
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Martina Braun
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Chelsea Szu-Tu
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Michael Kardorff
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Julia Rühle
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Robert Frömel
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sergi Beneyto-Calabuig
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon Raffel
- Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Alejo Rodriguez-Fraticelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Lars Velten
- Computational Biology and Health Genomics, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
3
|
Skinder N, Sanz Fernández I, Dethmers-Ausema A, Weersing E, de Haan G. CD61 identifies a superior population of aged murine HSCs and is required to preserve quiescence and self-renewal. Blood Adv 2024; 8:99-111. [PMID: 37939263 PMCID: PMC10787248 DOI: 10.1182/bloodadvances.2023011585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023] Open
Abstract
ABSTRACT Aging leads to a decline in function of hematopoietic stem cells (HSCs) and increases susceptibility to hematological disease. We found CD61 to be highly expressed in aged murine HSCs. Here, we investigate the role of CD61 in identifying distinct subpopulations of aged HSCs and assess how expression of CD61 affects stem cell function. We show that HSCs with high expression of CD61 are functionality superior and retain self-renewal capacity in serial transplantations. In primary transplantations, aged CD61High HSCs function similarly to young HSCs. CD61High HSCs are more quiescent than their CD61Low counterparts. We also show that in aged bone marrow, CD61High and CD61Low HSCs are transcriptomically distinct populations. Collectively, our research identifies CD61 as a key player in maintaining stem cell quiescence, ensuring the preservation of their functional integrity and potential during aging. Moreover, CD61 emerges as a marker to prospectively isolate a superior, highly dormant population of young and aged HSCs, making it a valuable tool both in fundamental and clinical research.
Collapse
Affiliation(s)
- Natalia Skinder
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene Sanz Fernández
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Albertien Dethmers-Ausema
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Ellen Weersing
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerald de Haan
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
- Sanquin Research, Landsteiner Laboratory, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Belotserkovskaya E, Golotin V, Uyanik B, Demidov ON. Clonal haematopoiesis - a novel entity that modifies pathological processes in elderly. Cell Death Discov 2023; 9:345. [PMID: 37726289 PMCID: PMC10509183 DOI: 10.1038/s41420-023-01590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 06/02/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Progress in the development of new sequencing techniques with wider accessibility and higher sensitivity of the protocol of deciphering genome particularities led to the discovery of a new phenomenon - clonal haematopoiesis. It is characterized by the presence in the bloodstream of elderly people a minor clonal population of cells with mutations in certain genes, but without any sign of disease related to the hematopoietic system. Here we will review this recent advancement in the field of clonal haematopoiesis and how it may affect the disease's development in old age.
Collapse
Affiliation(s)
| | - Vasily Golotin
- Institute of Cytology RAS, 4 Tikhoretskii prospect, St. Petersburg, 194064, Russia
- Saint Petersburg bra-nch of "VNIRO" ("Gos-NOIRH" named after L.S. Berg), Saint Petersburg, Russia
| | - Burhan Uyanik
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, 7 Boulevard Jeanne d'Arc, Dijon, 21000, France
| | - Oleg N Demidov
- Institute of Cytology RAS, 4 Tikhoretskii prospect, St. Petersburg, 194064, Russia.
- INSERM UMR1231, Laboratory of Excellence LipSTIC and label Ligue Nationale contre le Cancer, 7 Boulevard Jeanne d'Arc, Dijon, 21000, France.
- Sirius University of Science and Technology, 1 Olimpiiskii pr-t, Sochi, 354340, Russian Federation.
| |
Collapse
|
5
|
Wojtowicz EE, Mistry JJ, Uzun V, Hellmich C, Scoones A, Chin DW, Kettyle LM, Grasso F, Lord AM, Wright DJ, Etherington GJ, Woll PS, Belderbos ME, Bowles KM, Nerlov C, Haerty W, Bystrykh LV, Jacobsen SEW, Rushworth SA, Macaulay IC. Panhematopoietic RNA barcoding enables kinetic measurements of nucleate and anucleate lineages and the activation of myeloid clones following acute platelet depletion. Genome Biol 2023; 24:152. [PMID: 37370129 PMCID: PMC10294477 DOI: 10.1186/s13059-023-02976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Platelets and erythrocytes constitute over 95% of all hematopoietic stem cell output. However, the clonal dynamics of HSC contribution to these lineages remains largely unexplored. RESULTS We use lentiviral genetic labeling of mouse hematopoietic stem cells to quantify output from all lineages, nucleate, and anucleate, simultaneously linking these with stem and progenitor cell transcriptomic phenotypes using single-cell RNA-sequencing. We observe dynamic shifts of clonal behaviors through time in same-animal peripheral blood and demonstrate that acute platelet depletion shifts the output of multipotent hematopoietic stem cells to the exclusive production of platelets. Additionally, we observe the emergence of new myeloid-biased clones, which support short- and long-term production of blood cells. CONCLUSIONS Our approach enables kinetic studies of multi-lineage output in the peripheral blood and transcriptional heterogeneity of individual hematopoietic stem cells. Our results give a unique insight into hematopoietic stem cell reactivation upon platelet depletion and of clonal dynamics in both steady state and under stress.
Collapse
Affiliation(s)
- Edyta E Wojtowicz
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Jayna J Mistry
- Earlham Institute, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Vladimir Uzun
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Charlotte Hellmich
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Anita Scoones
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Desmond W Chin
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Laura M Kettyle
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Francesca Grasso
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Allegra M Lord
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | | | - Petter S Woll
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Kristian M Bowles
- Norwich Medical School, University of East Anglia, Norwich, UK
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Claus Nerlov
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Leonid V Bystrykh
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center of Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Sten Eirik W Jacobsen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Department of Medicine, Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | | | - Iain C Macaulay
- Earlham Institute, Norwich Research Park, Norwich, UK.
- Norwich Medical School, University of East Anglia, Norwich, UK.
| |
Collapse
|
6
|
Yang F, Nourse C, Helgason GV, Kirschner K. Unraveling Heterogeneity in the Aging Hematopoietic Stem Cell Compartment: An Insight From Single-cell Approaches. Hemasphere 2023; 7:e895. [PMID: 37304939 PMCID: PMC10256339 DOI: 10.1097/hs9.0000000000000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Specific cell types and, therefore, organs respond differently during aging. This is also true for the hematopoietic system, where it has been demonstrated that hematopoietic stem cells alter a variety of features, such as their metabolism, and accumulate DNA damage, which can lead to clonal outgrowth over time. In addition, profound changes in the bone marrow microenvironment upon aging lead to senescence in certain cell types such as mesenchymal stem cells and result in increased inflammation. This heterogeneity makes it difficult to pinpoint the molecular drivers of organismal aging gained from bulk approaches, such as RNA sequencing. A better understanding of the heterogeneity underlying the aging process in the hematopoietic compartment is, therefore, needed. With the advances of single-cell technologies in recent years, it is now possible to address fundamental questions of aging. In this review, we discuss how single-cell approaches can and indeed are already being used to understand changes observed during aging in the hematopoietic compartment. We will touch on established and novel methods for flow cytometric detection, single-cell culture approaches, and single-cell omics.
Collapse
Affiliation(s)
- Fei Yang
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Craig Nourse
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - G. Vignir Helgason
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Kristina Kirschner
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|
7
|
Khattab A, Patruni S, Patrus G, Samhouri Y, Fazal S, Lister J. Donor Cell Leukemia Following Allogeneic Hematopoietic Stem Cell Transplantation. J Hematol 2023; 12:138-144. [PMID: 37435412 PMCID: PMC10332864 DOI: 10.14740/jh1124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/12/2023] [Indexed: 07/13/2023] Open
Abstract
Approximately 25,000 allogeneic transplants are performed annually worldwide; a figure that has steadily increased over the past three decades. The study of transplant recipient survivorship has become a cogent topic and post-transplant donor cell pathology warrants further study. Donor cell leukemia (DCL) is a rare but serious complication of allogeneic stem cell transplantation (SCT) where the recipient develops a form leukemia originating from the donor cells used for transplantation. Detection of abnormalities predicting donor cell pathology might inform donor selection, and the design of survivorship programs for early detection of these abnormalities might allow therapeutic intervention earlier in the disease course. We present four recipients of allogeneic hematopoietic stem cell transplant (HSCT) from our institution who developed donor cell abnormalities allogeneic SCT, highlighting their clinical characteristics and challenges.
Collapse
Affiliation(s)
- Ahmed Khattab
- Department of Medical Oncology and Hematology, Allegheny Health Network, Pittsburgh, PA, USA
- Division of Hematology and Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA 15212, USA
| | - Sunita Patruni
- Department of Medical Oncology and Hematology, Northwell Health, Lake Success, NY, USA
| | - Gina Patrus
- Division of Hematology and Cellular Therapy, Allegheny Health Network, Pittsburgh, PA, USA
| | - Yazan Samhouri
- Division of Hematology and Cellular Therapy, Allegheny Health Network, Pittsburgh, PA, USA
| | - Salman Fazal
- Division of Hematology and Cellular Therapy, Allegheny Health Network, Pittsburgh, PA, USA
| | - John Lister
- Division of Hematology and Cellular Therapy, Allegheny Health Network, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Salavaty A, Azadian E, Naik SH, Currie PD. Clonal selection parallels between normal and cancer tissues. Trends Genet 2023; 39:358-380. [PMID: 36842901 DOI: 10.1016/j.tig.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/28/2023]
Abstract
Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.
