1
|
Hwang SM, Awasthi D, Jeong J, Sandoval TA, Chae CS, Ramos Y, Tan C, Marin Falco M, Salvagno C, Emmanuelli A, McBain IT, Mishra B, Ivashkiv LB, Zamarin D, Cantillo E, Chapman-Davis E, Holcomb K, Morales DK, Yu X, Rodriguez PC, Conejo-Garcia JR, Kaczocha M, Vähärautio A, Song M, Cubillos-Ruiz JR. Transgelin 2 guards T cell lipid metabolism and antitumour function. Nature 2024:10.1038/s41586-024-08071-y. [PMID: 39443795 DOI: 10.1038/s41586-024-08071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Mounting effective immunity against pathogens and tumours relies on the successful metabolic programming of T cells by extracellular fatty acids1-3. Fatty-acid-binding protein 5 (FABP5) has a key role in this process by coordinating the efficient import and trafficking of lipids that fuel mitochondrial respiration to sustain the bioenergetic requirements of protective CD8+ T cells4,5. However, the mechanisms that govern this immunometabolic axis remain unexplored. Here we report that the cytoskeletal organizer transgelin 2 (TAGLN2) is necessary for optimal fatty acid uptake, mitochondrial respiration and anticancer function in CD8+ T cells. TAGLN2 interacts with FABP5 to facilitate its cell surface localization and function in activated CD8+ T cells. Analyses of ovarian cancer specimens revealed that endoplasmic reticulum (ER) stress responses induced by the tumour microenvironment repress TAGLN2 in infiltrating CD8+ T cells, thereby enforcing their dysfunctional state. Restoring TAGLN2 expression in ER-stressed CD8+ T cells increased their lipid uptake, mitochondrial respiration and cytotoxic capacity. Accordingly, chimeric antigen receptor T cells overexpressing TAGLN2 bypassed the detrimental effects of tumour-induced ER stress and demonstrated therapeutic efficacy in mice with metastatic ovarian cancer. Our study establishes the role of cytoskeletal TAGLN2 in T cell lipid metabolism and highlights the potential to enhance cellular immunotherapy in solid malignancies by preserving the TAGLN2-FABP5 axis.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jieun Jeong
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tito A Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Research Institute, National Cancer Center, Goyang, Republic of Korea
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Matías Marin Falco
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Camilla Salvagno
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Emmanuelli
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Ian T McBain
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Bikash Mishra
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Lionel B Ivashkiv
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Dmitriy Zamarin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evelyn Cantillo
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Eloise Chapman-Davis
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Kevin Holcomb
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
| | - Xiaoqing Yu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jose R Conejo-Garcia
- Department of Integrated Immunobiology, Duke School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Duke School of Medicine, Durham, NC, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Anna Vähärautio
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Minkyung Song
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Departments of Integrative Biotechnology and of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
2
|
Kemp F, Braverman EL, Byersdorfer CA. Fatty acid oxidation in immune function. Front Immunol 2024; 15:1420336. [PMID: 39007133 PMCID: PMC11240245 DOI: 10.3389/fimmu.2024.1420336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024] Open
Abstract
Cellular metabolism is a crucial determinant of immune cell fate and function. Extensive studies have demonstrated that metabolic decisions influence immune cell activation, differentiation, and cellular capacity, in the process impacting an organism's ability to stave off infection or recover from injury. Conversely, metabolic dysregulation can contribute to the severity of multiple disease conditions including autoimmunity, alloimmunity, and cancer. Emerging data also demonstrate that metabolic cues and profiles can influence the success or failure of adoptive cellular therapies. Importantly, immunometabolism is not one size fits all; and different immune cell types, and even subdivisions within distinct cell populations utilize different metabolic pathways to optimize function. Metabolic preference can also change depending on the microenvironment in which cells are activated. For this reason, understanding the metabolic requirements of different subsets of immune cells is critical to therapeutically modulating different disease states or maximizing cellular function for downstream applications. Fatty acid oxidation (FAO), in particular, plays multiple roles in immune cells, providing both pro- and anti-inflammatory effects. Herein, we review the major metabolic pathways available to immune cells, then focus more closely on the role of FAO in different immune cell subsets. Understanding how and why FAO is utilized by different immune cells will allow for the design of optimal therapeutic interventions targeting this pathway.
Collapse
Affiliation(s)
| | | | - Craig A. Byersdorfer
- Department of Pediatrics, Division of Blood and Marrow Transplant and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Nakano H, Sato K, Izawa J, Takayama N, Hayakawa H, Ikeda T, Kawaguchi SI, Mashima K, Umino K, Morita K, Ito R, Ohno N, Tominaga K, Endo H, Kanda Y. Fatty Acids Play a Critical Role in Mitochondrial Oxidative Phosphorylation in Effector T Cells in Graft-versus-Host Disease. Immunohorizons 2024; 8:228-241. [PMID: 38441482 PMCID: PMC10985061 DOI: 10.4049/immunohorizons.2300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 03/07/2024] Open
Abstract
Although the role of aerobic glycolysis in activated T cells has been well characterized, whether and how fatty acids (FAs) contribute to donor T cell function in allogeneic hematopoietic stem cell transplantation is unclear. Using xenogeneic graft-versus-host disease (GVHD) models, this study demonstrated that exogenous FAs serve as a crucial source of mitochondrial respiration in donor T cells in humans. By comparing human T cells isolated from wild-type NOD/Shi-scid-IL2rγnull (NOG) mice with those from MHC class I/II-deficient NOG mice, we found that donor T cells increased extracellular FA uptake, the extent of which correlates with their proliferation, and continued to increase FA uptake during effector differentiation. Gene expression analysis showed the upregulation of a wide range of lipid metabolism-related genes, including lipid hydrolysis, mitochondrial FA transport, and FA oxidation. Extracellular flux analysis demonstrated that mitochondrial FA transport was required to fully achieve the mitochondrial maximal respiration rate and spare respiratory capacity, whereas the substantial disruption of glucose supply by either glucose deprivation or mitochondrial pyruvate transport blockade did not impair oxidative phosphorylation. Taken together, FA-driven mitochondrial respiration is a hallmark that differentiates TCR-dependent T cell activation from TCR-independent immune response after hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Hirofumi Nakano
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazuya Sato
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Junko Izawa
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Norihito Takayama
- Core Center of Research Apparatus, Jichi Medical University, Tochigi, Japan
| | - Hiroko Hayakawa
- Core Center of Research Apparatus, Jichi Medical University, Tochigi, Japan
| | - Takashi Ikeda
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichiro Kawaguchi
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kiyomi Mashima
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kento Umino
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kaoru Morita
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Ryoji Ito
- Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, Tochigi, Japan
| | - Kaoru Tominaga
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Hitoshi Endo
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
4
|
Zhao J, Han X, Li H, Luo Y, Fang Y, Wang Y, Gao J, Zhao Y, Han J, Qian F. Analysis of the Immune Response by Standardized Whole-Blood Stimulation with Metabolism Modulation. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:81-89. [PMID: 38605904 PMCID: PMC11003932 DOI: 10.1007/s43657-023-00114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 04/13/2024]
Abstract
The immune system defends the body from infection and plays a vital role in a wide range of health conditions. Metabolism affects a series of physiological processes, including those linked to the function of human immune system. Cellular metabolism modulates immune cell activation and cytokine production. Understanding the relationship between metabolism and immune response has important implications for the development of immune-based therapeutics. However, the deployment of large-scale functional assays to investigate the metabolic regulation of immune response has been limited by the lack of standardized procedures. Here, we present a protocol for the analysis of immune response using standardized whole-blood stimulation with metabolism modulation. Diverse immune stimuli including pattern recognition receptor (PRR) ligands and microbial stimuli were incubated with fresh human whole blood. The metabolic inhibitors were used to modulate metabolic status in the immune cells. The variable immune responses after metabolic interventions were evaluated. We described in detail the main steps involved in the whole-blood stimulation and cytokines quantification, namely, collection and treatment of whole blood, preparation of samples and controls, cytokines detection, and stimulation with metabolic interventions. The metabolic inhibitors for anabolic pathways and catabolic pathways exert selective effects on the production of cytokines from immune cells. In addition to a robust and accurate assessment of immune response in cohort studies, the standardized whole-blood stimulation with metabolic regulation might provide new insights for modulating immunity. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00114-0.
Collapse
Affiliation(s)
- Jialin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Xuling Han
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Helian Li
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yali Luo
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yan Fang
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yun Wang
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jian Gao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yiran Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jingxuan Han
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Feng Qian
- State Key Laboratory of Genetic Engineering, Shanghai Public Health Clinical Center, Human Phenome Institute, Zhangjiang Fudan International Innovation Center and School of Life Sciences, Fudan University, Shanghai, 200438 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Institute of Immunophenome, International Human Phenome Institutes (Shanghai), Shanghai, 200433 China
| |
Collapse
|
5
|
Hwang SM, Awasthi D, Jeong J, Sandoval TA, Chae CS, Ramos Y, Tan C, Falco MM, McBain IT, Mishra B, Ivashkiv LB, Zamarin D, Cantillo E, Chapman-Davis E, Holcomb K, Morales DK, Rodriguez PC, Conejo-Garcia JR, Kaczocha M, Vähärautio A, Song M, Cubillos-Ruiz JR. Transgelin 2 guards T cell lipid metabolic programming and anti-tumor function. RESEARCH SQUARE 2023:rs.3.rs-3683989. [PMID: 38168227 PMCID: PMC10760247 DOI: 10.21203/rs.3.rs-3683989/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Mounting effective immunity against pathogens and tumors relies on the successful metabolic programming of T cells by extracellular fatty acids1-3. During this process, fatty-acid-binding protein 5 (FABP5) imports lipids that fuel mitochondrial respiration and sustain the bioenergetic requirements of protective CD8+ T cells4,5. Importantly, however, the mechanisms governing this crucial immunometabolic axis remain unexplored. Here we report that the cytoskeletal organizer Transgelin 2 (TAGLN2) is necessary for optimal CD8+ T cell fatty acid uptake, mitochondrial respiration, and anti-cancer function. We found that TAGLN2 interacts with FABP5, enabling the surface localization of this lipid importer on activated CD8+ T cells. Analysis of ovarian cancer specimens revealed that endoplasmic reticulum (ER) stress responses elicited by the tumor microenvironment repress TAGLN2 in infiltrating CD8+ T cells, enforcing their dysfunctional state. Restoring TAGLN2 expression in ER-stressed CD8+ T cells bolstered their lipid uptake, mitochondrial respiration, and cytotoxic capacity. Accordingly, chimeric antigen receptor T cells overexpressing TAGLN2 bypassed the detrimental effects of tumor-induced ER stress and demonstrated superior therapeutic efficacy in mice with metastatic ovarian cancer. Our study unveils the role of cytoskeletal TAGLN2 in T cell lipid metabolism and highlights the potential to enhance cellular immunotherapy in solid malignancies by preserving the TAGLN2-FABP5 axis.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Deepika Awasthi
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Jieun Jeong
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Tito A. Sandoval
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Chang-Suk Chae
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Chen Tan
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Matías Marin Falco
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ian T. McBain
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| | - Bikash Mishra
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Lionel B. Ivashkiv
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Dmitriy Zamarin
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Evelyn Cantillo
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Eloise Chapman-Davis
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Kevin Holcomb
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Diana K. Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
| | - Paulo C. Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute. Tampa, FL, USA
| | - Jose R. Conejo-Garcia
- Department of Integrated Immunobiology, Duke School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Duke School of Medicine, Durham, NC 27710, USA
| | - Martin Kaczocha
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA
- Stony Brook University Pain and Analgesia Research Center (SPARC), Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Anna Vähärautio
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Foundation for the Finnish Cancer Institute, Helsinki, Finland
| | - Minkyung Song
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
| | - Juan R. Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medicine. New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine. New York, NY 10065, USA
- Weill Cornell Graduate School of Medical Sciences. New York, NY 10065. USA
| |
Collapse
|
6
|
Su R, Zhao S, Zhang J, Cao M, Peng S. Metabolic influences on T cell in psoriasis: a literature review. Front Immunol 2023; 14:1279846. [PMID: 38035065 PMCID: PMC10684739 DOI: 10.3389/fimmu.2023.1279846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Psoriasis is a systemic inflammatory disease that frequently coexists with various other conditions, such as essential hypertension, diabetes, metabolic syndrome, and inflammatory bowel disease. The association between these diseases may be attributed to shared inflammatory pathways and abnormal immunomodulatory mechanisms. Furthermore, metabolites also play a regulatory role in the function of different immune cells involved in psoriasis pathogenesis, particularly T lymphocytes. In this review, we have summarized the current research progress on T cell metabolism in psoriasis, encompassing the regulation of metabolites in glucose metabolism, lipid metabolism, amino acid metabolism, and other pathways within T cells affected by psoriasis. We will also explore the interaction and mechanism between psoriatic metabolites and immune cells. Moreover, we further discussed the research progress of metabolomics in psoriasis to gain a deeper understanding of its pathogenesis and identify potential new therapeutic targets through identification of metabolic biomarkers associated with this condition.
