1
|
Sobczyńska-Konefał A, Jasek M, Karabon L, Jaskuła E. Insights into genetic aberrations and signalling pathway interactions in chronic lymphocytic leukemia: from pathogenesis to treatment strategies. Biomark Res 2024; 12:162. [PMID: 39732734 DOI: 10.1186/s40364-024-00710-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is prevalent in adults and is characterized by the accumulation of mature B cells in the blood, bone marrow, lymph nodes, and spleens. Recent progress in therapy and the introduction of targeted treatments [inhibitors of Bruton's tyrosine kinase (BTKi) or inhibitor of anti-apoptotic B-cell lymphoma-2 (Bcl-2i) protein (venetoclax)] in place of chemoimmunotherapy have significantly improved the outcomes of patients with CLL. These advancements have shifted the importance of traditional predictive markers, leading to a greater focus on resistance genes and reducing the significance of mutations, such as TP53 and del(17p). Despite the significant progress in CLL treatment, some patients still experience disease relapse. This is due to the substantial heterogeneity of CLL as well as the interconnected genetic resistance mechanisms and pathway adaptive resistance mechanisms to targeted therapies in CLL. Although the knowledge of the pathomechanism of CLL has expanded significantly in recent years, the precise origins of CLL and the interplay between various genetic factors remain incompletely understood, necessitating further research. This review enhances the molecular understanding of CLL by describing how BCR signalling, NF-κB PI3K/AKT, and ROR1 pathways sustain CLL cell survival, proliferation, and resistance to apoptosis. It also presents genetic and pathway-adaptive resistance mechanisms in CLL. Identifying B-cell receptor (BCR) signalling as a pivotal driver of CLL progression, the findings advocate personalized treatment strategies based on molecular profiling, emphasizing the need for further research to unravel the complex interplay between BCR signalling and its associated pathways to improve patient outcomes.
Collapse
Affiliation(s)
- Anna Sobczyńska-Konefał
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland
| | - Monika Jasek
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Lidia Karabon
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland
| | - Emilia Jaskuła
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolf Weigl 12, 53-114, Wroclaw, Poland.
- Lower Silesian Oncology Hematology and Pulmonology Center, Ludwik Hirszfeld square 12, 53-413, Wroclaw, Poland.
| |
Collapse
|
2
|
Hanbal AT, El-Ashwah S, Eladl AE, Shamaa S, Saleh LM. Utility of clinical, laboratory, and lymph node MYD88 L265P mutation in risk assessment of diffuse large B-cell lymphoma patients. J Egypt Natl Canc Inst 2024; 36:31. [PMID: 39397180 DOI: 10.1186/s43046-024-00237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is an aggressive non-Hodgkin lymphoma and is characterized by heterogeneity in biology and clinical behavior. Mutations in the myeloid differentiation primary response 88 (MYD88) are found in different lymphoproliferative disorders and are associated with variable clinical and prognostic impact. AIM To investigate the frequency of MYD88 L265P mutation and its clinical impact in a cohort of Egyptian DLBCL patients. METHODS FFPE lymph node samples from 87 DLBCL patients (46 males / 41 females; median age, 58 years) were included and analyzed for MYD88 L265P by an allele-specific PCR. RESULTS MYD88 L265P mutations were found in 52 patients (59.8%) out of 87 DLBCL cases. Patients with L265 mutation were significantly younger than non-mutated patients (p = 0.022). None of the patients with the L265P mutation showed a significant association with the clinical parameters of DLBCL. Interestingly, MYD88 L265 mutated patients were found to be significantly correlated with HCV infection (p = 0.037). The median follow-up time across the entire cohort was 26 months. Univariate analysis showed that overall survival (OS) was affected by gender, LDH level, and CNS-IPI scoring (p = 0.048, 0.008, and 0.046, respectively), while disease-free survival (DFS) was affected by B symptoms and LDH level (p = < 0.000 and 0.02, respectively). However, the MYD88 mutation status and other prognostic factors showed no association with OS or DFS. CONCLUSIONS Our findings indicate a high frequency of MYD88 L265P mutations in our study population and not associated with prognostic markers or the outcome of the disease.
Collapse
Affiliation(s)
- Ahmed Talaat Hanbal
- Clinical Hematology, Internal Medicine Department, Oncology Center, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Shaimaa El-Ashwah
- Clinical Hematology, Internal Medicine Department, Oncology Center, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Ahmed E Eladl
- Pathology Department, Faculty of Medicine, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Sameh Shamaa
- Medical Oncology and Internal Medicine, Oncology Center, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Layla M Saleh
- Hematology Section, Clinical Pathology Department, Faculty of Medicine, Mansoura University, PO Box 35516, Mansoura, Egypt.
| |
Collapse
|
3
|
Huang YJ, Lim JQ, Hsu JS, Kuo MC, Wang PN, Kao HW, Wu JH, Chen CC, Tsai SF, Ong CK, Shih LY. Next-Generation Integrated Sequencing Identifies Poor Prognostic Factors in Patients with MYD88-Mutated Chronic Lymphocytic Leukemia in Taiwan. Pathobiology 2024:1-13. [PMID: 39357512 DOI: 10.1159/000541709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in the Western countries and is very rare in Asia. METHODS Peripheral blood or bone marrow mononuclear cells obtained at initial diagnosis from 215 patients with CLL were analyzed by using next-generation sequencing to investigate the ethnic differences in genetic abnormalities. RESULTS Whole-genome sequencing and whole-exome sequencing analyses on 30 cases showed that 9 genes, including IGLL5, MYD88, TCHH, DSCAM, AXDND1, BICRA, KMT2D, MYT1L, and RBM43, were more frequently mutated in our Taiwanese cohort compared with those of the Western cohorts. IGLL5, MYD88, and KMT2D genes were further analyzed by targeted sequencing in another 185 CLL patients, unraveling frequencies of 29.3%, 20.9%, and 15.0%, respectively. The most frequent positional mutation of MYD88 was V217F (26/45, 57.8%), followed by L265P (9/45, 20.0%). MYD88 mutations were significantly associated with IGLL5 mutations (p = 0.0004), mutated IGHV (p < 0.0001) and 13q deletion (p = 0.0164). CLL patients with co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations were associated with a significantly inferior survival compared to those with MYD88 mutation alone (not reached vs. 131.8 months, p = 0.007). In multivariate analysis, MYD88 mutation without KMT2D or IGLL5 mutations was an independently favorable predictor. CONCLUSIONS IGLL5, MYD88, and KMT2D mutations were enriched in Taiwanese CLL, and co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations was associated with a poorer prognosis.