Collapse
Affiliation(s)
- Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Systems Biology Institute Australia, Monash University, Clayton, VIC 3800, Australia.
| | - Esmaeel Azadian
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Shalin H Naik
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
9
|
Zhan Q, Wang J, Zhang H, Zhang L. E3 ubiquitin ligase on the biological properties of hematopoietic stem cell. J Mol Med (Berl) 2023; 101:543-556. [PMID: 37081103 PMCID: PMC10163092 DOI: 10.1007/s00109-023-02315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
Hematopoietic stem cells are a group of heterogeneity cells with the potential to differentiate into various types of mature blood cells. Their basic biological properties include quiescence, self-renewal, multilineage differentiation, and homing ability, with the homing of exogenous hematopoietic stem cells after transplantation becoming a new focus, while the first three properties share some similarity in mechanism due to connectivity. In various complex mechanisms, the role of E3 ubiquitin ligases in hematopoietic homeostasis and malignant transformation is receiving increasing attention. As a unique part, E3 ubiquitin ligases play an important role in physiological regulation mechanism of posttranslational modification. In this review, we focus on the recent progress of the crucial role of E3 ubiquitin ligases that target specific proteins for ubiquitination to regulate biological properties of hematopoietic stem cells. Additionally, this paper deals with E3 ubiquitin ligases that affect the biological properties through aging and summarizes the relevant applications of targeting E3 ligases in hematopoietic malignancies. We present some ideas on the clinical application of E3 ubiquitin ligase to regulate hematopoietic stem cells and also believe that it is meaningful to study the upstream signal of these E3 ubiquitin ligases because hematopoietic stem cell dysfunction is caused by deficiency of some E3 ligases.
Collapse
Affiliation(s)
- Qianru Zhan
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | - Jing Wang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| | - Lijun Zhang
- Department of Hematology, The First Hospital of China Medical University, No. 155, Nanjing North Street, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
10
|
Urbanus J, Cosgrove J, Beltman JB, Elhanati Y, Moral RA, Conrad C, van Heijst JW, Tubeuf E, Velds A, Kok L, Merle C, Magnusson JP, Guyonnet L, Frisén J, Fre S, Walczak AM, Mora T, Jacobs H, Schumacher TN, Perié L. DRAG in situ barcoding reveals an increased number of HSPCs contributing to myelopoiesis with age. Nat Commun 2023; 14:2184. [PMID: 37069150 PMCID: PMC10110593 DOI: 10.1038/s41467-023-37167-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/03/2023] [Indexed: 04/19/2023] Open
Abstract
Ageing is associated with changes in the cellular composition of the immune system. During ageing, hematopoietic stem and progenitor cells (HSPCs) that produce immune cells are thought to decline in their regenerative capacity. However, HSPC function has been mostly assessed using transplantation assays, and it remains unclear how HSPCs age in the native bone marrow niche. To address this issue, we present an in situ single cell lineage tracing technology to quantify the clonal composition and cell production of single cells in their native niche. Our results demonstrate that a pool of HSPCs with unequal output maintains myelopoiesis through overlapping waves of cell production throughout adult life. During ageing, the increased frequency of myeloid cells is explained by greater numbers of HSPCs contributing to myelopoiesis rather than the increased myeloid output of individual HSPCs. Strikingly, the myeloid output of HSPCs remains constant over time despite accumulating significant transcriptomic changes throughout adulthood. Together, these results show that, unlike emergency myelopoiesis post-transplantation, aged HSPCs in their native microenvironment do not functionally decline in their regenerative capacity.
Collapse
Affiliation(s)
- Jos Urbanus
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jason Cosgrove
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Joost B Beltman
- Division of Drug Discovery & Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | | - Rafael A Moral
- Department of Mathematics and Statistics, Maynooth University, Maynooth, Ireland
| | - Cecile Conrad
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Jeroen W van Heijst
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emilie Tubeuf
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France
| | - Arno Velds
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lianne Kok
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Candice Merle
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Jens P Magnusson
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Léa Guyonnet
- Cytometry Platform, Institut Curie, 75005, Paris, France
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institute, Solna, Sweden
| | - Silvia Fre
- Institut Curie, Laboratory of Genetics and Developmental Biology, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de Physique de l'École Normale Supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, Paris, France
| | - Thierry Mora
- Laboratoire de Physique de l'École Normale Supérieure (PSL University), CNRS, Sorbonne Université, and Université de Paris, Paris, France
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, 75005, Paris, France.
| |
Collapse
|
11
|
Michaels V, Chalabi S, Legrand A, Renard J, Tejerina E, Daouya M, Fabrega S, Megret J, Olaso R, Boland A, Deleuze JF, Battail C, Tronik-Le Roux D, Ezine S. Co-Transplantation of Barcoded Lymphoid-Primed Multipotent (LMPP) and Common Lymphocyte (CLP) Progenitors Reveals a Major Contribution of LMPP to the Lymphoid Lineage. Int J Mol Sci 2023; 24:ijms24054368. [PMID: 36901798 PMCID: PMC10002536 DOI: 10.3390/ijms24054368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
T cells have the potential to maintain immunological memory and self-tolerance by recognizing antigens from pathogens or tumors. In pathological situations, failure to generate de novo T cells causes immunodeficiency resulting in acute infections and complications. Hematopoietic stem cells (HSC) transplantation constitutes a valuable option to restore proper immune function. However, delayed T cell reconstitution is observed compared to other lineages. To overcome this difficulty, we developed a new approach to identify populations with efficient lymphoid reconstitution properties. To this end, we use a DNA barcoding strategy based on the insertion into a cell chromosome of a lentivirus (LV) carrying a non-coding DNA fragment named barcode (BC). These will segregate through cell divisions and be present in cells' progeny. The remarkable characteristic of the method is that different cell types can be tracked simultaneously in the same mouse. Thus, we in vivo barcoded LMPP and CLP progenitors to test their ability to reconstitute the lymphoid lineage. Barcoded progenitors were co-grafted in immuno-compromised mice and their fate analyzed by evaluating the BC composition in transplanted mice. The results highlight the predominant role of LMPP progenitors for lymphoid generation and reveal valuable novel insights to be reconsidered in clinical transplantation assays.
Collapse
Affiliation(s)
- Victoria Michaels
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, 75015 Paris, France
| | - Smahane Chalabi
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Agnes Legrand
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, 75015 Paris, France
| | - Julie Renard
- Atomic Energy and Alternative Energies Agency (CEA), Department of Research in Hemato-Immunology (SRHI), Saint-Louis Hospital, 75010 Paris, France
| | - Emmanuel Tejerina
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, 75015 Paris, France
| | - Marina Daouya
- Atomic Energy and Alternative Energies Agency (CEA), Department of Research in Hemato-Immunology (SRHI), Saint-Louis Hospital, 75010 Paris, France
- Université Paris Cité, IRSL, HIPI-UMRS 976, 75010 Paris, France
| | - Sylvie Fabrega
- SFR Necker—US24/UAR 3633/—Structure Fédérative de Recherche Necker Plateformes Vecteurs Viraux et Transfert de Gènes et Cytométrie, Faculté de Médecine de Necker, 75015 Paris, France
| | - Jérôme Megret
- SFR Necker—US24/UAR 3633/—Structure Fédérative de Recherche Necker Plateformes Vecteurs Viraux et Transfert de Gènes et Cytométrie, Faculté de Médecine de Necker, 75015 Paris, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France
| | - Christophe Battail
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France
- Université Grenoble Alpes, IRIG, Laboratoire Biosciences et Bioingénierie pour la Santé, UA 13 INSERM-CEA-UGA, 38000 Grenoble, France
- Correspondence:
| | - Diana Tronik-Le Roux
- Atomic Energy and Alternative Energies Agency (CEA), Department of Research in Hemato-Immunology (SRHI), Saint-Louis Hospital, 75010 Paris, France
- Université Paris Cité, IRSL, HIPI-UMRS 976, 75010 Paris, France
| | - Sophie Ezine
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, 75015 Paris, France
| |
Collapse
|
12
|
Putka AF, Mato JP, McLoughlin HS. Myelinating Glia: Potential Therapeutic Targets in Polyglutamine Spinocerebellar Ataxias. Cells 2023; 12:601. [PMID: 36831268 PMCID: PMC9953858 DOI: 10.3390/cells12040601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Human studies, in combination with animal and cellular models, support glial cells as both major contributors to neurodegenerative diseases and promising therapeutic targets. Among glial cells, oligodendrocytes and Schwann cells are the myelinating glial cells of the central and peripheral nervous system, respectively. In this review, we discuss the contributions of these central and peripheral myelinating glia to the pathomechanisms of polyglutamine (polyQ) spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17. First, we highlight the function of oligodendrocytes in healthy conditions and how they are disrupted in polyQ SCA patients and diseased model systems. We then cover the role of Schwann cells in peripheral nerve function and repair as well as their possible role in peripheral neuropathy in polyQ SCAs. Finally, we discuss potential polyQ SCA therapeutic interventions in myelinating glial.
Collapse
Affiliation(s)
- Alexandra F. Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Juan P. Mato
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
13
|
Natarajan P. Genomic Aging, Clonal Hematopoiesis, and Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2023; 43:3-14. [PMID: 36353993 PMCID: PMC9780188 DOI: 10.1161/atvbaha.122.318181] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022]
Abstract
Chronologic age is the dominant risk factor for coronary artery disease but the features of aging promoting coronary artery disease are poorly understood. Advances in human genetics and population-based genetic profiling of blood cells have uncovered the surprising role of age-related subclinical leukemogenic mutations in blood cells, termed "clonal hematopoiesis of indeterminate potential," in coronary artery disease. Such mutations typically occur in DNMT3A, TET2, ASXL1, and JAK2. Murine and human studies prioritize the role of key inflammatory pathways linking clonal hematopoiesis with coronary artery disease. Increasingly larger, longitudinal, multiomics analyses are enabling further dissection into mechanistic insights. These observations expand the genetic architecture of coronary artery disease, now linking hallmark features of hematologic neoplasia with a much more common cardiovascular condition. Implications of these studies include the prospect of novel precision medicine paradigms for coronary artery disease.