Collapse
Affiliation(s)
- Rina Su
- *Correspondence: Shiguang Peng, ; Rina Su,
| | | | | | | | - Shiguang Peng
- Department of Dermatology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Buxbaum NP, Socié G, Hill GR, MacDonald KPA, Tkachev V, Teshima T, Lee SJ, Ritz J, Sarantopoulos S, Luznik L, Zeng D, Paczesny S, Martin PJ, Pavletic SZ, Schultz KR, Blazar BR. Chronic GvHD NIH Consensus Project Biology Task Force: evolving path to personalized treatment of chronic GvHD. Blood Adv 2023; 7:4886-4902. [PMID: 36322878 PMCID: PMC10463203 DOI: 10.1182/bloodadvances.2022007611] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a prominent barrier to allogeneic hematopoietic stem cell transplantion as the leading cause of nonrelapse mortality and significant morbidity. Tremendous progress has been achieved in both the understanding of pathophysiology and the development of new therapies for cGvHD. Although our field has historically approached treatment from an empiric position, research performed at the bedside and bench has elucidated some of the complex pathophysiology of cGvHD. From the clinical perspective, there is significant variability of disease manifestations between individual patients, pointing to diverse biological underpinnings. Capitalizing on progress made to date, the field is now focused on establishing personalized approaches to treatment. The intent of this article is to concisely review recent knowledge gained and formulate a path toward patient-specific cGvHD therapy.
Collapse
Affiliation(s)
- Nataliya P. Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Gerard Socié
- Hematology-Transplantation, Assistance Publique-Hopitaux de Paris & University of Paris – INSERM UMR 676, Hospital Saint Louis, Paris, France
| | - Geoffrey R. Hill
- Division of Medical Oncology, The University of Washington, Seattle, WA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kelli P. A. MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Stephanie J. Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Duke Cancer Institute, Durham, NC
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, Hematologic Maligancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Cancer Immunology Program, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Paul J. Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Z. Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneappolis, MN
| |
Collapse
|
8
|
Wu H, Huang H, Zhao Y. Interplay between metabolic reprogramming and post-translational modifications: from glycolysis to lactylation. Front Immunol 2023; 14:1211221. [PMID: 37457701 PMCID: PMC10338923 DOI: 10.3389/fimmu.2023.1211221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Cellular metabolism plays a critical role in determining the fate and function of cells. Metabolic reprogramming and its byproducts have a complex impact on cellular activities. In quiescent T cells, oxidative phosphorylation (OXPHOS) is the primary pathway for survival. However, upon antigen activation, T cells undergo rapid metabolic reprogramming, characterized by an elevation in both glycolysis and OXPHOS. While both pathways are induced, the balance predominantly shifts towards glycolysis, enabling T cells to rapidly proliferate and enhance their functionality, representing the most distinctive signature during activation. Metabolic processes generate various small molecules resulting from enzyme-catalyzed reactions, which also modulate protein function and exert regulatory control. Notably, recent studies have revealed the direct modification of histones, known as lactylation, by lactate derived from glycolysis. This lactylation process influences gene transcription and adds a novel variable to the regulation of gene expression. Protein lactylation has been identified as an essential mechanism by which lactate exerts its diverse functions, contributing to crucial biological processes such as uterine remodeling, tumor proliferation, neural system regulation, and metabolic regulation. This review focuses on the metabolic reprogramming of T cells, explores the interplay between lactate and the immune system, highlights the impact of lactylation on cellular function, and elucidates the intersection of metabolic reprogramming and epigenetics.
Collapse
Affiliation(s)
- Hengwei Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, People's Government of Zhejiang Province, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Limpert R, Pan P, Wang LS, Chen X. From support to therapy: rethinking the role of nutrition in acute graft-versus-host disease. Front Immunol 2023; 14:1192084. [PMID: 37359550 PMCID: PMC10285162 DOI: 10.3389/fimmu.2023.1192084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Allogeneic Hematopoietic stem cell transplantation (HSCT) offers a potential cure for patients with hematologic malignancies. Unfortunately, graft-versus-host disease (GVHD) remains a major obstacle to the greater success of this treatment. Despite intensive research efforts over the past several decades, GVHD is still a major cause of morbidity and mortality in patients receiving allogeneic HSCT. The genetic disparity between donor and recipient is the primary factor that dictates the extent of alloimmune response and the severity of acute GVHD (aGVHD). However, some nongenetic factors are also actively involved in GVHD pathogenesis. Thus, identifying host factors that can be readily modified to reduce GVHD risk is of important clinical significance. We are particularly interested in the potential role of nutrition, as a nongenetic factor, in the etiology and management of aGVHD. In this article, we summarize recent findings regarding how different routes of nutritional support and various dietary factors affect aGVHD. Since diet is one of the most important factors that shape gut microbiota, we also provide evidence for a potential link between certain nutrients and gut microbiota in recipients of allogeneic HSCT. We propose a shifting role of nutrition from support to therapy in GVHD by targeting gut microbiota.
Collapse
|
10
|
Wen Q, Xu ZL, Wang Y, Lv M, Song Y, Lyv ZS, Xing T, Xu LP, Zhang XH, Huang XJ, Kong Y. Glucocorticoid and glycolysis inhibitors cooperatively abrogate acute graft-versus-host disease. SCIENCE CHINA. LIFE SCIENCES 2023; 66:528-544. [PMID: 36166182 DOI: 10.1007/s11427-022-2170-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022]
Abstract
Although glucorticosteroids (GCs) are the standard first-line therapy for acute graft-versus-host disease (aGvHD), nearly 50% of aGvHD patients have no response to GCs. The role of T cell metabolism in murine aGvHD was recently reported. However, whether GCs and metabolism regulators could cooperatively suppress T cell alloreactivity and ameliorate aGvHD remains to be elucidated. Increased glycolysis, characterized by elevated 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), and higher rates of glucose consumption and lactate production were found in T cells from aGvHD patients. Genetic upregulation of PFKFB3 induced T cell proliferation and differentiation into proinflammatory cells. In a humanized mouse model, PFKFB3-overexpressing or PFKFB3-silenced T cells aggravated or prevented aGvHD, respectively. Importantly, our integrated data from patient samples in vitro, in a humanized xenogeneic murine model of aGvHD and graft-versus-leukaemia (GVL) demonstrate that GCs combined with a glycolysis inhibitor could cooperatively reduce the alloreactivity of T cells and ameliorate aGvHD without loss of GVL effects. Together, the current study indicated that glycolysis is critical for T cell activation and induction of human aGvHD. Therefore, the regulation of glycolysis offers a potential pathogenesis-oriented therapeutic strategy for aGvHD patients. GCs combined with glycolysis inhibitors promises to be a novel first-line combination therapy for aGvHD patients.
Collapse
Affiliation(s)
- Qi Wen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Zheng-Li Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Yang Song
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China
| | - Zhong-Shi Lyv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China
| | - Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China.
| |
Collapse
|
11
|
Ramgopal A, Sun LK, Byersdorfer CA. The role of AMP-activated protein kinase in GVHD-causing T cells. IMMUNOMETABOLISM (COBHAM, SURREY) 2022; 4:e00009. [PMID: 36275779 PMCID: PMC9561229 DOI: 10.1097/in9.0000000000000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/12/2022] [Indexed: 11/06/2022]
Abstract
Allogeneic stem cell transplantation is a curative therapy for multiple hematologic disorders. However, this life-saving procedure is often complicated by acute graft-versus-host disease (GVHD), where donor T cells attack tissues in the recipient's skin, liver, and gastrointestinal tract. Previous research has demonstrated that GVHD-causing T cells undergo significant metabolic reprogramming during disease pathogenesis, with an increased reliance on oxidative metabolism. This dependence makes metabolic modulation a potential approach to treat and/or prevent GVHD. Here, we provide an overview on the metabolic changes adopted by allogeneic T cells during disease initiation, highlighting the role played by AMP-activated protein kinase (AMPK) and identifying ways in which these insights might be leveraged to therapeutic advantage clinically.
Collapse
Affiliation(s)
- Archana Ramgopal
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee-Kai Sun
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Craig A. Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
12
|
Chen P, Zhong C, Jin S, Zhang Y, Li Y, Xia Q, Cheng J, Fan X, Lin H. Global Trends in Research of Lipid Metabolism in T lymphocytes From 1985 to 2022: A Bibliometric Analysis. Front Immunol 2022; 13:884030. [PMID: 35720273 PMCID: PMC9204382 DOI: 10.3389/fimmu.2022.884030] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
Lipids are involved in both energy metabolism and signaling transduction. Abnormal lipid metabolism in T cells is associated with the differentiation, longevity and activity of T cells, which has received increasing concern since its firstly reported in 1985. To evaluate the trends of lipid metabolism in T cells and map knowledge structure, we employed bibliometric analysis. A total of 286 related publications obtained from the Web of Science Core Collection published between 1985 and 2022 were analyzed using indicators of publication and citation metrics, countries, institutes, authors, cited references and key words. The present research status, the global trends and the future development directions in lipid metabolism and T cells were visualized and discussed. In summary, this study provides a comprehensive display on the field of lipid metabolism in T cells, which will help researchers explore lipid metabolism in T cells more effectively and intuitively.