Collapse
Affiliation(s)
- Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- ONCO-ACP, Duke-NUS Medical School, Singapore, Singapore
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Nan Wang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiao-Wen Kao
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jin-Hou Wu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chiu-Chen Chen
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
4
|
Dash UK, Mazumdar D, Singh S. High Mobility Group Box Protein (HMGB1): A Potential Therapeutic Target for Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8188-8205. [PMID: 38478143 DOI: 10.1007/s12035-024-04081-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 09/21/2024]
Abstract
HMGB (high mobility group B) is one of the ubiquitous non-histone nuclear protein superfamilies that make up the HMG (high mobility group) protein group. HMGB1 is involved in a variety of physiological and pathological processes in the human body, including a structural role in the cell nucleus as well as replication, repair, DNA transcription, and assembly of nuclear proteins. It functions as a signaling regulator in the cytoplasm and a pro-inflammatory cytokine in the extracellular environment. Among several studies, HMGB1 protein is also emerging as a crucial factor involved in the development and progression of diabetic encephalopathy (DE) along with other factors such as hyperglycaemia-induced oxidative and nitrosative stress. Diabetes' chronic side effect is DE, which manifests as cognitive and psychoneurological dysfunction. The HMGB1 is released outside to the extracellular medium in diabetes condition through active or passive routes, where it functions as a damage-associated molecular pattern (DAMP) molecule to activate several signaling pathways by interacting with receptors for advanced glycosylation end-products (RAGE)/toll like receptors (TLR). HMGB1 reportedly activates inflammatory pathways, disrupts the blood-brain barrier, causes glutamate toxicity and oxidative stress, and promotes neuroinflammation, contributing to the development of cognitive impairment and neuronal damage which is suggestive of the involvement of HMGB1 in the enhancement of the diabetes-induced encephalopathic condition. Additionally, HMGB1 is reported to induce insulin resistance, further exacerbating the metabolic dysfunction associated with diabetes mellitus (DM). Thus, the present review explores the possible pathways associated with DM-induced hyperactivation of HMGB1 ultimately leading to DE.
Collapse
Affiliation(s)
- Udit Kumar Dash
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Debashree Mazumdar
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India
| | - Santosh Singh
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, India.
| |
Collapse
|
5
|
Takeda K, Okazaki S, Minami R, Ichiki A, Yamaga Y, Nakajima K, Kitamura K, Karube K, Nishiyama T. MYD88 mutation-positive indolent B-cell lymphoma with CNS involvement: Bing-Neel syndrome mimickers. J Clin Exp Hematop 2024; 64:252-260. [PMID: 39218689 PMCID: PMC11528247 DOI: 10.3960/jslrt.24033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 09/04/2024] Open
Abstract
MYD88 p.L265P mutation occurs in over 90% of Waldenström's macroglobulinemia (WM), which is characterized by lymphoplasmacytic lymphoma (LPL) with monoclonal IgM. WM requires careful diagnosis due to overlapping features with other B-cell malignancies. Bing-Neel syndrome (BNS), a rare complication of WM, involves central nervous system (CNS) invasion. This report describes two cases of morphologically low-grade B-cell lymphoma in the bone marrow accompanied by the presence of a large B-cell lymphoma in the brain and a common MYD88 p.L265P mutation, which were eventually established as BNS mimickers. Although the two components in these cases showed the same identical light-chain restriction, different immunoglobulin heavy-chain rearrangement peaks indicated distinct lymphoma stem cells for CNS and bone marrow lesions. These clinical cases emphasize the challenges in diagnosing BNS. Based on the findings, biopsy is recommended for accurate identification of the clonal relationship and MYD88 mutation status.
Collapse
|
6
|
Braish J, Cerchione C, Ferrajoli A. An overview of prognostic markers in patients with CLL. Front Oncol 2024; 14:1371057. [PMID: 38817892 PMCID: PMC11137234 DOI: 10.3389/fonc.2024.1371057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a low-grade B-cell lymphoproliferative disorder. It is the most prevalent type of leukemia in the western countries, with a median age at diagnosis of 70 years. In 2023, it is estimated that there will be 18,740 new cases of CLL, and an estimated 4,490 people will die of this disease. It represents 1.0% of all new cancer cases in the U.S. The rate of new cases was 4.6 per 100,000 men and women per year based on 2016-2020 cases, age-adjusted. Death rates from CLL are higher among older adults, or those 75 and older. The death rate was 1.1 per 100,000 men and women per year based on 2016-2020 deaths, age-adjusted. A common question that patients with CLL ask during their first clinic visit is: "How long will it be before I would need treatment?" Although this might seem like a simple question, the answer is not straight forward. CLL is a heterogenous disease, with a variable clinical course. Some patients may present with an aggressive disease requiring early initiation of treatment, while others have an indolent course and some, having so called smoldering CLL, may never need treatment. The variability in disease course can make predicting disease prognosis a complicated process. This brings forth the importance of establishing prognostic models that can predict disease course, time to treatment, and survival outcomes in such a heterogenous disease. The Rai and Binet staging systems were developed in the late 1970s to early 1980s. They separated patients into different stages based on clinical characteristics and laboratory findings. These simple staging systems are still in use; however, several prognostic markers need to be added for an individualized assessment and, with the recent development of genomic techniques leading to better understanding of CLL at the molecular level, newer prognostic markers have emerged.