Collapse
Affiliation(s)
- Pradeep Natarajan
- Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA
- Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
Hadj Abed L, Tak T, Cosgrove J, Perié L. CellDestiny: A RShiny application for the visualization and analysis of single-cell lineage tracing data. Front Med (Lausanne) 2022; 9:919345. [PMID: 36275810 PMCID: PMC9581332 DOI: 10.3389/fmed.2022.919345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Single-cell lineage tracing permits the labeling of individual cells with a heritable marker to follow the fate of each cell's progeny. Over the last twenty years, several single-cell lineage tracing methods have emerged, enabling major discoveries in developmental biology, oncology and gene therapies. Analytical tools are needed to draw meaningful conclusions from lineage tracing measurements, which are characterized by high variability, sparsity and technical noise. However, the single cell lineage tracing field lacks versatile and easy-to-use tools for standardized and reproducible analyses, in particular tools accessible to biologists. Here we present CellDestiny, a RShiny app and associated web application developed for experimentalists without coding skills to perform visualization and analysis of single cell lineage-tracing datasets through a graphical user interface. We demonstrate the functionality of CellDestiny through the analysis of (i) lentiviral barcoding datasets of murine hematopoietic progenitors; (ii) published integration site data from Wiskott-Aldrich Symdrome patients undergoing gene-therapy treatment; and (iii) simultaneous barcoding and transcriptomic analysis of murine hematopoietic progenitor differentiation in vitro. In summary, CellDestiny is an easy-to-use and versatile toolkit that enables biologists to visualize and analyze single-cell lineage tracing data.
Collapse
Affiliation(s)
- Louisa Hadj Abed
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
- Centre de Bio-Informatique, MINES ParisTech, Institut Curie, PSL University, Paris, France
| | - Tamar Tak
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Jason Cosgrove
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| |
Collapse
|
15
|
Emerging Evidence of the Significance of Thioredoxin-1 in Hematopoietic Stem Cell Aging. Antioxidants (Basel) 2022; 11:antiox11071291. [PMID: 35883782 PMCID: PMC9312246 DOI: 10.3390/antiox11071291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The United States is undergoing a demographic shift towards an older population with profound economic, social, and healthcare implications. The number of Americans aged 65 and older will reach 80 million by 2040. The shift will be even more dramatic in the extremes of age, with a projected 400% increase in the population over 85 years old in the next two decades. Understanding the molecular and cellular mechanisms of ageing is crucial to reduce ageing-associated disease and to improve the quality of life for the elderly. In this review, we summarized the changes associated with the ageing of hematopoietic stem cells (HSCs) and what is known about some of the key underlying cellular and molecular pathways. We focus here on the effects of reactive oxygen species and the thioredoxin redox homeostasis system on ageing biology in HSCs and the HSC microenvironment. We present additional data from our lab demonstrating the key role of thioredoxin-1 in regulating HSC ageing.
Collapse
|
16
|
Konturek-Ciesla A, Bryder D. Stem Cells, Hematopoiesis and Lineage Tracing: Transplantation-Centric Views and Beyond. Front Cell Dev Biol 2022; 10:903528. [PMID: 35573680 PMCID: PMC9091331 DOI: 10.3389/fcell.2022.903528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
An appropriate production of mature blood cells, or hematopoiesis, is essential for organismal health and homeostasis. In this developmental cascade, hematopoietic stem cells (HSCs) differentiate into intermediate progenitor types, that subsequently give rise to the many distinct blood cell lineages. Here, we describe tools and methods that permit for temporal and native clonal-level HSC lineage tracing in the mouse, and that can now be combined with emerging single-cell molecular analyses. We integrate new insights derived from such experimental paradigms with past knowledge, which has predominantly been derived from transplantation-based approaches. Finally, we outline current knowledge and novel strategies derived from studies aimed to trace human HSC-derived hematopoiesis.
Collapse
|
17
|
Bystrykh LV, Belderbos ME. Measures of Clonal Hematopoiesis: Are We Missing Something? Front Med (Lausanne) 2022; 9:836141. [PMID: 35433751 PMCID: PMC9008402 DOI: 10.3389/fmed.2022.836141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Clonal Hematopoiesis (CH) is a common, age-related phenomenon of growing scientific interest, due to its association with hematologic malignancy, cardiovascular disease and decreased overall survival. CH is commonly attributed to the preferential outgrowth of a mutant hematopoietic stem cell (HSC) with enhanced fitness, resulting in clonal imbalance. In-depth understanding of the relation between HSC clonal dynamics, CH and hematologic malignancy requires integration of fundamental lineage tracing studies with clinical data. However, this is hampered by lack of a uniform definition of CH and by inconsistency in the analytical methods used for its quantification. Here, we propose a conceptual and analytical framework for the definition and measurement of CH. First, we transformed the conceptual definition of CH into the CH index, which provides a quantitative measure of clone numbers and sizes. Next, we generated a set of synthetic data, based on the beta-distribution, to simulate clonal populations with different degrees of imbalance. Using these clonal distributions and the CH index as a reference, we tested several established indices of clonal diversity and (in-)equality for their ability to detect and quantify CH. We found that the CH index was distinct from any of the other tested indices. Nonetheless, the diversity indices (Shannon, Simpson) more closely resembled the CH index than the inequality indices (Gini, Pielou). Notably, whereas the inequality indices mainly responded to changes in clone sizes, the CH index and the tested diversity indices also responded to changes in the number of clones in a sample. Accordingly, these simulations indicate that CH can result not only by skewing clonal abundancies, but also by variation in their overall numbers. Altogether, our model-based approach illustrates how a formalized definition and quantification of CH can provide insights into its pathogenesis. In the future, use of the CH index or Shannon index to quantify clonal diversity in fundamental as well as clinical clone-tracing studies will promote cross-disciplinary discussion and progress in the field.
Collapse
Affiliation(s)
- Leonid V. Bystrykh
- Department for Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Leonid V. Bystrykh,
| | | |
Collapse
|
18
|
Gotzhein F, Aranyossy T, Thielecke L, Sonntag T, Thaden V, Fehse B, Müller I, Glauche I, Cornils K. The Reconstitution Dynamics of Cultivated Hematopoietic Stem Cells and Progenitors Is Independent of Age. Int J Mol Sci 2022; 23:ijms23063160. [PMID: 35328579 PMCID: PMC8948791 DOI: 10.3390/ijms23063160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) represents the only curative treatment option for numerous hematologic malignancies. While the influence of donor age and the composition of the graft have already been examined in clinical and preclinical studies, little information is available on the extent to which different hematological subpopulations contribute to the dynamics of the reconstitution process and on whether and how these contributions are altered with age. In a murine model of HSCT, we therefore simultaneously tracked different cultivated and transduced hematopoietic stem and progenitor cell (HSPC) populations using a multicolor-coded barcode system (BC32). We studied a series of age-matched and age-mismatched transplantations and compared the influence of age on the reconstitution dynamics. We show that reconstitution from these cultured and assembled grafts was substantially driven by hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) independent of age. The reconstitution patterns were polyclonal and stable in all age groups independently of the variability between individual animals, with higher output rates from MPPs than from HSCs. Our experiments suggest that the dynamics of reconstitution and the contribution of cultured and individually transduced HSPC subpopulations are largely independent of age. Our findings support ongoing efforts to expand the application of HSCT in older individuals as a promising strategy to combat hematological diseases, including gene therapy applications.
Collapse
Affiliation(s)
- Frauke Gotzhein
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.G.); (V.T.); (I.M.)
- Research Institute Children’s Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Tim Aranyossy
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (T.A.); (T.S.); (B.F.)
| | - Lars Thielecke
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (L.T.); (I.G.)
| | - Tanja Sonntag
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (T.A.); (T.S.); (B.F.)
| | - Vanessa Thaden
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.G.); (V.T.); (I.M.)
- Research Institute Children’s Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (T.A.); (T.S.); (B.F.)
| | - Ingo Müller
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.G.); (V.T.); (I.M.)
- Research Institute Children’s Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (L.T.); (I.G.)
| | - Kerstin Cornils
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.G.); (V.T.); (I.M.)
- Research Institute Children’s Cancer Center Hamburg, 20251 Hamburg, Germany
- Correspondence: ; Tel.: +49-40-7410-52721
| |
Collapse
|
19
|
Eisele AS, Cosgrove J, Magniez A, Tubeuf E, Tenreira Bento S, Conrad C, Cayrac F, Tak T, Lyne AM, Urbanus J, Perié L. Erythropoietin directly remodels the clonal composition of murine hematopoietic multipotent progenitor cells. eLife 2022; 11:66922. [PMID: 35166672 PMCID: PMC8884727 DOI: 10.7554/elife.66922] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The cytokine erythropoietin (EPO) is a potent inducer of erythrocyte development and one of the most prescribed biopharmaceuticals. The action of EPO on erythroid progenitor cells is well established, but its direct action on hematopoietic stem and progenitor cells (HSPCs) is still debated. Here, using cellular barcoding, we traced the differentiation of hundreds of single murine HSPCs, after ex vivo EPO-exposure and transplantation, in five different hematopoietic cell lineages, and observed the transient occurrence of high-output Myeloid-Erythroid-megaKaryocyte (MEK)-biased and Myeloid-B-cell-Dendritic cell (MBDC)-biased clones. Single-cell RNA sequencing (ScRNAseq) analysis of ex vivo EPO-exposed HSPCs revealed that EPO induced the upregulation of erythroid associated genes in a subset of HSPCs, overlapping with multipotent progenitor (MPP) 1 and MPP2. Transplantation of Barcoded EPO-exposed-MPP2 confirmed their enrichment in Myeloid-Erythroid-biased clones. Collectively, our data show that EPO does act directly on MPP independent of the niche, and modulates fate by remodeling the clonal composition of the MPP pool.