Collapse
Affiliation(s)
- Peng Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiyin Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiming Xia
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaxi Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Zhou RQ, Wang X, Ye YB, Lu B, Wang J, Guo ZW, Mo WJ, Yang Z, Srisuk P, Yan LP, Xu XJ. Prevention of acute graft‑vs.‑host disease by targeting glycolysis and mTOR pathways in activated T cells. Exp Ther Med 2022; 24:448. [PMID: 35720623 PMCID: PMC9199067 DOI: 10.3892/etm.2022.11375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/18/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Rui-Qing Zhou
- Department of Hematology, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Xiaobo Wang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat‑sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Yong-Bin Ye
- Department of Hematology, Zhongshan Hospital of Sun Yat‑Sen University and Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Bo Lu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat‑sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Jing Wang
- Nanfang‑Chunfu Children's Institute of Hematology and Oncology, TaiXin Hospital, Dongguan, Guangdong 523128, P.R. China
| | - Zi-Wen Guo
- Department of Hematology, Zhongshan Hospital of Sun Yat‑Sen University and Zhongshan City People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Wen-Jian Mo
- Department of Hematology, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Zheng Yang
- Department of Pathology, The Seventh Affiliated Hospital, Sun Yat‑sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Pathomthat Srisuk
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Le-Ping Yan
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat‑sen University, Shenzhen, Guangdong 518107, P.R. China
| | - Xiao-Jun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat‑sen University, Shenzhen, Guangdong 518107, P.R. China
| |
Collapse
|
14
|
Kazmi S, Khan MA, Shamma T, Altuhami A, Assiri AM, Broering DC. Therapeutic nexus of T cell immunometabolism in improving transplantation immunotherapy. Int Immunopharmacol 2022; 106:108621. [DOI: 10.1016/j.intimp.2022.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
|
15
|
Pan Z, Huang A, He Y, Zhang Z, Jiang C, Wang L, Qing K, Zhang S, Wang J, Hu X. Metabolic Reprogramming of Alloreactive T Cells Through TCR/MYC/mTORC1/E2F6 Signaling in aGvHD Patients. Front Immunol 2022; 13:850177. [PMID: 35401560 PMCID: PMC8989838 DOI: 10.3389/fimmu.2022.850177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Acute graft-versus-host disease (aGvHD) is the most common complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and significantly linked with morbidity and mortality. Although much work has been engaged to investigate aGvHD pathogenesis, the understanding of alloreactive T-cell activation remains incomplete. To address this, we studied transcriptional activation of carbohydrate, nucleotide, tricarboxylic acid (TCA) cycle, and amino acid metabolism of T cells before aGvHD onset by mining the Gene Expression Omnibus (GEO) datasets. Glycolysis had the most extensive correlation with other activated metabolic sub-pathways. Through Pearson correlation analyses, we found that glycolytic activation was positively correlated with activated CD4 memory T-cell subset and T-cell proliferation and migration. T-cell receptor (TCR), mechanistic target of rapamycin complex 1 (mTORC1), myelocytomatosis oncogene (MYC) signaling pathways and E2F6 might be “master regulators” of glycolytic activity. aGvHD predictive model constructed by glycolytic genes (PFKP, ENO3, and GAPDH) through logistic regression showed high predictive and discriminative value. Furthermore, higher expressions of PFKP, ENO3, and GAPDH in alloreactive T cells were confirmed in our pre-aGvHD patient cohort. And the predictive value of the aGvHD risk model was also validated. In summary, our study demonstrated that glycolytic activation might play a pivotal function in alloreactive T-cell activation before aGvHD onset and would be the potential target for aGvHD therapy.
Collapse
Affiliation(s)
- Zengkai Pan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aijie Huang
- Department of Hematology, Changhai Hospital, Shanghai, China
| | - Yang He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilu Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanhe Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luxiang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Qing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Wang
- Department of Hematology, Changhai Hospital, Shanghai, China
| | - Xiaoxia Hu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Collaborative Innovation Center of Hematology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Abstract
Exhaustion of T cells occurs in response to long-term exposure to self and foreign antigens. It limits T cell capacity to proliferate and produce cytokines, leading to an impaired ability to clear chronic infections or eradicate tumors. T-cell exhaustion is associated with a specific transcriptional, epigenetic, and metabolic program and characteristic cell surface markers' expression. Recent studies have begun to elucidate the role of T-cell exhaustion in transplant. Higher levels of exhausted T cells have been associated with better graft function in kidney transplant recipients. In contrast, reinvigorating exhausted T cells by immune checkpoint blockade therapies, while promoting tumor clearance, increases the risk of acute rejection. Lymphocyte depletion and high alloantigen load have been identified as major drivers of T-cell exhaustion. This could account, at least in part, for the reduced rates of acute rejection in organ transplant recipients induced with thymoglobulin and for the pro-tolerogenic effects of a large organ such as the liver. Among the drugs that are widely used for maintenance immunosuppression, calcineurin inhibitors have a contrasting inhibitory effect on exhaustion of T cells, while the influence of mTOR inhibitors is still unclear. Harnessing or encouraging the natural processes of exhaustion may provide a novel strategy to promote graft survival and transplantation tolerance.
Collapse
|
17
|
Huang Y, Zou Y, Jiao Y, Shi P, Nie X, Huang W, Xiong C, Choi M, Huang C, Macintyre AN, Nichols A, Li F, Li CY, MacIver NJ, Cardona D, Brennan TV, Li Z, Chao NJ, Rathmell J, Chen BJ. Targeting Glycolysis in Alloreactive T Cells to Prevent Acute Graft- Versus-Host Disease While Preserving Graft-Versus-Leukemia Effect. Front Immunol 2022; 13:751296. [PMID: 35296079 PMCID: PMC8920494 DOI: 10.3389/fimmu.2022.751296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/03/2022] [Indexed: 02/02/2023] Open
Abstract
Alloreactive donor T cells undergo extensive metabolic reprogramming to become activated and induce graft-versus-host disease (GVHD) upon alloantigen encounter. It is generally thought that glycolysis, which promotes T cell growth and clonal expansion, is employed in this process. However, conflicting data have been reported regarding the requirement of glycolysis to induce T cell-mediated GVHD due to the lack of T cell-specific treatments using glycolysis inhibitors. Importantly, previous studies have not evaluated whether graft-versus-leukemia (GVL) activity is preserved in donor T cells deficient for glycolysis. As a critical component affecting the clinical outcome, it is necessary to assess the anti-tumor activity following treatment with metabolic modulators in preclinical models. In the present study, we utilized T cells selectively deficient for glucose transporter 1 (Glut1T-KO), to examine the role of glycolysis exclusively in alloreactive T cells without off-targeting effects from antigen presenting cells and other cell types that are dependent on glycolysis. We demonstrated that transfer of Glut1T-KO T cells significantly improved acute GVHD outcomes through increased apoptotic rates, impaired expansion, and decreased proinflammatory cytokine production. In addition to impaired GVHD development, donor Glut1T-KO T cells mediated sufficient GVL activity to protect recipients from tumor development. A clinically relevant approach using donor T cells treated with a small molecule inhibitor of glycolysis, 2-Deoxy-D-glucose ex vivo, further demonstrated protection from tumor development. These findings indicate that treatment with glycolysis inhibitors prior to transplantation selectively eliminates alloreactive T cells, but spares non-alloreactive T cells including those that protect against tumor growth. The present study has established a definitive role for glycolysis in acute GVHD and demonstrated that acute GVHD can be selectively prevented through targeting glycolysis.
Collapse
Affiliation(s)
- Ying Huang
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Yujing Zou
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Yiqun Jiao
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Peijie Shi
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Xiaoli Nie
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Wei Huang
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Chuanfeng Xiong
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Michael Choi
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Charles Huang
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Andrew N. Macintyre
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - Amanda Nichols
- Department of Pediatrics, Duke University Medical Center, Durham, NC, United States
| | - Fang Li
- Department of Dermatology, Duke University Medical Center, Durham, NC, United States
| | - Chuan-Yuan Li
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States,Department of Dermatology, Duke University Medical Center, Durham, NC, United States,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Nancie J. MacIver
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States,Department of Pediatrics, Duke University Medical Center, Durham, NC, United States,Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Diana M. Cardona
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Todd V. Brennan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, United States
| | - Nelson J. Chao
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States,Department of Immunology, Duke University Medical Center, Durham, NC, United States,Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Jeffrey C. Rathmell
- Vanderbilt Center for Immunobiology, Departments of Pathology, Microbiology, and Immunology, Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Benny J. Chen
- Division of Hematologic Malignancies and Cellular Therapy/Bone Marrow Transplantation (BMT), Department of Medicine, Duke University Medical Center, Durham, NC, United States,Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States,*Correspondence: Benny J. Chen,
| |
Collapse
|
18
|
Alfaro R, Martínez-Banaclocha H, Llorente S, Jimenez-Coll V, Galián JA, Botella C, Moya-Quiles MR, Parrado A, Muro-Perez M, Minguela A, Legaz I, Muro M. Computational Prediction of Biomarkers, Pathways, and New Target Drugs in the Pathogenesis of Immune-Based Diseases Regarding Kidney Transplantation Rejection. Front Immunol 2022; 12:800968. [PMID: 34975915 PMCID: PMC8714745 DOI: 10.3389/fimmu.2021.800968] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background The diagnosis of graft rejection in kidney transplantation (KT) patients is made by evaluating the histological characteristics of biopsy samples. The evolution of omics sciences and bioinformatics techniques has contributed to the advancement in searching and predicting biomarkers, pathways, and new target drugs that allow a more precise and less invasive diagnosis. The aim was to search for differentially expressed genes (DEGs) in patients with/without antibody-mediated rejection (AMR) and find essential cells involved in AMR, new target drugs, protein-protein interactions (PPI), and know their functional and biological analysis. Material and Methods Four GEO databases of kidney biopsies of kidney transplantation with/without AMR were analyzed. The infiltrating leukocyte populations in the graft, new target drugs, protein-protein interactions (PPI), functional and biological analysis were studied by different bioinformatics tools. Results Our results show DEGs and the infiltrating leukocyte populations in the graft. There is an increase in the expression of genes related to different stages of the activation of the immune system, antigenic presentation such as antibody-mediated cytotoxicity, or leukocyte migration during AMR. The importance of the IRF/STAT1 pathways of response to IFN in controlling the expression of genes related to humoral rejection. The genes of this biological pathway were postulated as potential therapeutic targets and biomarkers of AMR. These biological processes correlated showed the infiltration of NK cells and monocytes towards the allograft. Besides the increase in dendritic cell maturation, it plays a central role in mediating the damage suffered by the graft during AMR. Computational approaches to the search for new therapeutic uses of approved target drugs also showed that imatinib might theoretically be helpful in KT for the prevention and/or treatment of AMR. Conclusion Our results suggest the importance of the IRF/STAT1 pathways in humoral kidney rejection. NK cells and monocytes in graft damage have an essential role during rejection, and imatinib improves KT outcomes. Our results will have to be validated for the potential use of overexpressed genes as rejection biomarkers that can be used as diagnostic and prognostic markers and as therapeutic targets to avoid graft rejection in patients undergoing kidney transplantation.
Collapse
Affiliation(s)
- Rafael Alfaro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Helios Martínez-Banaclocha
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Santiago Llorente
- Nephrology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Victor Jimenez-Coll
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - José Antonio Galián
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Carmen Botella
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - María Rosa Moya-Quiles
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Antonio Parrado
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Manuel Muro-Perez
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Alfredo Minguela
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute (IMIB), University of Murcia, Murcia, Spain
| | - Manuel Muro
- Immunology Services, University Clinical Hospital Virgen de la Arrixaca-Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
19
|
Yi R, Hong S, Zhang Y, Lin A, Ying H, Zou W, Wang Q, Wei T, Cheng Q, Zhu W, Luo P, Zhang J. MHC-II Signature Correlates With Anti-Tumor Immunity and Predicts anti-PD-L1 Response of Bladder Cancer. Front Cell Dev Biol 2022; 10:757137. [PMID: 35223828 PMCID: PMC8873787 DOI: 10.3389/fcell.2022.757137] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023] Open
Abstract
A large proportion of anti-tumor immunity research is focused on major histocompatibility complex class I (MHC-I) molecules and CD8+ T cells. Despite mounting evidence has shown that CD4+ T cells play a major role in anti-tumor immunity, the role of the MHC-II molecules in tumor immunotherapy has not been thoroughly researched and reported. In this study, we defined a MHC-II signature for the first time by calculating the enrichment score of MHC-II protein binding pathway with a single sample gene set enrichment analysis (ssGSEA) algorithm. To evaluate and validate the predictive value of the MHC class II (MHC-II) signature, we collected the transcriptome, mutation data and matched clinical data of bladder cancer patients from IMvigor210, The Cancer Genome Atlas (TCGA) databases and Gene Expression Omnibus (GEO) databases. Comprehensive analyses of immunome, transcriptome, metabolome, genome and drugome were performed in order to determine the association of MHC-II signature and tumor immunotherapy. We identified that MHC-II signature is an independent and favorable predictor of immune response and the prognosis of bladder cancer treated with immune checkpoint inhibitors (ICIs), one that may be superior to tumor mutation burden. MHC-II signature was significantly associated with increased immune cell infiltration and levels of immune-related gene expression signatures. Additionally, transcriptomic analysis showed immune activation in the high-MHC-II signature subgroup, whereas it showed fatty acid metabolism and glucuronidation in the low-MHC-II signature subgroup. Moreover, exploration of corresponding genomic profiles highlighted the significance of tumor protein p53 (TP53) and fibroblast growth factor receptor 3 (FGFR3) alterations. Our results also allowed for the identification of candidate compounds for combined immunotherapy treatment that may be beneficial for patients with bladder cancer and a high MHC-II signature. In conclusion, this study provides a new perspective on MHC-II signature, as an independent and favorable predictor of immune response and prognosis of bladder cancer treated with ICIs.