Collapse
Affiliation(s)
- Julie Braish
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Claudio Cerchione
- Hematology Unit, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori” (IRST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola, Italy
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Cristian M, Așchie M, Mitroi AF, Deacu M, Boșoteanu M, Bălțătescu GI, Stoica AG, Nicolau AA, Enciu M, Crețu AM, Caloian AD, Orășanu CI, Poinăreanu I. The impact of MYD88 and PIM1 in mature large B-cell non-Hodgkin lymphomas: Defining element of their evolution and prognosis. Medicine (Baltimore) 2024; 103:e36269. [PMID: 38335426 PMCID: PMC10860999 DOI: 10.1097/md.0000000000036269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Sequence studies of the entire exome and transcriptome of lymphoma tissues have identified MYD88 and PIM1 as involved in the development and oncogenic signaling. We aimed to determine the frequency of MYD88 and PIM1 mutations, as well as their expressions in conjunction with the clinicopathological parameters identified in mature large B-cell non-Hodgkin lymphomas. The ten-year retrospective study included 50 cases of mature large B-cell lymphoma, diagnosed at the Pathology Department of the Emergency County Hospital of Constanţa and Săcele County Hospital of Brasov. They were statistically analyzed by demographic, clinicopathological, and morphogenetic characteristics. We used a real-time polymerase chain reaction technique to identify PIM1 and MYD88 mutations as well as an immunohistochemical technique to evaluate the expressions of the 2 genes. Patients with lymphoma in the small bowel, spleen, brain, and testis had a low-performance status Eastern Cooperative Oncology Group (P = .001). The Eastern Cooperative Oncology Group performance status represented an independent risk factor predicting mortality (HR = 9.372, P < .001). An increased lactate dehydrogenase value was associated with a low survival (P = .002). The international prognostic index score represents a negative risk factor in terms of patient survival (HR = 4.654, P < .001). In cases of diffuse large B-cell lymphoma (DLBCL), immunopositivity of MYD88 is associated with non-germinal center B-cell origin (P < .001). The multivariate analysis observed the association between high lactate dehydrogenase value and the immunohistochemical expression of PIM1 or with the mutant status of the PIM1 gene representing negative prognostic factors (HR = 2.066, P = .042, respectively HR = 3.100, P = .004). In conclusion, our preliminary data suggest that the oncogenic mutations of PIM1 and MYD88 in our DLBCL cohort may improve the diagnosis and prognosis of DLBCL patients in an advanced stage.
Collapse
Affiliation(s)
- Miruna Cristian
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Mariana Așchie
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Academy of Medical Sciences, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Anca-Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Mariana Deacu
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Mădălina Boșoteanu
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Gabriela-Izabela Bălțătescu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Andreea-Georgiana Stoica
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Hematology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Anca-Antonela Nicolau
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Manuela Enciu
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Ana-Maria Crețu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Andreea-Daniela Caloian
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, Constanta, Romania
| | - Cristian-Ionuț Orășanu
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Ionuț Poinăreanu
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Department of Pathology, Săcele Municipal Hospital, Brasov, Romania
| |
Collapse
|
8
|
Sánchez Suárez MDM, Martín Roldán A, Alarcón-Payer C, Rodríguez-Gil MÁ, Poquet-Jornet JE, Puerta Puerta JM, Jiménez Morales A. Treatment of Chronic Lymphocytic Leukemia in the Personalized Medicine Era. Pharmaceutics 2023; 16:55. [PMID: 38258066 PMCID: PMC10818903 DOI: 10.3390/pharmaceutics16010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Chronic lymphocytic leukemia is a lymphoproliferative disorder marked by the expansion of monoclonal, mature CD5+CD23+ B cells in peripheral blood, secondary lymphoid tissues, and bone marrow. The disease exhibits significant heterogeneity, with numerous somatic genetic alterations identified in the neoplastic clone, notably mutated TP53 and immunoglobulin heavy chain mutational statuses. Recent studies emphasize the pivotal roles of genetics and patient fragility in treatment decisions. This complexity underscores the need for a personalized approach, tailoring interventions to individual genetic profiles for heightened efficacy. The era of personalized treatment in CLL signifies a transformative shift, holding the potential for improved outcomes in the conquest of this intricate hematologic disorder. This review plays a role in elucidating the evolving CLL treatment landscape, encompassing all reported genetic factors. Through a comprehensive historical analysis, it provides insights into the evolution of CLL management. Beyond its retrospective nature, this review could be a valuable resource for clinicians, researchers, and stakeholders, offering a window into the latest advancements. In essence, it serves as a dynamic exploration of our current position and the promising prospects on the horizon.