Collapse
Affiliation(s)
- Almut S Eisele
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| | - Jason Cosgrove
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| | | | - Emilie Tubeuf
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| | | | - Cecile Conrad
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| | - Fanny Cayrac
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| | - Tamar Tak
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| | | | - Jos Urbanus
- Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Leïla Perié
- CNRS UMR168, Physico-chimie, Institut Curie, Paris, France
| |
Collapse
|
20
|
Shembrey C, Smith J, Grandin M, Williams N, Cho HJ, Mølck C, Behrenbruch C, Thomson BNJ, Heriot AG, Merino D, Hollande F. Longitudinal Monitoring of Intra-Tumoural Heterogeneity Using Optical Barcoding of Patient-Derived Colorectal Tumour Models. Cancers (Basel) 2022; 14:581. [PMID: 35158849 PMCID: PMC8833441 DOI: 10.3390/cancers14030581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023] Open
Abstract
Geno- and phenotypic heterogeneity amongst cancer cell subpopulations are established drivers of treatment resistance and tumour recurrence. However, due to the technical difficulty associated with studying such intra-tumoural heterogeneity, this phenomenon is seldom interrogated in conventional cell culture models. Here, we employ a fluorescent lineage technique termed "optical barcoding" (OBC) to perform simultaneous longitudinal tracking of spatio-temporal fate in 64 patient-derived colorectal cancer subclones. To do so, patient-derived cancer cell lines and organoids were labelled with discrete combinations of reporter constructs, stably integrated into the genome and thus passed on from the founder cell to all its clonal descendants. This strategy enables the longitudinal monitoring of individual cell lineages based upon their unique optical barcodes. By designing a novel panel of six fluorescent proteins, the maximum theoretical subpopulation resolution of 64 discriminable subpopulations was achieved, greatly improving throughput compared with previous studies. We demonstrate that all subpopulations can be purified from complex clonal mixtures via flow cytometry, permitting the downstream isolation and analysis of any lineages of interest. Moreover, we outline an optimized imaging protocol that can be used to image optical barcodes in real-time, allowing for clonal dynamics to be resolved in live cells. In contrast with the limited intra-tumour heterogeneity observed in conventional 2D cell lines, the OBC technique was successfully used to quantify dynamic clonal expansions and contractions in 3D patient-derived organoids, which were previously demonstrated to better recapitulate the heterogeneity of their parental tumour material. In summary, we present OBC as a user-friendly, inexpensive, and high-throughput technique for monitoring intra-tumoural heterogeneity in in vitro cell culture models.
Collapse
Affiliation(s)
- Carolyn Shembrey
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Jai Smith
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Mélodie Grandin
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Nathalia Williams
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Hyun-Jung Cho
- Biological Optical Microscopy Platform, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Christina Mølck
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| | - Corina Behrenbruch
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of General Surgical Specialties, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia;
| | - Benjamin NJ. Thomson
- Department of General Surgical Specialties, The Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia;
- Department of Surgery, the Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC 3050, Australia
| | - Alexander G. Heriot
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia;
- Department of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Surgery, St Vincent’s Hospital, Melbourne, VIC 3065, Australia
| | - Delphine Merino
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia;
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3086, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, The Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frédéric Hollande
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC 3000, Australia; (C.S.); (J.S.); (M.G.); (N.W.); (C.M.); (C.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Melbourne, VIC 3000, Australia
| |
Collapse
|
21
|
Genetic barcoding systematically comparing genes in del(5q) MDS reveals a central role for CSNK1A1 in clonal expansion. Blood Adv 2022; 6:1780-1796. [PMID: 35016204 PMCID: PMC8941465 DOI: 10.1182/bloodadvances.2021006061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
Csnk1a1 haploinsufficient hematopoietic stem cells outcompete other key genes in del(5q) MDS in direct competitive transplantation. Chronic inflammatory stress increases the competitive advantage of Csnk1a1 haploinsufficient hematopoietic stem cells.
How genetic haploinsufficiency contributes to the clonal dominance of hematopoietic stem cells (HSCs) in del(5q) myelodysplastic syndrome (MDS) remains unresolved. Using a genetic barcoding strategy, we performed a systematic comparison on genes implicated in the pathogenesis of del(5q) MDS in direct competition with each other and wild-type (WT) cells with single-clone resolution. Csnk1a1 haploinsufficient HSCs expanded (oligo)clonally and outcompeted all other tested genes and combinations. Csnk1a1−/+ multipotent progenitors showed a proproliferative gene signature and HSCs showed a downregulation of inflammatory signaling/immune response. In validation experiments, Csnk1a1−/+ HSCs outperformed their WT counterparts under a chronic inflammation stimulus, also known to be caused by neighboring genes on chromosome 5. We therefore propose a crucial role for Csnk1a1 haploinsufficiency in the selective advantage of 5q-HSCs, implemented by creation of a unique competitive advantage through increased HSC self-renewal and proliferation capacity, as well as increased fitness under inflammatory stress.
Collapse
|
22
|
Rodriguez Y Baena A, Manso BA, Forsberg EC. CFU-S assay: a historical single-cell assay that offers modern insight into clonal hematopoiesis. Exp Hematol 2021; 104:1-8. [PMID: 34688837 DOI: 10.1016/j.exphem.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 10/20/2022]
Abstract
Hematopoietic stem cells (HSCs) have been studied extensively since their initial functional description in 1961 when Dr. James Till and Dr. Ernest McCulloch developed the first in vivo clonal strategy, termed the spleen colony-forming unit (CFU-S) assay, to assess the functional capacity of bone marrow-derived hematopoietic progenitors at the single-cell level. Through transplantation of bone marrow cells and analysis of the resulting cellular nodules in the spleen, the CFU-S assay revealed both the self-renewal and clonal differentiation capacity of hematopoietic progenitors. Further development and use of this assay have identified highly proliferative, self-renewing, and differentiating HSCs that possess clonal, multilineage differentiation. The CFU-S strategy has also been adapted to interrogating single purified hematopoietic stem and progenitor cell populations, advancing our knowledge of the hematopoietic hierarchy. In this review, we explore the major discoveries made with the CFU-S assay, consider its modern use and recent improvements, and compare it with commonly used long-term transplantation assays to determine the continued value of the CFU-S assay for understanding HSC biology and hematopoiesis.
Collapse
Affiliation(s)
- Alessandra Rodriguez Y Baena
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA; Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA
| | - Bryce A Manso
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA; Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA; Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA.
| |
Collapse
|
23
|
Wang MY, Zhou Y, Lai GS, Huang Q, Cai WQ, Han ZW, Wang Y, Ma Z, Wang XW, Xiang Y, Fang SX, Peng XC, Xin HW. DNA barcode to trace the development and differentiation of cord blood stem cells (Review). Mol Med Rep 2021; 24:849. [PMID: 34643250 PMCID: PMC8524429 DOI: 10.3892/mmr.2021.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/15/2021] [Indexed: 12/05/2022] Open
Abstract
Umbilical cord blood transplantation was first reported in 1980. Since then, additional research has indicated that umbilical cord blood stem cells (UCBSCs) have various advantages, such as multi-lineage differentiation potential and potent renewal activity, which may be induced to promote their differentiation into a variety of seed cells for tissue engineering and the treatment of clinical and metabolic diseases. Recent studies suggested that UCBSCs are able to differentiate into nerve cells, chondrocytes, hepatocyte-like cells, fat cells and osteoblasts. The culture of UCBSCs has developed from feeder-layer to feeder-free culture systems. The classical techniques of cell labeling and tracing by gene transfection and fluorescent dye and nucleic acid analogs have evolved to DNA barcode technology mediated by transposon/retrovirus, cyclization recombination-recombinase and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 strategies. DNA barcoding for cell development tracing has advanced to include single cells and single nucleic acid mutations. In the present study, the latest research findings on the development and differentiation, culture techniques and labeling and tracing of UCBSCs are reviewed. The present study may increase the current understanding of UCBSC biology and its clinical applications.
Collapse
Affiliation(s)
- Mo-Yu Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yang Zhou
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Guang-Shun Lai
- Department of Digestive Medicine, People's Hospital of Lianjiang, Lianjiang, Guangdong 524400, P.R. China
| | - Qi Huang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zi-Wen Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yingying Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zhaowu Ma
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xian-Wang Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Shu-Xian Fang
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
24
|
Suryawanshi GW, Arokium H, Kim S, Khamaikawin W, Lin S, Shimizu S, Chupradit K, Lee Y, Xie Y, Guan X, Suryawanshi V, Presson AP, An DS, Chen ISY. Longitudinal clonal tracking in humanized mice reveals sustained polyclonal repopulation of gene-modified human-HSPC despite vector integration bias. Stem Cell Res Ther 2021; 12:528. [PMID: 34620229 PMCID: PMC8499514 DOI: 10.1186/s13287-021-02601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Current understanding of hematopoiesis is largely derived from mouse models that are physiologically distant from humans. Humanized mice provide the most physiologically relevant small animal model to study human diseases, most notably preclinical gene therapy studies. However, the clonal repopulation dynamics of human hematopoietic stem and progenitor cells (HSPC) in these animal models is only partially understood. Using a new clonal tracking methodology designed for small sample volumes, we aim to reveal the underlying clonal dynamics of human cell repopulation in a mouse environment. METHODS Humanized bone marrow-liver-thymus (hu-BLT) mice were generated by transplanting lentiviral vector-transduced human fetal liver HSPC (FL-HSPC) in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice implanted with a piece of human fetal thymus. We developed a methodology to track vector integration sites (VIS) in a mere 25 µl of mouse blood for longitudinal and quantitative clonal analysis of human HSPC repopulation in mouse environment. We explored transcriptional and epigenetic features of human HSPC for possible VIS bias. RESULTS A total of 897 HSPC clones were longitudinally tracked in hu-BLT mice-providing a first-ever demonstration of clonal dynamics and coordinated expansion of therapeutic and control vector-modified human cell populations simultaneously repopulating in the same humanized mice. The polyclonal repopulation stabilized at 19 weeks post-transplant and the contribution of the largest clone doubled within 4 weeks. Moreover, 550 (~ 60%) clones persisted over 6 weeks and were highly shared between different organs. The normal clonal profiles confirmed the safety of our gene therapy vectors. Multi-omics analysis of human FL-HSPC revealed that 54% of vector integrations in repopulating clones occurred within ± 1 kb of H3K36me3-enriched regions. CONCLUSIONS Human repopulation in mice is polyclonal and stabilizes more rapidly than that previously observed in humans. VIS preference for H3K36me3 has no apparent negative effects on HSPC repopulation. Our study provides a methodology to longitudinally track clonal repopulation in small animal models extensively used for stem cell and gene therapy research and with lentiviral vectors designed for clinical applications. Results of this study provide a framework for understanding the clonal behavior of human HPSC repopulating in a mouse environment, critical for translating results from humanized mice models to the human settings.
Collapse
Affiliation(s)
- Gajendra W Suryawanshi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Hubert Arokium
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Sanggu Kim
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Wannisa Khamaikawin
- School of Nursing, University of California, Los Angeles, CA, 90095, USA
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Samantha Lin
- School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | - Saki Shimizu
- School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | | | - YooJin Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Yiming Xie
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Xin Guan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
| | - Vasantika Suryawanshi
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Angela P Presson
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, 84108, USA
- Department of Biostatistics, University of California, Los Angeles, 90095, USA
| | - Dong-Sung An
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA
- School of Nursing, University of California, Los Angeles, CA, 90095, USA
| | - Irvin S Y Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, 615 Charles E. Young Dr. South, BSRB, Rm 173, Los Angeles, CA, 90095, USA.