Collapse
Affiliation(s)
- Ruibin Yi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuo Hong
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yueming Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haoxuan Ying
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weidong Zou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qiongyao Wang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, China
| | - Weiliang Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Weiliang Zhu, ; Peng Luo, ; Jian Zhang,
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Weiliang Zhu, ; Peng Luo, ; Jian Zhang,
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Weiliang Zhu, ; Peng Luo, ; Jian Zhang,
| |
Collapse
|
20
|
McCurdy SR, Radojcic V, Tsai HL, Vulic A, Thompson E, Ivcevic S, Kanakry CG, Powell JD, Lohman B, Adom D, Paczesny S, Cooke KR, Jones RJ, Varadhan R, Symons HJ, Luznik L. Signatures of GVHD and relapse after posttransplant cyclophosphamide revealed by immune profiling and machine learning. Blood 2022; 139:608-623. [PMID: 34657151 PMCID: PMC8796655 DOI: 10.1182/blood.2021013054] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/24/2021] [Indexed: 01/29/2023] Open
Abstract
The key immunologic signatures associated with clinical outcomes after posttransplant cyclophosphamide (PTCy)-based HLA-haploidentical (haplo) and HLA-matched bone marrow transplantation (BMT) are largely unknown. To address this gap in knowledge, we used machine learning to decipher clinically relevant signatures from immunophenotypic, proteomic, and clinical data and then examined transcriptome changes in the lymphocyte subsets that predicted major posttransplant outcomes. Kinetics of immune subset reconstitution after day 28 were similar for 70 patients undergoing haplo and 75 patients undergoing HLA-matched BMT. Machine learning based on 35 candidate factors (10 clinical, 18 cellular, and 7 proteomic) revealed that combined elevations in effector CD4+ conventional T cells (Tconv) and CXCL9 at day 28 predicted acute graft-versus-host disease (aGVHD). Furthermore, higher NK cell counts predicted improved overall survival (OS) due to a reduction in both nonrelapse mortality and relapse. Transcriptional and flow-cytometric analyses of recovering lymphocytes in patients with aGVHD identified preserved hallmarks of functional CD4+ regulatory T cells (Tregs) while highlighting a Tconv-driven inflammatory and metabolic axis distinct from that seen with conventional GVHD prophylaxis. Patients developing early relapse displayed a loss of inflammatory gene signatures in NK cells and a transcriptional exhaustion phenotype in CD8+ T cells. Using a multimodality approach, we highlight the utility of systems biology in BMT biomarker discovery and offer a novel understanding of how PTCy influences alloimmune responses. Our work charts future directions for novel therapeutic interventions after these increasingly used GVHD prophylaxis platforms. Specimens collected on NCT0079656226 and NCT0080927627 https://clinicaltrials.gov/.
Collapse
Affiliation(s)
- Shannon R McCurdy
- Abramson Cancer Center and the Division of Hematology and Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Vedran Radojcic
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Hua-Ling Tsai
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ante Vulic
- Division of Biostatistics and Bioinformatics and the Sidney Kimmel Comprehensive Cancer Center and The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth Thompson
- Division of Biostatistics and Bioinformatics and the Sidney Kimmel Comprehensive Cancer Center and The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sanja Ivcevic
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Christopher G Kanakry
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jonathan D Powell
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brian Lohman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Djamilatou Adom
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN; and
- Department of Microbiology and Immunology and Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Kenneth R Cooke
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard J Jones
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ravi Varadhan
- Division of Biostatistics and Bioinformatics and the Sidney Kimmel Comprehensive Cancer Center and The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Heather J Symons
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Leo Luznik
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
21
|
Braun LM, Zeiser R. Kinase Inhibition as Treatment for Acute and Chronic Graft- Versus-Host Disease. Front Immunol 2021; 12:760199. [PMID: 34868001 PMCID: PMC8635802 DOI: 10.3389/fimmu.2021.760199] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy for patients suffering from hematological malignancies via the donor immune system driven graft-versus-leukemia effect. However, the therapy is mainly limited by severe acute and chronic graft-versus-host disease (GvHD), both being life-threatening complications after allo-HCT. GvHD develops when donor T cells do not only recognize remaining tumor cells as foreign, but also the recipient’s tissue, leading to a severe inflammatory disease. Typical GvHD target organs include the skin, liver and intestinal tract. Currently all approved strategies for GvHD treatment are immunosuppressive therapies, with the first-line therapy being glucocorticoids. However, therapeutic options for glucocorticoid-refractory patients are still limited. Novel therapeutic approaches, which reduce GvHD severity while preserving GvL activity, are urgently needed. Targeting kinase activity with small molecule inhibitors has shown promising results in preclinical animal models and clinical trials. Well-studied kinase targets in GvHD include Rho-associated coiled-coil-containing kinase 2 (ROCK2), spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) to control B- and T-cell activation in acute and chronic GvHD. Janus Kinase 1 (JAK1) and 2 (JAK2) are among the most intensively studied kinases in GvHD due to their importance in cytokine production and inflammatory cell activation and migration. Here, we discuss the role of kinase inhibition as novel treatment strategies for acute and chronic GvHD after allo-HCT.
Collapse
Affiliation(s)
- Lukas M Braun
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Karl F, Hudecek M, Berberich-Siebelt F, Mackensen A, Mougiakakos D. T-Cell Metabolism in Graft Versus Host Disease. Front Immunol 2021; 12:760008. [PMID: 34777373 PMCID: PMC8586445 DOI: 10.3389/fimmu.2021.760008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 01/23/2023] Open
Abstract
Allogeneic-hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment option for numerous hematological malignancies. Elimination of malignant cells depends on the T-cells' Graft-versus-Tumor (GvT) effect. However, Graft-versus-Host-Disease (GvHD), often co-occurring with GvT, remains an obstacle for therapeutic efficacy. Hence, approaches, which selectively alleviate GvHD without compromising GvT activity, are needed. As already explored for autoimmune and inflammatory disorders, immuno-metabolic interventions pose a promising option to address this unmet challenge. Being embedded in a complex regulatory framework, immunological and metabolic pathways are closely intertwined, which is demonstrated by metabolic reprograming of T-cells upon activation or differentiation. In this review, current knowledge on the immuno-metabolic signature of GvHD-driving T-cells is summarized and approaches to metabolically interfere are outlined. Furthermore, we address the metabolic impact of standard medications for GvHD treatment and prophylaxis, which, in conjunction with the immuno-metabolic profile of alloreactive T-cells, could allow more targeted interventions in the future.
Collapse
Affiliation(s)
- Franziska Karl
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | | | - Andreas Mackensen
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Medicine 5, Hematology and Clinical Oncology, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
23
|
Mhandire K, Saggu K, Buxbaum NP. Immunometabolic Therapeutic Targets of Graft-versus-Host Disease (GvHD). Metabolites 2021; 11:736. [PMID: 34822394 PMCID: PMC8619522 DOI: 10.3390/metabo11110736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative option in the treatment of aggressive malignant and non-malignant blood disorders. However, the benefits of allo-HSCT can be compromised by graft-versus-host disease (GvHD), a prevalent and morbid complication of allo-HSCT. GvHD occurs when donor immune cells mount an alloreactive response against host antigens due to histocompatibility differences between the donor and host, which may result in extensive tissue injury. The reprogramming of cellular metabolism is a feature of GvHD that is associated with the differentiation of donor CD4+ cells into the pathogenic Th1 and Th17 subsets along with the dysfunction of the immune-suppressive protective T regulatory cells (Tregs). The activation of glycolysis and glutaminolysis with concomitant changes in fatty acid oxidation metabolism fuel the anabolic activities of the proliferative alloreactive microenvironment characteristic of GvHD. Thus, metabolic therapies such as glycolytic enzyme inhibitors and fatty acid metabolism modulators are a promising therapeutic strategy for GvHD. We comprehensively review the role of cellular metabolism in GvHD pathogenesis, identify candidate therapeutic targets, and describe potential strategies for augmenting immunometabolism to ameliorate GvHD.
Collapse
|
24
|
Mohamed FA, Thangavelu G, Rhee SY, Sage PT, O’Connor RS, Rathmell JC, Blazar BR. Recent Metabolic Advances for Preventing and Treating Acute and Chronic Graft Versus Host Disease. Front Immunol 2021; 12:757836. [PMID: 34712243 PMCID: PMC8546182 DOI: 10.3389/fimmu.2021.757836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023] Open
Abstract
The therapeutic efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the development of graft-versus-host disease (GVHD). In GVHD, rigorous pre-conditioning regimen resets the immune landscape and inflammatory milieu causing immune dysregulation, characterized by an expansion of alloreactive cells and a reduction in immune regulatory cells. In acute GVHD (aGVHD), the release of damage- and pathogen- associated molecular patterns from damaged tissue caused by the conditioning regimen sets the stage for T cell priming, activation and expansion further exacerbating tissue injury and organ damage, particularly in the gastrointestinal tract. Studies have shown that donor T cells utilize multiple energetic and biosynthetic pathways to mediate GVHD that can be distinct from the pathways used by regulatory T cells for their suppressive function. In chronic GVHD (cGVHD), donor T cells may differentiate into IL-21 producing T follicular helper cells or tissue resident T helper cells that cooperate with germinal center B cells or memory B cells, respectively, to produce allo- and auto-reactive antibodies with subsequent tissue fibrosis. Alternatively, donor T cells can become IFN- γ/IL-17 cytokine expressing T cells that mediate sclerodermatous skin injury. Patients refractory to the first line standard regimens for GVHD treatment have a poor prognosis indicating an urgent need for new therapies to restore the balance between effector and regulatory immune cells while preserving the beneficial graft-versus-tumor effect. Emerging data points toward a role for metabolism in regulating these allo- and auto-immune responses. Here, we will discuss the preclinical and clinical data available on the distinct metabolic demands of acute and chronic GVHD and recent efforts in identifying therapeutic targets using metabolomics. Another dimension of this review will examine the changing microbiome after allo-HSCT and the role of microbial metabolites such as short chain fatty acids and long chain fatty acids on regulating immune responses. Lastly, we will examine the metabolic implications of coinhibitory pathway blockade and cellular therapies in allo-HSCT. In conclusion, greater understanding of metabolic pathways involved in immune cell dysregulation during allo-HSCT may pave the way to provide novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Fathima A. Mohamed
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Govindarajan Thangavelu
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Stephanie Y. Rhee
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| | - Peter T. Sage
- Renal Division, Transplantation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Roddy S. O’Connor
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, Philadelphia, PA, United States
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota Cancer Center, Minneapolis, MN, United States
| |
Collapse
|
25
|
Khuat LT, Vick LV, Choi E, Dunai C, Merleev AA, Maverakis E, Blazar BR, Monjazeb AM, Murphy WJ. Mechanisms by Which Obesity Promotes Acute Graft- Versus-Host Disease in Mice. Front Immunol 2021; 12:752484. [PMID: 34707616 PMCID: PMC8542879 DOI: 10.3389/fimmu.2021.752484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/17/2021] [Indexed: 02/02/2023] Open
Abstract
The efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by the occurrence of acute and chronic graft-versus-host disease (GVHD). We have recently demonstrated that obesity results in exacerbated acute gastrointestinal GVHD in both mouse models and clinical outcomes due to increased pro-inflammatory cytokine responses and microbiota alterations. We therefore wanted to delineate the role of the various parameters in obesity, adiposity, effects of high-fat (HF) diet, and the role of microbiome on GVHD pathogenesis, by taking advantage of a mouse strain resistant to diet-induced obesity (DIO). Female BALB/c mice are resistant to DIO phenotype with approximately 50% becoming DIO under HF diets. The DIO-susceptible recipients rapidly succumb to acute gut GVHD, whereas the DIO-resistant recipient littermates, which do not become obese, are partially protected from GVHD, indicating that being on HF diet alone contributes to but is not the primary driver of GVHD. Microbiome assessment revealed restricted diversity in both cohorts of mice, but coprophagy normalizes the microbiota in mice housed together. We then individually housed DIO-resistant, DIO-susceptible, and lean control mice. Notably, each of the individually housed groups demonstrates marked restricted diversity that has been shown to occur from the stress of single housing. Despite the restricted microbiome diversity, the GVHD pathogenesis profile remains consistent in the group-housed mice, with the lean control single-housed mice exhibiting no acute GVHD and DIO-resistant recipients showing again partial protection. These results demonstrate that the deleterious effects of obesity on acute gut GVHD are critically dependent on adiposity with the HF diet also playing a lesser role, and the microbiome alterations with obesity instead appear to fuel ongoing acute GVHD processes.