Collapse
Affiliation(s)
- María Del Mar Sánchez Suárez
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.D.M.S.S.); (A.M.R.); (A.J.M.)
| | - Alicia Martín Roldán
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.D.M.S.S.); (A.M.R.); (A.J.M.)
| | - Carolina Alarcón-Payer
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.D.M.S.S.); (A.M.R.); (A.J.M.)
| | - Miguel Ángel Rodríguez-Gil
- Unidad de Gestión Clínica Hematología y Hemoterapia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.Á.R.-G.); (J.M.P.P.)
| | | | - José Manuel Puerta Puerta
- Unidad de Gestión Clínica Hematología y Hemoterapia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.Á.R.-G.); (J.M.P.P.)
| | - Alberto Jiménez Morales
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, 18014 Granada, Granada, Spain; (M.D.M.S.S.); (A.M.R.); (A.J.M.)
| |
Collapse
|
9
|
Parrondo RD, Iqbal M, Von Roemeling R, Von Roemeling C, Tun HW. IRAK-4 inhibition: emavusertib for the treatment of lymphoid and myeloid malignancies. Front Immunol 2023; 14:1239082. [PMID: 37954584 PMCID: PMC10637517 DOI: 10.3389/fimmu.2023.1239082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Several studies have identified mutations in the MYD88L265P gene as a key driver mutation in several B-cell lymphomas. B-cell lymphomas that harbor the MYD88L265P mutation form a complex with phosphorylated Bruton's tyrosine kinase (BTK) and are responsive to BTK inhibition. However, BTK inhibition in B-cell lymphomas rarely results in a complete response and most patients experience eventual disease relapse. Persistent survival signaling though downstream molecules such as interleukin 1 receptor-associated kinase 4 (IRAK-4), an integral part of the "myddosome" complex, has been shown to be constitutively active in B-cell lymphoma patients treated with BTK inhibitors. Emerging evidence is demonstrating the therapeutic benefit of IRAK-4 inhibition in B-cell lymphomas, along with possibly reversing BTK inhibitor resistance. While MYD88 gene mutations are not present in myeloid malignancies, downstream overexpression of the oncogenic long form of IRAK-4 has been found in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), particularly in AML and MDS that harbor mutations in splicing factors U2AF1 and SF3B1. These data suggest that the anti-leukemic activity of IRAK-4 inhibition can be exploited in relapsed/refractory (R/R) AML/MDS. In this review article, we discuss the currently available pre-clinical and clinical data of emavusertib, a selective, orally bioavailable IRAK-4 inhibitor in the treatment of R/R B-cell lymphomas and myeloid malignancies.
Collapse
Affiliation(s)
- Ricardo D. Parrondo
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | - Madiha Iqbal
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | | | | | - Han W. Tun
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| |
Collapse
|
10
|
Mertowska P, Smolak K, Mertowski S, Grywalska E. Unraveling the Role of Toll-like Receptors in the Immunopathogenesis of Selected Primary and Secondary Immunodeficiencies. Cells 2023; 12:2055. [PMID: 37626865 PMCID: PMC10453926 DOI: 10.3390/cells12162055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The human immune system is a complex network of cells, tissues, and molecules that work together to defend the body against pathogens and maintain overall health. However, in some individuals, the immune system fails to function correctly, leading to immunodeficiencies. Immunodeficiencies can be classified into primary (PID) and secondary (SID) types, each with distinct underlying causes and manifestations. Toll-like receptors (TLRs), as key components of the immune system, have been implicated in the pathogenesis of both PID and SID. In this study, we aim to unravel the intricate involvement of TLR2, TLR4, TLR3, TLR7, TLR8, and TLR9 in the immunopathogenesis of common variable immunodeficiency-CVID (as PID)-and chronic lymphocytic leukemia-CLL (as SID). The obtained results indicate a significant increase in the percentage of all tested subpopulations of T lymphocytes and B lymphocytes showing positive expression of all analyzed TLRs in patients with CVID and CLL compared to healthy volunteers, constituting the control group, which is also confirmed by analysis of the concentration of soluble forms of these receptors in the plasma of patients. Furthermore, patients diagnosed with CVID are characterized by the percentage of all lymphocytes showing positive expression of the tested TLR2, TLR4, TLR3, and TLR9 and their plasma concentrations in relation to patients with CLL. By investigating the functions and interactions of TLRs within the immune system, we seek to shed light on their critical role in the development and progression of these immunodeficiencies. Through a comprehensive analysis of the literature and presented experimental data, we hope to deepen our understanding of the complex mechanisms by which TLRs contribute to the pathogenesis of PID and SID. Ultimately, our findings may provide valuable insights into developing targeted therapeutic strategies to mitigate the impact of these disorders on those affected by immunodeficiency.
Collapse
Affiliation(s)
| | | | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | | |
Collapse
|
11
|
Mollstedt J, Mansouri L, Rosenquist R. Precision diagnostics in chronic lymphocytic leukemia: Past, present and future. Front Oncol 2023; 13:1146486. [PMID: 37035166 PMCID: PMC10080996 DOI: 10.3389/fonc.2023.1146486] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Genetic diagnostics of hematological malignancies has evolved dramatically over the years, from chromosomal banding analysis to next-generation sequencing, with a corresponding increased capacity to detect clinically relevant prognostic and predictive biomarkers. In diagnostics of patients with chronic lymphocytic leukemia (CLL), we currently apply fluorescence in situ hybridization (FISH)-based analysis to detect recurrent chromosomal aberrations (del(11q), del(13q), del(17p) and trisomy 12) as well as targeted sequencing (IGHV and TP53 mutational status) for risk-stratifying purposes. These analyses are performed before start of any line of treatment and assist in clinical decision-making including selection of targeted therapy (BTK and BCL2 inhibitors). Here, we present the current view on the genomic landscape of CLL, including an update on recent advances with potential for clinical translation. We discuss different state-of-the-art technologies that are applied to enable precision diagnostics in CLL and highlight important genomic markers with current prognostic and/or predictive impact as well as those of prospective clinical relevance. In the coming years, it will be important to develop more comprehensive genomic analyses that can capture all types of relevant genetic aberrations, but also to develop highly sensitive assays to detect minor mutations that affect therapy response or confer resistance to targeted therapies. Finally, we will bring up the potential of new technologies and multi-omics analysis to further subclassify the disease and facilitate implementation of precision medicine approaches in this still incurable disease.