- UCLA AIDS Institute, Los Angeles, CA, 90095, USA.
- Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Borgoni S, Kudryashova KS, Burka K, de Magalhães JP. Targeting immune dysfunction in aging. Ageing Res Rev 2021; 70:101410. [PMID: 34280555 DOI: 10.1016/j.arr.2021.101410] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 12/23/2022]
Abstract
Human aging is a multifactorial phenomenon that affects numerous organ systems and cellular processes, with the immune system being one of the most dysregulated. Immunosenescence, the gradual deterioration of the immune system, and inflammaging, a chronic inflammatory state that persists in the elderly, are among the plethora of immune changes that occur during aging. Almost all populations of immune cells change with age in terms of numbers and/or activity. These alterations are in general highly detrimental, resulting in an increased susceptibility to infections, reduced healing abilities, and altered homeostasis that promote the emergence of age-associated diseases such as cancer, diabetes, and other diseases associated with inflammation. Thanks to recent developments, several strategies have been proposed to target central immunological processes or specific immune subpopulations affected by aging. These therapeutic approaches could soon be applied in the clinic to slow down or even reverse specific age-induced immune changes in order to rejuvenate the immune system and prevent or reduce the impact of various diseases. Due to its systemic nature and interconnection with all the other systems in the body, the immune system is an attractive target for aging intervention because relatively targeted modifications to a small set of cells have the potential to improve the health of multiple organ systems. Therefore, anti-aging immune targeting therapies could represent a potent approach for improving healthspan. Here, we review aging changes in the major components of the immune system, we summarize the current immune-targeting therapeutic approaches in the context of aging and discuss the future directions in the field of immune rejuvenation.
Collapse
|
26
|
Belyavsky A, Petinati N, Drize N. Hematopoiesis during Ontogenesis, Adult Life, and Aging. Int J Mol Sci 2021; 22:ijms22179231. [PMID: 34502137 PMCID: PMC8430730 DOI: 10.3390/ijms22179231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/13/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
In the bone marrow of vertebrates, two types of stem cells coexist-hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). Hematopoiesis only occurs when these two stem cell types and their descendants interact. The descendants of HSCs supply the body with all the mature blood cells, while MSCs give rise to stromal cells that form a niche for HSCs and regulate the process of hematopoiesis. The studies of hematopoiesis were initially based on morphological observations, later extended by the use of physiological methods, and were subsequently augmented by massive application of sophisticated molecular techniques. The combination of these methods produced a wealth of new data on the organization and functional features of hematopoiesis in the ontogenesis of mammals and humans. This review summarizes the current views on hematopoiesis in mice and humans, discusses the development of blood elements and hematopoiesis in the embryo, and describes how the hematopoietic system works in the adult organism and how it changes during aging.
Collapse
Affiliation(s)
- Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | | | - Nina Drize
- National Research Center for Hematology, 125167 Moscow, Russia;
- Correspondence:
| |
Collapse
|
27
|
Extracellular vesicles tell all: How vesicle-mediated cellular communication shapes hematopoietic stem cell biology with increasing age. Exp Hematol 2021; 101-102:7-15. [PMID: 34407444 DOI: 10.1016/j.exphem.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer particles containing biologically important cargo and impart regulatory changes in target cells. Despite the importance of EVs in cellular communication, there remains a gap in our understanding of how EVs influence HSC fate and, in turn, how aging and longevity are affected. This review summarizes the current literature dealing with how age-altered intercellular communication mediated by EVs influences HSC biology.
Collapse
|
28
|
Pessoa Rodrigues C, Akhtar A. Differential H4K16ac levels ensure a balance between quiescence and activation in hematopoietic stem cells. SCIENCE ADVANCES 2021; 7:eabi5987. [PMID: 34362741 PMCID: PMC8346211 DOI: 10.1126/sciadv.abi5987] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/21/2021] [Indexed: 05/13/2023]
Abstract
Hematopoietic stem cells (HSCs) are able to reconstitute the bone marrow while retaining their self-renewal property. Individual HSCs demonstrate heterogeneity in their repopulating capacities. Here, we found that the levels of the histone acetyltransferase MOF (males absent on the first) and its target modification histone H4 lysine 16 acetylation are heterogeneous among HSCs and influence their proliferation capacities. The increased proliferative capacities of MOF-depleted cells are linked to their expression of CD93. The CD93+ HSC subpopulation simultaneously shows transcriptional features of quiescent HSCs and functional features of active HSCs. CD93+ HSCs were expanded and exhibited an enhanced proliferative advantage in Mof +/- animals reminiscent of a premalignant state. Accordingly, low MOF and high CD93 levels correlate with poor survival and increased proliferation capacity in leukemia. Collectively, our study indicates H4K16ac as an important determinant for HSC heterogeneity, which is linked to the onset of monocytic disorders.
Collapse
Affiliation(s)
- Cecilia Pessoa Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
29
|
Yang D, de Haan G. Inflammation and Aging of Hematopoietic Stem Cells in Their Niche. Cells 2021; 10:1849. [PMID: 34440618 PMCID: PMC8391820 DOI: 10.3390/cells10081849] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/30/2022] Open
Abstract
Hematopoietic stem cells (HSCs) sustain the lifelong production of all blood cell lineages. The functioning of aged HSCs is impaired, including a declined repopulation capacity and myeloid and platelet-restricted differentiation. Both cell-intrinsic and microenvironmental extrinsic factors contribute to HSC aging. Recent studies highlight the emerging role of inflammation in contributing to HSC aging. In this review, we summarize the recent finding of age-associated changes of HSCs and the bone marrow niche in which they lodge, and discuss how inflammation may drive HSC aging.
Collapse
Affiliation(s)
- Daozheng Yang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Gerald de Haan
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, 9713 AV Groningen, The Netherlands;
- Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, 1006 AD Amsterdam, The Netherlands
| |
Collapse
|
30
|
Hughes AD, Kurre P. The impact of clonal diversity and mosaicism on haematopoietic function in Fanconi anaemia. Br J Haematol 2021; 196:274-287. [PMID: 34258754 DOI: 10.1111/bjh.17653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Recent advances have facilitated studies of the clonal architecture of the aging haematopoietic system, and provided clues to the mechanisms underlying the origins of hematopoietic malignancy. Much less is known about the clonal composition of haematopoiesis and its impact in bone marrow failure (BMF) disorders, including Fanconi anaemia (FA). Understanding clonality in FA is likely to inform both the marked predisposition to cancer and the rapid erosion of regenerative reserve seen with this disease. This may also hold broader lessons for haematopoietic stem cell biology in other diseases with a clonal restriction. In this review, we focus on the conceptual basis and available tools to study clonality, and highlight insights in somatic mosaicism and malignant evolution in FA in the context of haematopoietic failure and gene therapy.
Collapse
Affiliation(s)
- Andrew D Hughes
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
31
|
Lieske A, Ha TC, Schambach A, Maetzig T. An improved lentiviral fluorescent genetic barcoding approach distinguishes hematopoietic stem cell properties in multiplexed in vivo experiments. Hum Gene Ther 2021; 32:1280-1294. [PMID: 34139894 DOI: 10.1089/hum.2021.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hematopoietic stem cells (HSC) represent a rare cell population of particular interest for biomedical research and regenerative medicine. Various marker combinations enable the isolation of HSCs but fail to reach purity in transplantation assays. To reduce animal consumption, we developed a multiplexing system based on lentiviral fluorescent genetic barcoding (FGB) to enable the parallel characterization of multiple HSC samples within single animals. While previous FGB-mediated HSC multiplexing experiments achieved high in vitro gene marking rates, in vivo persistence of transduced cells remained sub-optimal. Thus, we aimed to optimize vector design and gene transfer protocols to demonstrate the applicability of FGB for functional characterization of two highly similar HSC populations in a reduced number of mice. We developed a set of 6 new lentiviral FGB vectors, utilizing individual and combinatorial expression of Azami Green, mCherry, and YFP derivatives. Gene transfer rates were optimized by overnight transduction of pre-stimulated HSCs with titrated vector doses. Populations for competitive transplantation experiments were identified by immunophenotyping murine HSCs. This identified an LSK-SLAM- (Lin-Sca-1+cKit+CD48-CD150+EPCR-) cell subpopulation that lacks EPCR expression and exhibits prospectively reduced self-renewal potential compared with prototypical ESLAM (CD45+EPCR+CD48-CD150+) HSCs. We monitored 30 data points per HSC-subpopulation in two independent experiments (each n=5) after co-transplantation of 3 uniquely color-coded ESLAM and LSK-SLAM- samples per recipient. While the first experiment was hampered by data fluctuations, increasing cell numbers and exchange of the internal promoter in the second experiment led to 74.4% chimerism, with 87.1% of fluorescent cells derived from ESLAM HSCs. Furthermore, ESLAM-derived cells produced 88.1% of myeloid cells, which is indicative of their origin from long-term repopulating HSCs. This work verifies the importance of EPCR for long-term repopulating HSCs and demonstrates the applicability of our optimized FGB-driven multiplexing approach for the efficient characterization of blood cell populations in biomedical research.