Collapse
Affiliation(s)
- Lam T. Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Logan V. Vick
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Eunju Choi
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Cordelia Dunai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Alexander A. Merleev
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Bruce R. Blazar
- Masonic Cancer Center and Division of Blood & Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Arta M. Monjazeb
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - William J. Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
26
|
Hefazi M, Bolivar-Wagers S, Blazar BR. Regulatory T Cell Therapy of Graft-versus-Host Disease: Advances and Challenges. Int J Mol Sci 2021; 22:9676. [PMID: 34575843 PMCID: PMC8469916 DOI: 10.3390/ijms22189676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
Graft-versus-host disease (GVHD) is the leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Immunomodulation using regulatory T cells (Tregs) offers an exciting option to prevent and/or treat GVHD as these cells naturally function to maintain immune homeostasis, can induce tolerance following HSCT, and have a tissue reparative function. Studies to date have established a clinical safety profile for polyclonal Tregs. Functional enhancement through genetic engineering offers the possibility of improved potency, specificity, and persistence. In this review, we provide the most up to date preclinical and clinical data on Treg cell therapy with a particular focus on GVHD. We discuss the different Treg subtypes and highlight the pharmacological and genetic approaches under investigation to enhance the application of Tregs in allo-HSCT. Lastly, we discuss the remaining challenges for optimal clinical translation and provide insights as to future directions of the field.
Collapse
Affiliation(s)
- Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| |
Collapse
|
27
|
Wincup C, Sawford N, Rahman A. Pathological mechanisms of abnormal iron metabolism and mitochondrial dysfunction in systemic lupus erythematosus. Expert Rev Clin Immunol 2021; 17:957-967. [PMID: 34263712 PMCID: PMC8452144 DOI: 10.1080/1744666x.2021.1953981] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Introduction: Systemic lupus erythematosus [SLE] is a chronic, autoimmune condition characterized by the formation of autoantibodies directed against nuclear components and by oxidative stress. Recently, a number of studies have demonstrated the essential role of iron in the immune response and there is growing evidence that abnormal iron homeostasis can occur in the chronic inflammatory state seen in SLE. Not only is iron vital for hematopoiesis, it is also important for a number of other key physiological processes, in particular in maintaining healthy mitochondrial function.Areas covered: In this review, we highlight the latest understanding with regards to how patients with SLE may be at risk of cellular iron depletion as a result of both absolute and functional iron deficiency. Furthermore, we aim to explain the latest evidence of mitochondrial dysfunction in the pathogenesis of the disease.Expert opinion: Growing evidence suggests that both abnormal iron homeostasis and subsequent mitochondrial dysfunction can impair effector immune cell function. Through a greater understanding of these abnormalities, therapeutic options that directly target iron and mitochondria may ultimately represent novel treatment targets that may translate into clinical care of patients with SLE in the near future.
Collapse
Affiliation(s)
- Chris Wincup
- Department of Rheumatology, Division of Medicine, University College London, London, UK
| | - Natalie Sawford
- Department of Rheumatology, Division of Medicine, University College London, London, UK
| | - Anisur Rahman
- Department of Rheumatology, Division of Medicine, University College London, London, UK
| |
Collapse
|
28
|
Abnormal Mitochondrial Physiology in the Pathogenesis of Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2021; 47:427-439. [PMID: 34215372 DOI: 10.1016/j.rdc.2021.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by abnormalities within the innate and adaptive immune systems. Activation and proliferation of a wide array of immune cells require significant up-regulation in cellular energy metabolism, with the mitochondria playing an essential role in the initiation and maintenance of this response. This article highlights how abnormal mitochondrial function may occur in SLE and focuses on how energy metabolism, oxidative stress, and impaired mitochondrial repair play a role in the pathogenesis of the disease. How this may represent an appealing novel therapeutic target for future drug therapy in SLE also is discussed.
Collapse
|
29
|
Monlish DA, Beezhold KJ, Chiaranunt P, Paz K, Moore NJ, Dobbs AK, Brown RA, Ozolek JA, Blazar BR, Byersdorfer CA. Deletion of AMPK minimizes graft-versus-host disease through an early impact on effector donor T cells. JCI Insight 2021; 6:e143811. [PMID: 34291733 PMCID: PMC8410053 DOI: 10.1172/jci.insight.143811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is a viable treatment for multiple hematologic diseases, but its application is often limited by graft-versus-host disease (GVHD), where donor T cells attack host tissues in the skin, liver, and gastrointestinal tract. Here, we examined the role of the cellular energy sensor AMP kinase (AMPK) in alloreactive T cells during GVHD development. Early posttransplant, AMPK activity increased more than 15-fold in allogeneic T cells, and transplantation of T cells deficient in both AMPKα1 and AMPKα2 decreased GVHD severity in multiple disease models. Importantly, a lack of AMPK lessened GVHD without compromising antileukemia responses or impairing lymphopenia-driven immune reconstitution. Mechanistically, absence of AMPK decreased both CD4+ and CD8+ effector T cell numbers as early as day 3 posttransplant, while simultaneously increasing regulatory T cell (Treg) percentages. Improvements in GVHD resulted from cell-intrinsic perturbations in conventional effector T cells as depletion of donor Tregs had minimal impact on AMPK-related improvements. Together, these results highlight a specific role for AMPK in allogeneic effector T cells early posttransplant and suggest that AMPK inhibition may be an innovative approach to mitigate GVHD while preserving graft-versus-leukemia responses and maintaining robust immune reconstitution.
Collapse
Affiliation(s)
- Darlene A Monlish
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kevin J Beezhold
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Pailin Chiaranunt
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Katelyn Paz
- Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nathan J Moore
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrea K Dobbs
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rebecca A Brown
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John A Ozolek
- Department of Pathology, Anatomy and Laboratory Medicine, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Bruce R Blazar
- Division of Pediatric Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplantation and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
New hope offered to reduce GVHD. Blood 2021; 137:1010-1011. [PMID: 33630055 DOI: 10.1182/blood.2020009205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Tkachev V, Kaminski J, Potter EL, Furlan SN, Yu A, Hunt DJ, McGuckin C, Zheng H, Colonna L, Gerdemann U, Carlson J, Hoffman M, Olvera J, English C, Baldessari A, Panoskaltsis-Mortari A, Watkins B, Qayed M, Suessmuth Y, Betz K, Bratrude B, Langston A, Horan JT, Ordovas-Montanes J, Shalek AK, Blazar BR, Roederer M, Kean LS. Spatiotemporal single-cell profiling reveals that invasive and tissue-resident memory donor CD8 + T cells drive gastrointestinal acute graft-versus-host disease. Sci Transl Med 2021; 13:13/576/eabc0227. [PMID: 33441422 DOI: 10.1126/scitranslmed.abc0227] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
Organ infiltration by donor T cells is critical to the development of acute graft-versus-host disease (aGVHD) in recipients after allogeneic hematopoietic stem cell transplant (allo-HCT). However, deconvoluting the transcriptional programs of newly recruited donor T cells from those of tissue-resident T cells in aGVHD target organs remains a challenge. Here, we combined the serial intravascular staining technique with single-cell RNA sequencing to dissect the tightly connected processes by which donor T cells initially infiltrate tissues and then establish a pathogenic tissue residency program in a rhesus macaque allo-HCT model that develops aGVHD. Our results enabled creation of a spatiotemporal map of the transcriptional programs controlling donor CD8+ T cell infiltration into the primary aGVHD target organ, the gastrointestinal (GI) tract. We identified the large and small intestines as the only two sites demonstrating allo-specific, rather than lymphodepletion-driven, T cell infiltration. GI-infiltrating donor CD8+ T cells demonstrated a highly activated, cytotoxic phenotype while simultaneously developing a canonical tissue-resident memory T cell (TRM) transcriptional signature driven by interleukin-15 (IL-15)/IL-21 signaling. We found expression of a cluster of genes directly associated with tissue invasiveness, including those encoding adhesion molecules (ITGB2), specific chemokines (CCL3 and CCL4L1) and chemokine receptors (CD74), as well as multiple cytoskeletal proteins. This tissue invasion transcriptional signature was validated by its ability to discriminate the CD8+ T cell transcriptome of patients with GI aGVHD from those of GVHD-free patients. These results provide insights into the mechanisms controlling tissue occupancy of target organs by pathogenic donor CD8+ TRM cells during aGVHD in primate transplant recipients.
Collapse
Affiliation(s)
- Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - James Kaminski
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - E Lake Potter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20858, USA
| | - Scott N Furlan
- Fred Hutchinson Cancer Research Center, Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
| | - Alison Yu
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel J Hunt
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Connor McGuckin
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hengqi Zheng
- University of Washington, Seattle, WA 98195, USA
| | - Lucrezia Colonna
- Fred Hutchinson Cancer Research Center, Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
| | - Ulrike Gerdemann
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Michelle Hoffman
- Fred Hutchinson Cancer Research Center, Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
| | - Joe Olvera
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Chris English
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | | | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55454, USA
| | | | - Muna Qayed
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Kayla Betz
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Brandi Bratrude
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - John T Horan
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jose Ordovas-Montanes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Division of Gastroenterology, Boston Children's Hospital and Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Institute for Medical Engineering and Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55454, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20858, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Ramalingam S, Siamakpour-Reihani S, Bohannan L, Ren Y, Sibley A, Sheng J, Ma L, Nixon AB, Lyu J, Parker DC, Bain J, Muehlbauer M, Ilkayeva O, Kraus VB, Huebner JL, Spitzer T, Brown J, Peled JU, van den Brink M, Gomes A, Choi T, Gasparetto C, Horwitz M, Long G, Lopez R, Rizzieri D, Sarantopoulos S, Chao N, Sung AD. A phase 2 trial of the somatostatin analog pasireotide to prevent GI toxicity and acute GVHD in allogeneic hematopoietic stem cell transplant. PLoS One 2021; 16:e0252995. [PMID: 34170918 PMCID: PMC8232534 DOI: 10.1371/journal.pone.0252995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/21/2021] [Indexed: 11/18/2022] Open
Abstract
Background Allogeneic hematopoietic stem cell transplantation (HCT) is an often curative intent treatment, however it is associated with significant gastrointestinal (GI) toxicity and treatment related mortality. Graft-versus-host disease is a significant contributor to transplant-related mortality. We performed a phase 2 trial of the somatostatin analog pasireotide to prevent gastrointestinal toxicity and GVHD after myeloablative allogeneic HCT. Methods Patients received 0.9mg pasireotide every 12 hours from the day prior to conditioning through day +4 after HCT (or a maximum of 14 days). The primary outcomes were grade 3–4 gastrointestinal toxicity through day 30 and acute GVHD. Secondary outcomes were chronic GVHD, overall survival and relapse free survival at one year. Stool and blood samples were collected from before and after HCT for analyses of stool microbiome, local inflammatory markers, and systemic inflammatory and metabolic markers. Results were compared with matched controls. Results Twenty-six patients received pasireotide and were compared to 52 matched contemporaneous controls using a 1–2 match. Grade 3–4 GI toxicity occurred in 21 (81%) patients who received pasireotide and 35 (67%) controls (p = 0.33). Acute GVHD occurred in 15 (58%) patients in the pasireotide group and 28 (54%) controls (p = 0.94). Chronic GVHD occurred in 16 patients in the pasireotide group (64%) versus 22 patients in the control group (42%) (p = 0.12). Overall survival at 1 year in the pasireotide group was 63% (95% CI: 47%,86%) versus 82% (95% CI: 72%, 93%) in controls (log-rank p = 0.006). Relapse-free survival rate at one year was 40% (95% CI: 25%, 65%) in the pasireotide group versus 78% (95% CI: 68%, 91%) in controls (log-rank p = 0.002). After controlling for the effect of relevant covariates, patients in the pasireotide group had attenuated post-HCT loss of microbial diversity. Analysis of systemic inflammatory markers and metabolomics demonstrated feasibility of such analyses in patients undergoing allogeneic HCT. Baseline level and pre-to-post transplant changes in several inflammatory markers (including MIP1a, MIP1b, TNFa, IL8Pro, and IL6) correlated with likelihood of survival. Conclusions Pasireotide did not prevent gastrointestinal toxicity or acute GVHD compared to contemporaneous controls. Pasireotide was associated with numerically higher chronic GVHD and significantly decreased OS and RFS compared to contemporaneous controls. Pasireotide may provide a locally protective effect in the stool microbiome and in local inflammation as measured by stool calprotectin, stool beta-defensin, and stool diversity index.