Collapse
Affiliation(s)
- John Mollstedt
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
12
|
Garcia-Sanz R, Varettoni M, Jiménez C, Ferrero S, Poulain S, San-Miguel JF, Guerrera ML, Drandi D, Bagratuni T, McMaster M, Roccaro AM, Roos-Weil D, Leiba M, Li Y, Qiu L, Hou J, De Larrea CF, Castillo JJ, Dimopoulos M, Owen RG, Treon SP, Hunter ZR. Report of Consensus Panel 3 from the 11th International workshop on Waldenström's Macroglobulinemia: Recommendations for molecular diagnosis in Waldenström's Macroglobulinemia. Semin Hematol 2023; 60:90-96. [PMID: 37099028 DOI: 10.1053/j.seminhematol.2023.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/27/2023]
Abstract
Apart from the MYD88L265P mutation, extensive information exists on the molecular mechanisms in Waldenström's Macroglobulinemia and its potential utility in the diagnosis and treatment tailoring. However, no consensus recommendations are yet available. Consensus Panel 3 (CP3) of the 11th International Workshop on Waldenström's Macroglobulinemia (IWWM-11) was tasked with reviewing the current molecular necessities and best way to access the minimum data required for a correct diagnosis and monitoring. Key recommendations from IWWM-11 CP3 included: (1) molecular studies are warranted for patients in whom therapy is going to be started; such studies should also be done in those whose bone marrow (BM) material is sampled based on clinical issues; (2) molecular studies considered essential for these situations are those that clarify the status of 6q and 17p chromosomes, and MYD88, CXCR4, and TP53 genes. These tests in other situations, and/or other tests, are considered optional; (3) independently of the use of more sensitive and/or specific techniques, the minimum requirements are allele specific polymerase chain reaction for MYD88L265P and CXCR4S338X using whole BM, and fluorescence in situ hybridization for 6q and 17p and sequencing for CXCR4 and TP53 using CD19+ enriched BM; (4) these requirements refer to all patients; therefore, sample should be sent to specialized centers.
Collapse
Affiliation(s)
- Ramón Garcia-Sanz
- Hematology Department, University Hospital of Salamanca, Research Biomedical Institute of Salamanca (IBSAL), CIBERONC and Center for Cancer Research-IBMCC (University of Salamanca-CSIC), Salamanca, Spain.
| | - Marzia Varettoni
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Italy
| | - Cristina Jiménez
- Hematology Department, University Hospital of Salamanca, Research Biomedical Institute of Salamanca (IBSAL), CIBERONC and Center for Cancer Research-IBMCC (University of Salamanca-CSIC), Salamanca, Spain
| | - Simone Ferrero
- Unit of Hematology, Department of Biotechnology & Health Sciences, University of Torino, Torino, Italy
| | - Stephanie Poulain
- Laboratory of Hematology, Biology and Pathology Center, CHU of Lille, UMR9020 CNRS-U1277 INSERM, University of Lille, and ONCOLILLE Cancer Institute, CANTHER Laboratory, Lille, France
| | - Jesus F San-Miguel
- Laboratory of Hematology, Biology and Pathology Center, CHU of Lille, Lille, France
| | - Maria L Guerrera
- Hematology department, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | - Daniela Drandi
- Unit of Hematology, Department of Biotechnology & Health Sciences, University of Torino, Torino, Italy
| | - Tina Bagratuni
- Bing Center for Waldenström's Macroglobulinemia, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mary McMaster
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aldo M Roccaro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Damien Roos-Weil
- Clinical Trial Center, Translational Research and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Merav Leiba
- Sorbonne Université, Hematology Unit, Pitié-Salpêtrière Hospital, Assitance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Yong Li
- Assuta Ashdod University Hospital, Faculty of Health Science, Ben-Gurion University of the Negev, Negev, Israel
| | - Luigi Qiu
- Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Jian Hou
- National Clinical Research Center for Blood Diseases, Blood Disease Hospital and Institute of Hematology), Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Jorge J Castillo
- Hematology department, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | - M Dimopoulos
- Bing Center for Waldenström's Macroglobulinemia, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - R G Owen
- Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, Barcelona, Spain; St James's University Hospital, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - S P Treon
- Hematology department, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| | - Z R Hunter
- Hematology department, Clínica Universidad de Navarra, CIMA, IDISNA, CIBERONC, Pamplona, Spain
| |
Collapse
|
13
|
Güell N, Mozas P, Jimenez-Rueda A, Miljkovic M, Juncà J, Sorigue M. Methodological and conceptual challenges to the flow cytometric classification of leukemic lymphoproliferative disorders. Crit Rev Clin Lab Sci 2023; 60:83-100. [PMID: 36066070 DOI: 10.1080/10408363.2022.2114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The diagnosis of leukemic B-cell lymphoproliferative disorders (B-LPDs) is made by integrating clinical, cytological, cytometric, cytogenetic, and molecular data. This leaves room for differences and inconsistencies between experts. In this study, we examine methodological and conceptual aspects of the flow cytometric classification of leukemic B-LPDs that could explain them. Among methodological aspects, we discuss (1) the different statistical tests used to select and evaluate markers, (2) how these markers are analyzed, (3) how scores are interpreted, (4) different degrees to which diagnostic information is used, and (5) and the impact of differences in study populations. Among conceptual aspects, we discuss (1) challenges to integrating different biological data points, (2) the under examination of the costs of misclassification (false positives and false negatives), and finally, (3) we delve into the impact of the lack of a true diagnostic gold standard and the indirect evidence suggesting poor reproducibility in the diagnosis of leukemic B-LPDs. We then outline current harmonization efforts and our personal approach. We conclude that numerous flow cytometry scores and diagnostic systems are now available; however, as long as the considerations discussed remain unaddressed, external reproducibility and interobserver agreement will not be achieved, and the field will not be able to move forward if a true gold standard is not found.