Collapse
Affiliation(s)
- Anna Lieske
- Hannover Medical School, Institute of Experimental Hematology, Hannover, Germany.,Hannover Medical School, Clinic for Pediatric Hematology and Oncology, Hannover, Germany.,Hannover Medical School, 9177, REBIRTH Cluster of Excellence, Hannover, Germany;
| | - Teng-Cheong Ha
- Hannover Medical School, 9177, Institute of Experimental Hematology, Hannover, State..., Germany.,Hannover Medical School, 9177, REBIRTH Cluster of Excellence, Hannover, Germany;
| | - Axel Schambach
- Hannover Medical School, Institute of Experimental Hematology, Hannover, Germany.,Hannover Medical School, 9177, REBIRTH Cluster of Excellence, Hannover, Germany.,Harvard Medical School, 1811, Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, United States;
| | - Tobias Maetzig
- Hannover Medical School, Insitute of Experimental Hematology, Hannover, Germany.,Hannover Medical School, Clinic for Pediatric Hematology and Oncology, Hannover, Germany.,Hannover Medical School, 9177, REBIRTH Cluster of Excellence, Hannover, Germany;
| |
Collapse
|
32
|
Unexpected redundancy of Gpr56 and Gpr97 during hematopoietic cell development and differentiation. Blood Adv 2021; 5:829-842. [PMID: 33560396 DOI: 10.1182/bloodadvances.2020003693] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Integrated molecular signals regulate cell fate decisions in the embryonic aortic endothelium to drive hematopoietic stem cell (HSC) generation during development. The G-protein-coupled receptor 56 (Gpr56, also called Adgrg1) is the most highly upregulated receptor gene in cells that take on hematopoietic fate and is expressed by adult bone marrow HSCs. Despite the requirement for Gpr56 in hematopoietic stem/progenitor cell (HS/PC) generation in zebrafish embryos and the highly upregulated expression of GPR56 in treatment-resistant leukemic patients, its function in normal mammalian hematopoiesis remains unclear. Here, we examine the role of Gpr56 in HS/PC development in Gpr56 conditional knockout (cKO) mouse embryos and Gpr knockout (KO) embryonic stem cell (ESC) hematopoietic differentiation cultures. Our results show a bias toward myeloid differentiation of Gpr56 cKO fetal liver HSCs and an increased definitive myeloid progenitor cell frequency in Gpr56KO ESC differentiation cultures. Surprisingly, we find that mouse Gpr97 can rescue Gpr56 morphant zebrafish hematopoietic generation, and that Gpr97 expression is upregulated in mouse Gpr56 deletion models. When both Gpr56 and Gpr97 are deleted in ESCs, no or few hematopoietic PCs (HPCs) are generated upon ESC differentiation. Together, our results reveal novel and redundant functions for these 2 G-protein coupled receptors in normal mammalian hematopoietic cell development and differentiation.
Collapse
|
33
|
A comprehensive transcriptome signature of murine hematopoietic stem cell aging. Blood 2021; 138:439-451. [PMID: 33876187 DOI: 10.1182/blood.2020009729] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/02/2021] [Indexed: 01/11/2023] Open
Abstract
We surveyed 16 published and unpublished data sets to determine whether a consistent pattern of transcriptional deregulation in aging murine hematopoietic stem cells (HSC) exists. Despite substantial heterogeneity between individual studies, we uncovered a core and robust HSC aging signature. We detected increased transcriptional activation in aged HSCs, further confirmed by chromatin accessibility analysis. Unexpectedly, using two independent computational approaches, we established that deregulated aging genes consist largely of membrane-associated transcripts, including many cell surface molecules previously not associated with HSC biology. We show that Selp, the most consistent deregulated gene, is not merely a marker for aged HSCs but is associated with HSC functional decline. Additionally, single-cell transcriptomics analysis revealed increased heterogeneity of the aged HSC pool. We identify the presence of transcriptionally "young-like" HSCs in aged bone marrow. We share our results as an online resource and demonstrate its utility by confirming that exposure to sympathomimetics, and deletion of Dnmt3a/b, molecularly resembles HSC rejuvenation or aging, respectively.
Collapse
|
34
|
Nesbitt NM, Malone LE, Liu Z, Jares A, Gnatenko DV, Ma Y, Zhu W, Bahou WF. Divergent erythroid megakaryocyte fates in Blvrb-deficient mice establish non-overlapping cytoprotective functions during stress hematopoiesis. Free Radic Biol Med 2021; 164:164-174. [PMID: 33359909 PMCID: PMC8311568 DOI: 10.1016/j.freeradbiomed.2020.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 12/27/2022]
Abstract
Cytoprotective mechanisms of heme oxygenases function by derivatizing heme to generate carbon monoxide, ferrous iron, and isomeric biliverdins, followed by rapid NAD(P)H-dependent biliverdin reduction to the antioxidant bilirubin using two non-overlapping biliverdin reductases that display biliverdin isomer-restricted redox activity. Although cytoprotective functions of heme oxygenases are widely recognized, concomitant effects of downstream biliverdin reductases remain incomplete. A computational model predicated on murine hematopoietic single-cell transcriptomic data identified Blvrb as a biological driver linked to the tumor necrosis factor stress pathway as a predominant source of variation defining hematopoietic cell heterogeneity. In vivo studies using Blvrb-deficient mice established the dispensable role of Blvrb in steady-state hematopoiesis, although model validation using aged Blvrb-deficient mice established an important cytoprotective function in stress hematopoiesis with dichotomous megakaryocyte-biased hematopoietic recovery. Defective stress erythropoiesis was evident in Blvrb-/- spleens and in bone marrow erythroid development, occurring in conjunction with defective lipid peroxidation as a marker of oxidant mishandling. Cell autonomous effects on megakaryocyte lineage bias were documented using multipotential progenitor assays. These data provide the first physiological function of murine Blvrb in a non-redundant pathway of stress cytoprotection. Divergent effects on erythroid/megakaryocyte lineage speciation impute a novel redox-regulated mechanism for lineage partitioning.
Collapse
Affiliation(s)
- Natasha M Nesbitt
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lisa E Malone
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Zhaoyan Liu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11727, USA
| | - Alexander Jares
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Dmitri V Gnatenko
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yupo Ma
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Wei Zhu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11727, USA
| | - Wadie F Bahou
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
35
|
Renders S, Svendsen AF, Panten J, Rama N, Maryanovich M, Sommerkamp P, Ladel L, Redavid AR, Gibert B, Lazare S, Ducarouge B, Schönberger K, Narr A, Tourbez M, Dethmers-Ausema B, Zwart E, Hotz-Wagenblatt A, Zhang D, Korn C, Zeisberger P, Przybylla A, Sohn M, Mendez-Ferrer S, Heikenwälder M, Brune M, Klimmeck D, Bystrykh L, Frenette PS, Mehlen P, de Haan G, Cabezas-Wallscheid N, Trumpp A. Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1. Nat Commun 2021; 12:608. [PMID: 33504783 PMCID: PMC7840807 DOI: 10.1038/s41467-020-20801-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
Haematopoietic stem cells (HSCs) are characterized by their self-renewal potential associated to dormancy. Here we identify the cell surface receptor neogenin-1 as specifically expressed in dormant HSCs. Loss of neogenin-1 initially leads to increased HSC expansion but subsequently to loss of self-renewal and premature exhaustion in vivo. Its ligand netrin-1 induces Egr1 expression and maintains quiescence and function of cultured HSCs in a Neo1 dependent manner. Produced by arteriolar endothelial and periarteriolar stromal cells, conditional netrin-1 deletion in the bone marrow niche reduces HSC numbers, quiescence and self-renewal, while overexpression increases quiescence in vivo. Ageing associated bone marrow remodelling leads to the decline of netrin-1 expression in niches and a compensatory but reversible upregulation of neogenin-1 on HSCs. Our study suggests that niche produced netrin-1 preserves HSC quiescence and self-renewal via neogenin-1 function. Decline of netrin-1 production during ageing leads to the gradual decrease of Neo1 mediated HSC self-renewal.
Collapse
Affiliation(s)
- Simon Renders
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Arthur Flohr Svendsen
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jasper Panten
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Luisa Ladel
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Anna Rita Redavid
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Seka Lazare
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Benjamin Ducarouge
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | | | - Andreas Narr
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Manon Tourbez
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bertien Dethmers-Ausema
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik Zwart
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Agnes Hotz-Wagenblatt
- Core Facility Omics IT and Data Management, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Korn
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AH, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
- NHS Blood and Transplant, Cambridge, CB2 0PT, UK
| | - Petra Zeisberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Adriana Przybylla
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Markus Sohn
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Simon Mendez-Ferrer
- Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AH, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0AH, UK
- NHS Blood and Transplant, Cambridge, CB2 0PT, UK
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Maik Brune
- Department of Internal Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Klimmeck
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Leonid Bystrykh
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory, Equipe labellisée "La Ligue," LabEx DEVweCAN, Institut Convergence Rabelais, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon1, Centre Léon Bérard, 69008, Lyon, France
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
36
|
Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2021; 13:608442. [PMID: 33568974 PMCID: PMC7868393 DOI: 10.3389/fnmol.2020.608442] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to self-repair, lifelong disability is common. New molecular and cellular insights have begun to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is primarily comprised of axons and Schwann cells, the supporting glial cells that produce myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required for successful nerve regeneration; they partially “de-differentiate” in response to injury, re-initiating the expression of developmental genes that support nerve repair. However, Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging, limits their capacity to support endogenous repair, worsening patient outcomes. Cell replacement-based therapeutic approaches using exogenous Schwann cells could be curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two cell replacement strategies are being championed for peripheral nerve repair: prospective isolation of “repair” Schwann cells for autologous cell transplants, which is hampered by supply challenges, and directed differentiation of pluripotent stem cells or lineage conversion of accessible somatic cells to induced Schwann cells, with the potential of “unlimited” supply. All approaches require a solid understanding of the molecular mechanisms guiding Schwann cell development and the repair phenotype, which we review herein. Together these studies provide essential context for current efforts to design glial cell-based therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren Belfiore
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak-Ho Chu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Taylor Fleming
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Yanai H, Beerman I. Proliferation: Driver of HSC aging phenotypes? Mech Ageing Dev 2020; 191:111331. [PMID: 32798509 PMCID: PMC7541746 DOI: 10.1016/j.mad.2020.111331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 01/09/2023]
Abstract
The decline of stem cell performance with age is a potential paramount mechanism of aging. Hematopoietic stem cells (HSCs) are perhaps the most studied and best characterized tissue-specific somatic stem cells. As such, HSCs offer an excellent research model of how aging affects stem cell performance, and vice versa. Studies from recent years have elucidated major aging phenotypes of HSCs including a decline in reconstitution potential, altered differentiation predisposition, an increase in number, accumulation of DNA damage/mutations and several others. However, what drives these changes, and exactly how they translate to pathology is poorly understood. Recent studies point to proliferative stress of HSCs as a potential driver of their aging and the resulting pathologies. Here we discuss the recent discoveries and suggest the context in which aging phenotypes could be driven, and the relevant mechanisms by which HSCs could be affected.