Collapse
Affiliation(s)
- Sendhilnathan Ramalingam
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Sharareh Siamakpour-Reihani
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
| | - Lauren Bohannan
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
| | - Yi Ren
- Duke Cancer Institute, Durham, NC, United States of America
| | | | - Jeff Sheng
- Duke Cancer Institute, Durham, NC, United States of America
| | - Li Ma
- Department of Statistical Science, Duke University, Durham, NC, United States of America
| | - Andrew B. Nixon
- Department of Medicine, Duke University, Durham, NC, United States of America
| | - Jing Lyu
- Duke Cancer Institute, Durham, NC, United States of America
| | - Daniel C. Parker
- Division of Geriatrics, Duke University School of Medicine, Durham, NC, United States of America
| | - James Bain
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Michael Muehlbauer
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Olga Ilkayeva
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Janet L. Huebner
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, United States of America
| | - Thomas Spitzer
- Massachusetts General Hospital, Boston, MA, United States of America
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jami Brown
- Massachusetts General Hospital, Boston, MA, United States of America
| | - Jonathan U. Peled
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States of America
| | - Marcel van den Brink
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States of America
| | - Antonio Gomes
- Adult Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, United States of America
| | - Taewoong Choi
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Cristina Gasparetto
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Mitchell Horwitz
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Gwynn Long
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Richard Lopez
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - David Rizzieri
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Stefanie Sarantopoulos
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Nelson Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
| | - Anthony D. Sung
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, NC, United States of America
- Duke Cancer Institute, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
33
|
Khuat LT, Le CT, Pai CCS, Shields-Cutler RR, Holtan SG, Rashidi A, Parker SL, Knights D, Luna JI, Dunai C, Wang Z, Sturgill IR, Stoffel KM, Merleev AA, More SK, Maverakis E, Raybould HE, Chen M, Canter RJ, Monjazeb AM, Dave M, Ferrara JLM, Levine JE, Longo DL, Abedi M, Blazar BR, Murphy WJ. Obesity induces gut microbiota alterations and augments acute graft-versus-host disease after allogeneic stem cell transplantation. Sci Transl Med 2021; 12:12/571/eaay7713. [PMID: 33239390 DOI: 10.1126/scitranslmed.aay7713] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/22/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
The efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT) is limited by acute and chronic graft-versus-host disease (GVHD). The impact of obesity on allo-HSCT outcomes is poorly understood. Here, we report that obesity had a negative and selective impact on acute gut GVHD after allo-HSCT in mice with diet-induced obesity (DIO). These animals exhibited increased gut permeability, endotoxin translocation across the gut, and radiation-induced gastrointestinal damage after allo-HSCT. After allo-HSCT, both male and female DIO mouse recipients showed increased proinflammatory cytokine production and expression of the GVHD marker ST2 (IL-33R) and MHC class II molecules; they also exhibited decreased survival associated with acute severe gut GVHD. This rapid-onset, obesity-associated gut GVHD depended on donor CD4+ T cells and occurred even with a minor MHC mismatch between donor and recipient animals. Retrospective analysis of clinical cohorts receiving allo-HSCT transplants from unrelated donors revealed that recipients with a high body mass index (BMI, >30) had reduced survival and higher serum ST2 concentrations compared with nonobese transplant recipients. Assessment of both DIO mice and allo-HSCT recipients with a high BMI revealed reduced gut microbiota diversity and decreased Clostridiaceae abundance. Prophylactic antibiotic treatment protected DIO mouse recipients from endotoxin translocation across the gut and increased inflammatory cytokine production, as well as gut pathology and mortality, but did not protect against later development of chronic skin GVHD. These results suggest that obesity-induced alterations of the gut microbiota may affect GVHD after allo-HSCT in DIO mice, which could be ameliorated by prophylactic antibiotic treatment.
Collapse
Affiliation(s)
- Lam T Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Catherine T Le
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Chien-Chun Steven Pai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | | | - Shernan G Holtan
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Armin Rashidi
- Blood and Marrow Transplant Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah L Parker
- Department of Internal Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan Knights
- Department of Computer Science and Engineering, Biotechnology Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jesus I Luna
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Cordelia Dunai
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Ziming Wang
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Ian R Sturgill
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Kevin M Stoffel
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Alexander A Merleev
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Shyam K More
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Mingyi Chen
- Department of Pathology and Laboratory Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert J Canter
- Division of Surgical Oncology, Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Arta M Monjazeb
- Department of Radiation Oncology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Maneesh Dave
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - James L M Ferrara
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John E Levine
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan L Longo
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Mehrdad Abedi
- Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Bruce R Blazar
- Masonic Cancer Center and Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA. .,Department of Internal Medicine, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
34
|
Spector LG, Spellman SR, Thyagarajan B, Beckman KB, Hoffmann C, Garbe J, Hahn T, Sucheston-Campbell L, Richardson M, De For TE, Tolar J, Verneris MR. Neither Donor nor Recipient Mitochondrial Haplotypes Are Associated with Unrelated Donor Transplant Outcomes: A Validation Study from the CIBMTR. Transplant Cell Ther 2021; 27:836.e1-836.e7. [PMID: 34174468 DOI: 10.1016/j.jtct.2021.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 11/18/2022]
Abstract
Graft-versus-host-disease (GVHD) is a multistep process that involves T-cell recognition and priming toward alloantigen, expansion, acquisition of effector function, and repeated tissue injury, resulting in clinical manifestations of the disease. All of these processes have considerable metabolic demands and understanding the key role of mitochondria in cellular metabolism as it relates to GVHD has increased significantly. Mitochondrial DNA (mtDNA) haplotypes have been linked to functional differences in vitro, suggesting they have functional differences at an organismal level. We previously used mtDNA typing to assess the impact of mtDNA haplotypes on outcomes of ~400 allo-HCT patients. This pilot study identified uncommon mtDNA haplotypes potentially associated with inferior outcomes. We sought to validate pilot findings of associations between donor and recipient mitochondrial haplotypes and transplant outcome. We examined a cohort of 4143 donor-recipient pairs obtained from the Center for International Blood and Marrow Transplant Research. MtDNA was extracted from whole blood or peripheral blood mononuclear cells from donors and recipients and sequenced to discern haplotype. We used multiple regression analysis to examine the independent association of mtDNA haplotype with overall survival and grade III-IV acute GVHD (aGVHD) adjusting for known risk factors for poor transplant outcome. Neither recipient nor donor mtDNA haplotype reached groupwise significance for overall survival (P =.26 and .39, respectively) or grade III-IV aGVHD (P = .68 and.57, respectively). Adjustment for genomically determined ancestry in the subset of donor-recipient pairs for which this was available did not materially change results. We conclude that our original finding was due to chance in a small sample size and that there is essentially no evidence that mtDNA haplotype or haplotype mismatch contributes to risk of serious outcomes after allogeneic transplantation.
Collapse
Affiliation(s)
- Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota.
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Milwaukee, Wisconsin
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Kenneth B Beckman
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, Minnesota
| | - Cody Hoffmann
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, Minnesota
| | - John Garbe
- University of Minnesota Genomics Center, University of Minnesota, Minneapolis, Minnesota
| | - Theresa Hahn
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Michaela Richardson
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Todd E De For
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Michael R Verneris
- University of Colorado Denver, Children's Cancer and Blood Disorders, Denver, Colorado
| |
Collapse
|
35
|
Immunometabolism in haematopoietic stem cell transplantation and adoptive cellular therapies. Curr Opin Hematol 2021; 27:353-359. [PMID: 33003083 DOI: 10.1097/moh.0000000000000615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Controlling T cell activity through metabolic manipulation has become a prominent feature in immunology and practitioners of both adoptive cellular therapy (ACT) and haematopoietic stem cell transplantation (HSCT) have utilized metabolic interventions to control T cell function. This review will survey recent metabolic research efforts in HSCT and ACT to paint a broad picture of immunometabolism and highlight advances in each area. RECENT FINDINGS In HSCT, recent publications have focused on modifying reactive oxygen species, sirtuin signalling or the NAD salvage pathway within alloreactive T cells and regulatory T cells. In ACT, metabolic interventions that bolster memory T cell development, increase mitochondrial density and function, or block regulatory signals in the tumour microenvironment (TME) have recently been published. SUMMARY Metabolic interventions control immune responses. In ACT, efforts seek to improve the in-vivo metabolic fitness of T cells, while in HSCT energies have focused on blocking alloreactive T cell expansion or promoting regulatory T cells. Methods to identify new, metabolically targetable pathways, as well as the ability of metabolic biomarkers to predict disease onset and therapeutic response, will continue to advance the field towards clinically applicable interventions.
Collapse
|
36
|
Almeida L, Dhillon-LaBrooy A, Carriche G, Berod L, Sparwasser T. CD4 + T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. J Allergy Clin Immunol 2021; 148:16-32. [PMID: 33966898 DOI: 10.1016/j.jaci.2021.03.033] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
The progression through different steps of T-cell development, activation, and effector function is tightly bound to specific cellular metabolic processes. Previous studies established that T-effector cells have a metabolic bias toward aerobic glycolysis, whereas naive and regulatory T cells mainly rely on oxidative phosphorylation. More recently, the field of immunometabolism has drifted away from the notion that mitochondrial metabolism holds little importance in T-cell activation and function. Of note, T cells possess metabolic promiscuity, which allows them to adapt their nutritional requirements according to the tissue environment. Altogether, the integration of these metabolic pathways culminates in the generation of not only energy but also intermediates, which can regulate epigenetic programs, leading to changes in T-cell fate. In this review, we discuss the recent literature on how glycolysis, amino acid catabolism, and fatty acid oxidation work together with the tricarboxylic acid cycle in the mitochondrion. We also emphasize the importance of the electron transport chain for T-cell immunity. We also discuss novel findings highlighting the role of key enzymes, accessory pathways, and posttranslational protein modifications that distinctively regulate T-cell function and might represent prominent candidates for therapeutic purposes.