Collapse
Affiliation(s)
- Nadia Güell
- Hematology Laboratory, Unitat de citometria ICO-Badalona (CITICOB), Hospital Germans Trias i Pujol, IJC, LUMN, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Pablo Mozas
- Department of Hematology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Alba Jimenez-Rueda
- Hematology Laboratory, Unitat de citometria ICO-Badalona (CITICOB), Hospital Germans Trias i Pujol, IJC, LUMN, Universitat Autònoma de Barcelona, Badalona, Spain.,Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | - Jordi Juncà
- Hematology Laboratory, Unitat de citometria ICO-Badalona (CITICOB), Hospital Germans Trias i Pujol, IJC, LUMN, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marc Sorigue
- Hematology Laboratory, Unitat de citometria ICO-Badalona (CITICOB), Hospital Germans Trias i Pujol, IJC, LUMN, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
14
|
Genetic and Clinical Characteristics of Korean Chronic Lymphocytic Leukemia Patients with High Frequencies of MYD88 Mutations. Int J Mol Sci 2023; 24:ijms24043177. [PMID: 36834590 PMCID: PMC9959581 DOI: 10.3390/ijms24043177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries. However, CLL is relatively rare in Asia; its genetic features are rarely studied. Here, we aimed to genetically characterize Korean CLL patients and to elucidate the genetic and clinical associations based on data obtained from 113 patients at a single Korean institute. We used next-generation sequencing to explore the multi-gene mutational data and immunoglobulin heavy chain variable gene clonality with somatic hypermutation (SHM). MYD88 (28.3%), including L265P (11.5%) and V217F (13.3%), was the most frequently mutated gene, followed by KMT2D (6.2%), NOTCH1 (5.3%), SF3B1 (5.3%), and TP53 (4.4%). MYD88-mutated CLL was characterized by SHM and atypical immunophenotype with fewer cytogenetic abnormalities. The 5-year time to treatment (TTT) of the overall cohort was 49.8% ± 8.2% (mean ± standard deviation) and the 5-year overall survival was 86.2% ± 5.8%. Patients with SHM, isolated del(13q), TP53-wild type, and NOTCH1-wild type showed better results than those without these conditions. In the subgroup analyses, patients with SHM and L265P presented shorter TTT than patients with SHM but not L265P. In contrast, V217F was associated with a higher SHM percentage and showed a favorable prognosis. Our study revealed the distinct characteristics of Korean CLL patients with high frequencies of MYD88 mutations and their clinical relevance.
Collapse
|
15
|
Mansouri L, Thorvaldsdottir B, Sutton LA, Karakatsoulis G, Meggendorfer M, Parker H, Nadeu F, Brieghel C, Laidou S, Moia R, Rossi D, Catherwood M, Kotaskova J, Delgado J, Rodríguez-Vicente AE, Benito R, Rigolin GM, Bonfiglio S, Scarfo L, Mattsson M, Davis Z, Gogia A, Rani L, Baliakas P, Foroughi-Asl H, Jylhä C, Skaftason A, Rapado I, Miras F, Martinez-Lopez J, de la Serna J, Rivas JMH, Thornton P, Larráyoz MJ, Calasanz MJ, Fésüs V, Mátrai Z, Bödör C, Smedby KE, Espinet B, Puiggros A, Gupta R, Bullinger L, Bosch F, Tazón-Vega B, Baran-Marszak F, Oscier D, Nguyen-Khac F, Zenz T, Terol MJ, Cuneo A, Hernández-Sánchez M, Pospisilova S, Mills K, Gaidano G, Niemann CU, Campo E, Strefford JC, Ghia P, Stamatopoulos K, Rosenquist R. Different prognostic impact of recurrent gene mutations in chronic lymphocytic leukemia depending on IGHV gene somatic hypermutation status: a study by ERIC in HARMONY. Leukemia 2023; 37:339-347. [PMID: 36566271 PMCID: PMC9898037 DOI: 10.1038/s41375-022-01802-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
Recent evidence suggests that the prognostic impact of gene mutations in patients with chronic lymphocytic leukemia (CLL) may differ depending on the immunoglobulin heavy variable (IGHV) gene somatic hypermutation (SHM) status. In this study, we assessed the impact of nine recurrently mutated genes (BIRC3, EGR2, MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in pre-treatment samples from 4580 patients with CLL, using time-to-first-treatment (TTFT) as the primary end-point in relation to IGHV gene SHM status. Mutations were detected in 1588 (34.7%) patients at frequencies ranging from 2.3-9.8% with mutations in NOTCH1 being the most frequent. In both univariate and multivariate analyses, mutations in all genes except MYD88 were associated with a significantly shorter TTFT. In multivariate analysis of Binet stage A patients, performed separately for IGHV-mutated (M-CLL) and unmutated CLL (U-CLL), a different spectrum of gene alterations independently predicted short TTFT within the two subgroups. While SF3B1 and XPO1 mutations were independent prognostic variables in both U-CLL and M-CLL, TP53, BIRC3 and EGR2 aberrations were significant predictors only in U-CLL, and NOTCH1 and NFKBIE only in M-CLL. Our findings underscore the need for a compartmentalized approach to identify high-risk patients, particularly among M-CLL patients, with potential implications for stratified management.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lesley-Ann Sutton
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Georgios Karakatsoulis
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
- Department of Mathematics, University of Ioannina, Ioannina, Greece
| | | | - Helen Parker
- Cancer Genomics, School for Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Christian Brieghel
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Stamatia Laidou
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Davide Rossi
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Mark Catherwood
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Jana Kotaskova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Ana E Rodríguez-Vicente
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica (IBSAL), Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Rocío Benito
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica (IBSAL), Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Gian Matteo Rigolin
- Hematology-Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Bonfiglio