Collapse
Affiliation(s)
- Hagai Yanai
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
38
|
Carrelha J, Lin DS, Rodriguez-Fraticelli AE, Luis TC, Wilkinson AC, Cabezas-Wallscheid N, Tremblay CS, Haas S. Single-cell lineage tracing approaches in hematology research: technical considerations. Exp Hematol 2020; 89:26-36. [PMID: 32735908 PMCID: PMC7894992 DOI: 10.1016/j.exphem.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023]
Abstract
The coordinated differentiation of hematopoietic stem and progenitor cells (HSPCs) into the various mature blood cell types is responsible for sustaining blood and immune system homeostasis. The cell fate decisions underlying this important biological process are made at the level of single cells. Methods to trace the fate of single cells are therefore essential for understanding hematopoietic system activity in health and disease and have had a major impact on how we understand and represent hematopoiesis. Here, we discuss the basic methodologies and technical considerations for three important clonal assays: single-cell transplantation, lentiviral barcoding, and Sleeping Beauty barcoding. This perspective is a synthesis of presentations and discussions from the 2019 International Society for Experimental Hematology (ISEH) Annual Meeting New Investigator Technology Session and the 2019 ISEH Winter Webinar.
Collapse
Affiliation(s)
- Joana Carrelha
- Haematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK; MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Dawn S Lin
- Immunology, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Alejo E Rodriguez-Fraticelli
- Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Tiago C Luis
- Department of Life Sciences, Imperial College London, London, UK
| | - Adam C Wilkinson
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Cedric S Tremblay
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Australia
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
39
|
Single-cell lineage tracing unveils a role for TCF15 in haematopoiesis. Nature 2020; 583:585-589. [PMID: 32669716 PMCID: PMC7579674 DOI: 10.1038/s41586-020-2503-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
Bone marrow transplantation therapy relies on the life-long regenerative capacity of haematopoietic stem cells (HSCs)1,2. HSCs present a complex variety of regenerative behaviours at the clonal level, but the mechanisms underlying this diversity are still undetermined3–11. Recent advances in single cell RNA sequencing (scRNAseq) have revealed transcriptional differences amongst HSCs, providing a possible explanation for their functional heterogeneity12–17. However, the destructive nature of sequencing assays prevents simultaneous observation of stem cell state and function. To solve this challenge, we implemented expressible lentiviral barcoding, which enabled simultaneous analysis of lineages and transcriptomes from single adult HSCs and their clonal trajectories during long-term bone marrow reconstitution. Differential gene expression analysis between clones with distinct behaviour unveiled an intrinsic molecular signature that characterizes functional long-term repopulating HSCs. Probing this signature through in vivo CRISPR screening, we found the transcription factor Tcf15 to be required, and sufficient, to drive HSC quiescence and long-term self-renewal. In situ, Tcf15 expression labels the most primitive subset of true multipotent HSCs. In conclusion, our work elucidates clone-intrinsic molecular programs associated with functional stem cell heterogeneity, and identifies a mechanism for the maintenance of the self-renewing haematopoietic stem cell state.
Collapse
|
40
|
Naik SH. Dendritic cell development at a clonal level within a revised 'continuous' model of haematopoiesis. Mol Immunol 2020; 124:190-197. [PMID: 32593782 DOI: 10.1016/j.molimm.2020.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/15/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
Understanding development of the dendritic cell (DC) subtypes continues to evolve. The origin and relationship of conventional DC type 1 (cDC1), cDC type 2 (cDC2) and plasmacytoid DCs (pDCs) to each other, and in relation to classic myeloid and lymphoid cells, has had a long and controversial history and is still not fully resolved. This review summarises the technological developments and findings that have been achieved at a clonal level, and how that has enhanced our knowledge of the process. It summarises the single cell lineage tracing technologies that have emerged, their application in in vitro and in vivo studies, in both mouse and human settings, and places the findings in a wider context of understanding haematopoiesis at a single cell or clonal level. In particular, it addresses the fate heterogeneity observed in many phenotypically defined progenitor subsets and how these findings have led to a departure from the classic ball-and-stick models of haematopoiesis to the emerging continuous model. Prior contradictions in DC development may be reconciled if they are framed within this revised model, where commitment to a lineage or cell type does not occur in an all-or-nothing process in defined progenitors but rather can occur at many stages of haematopoiesis in a dynamic process.
Collapse
Affiliation(s)
- Shalin H Naik
- Immunology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia; The Department of Medical Biology, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
41
|
Bramlett C, Jiang D, Nogalska A, Eerdeng J, Contreras J, Lu R. Clonal tracking using embedded viral barcoding and high-throughput sequencing. Nat Protoc 2020; 15:1436-1458. [PMID: 32132718 PMCID: PMC7427513 DOI: 10.1038/s41596-019-0290-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/21/2019] [Indexed: 11/09/2022]
Abstract
Embedded viral barcoding in combination with high-throughput sequencing is a powerful technology with which to track single-cell clones. It can provide clonal-level insights into cellular proliferation, development, differentiation, migration, and treatment efficacy. Here, we present a detailed protocol for a viral barcoding procedure that includes the creation of barcode libraries, the viral delivery of barcodes, the recovery of barcodes, and the computational analysis of barcode sequencing data. The entire procedure can be completed within a few weeks. This barcoding method requires cells to be susceptible to viral transduction. It provides high sensitivity and throughput, and enables precise quantification of cellular progeny. It is cost efficient and does not require any advanced skills. It can also be easily adapted to many types of applications, including both in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Charles Bramlett
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Du Jiang
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Anna Nogalska
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Jiya Eerdeng
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Jorge Contreras
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA
| | - Rong Lu
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Adair JE, Enstrom MR, Haworth KG, Schefter LE, Shahbazi R, Humphrys DR, Porter S, Tam K, Porteus MH, Kiem HP. DNA Barcoding in Nonhuman Primates Reveals Important Limitations in Retrovirus Integration Site Analysis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:796-809. [PMID: 32355868 PMCID: PMC7184234 DOI: 10.1016/j.omtm.2020.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
Abstract
In vivo tracking of retrovirus-tagged blood stem and progenitor cells is used to study hematopoiesis. Two techniques are used most frequently: sequencing the locus of retrovirus insertion, termed integration site analysis, or retrovirus DNA barcode sequencing. Of these, integration site analysis is currently the only available technique for monitoring clonal pools in patients treated with retrovirus-modified blood cells. A key question is how these two techniques compare in their ability to detect and quantify clonal contributions. In this study, we assessed both methods simultaneously in a clinically relevant nonhuman primate model of autologous, myeloablative transplantation. Our data demonstrate that both methods track abundant clones; however, DNA barcode sequencing is at least 5-fold more efficient than integration site analysis. Using computational simulation to identify the sources of low efficiency, we identify sampling depth as the major factor. We show that the sampling required for integration site analysis to achieve minimal coverage of the true clonal pool is likely prohibitive, especially in cases of low gene-modified cell engraftment. We also show that early subsampling of different blood cell lineages adds value to clone tracking information in terms of safety and hematopoietic biology. Our analysis demonstrates DNA barcode sequencing as a useful guide to maximize integration site analysis interpretation in gene therapy patients.
Collapse
Affiliation(s)
- Jennifer E Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark R Enstrom
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kevin G Haworth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lauren E Schefter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Reza Shahbazi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel R Humphrys
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shaina Porter
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Kenric Tam
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,School of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
43
|
Lee-Six H, Kent DG. Tracking hematopoietic stem cells and their progeny using whole-genome sequencing. Exp Hematol 2020; 83:12-24. [PMID: 32007478 PMCID: PMC7118367 DOI: 10.1016/j.exphem.2020.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Despite decades of progress in our understanding of hematopoiesis through the study of animal models and transplantation in humans, investigating physiological human hematopoiesis directly has remained challenging. Questions on the clonal structure of the human hematopoietic stem cell (HSC) pool, such as "how many HSCs are there?" and "do all HSC clones actively produce all blood cell types in equal proportions?" remain open. These questions have inherent value for understanding normal human physiology, but also directly inform our comprehension of the process by which the system is subverted to drive diseases of the blood, in particular blood cancers and bone marrow failure syndromes. The critical link between normal and abnormal hematopoiesis is perhaps best illustrated by the recent discovery of clonal hematopoiesis in healthy people with no abnormal blood parameters. In such individuals, large clones derived from single cells are present and are dominant relative to their normal counterparts, but their presence does not necessitate abnormal blood cell production. Intriguingly, however, these individuals are also at a significantly greater risk of developing leukemias and of cardiovascular events, underscoring the importance of understanding how blood stem cell clones compete against each other.
Collapse
Affiliation(s)
- Henry Lee-Six
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - David G Kent
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom; Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
44
|
Ganuza M, Hall T, Obeng EA, McKinney-Freeman S. Clones assemble! The clonal complexity of blood during ontogeny and disease. Exp Hematol 2020; 83:35-47. [PMID: 32006606 PMCID: PMC8343955 DOI: 10.1016/j.exphem.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) govern the daily expansion and turnover of billions of specialized blood cells. Given their clinical utility, much effort has been made toward understanding the dynamics of hematopoietic production from this pool of stem cells. An understanding of hematopoietic stem cell clonal dynamics during blood ontogeny could yield important insights into hematopoietic regulation, especially during aging and repeated exposure to hematopoietic stress-insults that may predispose individuals to the development of hematopoietic disease. Here, we review the current state of research regarding the clonal complexity of the hematopoietic system during embryogenesis, adulthood, and hematologic disease.