Collapse
Affiliation(s)
- Luís Almeida
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Ayesha Dhillon-LaBrooy
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Guilhermina Carriche
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research (a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research), Hannover, Germany
| | - Luciana Berod
- Institute for Molecular Medicine Mainz, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.
| | - Tim Sparwasser
- Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
37
|
Certo M, Elkafrawy H, Pucino V, Cucchi D, Cheung KC, Mauro C. Endothelial cell and T-cell crosstalk: Targeting metabolism as a therapeutic approach in chronic inflammation. Br J Pharmacol 2021; 178:2041-2059. [PMID: 31999357 PMCID: PMC8246814 DOI: 10.1111/bph.15002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022] Open
Abstract
The role of metabolic reprogramming in the coordination of the immune response has gained increasing consideration in recent years. Indeed, it has become clear that changes in the metabolic status of immune cells can alter their functional properties. During inflammation, T cells need to generate sufficient energy and biomolecules to support growth, proliferation, and effector functions. Therefore, T cells need to rearrange their metabolism to meet these demands. A similar metabolic reprogramming has been described in endothelial cells, which have the ability to interact with and modulate the function of immune cells. In this overview, we will discuss recent insights in the complex crosstalk between endothelial cells and T cells as well as their metabolic reprogramming following activation. We highlight key components of this metabolic switch that can lead to the development of new therapeutics against chronic inflammatory disorders. LINKED ARTICLES: This article is part of a themed issue on Cellular metabolism and diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.10/issuetoc.
Collapse
Affiliation(s)
- Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Hagar Elkafrawy
- Medical Biochemistry and Molecular Biology Department, Faculty of MedicineAlexandria UniversityAlexandriaEgypt
| | - Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Danilo Cucchi
- Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Kenneth C.P. Cheung
- School of Life SciencesThe Chinese University of Hong KongHong Kong SARChina
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Institute of Metabolism and Systems Research, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| |
Collapse
|
38
|
Thymopoiesis, Alterations in Dendritic Cells and Tregs, and Reduced T Cell Activation in Successful Extracorporeal Photopheresis Treatment of GVHD. J Clin Immunol 2021; 41:1016-1030. [PMID: 33651234 PMCID: PMC8249294 DOI: 10.1007/s10875-021-00991-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is a significant complication of allogeneic hematopoietic stem cell transplant (HSCT) and negatively affects T cell reconstitution. Extracorporeal photopheresis (ECP) reduces aGVHD, but the mechanisms remain incompletely understood. Our objective was to examine the impact of ECP on thymopoiesis in pediatric aGVHD and the mechanisms at a cellular and transcriptional level. Sixteen pediatric HSCT patients were recruited: 6 with ECP-treated aGVHD, 5 without aGVHD, and 5 with aGVHD treated with corticosteroids only. Thymopoiesis was evaluated by measuring naive T cells, TRECs, IL-7, and T cell receptor repertoire diversity. Regulatory T cell (Treg) enumeration and function and dendritic cell (DC) enumeration and phenotype were analyzed using flow cytometry. T cell transcriptome analysis was performed on ECP patients after treatment and responders pre- and post-treatment. Four ECP responders demonstrated thymic-dependent T cell recovery, and superior median naïve T cell numbers at 8 and 12 months post-HSCT compared to the aGVHD corticosteroid group. Increased Tregs and Treg suppressive function, reduced cDC/pDC and DC co-stimulatory marker expression in ECP responders suggest upregulated peripheral tolerance; these findings were not observed in partial responders. Responder post-ECP CD3+ T cell transcriptional profile demonstrated 3333 downregulated and 364 upregulated genes, with significant downregulation of ERRα and GαS pathways, and reduced expression of pro-inflammatory and adhesion proteins. Thymic function improves with successful ECP treatment. ECP reduces T cell activation and impacts peripheral tolerance via DCs and Tregs. Differences in thymic recovery, DC, and Treg cellular patterns and the T cell transcriptome were observed between ECP responders and partial responders and require further validation and investigation in additional patients.
Collapse
|
39
|
Briceño P, Rivas-Yañez E, Rosemblatt MV, Parra-Tello B, Farías P, Vargas L, Simon V, Cárdenas C, Lladser A, Salazar-Onfray F, Elorza AA, Rosemblatt M, Bono MR, Sauma D. CD73 Ectonucleotidase Restrains CD8+ T Cell Metabolic Fitness and Anti-tumoral Activity. Front Cell Dev Biol 2021; 9:638037. [PMID: 33681221 PMCID: PMC7930398 DOI: 10.3389/fcell.2021.638037] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
CD39 and CD73 are ectoenzymes that dephosphorylate ATP into its metabolites; ADP, AMP, and adenosine, and thus are considered instrumental in the development of immunosuppressive microenvironments. We have previously shown that within the CD8+ T cell population, naïve and memory cells express the CD73 ectonucleotidase, while terminally differentiated effector cells are devoid of this enzyme. This evidence suggests that adenosine might exert an autocrine effect on CD8+ T cells during T cell differentiation. To study the possible role of CD73 and adenosine during this process, we compared the expression of the adenosinergic signaling components, the phenotype, and the functional properties between CD73-deficient and WT CD8+ T cells. Upon activation, we observed an upregulation of CD73 expression in CD8+ T cells along with an upregulation of the adenosine A2A receptor. Interestingly, when we differentiated CD8+ T cells to Tc1 cells in vitro, we observed that these cells produce adenosine and that CD73-deficient cells present a higher cytotoxic potential evidenced by an increase in IFN-γ, TNF-α, and granzyme B production. Moreover, CD73-deficient cells presented a increased glucose uptake and higher mitochondrial respiration, indicating that this ectonucleotidase restrict the mitochondrial capacity in CD8+ T cells. In agreement, when adoptively transferred, antigen-specific CD73-deficient CD8+ T cells were more effective in reducing the tumor burden in B16.OVA melanoma-bearing mice and presented lower levels of exhaustion markers than wild type cells. All these data suggest an autocrine effect of CD73-mediated adenosine production, limiting differentiation and cytotoxic T cells' metabolic fitness.
Collapse
Affiliation(s)
- Pedro Briceño
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Elizabeth Rivas-Yañez
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Mariana V Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Brian Parra-Tello
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Paula Farías
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Leonardo Vargas
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Valeska Simon
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - César Cárdenas
- Center for Integrative Biology, Universidad Mayor, Santiago, Chile
| | - Alvaro Lladser
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A Elorza
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile
| | - María Rosa Bono
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
40
|
Kumari R, Palaniyandi S, Hildebrandt GC. Metabolic Reprogramming-A New Era How to Prevent and Treat Graft Versus Host Disease After Allogeneic Hematopoietic Stem Cell Transplantation Has Begun. Front Pharmacol 2020; 11:588449. [PMID: 33343357 PMCID: PMC7748087 DOI: 10.3389/fphar.2020.588449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is the solitary therapeutic therapy for many types of hematological cancers. The benefits of this procedure are challenged by graft vs. host disease (GVHD), causing significant morbidity and mortality. Recent advances in the metabolomics field have revolutionized our understanding of complex human diseases, clinical diagnostics and allow to trace the de novo biosynthesis of metabolites. There is growing evidence for metabolomics playing a role in different aspects of GVHD, and therefore metabolomic reprogramming presents a novel tool for this disease. Pre-transplant cytokine profiles and metabolic status of allogeneic transplant recipients is shown to be linked with a threat of acute GVHD. Immune reactions underlying the pathophysiology of GVHD involve higher proliferation and migration of immune cells to the target site, requiring shifts in energy supply and demand. Metabolic changes and reduced availability of oxygen result in tissue and cellular hypoxia which is extensive enough to trigger transcriptional and translational changes. T cells, major players in acute GVHD pathophysiology, show increased glucose uptake and glycolytic activity. Effector T (Teff) cells activated during nutrient limiting conditions in vitro or multiplying during GVHD in vivo, depend more on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO). Dyslipidemia, such as the increase of medium and long chain fatty and polyunsaturated acids in plasma of GVHD patients, has been observed. Sphingolipids associate with inflammatory conditions and cancer. Chronic GVHD (cGVHD) patients show reduced branched-chain amino acids (BCAAs) and increased sulfur-containing metabolites post HSCT. Microbiota-derived metabolites such as aryl hydrocarbon receptor (AhR) ligands, bile acids, plasmalogens and short chain fatty acids vary significantly and affect allogeneic immune responses during acute GVHD. Considering the multitude of possibilities, how altered metabolomics are involved in GVHD biology, multi-timepoints related and multivariable biomarker panels for prognosticating and understanding GVHD are needed. In this review, we will discuss the recent work addressing metabolomics reprogramming to control GVHD in detail.
Collapse
Affiliation(s)
| | | | - Gerhard C. Hildebrandt
- Division of Hematology and Blood and Marrow Transplantation, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
41
|
Nguyen HD, Ticer T, Bastian D, Kuril S, Li H, Du H, Yan C, Yu XZ. Lysosomal Acid Lipase Is Required for Donor T Cells to Induce Graft-versus-Host Disease. Cell Rep 2020; 33:108316. [PMID: 33113360 PMCID: PMC7706352 DOI: 10.1016/j.celrep.2020.108316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/28/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Graft-versus-host disease (GVHD) limits the success of allogeneic hematopoietic cell transplantation (allo-HCT). Lysosomal acid lipase (LAL) mediates the intrinsic lipolysis of cells to generate free fatty acids (FFAs), which play an essential role in the development, proliferation, and function of T cells. Here, we find that LAL is essential for donor T cells to induce GVHD in murine models of allo-HCT. Specifically, LAL is required for donor T cell survival, differentiation, and alloreactivity in GVHD target organs, but not in lymphoid organs. LAL induces the differentiation of donor T cells toward GVHD pathogenic Th1/Tc1 and Th17 while suppressing regulatory T cell generation. LAL-/- T cells succumb to oxidative stress and become anergic in target organs. Pharmacologically targeting LAL effectively prevents GVHD development while preserving the GVL activity. Thus, the present study reveals the role of LAL in T cell alloresponse and pathogenicity and validates LAL as a target for controlling GVHD and tumor relapse after allo-HCT.
Collapse
Affiliation(s)
- Hung D Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Taylor Ticer
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sandeepkumar Kuril
- Department of Pediatric Hematology-Oncology, Medical University of South Carolina, Charleston SC 29425, USA
| | - Hong Li
- Department of Public Health, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hong Du
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indianapolis, IN 46202, USA
| | - Cong Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indianapolis, IN 46202, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
42
|
The Role of Metabolic Enzymes in the Regulation of Inflammation. Metabolites 2020; 10:metabo10110426. [PMID: 33114536 PMCID: PMC7693344 DOI: 10.3390/metabo10110426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
Immune cells undergo dramatic metabolic reprogramming in response to external stimuli. These metabolic pathways, long considered as simple housekeeping functions, are increasingly understood to critically regulate the immune response, determining the activation, differentiation, and downstream effector functions of both lymphoid and myeloid cells. Within the complex metabolic networks associated with immune activation, several enzymes play key roles in regulating inflammation and represent potential therapeutic targets in human disease. In some cases, these enzymes control flux through pathways required to meet specific energetic or metabolic demands of the immune response. In other cases, key enzymes control the concentrations of immunoactive metabolites with direct roles in signaling. Finally, and perhaps most interestingly, several metabolic enzymes have evolved moonlighting functions, with roles in the immune response that are entirely independent of their conventional enzyme activities. Here, we review key metabolic enzymes that critically regulate inflammation, highlighting mechanistic insights and opportunities for clinical intervention.
Collapse
|
43
|
Emerging role of metabolic reprogramming in tumor immune evasion and immunotherapy. SCIENCE CHINA-LIFE SCIENCES 2020; 64:534-547. [PMID: 32815067 DOI: 10.1007/s11427-019-1735-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/20/2020] [Indexed: 12/11/2022]
Abstract
Mounting evidence has revealed that the therapeutic efficacy of immunotherapies is restricted to a small portion of cancer patients. A deeper understanding of how metabolic reprogramming in the tumor microenvironment (TME) regulates immunity remains a major challenge to tumor eradication. It has been suggested that metabolic reprogramming in the TME may affect metabolism in immune cells and subsequently suppress immune function. Tumor cells compete with infiltrating immune cells for nutrients and metabolites. Notably, the immunosuppressive TME is characterized by catabolic and anabolic processes that are critical for immune cell function, and elevated inhibitory signals may favor cancer immune evasion. The major energy sources that supply different immune cell subtypes also undergo reprogramming. We herein summarize the metabolic remodeling in tumor cells and different immune cell subtypes and the latest advances underlying the use of metabolic checkpoints in antitumor immunotherapies. In this context, targeting both tumor and immune cell metabolic reprogramming may enhance therapeutic efficacy.