- Università Vita Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy
| | - Lydia Scarfo
- Università Vita Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy
| | - Mattias Mattsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Zadie Davis
- Molecular Pathology Department, University Hospitals Dorset, Bournemouth, UK
| | - Ajay Gogia
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Lata Rani
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Panagiotis Baliakas
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hassan Foroughi-Asl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Jylhä
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Inmaculada Rapado
- Hospital Universitario 12 Octubre, Madrid, Spain
- Spanish National Cancer Research (CNIO), Madrid, Spain
| | - Fatima Miras
- Hospital Universitario 12 Octubre, Madrid, Spain
| | - Joaquín Martinez-Lopez
- Hospital Universitario 12 Octubre, Madrid, Spain
- Spanish National Cancer Research (CNIO), Madrid, Spain
| | - Javier de la Serna
- Hospital Universitario 12 Octubre, Madrid, Spain
- Spanish National Cancer Research (CNIO), Madrid, Spain
| | - Jesús María Hernández Rivas
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica (IBSAL), Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | | | - María José Larráyoz
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María José Calasanz
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Viktória Fésüs
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltán Mátrai
- Central Hospital of Southern Pest-National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Karin E Smedby
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Blanca Espinet
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar and Translational Research on Hematological Neoplasms Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Anna Puiggros
- Molecular Cytogenetics Laboratory, Pathology Department, Hospital del Mar and Translational Research on Hematological Neoplasms Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Ritu Gupta
- All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Francesc Bosch
- Department of Hematology, Hospital Universitari Vall d'Hebron (HUVH), Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bárbara Tazón-Vega
- Department of Hematology, Hospital Universitari Vall d'Hebron (HUVH), Experimental Hematology, Vall d'Hebron Institute of Oncology (VHIO), Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fanny Baran-Marszak
- Service d'hématologie Biologique Hôpital Avicenne Assistance Publique des Hôpitaux de Paris, Bobigny, France
| | - David Oscier
- Molecular Pathology Department, University Hospitals Dorset, Bournemouth, UK
| | - Florence Nguyen-Khac
- Sorbonne Université, Service d'Hématologie Clinique, Hôpital Pitié-Salpêtrière, APHP, Paris, France
| | - Thorsten Zenz
- Department of Oncology and Haematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Maria Jose Terol
- Department of Hematology, INCLIVA Research Insitute, University of Valencia, Valencia, Spain
| | - Antonio Cuneo
- Hematology-Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - María Hernández-Sánchez
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica (IBSAL), Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain
| | - Sarka Pospisilova
- Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ken Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Carsten U Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Hospital Clínic of Barcelona, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Jonathan C Strefford
- Cancer Genomics, School for Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Paolo Ghia
- Università Vita Salute San Raffaele and IRCCS Ospedale San Raffaele, Milano, Italy
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
- Clinical Genetics, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
16
|
Dogliotti I, Jiménez C, Varettoni M, Talaulikar D, Bagratuni T, Ferrante M, Pérez J, Drandi D, Puig N, Gilestro M, García-Álvarez M, Owen R, Jurczak W, Tedeschi A, Leblond V, Kastritis E, Kersten MJ, D’Sa S, Kaščák M, Willenbacher W, Roccaro AM, Poulain S, Morel P, Kyriakou C, Fend F, Vos JMI, Dimopoulos MA, Buske C, Ferrero S, García-Sanz R. Diagnostics in Waldenström's macroglobulinemia: a consensus statement of the European Consortium for Waldenström's Macroglobulinemia. Leukemia 2023; 37:388-395. [PMID: 36435884 PMCID: PMC9898035 DOI: 10.1038/s41375-022-01762-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022]
Abstract
The diagnosis of Waldenström's macroglobulinemia (WM), an IgM-associated lymphoplasmacytic lymphoma, can be challenging due to the different forms of disease presentation. Furthermore, in recent years, WM has witnessed remarkable progress on the diagnostic front, as well as a deeper understanding of the disease biology, which has affected clinical practice. This, together with the increasing variety of tools and techniques available, makes it necessary to have a practical guidance for clinicians to perform the initial evaluation of patients with WM. In this paper, we present the consensus recommendations and laboratory requirements for the diagnosis of WM developed by the European Consortium of Waldenström's Macroglobulinemia (ECWM), for both clinical practice as well as the research/academical setting. We provide the procedures for multiparametric flow cytometry, fluorescence in situ hybridization and molecular tests, and with this offer guidance for a standardized diagnostic work-up and methodological workflow of patients with IgM monoclonal gammopathy of uncertain significance, asymptomatic and symptomatic WM.
Collapse
Affiliation(s)
- Irene Dogliotti
- grid.7605.40000 0001 2336 6580Unit of Hematology, Department of Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Cristina Jiménez
- Hematology Department, University Hospital of Salamanca, Research Biomedical Institute of Salamanca (IBSAL), CIBERONC and Center for Cancer Research-IBMCC (University of Salamanca-CSIC), Salamanca, Spain.