Collapse
Affiliation(s)
- Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
45
|
Bigildeev AE, Petinati NA, Drize NJ. How Methods of Molecular Biology Shape Our Understanding of the Hematopoietic System. Mol Biol 2019. [DOI: 10.1134/s0026893319050029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
46
|
Belderbos ME, Jacobs S, Koster TK, Ausema A, Weersing E, Zwart E, de Haan G, Bystrykh LV. Donor-to-Donor Heterogeneity in the Clonal Dynamics of Transplanted Human Cord Blood Stem Cells in Murine Xenografts. Biol Blood Marrow Transplant 2019; 26:16-25. [PMID: 31494231 DOI: 10.1016/j.bbmt.2019.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 08/26/2019] [Indexed: 01/12/2023]
Abstract
Umbilical cord blood (UCB) provides an alternative source of hematopoietic stem cells (HSCs) for allogeneic transplantation. Administration of sufficient donor HSCs is critical to restore recipient hematopoiesis and to maintain long-term polyclonal blood formation. However, due to lack of unique markers, the frequency of HSCs among UCB CD34+ cells is the subject of ongoing debate, urging for reproducible strategies for their counting. Here, we used cellular barcoding to determine the frequency and clonal dynamics of human UCB HSCs and to determine how data analysis methods affect these parameters. We transplanted lentivirally barcoded CD34+ cells from 20 UCB donors into Nod/Scid/IL2Ry-/- (NSG) mice (n = 30). Twelve recipients (of 8 UCB donors) engrafted with >1% GFP+ cells, allowing for clonal analysis by multiplexed barcode deep sequencing. Using multiple definitions of clonal diversity and strategies for data filtering, we demonstrate that differences in data analysis can change clonal counts by several orders of magnitude and propose methods to improve their consistency. Using these methods, we show that the frequency of NSG-repopulating cells was low (median ∼1 HSC/104 CD34+ UCB cells) and could vary up to 10-fold between donors. Clonal patterns in blood became increasingly consistent over time, likely reflecting initial output of transient progenitors, followed by long-term HSCs with stable hierarchies. The majority of long-term clones displayed multilineage output, yet clones with lymphoid- or myeloid-biased output were also observed. Altogether, this study uncovers substantial interdonor and analysis-induced variability in the frequency of UCB CD34+ clones that contribute to post-transplant hematopoiesis. As clone tracing is increasingly relevant, we urge for universal and transparent methods to count HSC clones during normal aging and upon transplantation.
Collapse
Affiliation(s)
- Mirjam E Belderbos
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands; Princess Máxima Center for Pediatric Oncology and Oncode Institute, Utrecht, Netherlands.
| | - Sabrina Jacobs
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Taco K Koster
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Albertina Ausema
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Ellen Weersing
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Erik Zwart
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Gerald de Haan
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Leonid V Bystrykh
- Department of Stem Cell Biology and Ageing, European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| |
Collapse
|
47
|
Bigildeev AE, Pilunov AM, Sats NV, Surin VL, Shipounova IN, Petinati NA, Logacheva MD, Fedotova AV, Kasyanov AS, Artyukhov AS, Dashinimaev EB, Drize NJ. Clonal Composition of Human Multipotent Mesenchymal Stromal Cells: Application of Genetic Barcodes in Research. BIOCHEMISTRY. BIOKHIMIIA 2019; 84:250-262. [PMID: 31221063 DOI: 10.1134/s0006297919030076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Clonal composition of human multipotent mesenchymal stromal cells (MMSCs) labeled with lentiviral vectors carrying genetic barcodes was studied. MMSCs were transduced with a cloned library of self-inactivating lentiviral vectors carrying 667 unique barcodes. At each cell culture passage, 120 cells were plated one cell per well in 96-well plates. The efficiency of cloning and labeling of the clonogenic cells was determined. DNA was extracted from the cell-derived colonies, and the barcodes were identified by Sanger sequencing. Also, DNA was extracted from the total MMSC population at each passage to analyze the diversity and representation of barcodes by deep sequencing using the Illumina platform. It was shown that the portion of MMSCs labeled with the lentiviral vectors remained stable in the passaged cells. Because of the high multiplicity of infection, the labeling procedure could decrease the proliferative potential of MMSCs. Identification of barcodes in individual cell clones confirmed the polyclonal character of the MMSC population. Clonal composition of MMSCs changed significantly with the passages due to the depletion of proliferative potential of most cells. Large clones were found at the first passage; at later passages, many small clones with a limited proliferative potential were detected in the population. The results of deep sequencing confirmed changes in the clonal composition of MMSCs. The polyclonal MMSC population contained only a small number of cells with a high proliferative potential, some of which could be stem cells. MMSCs with a high proliferative potential were detected more often in the earliest passages. In this regard, we would recommend to use MMSCs of early passages for regenerative medicine applications based on cell proliferation.
Collapse
Affiliation(s)
- A E Bigildeev
- National Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| | - A M Pilunov
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - N V Sats
- National Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - V L Surin
- National Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - I N Shipounova
- National Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - N A Petinati
- National Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - M D Logacheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - A V Fedotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - A S Kasyanov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - A S Artyukhov
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, 117997, Russia
| | - E B Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - N J Drize
- National Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| |
Collapse
|
48
|
Lin DS, Kan A, Gao J, Crampin EJ, Hodgkin PD, Naik SH. DiSNE Movie Visualization and Assessment of Clonal Kinetics Reveal Multiple Trajectories of Dendritic Cell Development. Cell Rep 2019. [PMID: 29514085 DOI: 10.1016/j.celrep.2018.02.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A thorough understanding of cellular development is incumbent on assessing the complexities of fate and kinetics of individual clones within a population. Here, we develop a system for robust periodical assessment of lineage outputs of thousands of transient clones and establishment of bona fide cellular trajectories. We appraise the development of dendritic cells (DCs) in fms-like tyrosine kinase 3 ligand culture from barcode-labeled hematopoietic stem and progenitor cells (HSPCs) by serially measuring barcode signatures and visualize these multidimensional data using developmental interpolated t-distributed stochastic neighborhood embedding (DiSNE) time-lapse movies. We identify multiple cellular trajectories of DC development that are characterized by distinct fate bias and expansion kinetics and determine that these are intrinsically programmed. We demonstrate that conventional DC and plasmacytoid DC trajectories are largely separated already at the HSPC stage. This framework allows systematic evaluation of clonal dynamics and can be applied to other steady-state or perturbed developmental systems.
Collapse
Affiliation(s)
- Dawn S Lin
- Molecular Medicine Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrey Kan
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jerry Gao
- Molecular Medicine Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
| | - Edmund J Crampin
- Systems Biology Laboratory, University of Melbourne, Parkville, VIC 3010, Australia; Centre for Systems Genomics, University of Melbourne, Parkville, VIC 3010, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Philip D Hodgkin
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shalin H Naik
- Molecular Medicine Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
49
|
Scaramozza A, Park D, Kollu S, Beerman I, Sun X, Rossi DJ, Lin CP, Scadden DT, Crist C, Brack AS. Lineage Tracing Reveals a Subset of Reserve Muscle Stem Cells Capable of Clonal Expansion under Stress. Cell Stem Cell 2019; 24:944-957.e5. [PMID: 31006621 DOI: 10.1016/j.stem.2019.03.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/09/2019] [Accepted: 03/22/2019] [Indexed: 01/10/2023]
Abstract
Stem cell heterogeneity is recognized as functionally relevant for tissue homeostasis and repair. The identity, context dependence, and regulation of skeletal muscle satellite cell (SC) subsets remains poorly understood. We identify a minor subset of Pax7+ SCs that is indelibly marked by an inducible Mx1-Cre transgene in vivo, is enriched for Pax3 expression, and has reduced ROS (reactive oxygen species) levels. Mx1+ SCs possess potent stem cell activity upon transplantation but minimally contribute to endogenous muscle repair, due to their relative low abundance. In contrast, a dramatic clonal expansion of Mx1+ SCs allows extensive contribution to muscle repair and niche repopulation upon selective pressure of radiation stress, consistent with reserve stem cell (RSC) properties. Loss of Pax3 in RSCs increased ROS content and diminished survival and stress tolerance. These observations demonstrate that the Pax7+ SC pool contains a discrete population of radiotolerant RSCs that undergo clonal expansion under severe stress.
Collapse
Affiliation(s)
- Annarita Scaramozza
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Swapna Kollu
- Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isabel Beerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Xuefeng Sun
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Charles P Lin
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Advanced Microscopy Program, Wellman Center for Photomedicine and Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David T Scadden
- Center of Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Colin Crist
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC H3T 1E2, Canada; Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada
| | - Andrew S Brack
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Orthopedic Surgery, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
50
|
Wojtowicz EE, Broekhuis MJC, Weersing E, Dinitzen A, Verovskaya E, Ausema A, Ritsema M, Zwart E, de Haan G, Bystrykh LV. MiR-125a enhances self-renewal, lifespan, and migration of murine hematopoietic stem and progenitor cell clones. Sci Rep 2019; 9:4785. [PMID: 30886165 PMCID: PMC6423273 DOI: 10.1038/s41598-019-38503-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/30/2018] [Indexed: 01/16/2023] Open
Abstract
Expansion of hematopoietic stem cells (HSCs) is a ‘holy grail’ of regenerative medicine, as successful stem cell transplantations depend on the number and quality of infused HSCs. Although many attempts have been pursued to either chemically or genetically increase HSC numbers, neither clonal analysis of these expanded cells nor their ability to support mature blood lineages has been demonstrated. Here we show that miR-125a, at the single cell level, can expand murine long-term repopulating HSCs. In addition, miR-125a increases clone longevity, clone size and clonal contribution to hematopoiesis. Unexpectedly, we found that miR-125a expanded HSCs clones were highly homogenously distributed across multiple anatomical sites. Interestingly, these miR-125a overexpressing cells had enhanced mobility and were more frequently detected in the spleen. Our study reveals a novel, cell-intrinsically controlled mechanism by which HSC migration is regulated.
Collapse
Affiliation(s)
- Edyta Ewa Wojtowicz
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands.
| | - Mathilde Johanna Christina Broekhuis
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Ellen Weersing
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Alexander Dinitzen
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Evgenia Verovskaya
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Albertina Ausema
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Martha Ritsema
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Erik Zwart
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands
| | - Gerald de Haan
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands.
| | - Leonid V Bystrykh
- Laboratory of Ageing Biology and Stem Cells, European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Antonius Deusinglaan 1, 9700 AV, Groningen, The Netherlands.
| |
Collapse
|