Collapse
|
44
|
Tang D, Liu S, Sun H, Qin X, Zhou N, Zheng W, Zhang M, Zhou H, Tuersunayi A, Duan C, Chen J. All-trans-retinoic acid shifts Th1 towards Th2 cell differentiation by targeting NFAT1 signalling to ameliorate immune-mediated aplastic anaemia. Br J Haematol 2020; 191:906-919. [PMID: 32729137 DOI: 10.1111/bjh.16871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Severe acquired aplastic anaemia (AA) is a serious disease characterised by autoreactive T cells attacking haematopoietic stem cells, leading to marrow hypoplasia and pancytopenia. Immunosuppressive therapy combined with antithymocyte globulin and ciclosporin can rescue most patients with AA. However, the relapse after ciclosporin withdrawal and the severe side effects of long-term ciclosporin administration remain unresolved. As such, new strategies should be developed to supplement current therapeutics and treat AA. In this study, the possibility of all-trans-retinoic acid (ATRA) as an alternative AA treatment was tested by using an immune-mediated mouse model of AA. Results revealed that ATRA inhibited T-cell proliferation, activation and effector function. It also restrained the Fas/Fasl pathway, shifted Th1 towards Th2 cell development, rebalanced T-cell subsets at a relatively high level and corrected the Th1/Th2 ratio by targeting NFAT1 signalling. In addition, ATRA inhibited Th17 cell differentiation and promoted regulatory T-cell development. Therefore, ATRA was an effective agent to improve AA treatment outcomes.
Collapse
Affiliation(s)
- Dabin Tang
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Shengli Liu
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Huiying Sun
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xia Qin
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Neng Zhou
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Weiwei Zheng
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Mengyi Zhang
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hang Zhou
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Abudureheman Tuersunayi
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Caiwen Duan
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Jing Chen
- Shanghai Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Department of Hematology and Oncology, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
45
|
Brown RA, Byersdorfer CA. Metabolic Pathways in Alloreactive T Cells. Front Immunol 2020; 11:1517. [PMID: 32793207 PMCID: PMC7393946 DOI: 10.3389/fimmu.2020.01517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (aHSCT) is a curative therapy for a range of hematologic illnesses including aplastic anemia, sickle cell disease, immunodeficiency, and high-risk leukemia, but the efficacy of aHSCT is often undermined by graft-versus-host disease (GVHD), where T cells from the donor attack and destroy recipient tissues. Given the strong interconnection between T cell metabolism and cellular function, determining the metabolic pathways utilized by alloreactive T cells is fundamental to deepening our understanding of GVHD biology, including its initiation, propagation, and potential mitigation. This review summarizes the metabolic pathways available to alloreactive T cells and highlights key metabolic proteins and pathways linking T cell metabolism to effector function. Our current knowledge of alloreactive T cell metabolism is then explored, showing support for glycolysis, fat oxidation, and glutamine metabolism but also offering a potential explanation for how these presumably contradictory metabolic findings might be reconciled. Examples of additional ways in which metabolism impacts aHSCT are addressed, including the influence of butyrate metabolism on GVHD resolution. Finally, the caveats and challenges of assigning causality using our current metabolic toolbox is discussed, as well as likely future directions in immunometabolism, both to highlight the strengths of the current evidence as well as recognize some of its limitations.
Collapse
Affiliation(s)
- Rebecca A Brown
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
46
|
Metabolomic and molecular insights into sickle cell disease and innovative therapies. Blood Adv 2020; 3:1347-1355. [PMID: 31015210 DOI: 10.1182/bloodadvances.2018030619] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
Sickle cell disease (SCD) is an autosomal-recessive hemolytic disorder with high morbidity and mortality. The pathophysiology of SCD is characterized by the polymerization of deoxygenated intracellular sickle hemoglobin, which causes the sickling of erythrocytes. The recent development of metabolomics, the newest member of the "omics" family, has provided a powerful new research strategy to accurately measure functional phenotypes that are the net result of genomic, transcriptomic, and proteomic changes. Metabolomics changes respond faster to external stimuli than any other "ome" and are especially appropriate for surveilling the metabolic profile of erythrocytes. In this review, we summarize recent pioneering research that exploited cutting-edge metabolomics and state-of-the-art isotopically labeled nutrient flux analysis to monitor and trace intracellular metabolism in SCD mice and humans. Genetic, structural, biochemical, and molecular studies in mice and humans demonstrate unrecognized intracellular signaling pathways, including purinergic and sphingolipid signaling networks that promote hypoxic metabolic reprogramming by channeling glucose metabolism to glycolysis via the pentose phosphate pathway. In turn, this hypoxic metabolic reprogramming induces 2,3-bisphosphoglycerate production, deoxygenation of sickle hemoglobin, polymerization, and sickling. Additionally, we review the detrimental role of an impaired Lands' cycle, which contributes to sickling, inflammation, and disease progression. Thus, metabolomic profiling allows us to identify the pathological role of adenosine signaling and S1P-mediated erythrocyte hypoxic metabolic reprogramming and hypoxia-induced impaired Lands' cycle in SCD. These findings further reveal that the inhibition of adenosine and S1P signaling cascade and the restoration of an imbalanced Lands' cycle have potent preclinical efficacy in counteracting sickling, inflammation, and disease progression.
Collapse
|
47
|
Griffiths HR, Rooney MCO, Perrie Y. Does Dysregulation of Redox State Underpin the Decline of Innate Immunity with Aging? Antioxid Redox Signal 2020; 32:1014-1030. [PMID: 31989832 DOI: 10.1089/ars.2020.8021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Antibacterial defense invokes the innate immune system as a first responder, with neutrophils phagocytozing and forming neutrophil extracellular traps around pathogens in a reactive oxygen species (ROS)-dependent manner. Increased NOX2 activity and mitochondrial ROS production in phagocytic, antigen-presenting cells (APCs) affect local cytokine secretion and proteolysis of antigens for presentation to T cells at the immune synapse. Uncontrolled oxidative post-translational modifications to surface and cytoplasmic proteins in APCs during aging can impair innate immunity. Recent Advances: NOX2 plays a role in the maturation of dendritic cells, but paradoxically NOX2 activity has also been shown to promote viral pathogenicity. Accumulating evidence suggests that a reducing environment is essential to inhibit pathogen proliferation, facilitate antigenic processing in the endosomal lumen, and enable an effective immune synapse between APCs and T cells. This suggests that the kinetics and location of ROS production and reducing potential are important for effective innate immunity. Critical Issues: During aging, innate immune cells are less well able to phagocytoze, kill bacteria/viruses, and process proteins into antigenic peptides-three key steps that are necessary for developing a specific targeted response to protect against future exposure. Aberrant control of ROS production and impaired Nrf2-dependent reducing potential may contribute to age-associated immune decline. Future Directions: Local changes in redox potential may be achieved through adjuvant formulations to improve innate immunity. Further work is needed to understand the timing of delivery for redox modulators to facilitate innate immune cell recruitment, survival, antigen processing and presentation activity without disrupting essential ROS-dependent bacterial killing.
Collapse
Affiliation(s)
- Helen R Griffiths
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Matthew C O Rooney
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Yvonne Perrie
- Department of Pharmacy, University of Strathclyde, Glasgow, Scotland
| |
Collapse
|
48
|
Pereira AZ, Vigorito AC, Almeida ADM, Candolo ADA, Silva ACL, Brandão-Anjos AEDP, Sá BLD, Souza CLSD, Castro Junior CGD, Oliveira JSRD, Barban JB, Mancilha EMB, Todaro J, Lopes LP, Macedo MCMDA, Rodrigues M, Ribeiro PC, Silva RLD, Roberto TS, Rodrigues TDCR, Colturato VAR, Paton EJDA, Barros GMN, Almeida RDS, Moreira MCR, Flowers ME. Brazilian Nutritional Consensus in Hematopoietic Stem Cell Transplantation: Graft- versus -host disease. EINSTEIN-SAO PAULO 2020; 18:eAE4799. [PMID: 32215466 PMCID: PMC7069734 DOI: 10.31744/einstein_journal/2020ae4799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/27/2019] [Indexed: 02/02/2023] Open
Abstract
The Brazilian Consensus on Nutrition in Hematopoietic Stem Cell Transplantation: Graft- versus -host disease was approved by Sociedade Brasileira de Transplante de Medula Óssea , with the participation of 26 Brazilian hematopoietic stem cell transplantation centers. It describes the main nutritional protocols in cases of Graft- versus -host disease, the main complication of hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Juliana Todaro
- Hospital Israelita Albert Einstein , São Paulo , SP , Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Teng X, Brown J, Choi SC, Li W, Morel L. Metabolic determinants of lupus pathogenesis. Immunol Rev 2020; 295:167-186. [PMID: 32162304 DOI: 10.1111/imr.12847] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
The metabolism of healthy murine and more recently human immune cells has been investigated with an increasing amount of details. These studies have revealed the challenges presented by immune cells to respond rapidly to a wide variety of triggers by adjusting the amount, type, and utilization of the nutrients they import. A concept has emerged that cellular metabolic programs regulate the size of the immune response and the plasticity of its effector functions. This has generated a lot of enthusiasm with the prediction that cellular metabolism could be manipulated to either enhance or limit an immune response. In support of this hypothesis, studies in animal models as well as human subjects have shown that the dysregulation of the immune system in autoimmune diseases is associated with a skewing of the immunometabolic programs. These studies have been mostly conducted on autoimmune CD4+ T cells, with the metabolism of other immune cells in autoimmune settings still being understudied. Here we discuss systemic metabolism as well as cellular immunometabolism as novel tools to decipher fundamental mechanisms of autoimmunity. We review the contribution of each major metabolic pathway to autoimmune diseases, with a focus on systemic lupus erythematosus (SLE), with the relevant translational opportunities, existing or predicted from results obtained with healthy immune cells. Finally, we review how targeting metabolic programs may present novel therapeutic venues.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Josephine Brown
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
50
|
Human placenta derived mesenchymal stromal cells alleviate GVHD by promoting the generation of GSH and GST in PD-1 +T cells. Cell Immunol 2020; 352:104083. [PMID: 32143837 DOI: 10.1016/j.cellimm.2020.104083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 02/04/2023]
Abstract
AIMS To investigate whether placenta-derived mesenchymal stromal cells (hPMSCs) have immunoregulatory effects on PD-1+ T cell generation by controlling ROS production and thus alleviating GVHD. MAIN METHODS Flow cytometry was used to analyze the percentage of PD-1+ T cells, as well as the generation of ROS, GSH and GST in PD-1+ T cells. The expression of GST in the spleen and liver was analyzed by western blotting. KEY FINDINGS The percentage of PD-1+ T cells was increased, but the ratio of GSH/GSSG was decreased in GVHD patients and the GVHDhigh mouse model compared with that in the normal control group. hPMSCs downregulated the level of malondialdehyde (MDA) and upregulated the ratio of GSH/GSSG and the expression of glutathione S transferase (GST) in the plasma, spleen and liver of GVHD mice compared with those of PBS-treated GVHD mice. Further studies showed that the ROS level, as well as the expression of PD-1, in both CD3+ and CD4+ T cells from the spleen and liver of hPMSC-treated GVHD mice were decreased compared with those observed in PBS-treated mice. SIGNIFICANCE hPMSCs downregulated ROS generation by increasing GSH and GST levels and further reduced the expression of PD-1 on T cells, thereby alleviating inflammation in GVHD mice.
Collapse
|