| | - Marzia Varettoni
- grid.419425.f0000 0004 1760 3027Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Dipti Talaulikar
- grid.1001.00000 0001 2180 7477Canberra Health Services, College of Medicine, Biology and Environment Australian National University, Canberra ACT, Australia
| | - Tina Bagratuni
- grid.5216.00000 0001 2155 0800Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Martina Ferrante
- grid.7605.40000 0001 2336 6580Unit of Hematology, Department of Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - José Pérez
- grid.411258.bHematology Department, University Hospital of Salamanca, Research Biomedical Institute of Salamanca (IBSAL), CIBERONC and Center for Cancer Research-IBMCC (University of Salamanca-CSIC), Salamanca, Spain
| | - Daniela Drandi
- grid.7605.40000 0001 2336 6580Unit of Hematology, Department of Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Noemí Puig
- grid.411258.bHematology Department, University Hospital of Salamanca, Research Biomedical Institute of Salamanca (IBSAL), CIBERONC and Center for Cancer Research-IBMCC (University of Salamanca-CSIC), Salamanca, Spain
| | - Milena Gilestro
- grid.7605.40000 0001 2336 6580Unit of Hematology, Department of Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - María García-Álvarez
- grid.411258.bHematology Department, University Hospital of Salamanca, Research Biomedical Institute of Salamanca (IBSAL), CIBERONC and Center for Cancer Research-IBMCC (University of Salamanca-CSIC), Salamanca, Spain
| | - Roger Owen
- grid.415967.80000 0000 9965 1030The Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| | - Wojciech Jurczak
- grid.418165.f0000 0004 0540 2543Maria Sklodowska-Curie National Research Institute of Oncology, Krakow, Poland
| | - Alessandra Tedeschi
- grid.416200.1ASST Grande Ospedale Metropolitano Niguarda Hospital, Milan, Italy
| | - Veronique Leblond
- grid.462844.80000 0001 2308 1657Département d’Hématologie Hôpital Pitié-Salpêtrière APHP, UPMC Université Paris, Paris, France
| | - Efstathios Kastritis
- grid.5216.00000 0001 2155 0800Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece ,grid.5216.00000 0001 2155 0800National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Marie José Kersten
- grid.509540.d0000 0004 6880 3010Department of Hematology, Amsterdam UMC, Location University of Amsterdam, Cancer Center Amsterdam and LYMMCARE (Lymphoma and Myeloma Center Amsterdam), Amsterdam, The Netherlands
| | - Shirley D’Sa
- grid.439749.40000 0004 0612 2754Centre for Waldenströms Macroglobulinaemia and Related Conditions, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Michal Kaščák
- grid.412684.d0000 0001 2155 4545Department of Haematooncology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Wolfgang Willenbacher
- grid.410706.4Department of Haematology and Oncology, Internal Medicine V, Innsbruck University Hospital & Syndena GmbH, Connect to Cure, Innsbruck, Austria
| | - Aldo M. Roccaro
- grid.412725.7Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Stephanie Poulain
- grid.410463.40000 0004 0471 8845Laboratory of Hematology, Biology and Pathology Center, CHU of Lille, INSERM UMR-S 1277, Team 4, Oncolille, Lille, France
| | - Pierre Morel
- grid.134996.00000 0004 0593 702XService d’Hematologie Clinique et Therapie Cellulaire, Centre Hospitalier Universitaire d’Amiens-Picardie, Amiens, France
| | - Charalampia Kyriakou
- grid.439749.40000 0004 0612 2754Centre for Waldenströms Macroglobulinaemia and Related Conditions, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Falko Fend
- grid.411544.10000 0001 0196 8249Institute of Pathology and Comprehensive Cancer Centre, Eberhard-Karls-University, University Hospital Tübingen, Tübingen, Germany
| | - Josephine M. I. Vos
- grid.509540.d0000 0004 6880 3010Department of Hematology, Amsterdam UMC, Location University of Amsterdam, Cancer Center Amsterdam and LYMMCARE (Lymphoma and Myeloma Center Amsterdam), Amsterdam, The Netherlands
| | - Meletios A. Dimopoulos
- grid.5216.00000 0001 2155 0800Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece ,grid.5216.00000 0001 2155 0800National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Christian Buske
- grid.410712.10000 0004 0473 882XInstitute of Experimental Cancer Research, Comprehensive Cancer Center Ulm, University Hospital of Ulm, Ulm, Germany
| | - Simone Ferrero
- grid.7605.40000 0001 2336 6580Unit of Hematology, Department of Biotechnology and Health Sciences, University of Torino, Torino, Italy ,Hematology Division 1U, “AOU Città della Salute e della Scienza di Torino”, Torino, Italy
| | - Ramón García-Sanz
- grid.411258.bHematology Department, University Hospital of Salamanca, Research Biomedical Institute of Salamanca (IBSAL), CIBERONC and Center for Cancer Research-IBMCC (University of Salamanca-CSIC), Salamanca, Spain
| |
Collapse
|
17
|
Drandi D, Ferrante M, Borriero M, Ferrero S. MYD88 L265P Mutation Detection by ddPCR: Recommendations for Screening and Minimal Residual Disease Monitoring : ddPCR for Highly Sensitive Detection of MYD88 L265P Mutation. Methods Mol Biol 2023; 2621:57-72. [PMID: 37041440 DOI: 10.1007/978-1-0716-2950-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
MYD88L265P is a gain-of-function mutation, arising from the missense alteration c.794T>C, that frequently occurs in B-cell malignancies such as Waldenstrom macroglobulinemia and less frequently in IgM monoclonal gammopathy of undetermined significance (IgM-MGUS) or other lymphomas. MYD88L265P has been recognized as a relevant diagnostic flag, but also as a valid prognostic and predictive biomarker, as well as an investigated therapeutic target. Up until now, allele-specific quantitative PCR (ASqPCR) has been widely used for MYD88L265P detection providing a higher level of sensitivity than Sanger sequencing. However, the recently developed droplet digital PCR (ddPCR) shows a deeper sensitivity, compared to ASqPCR, that is necessary for screening low infiltrated samples. Actually, ddPCR could represent an improvement in daily laboratory practice since it allows mutation detection in unselected tumor cells, allowing to bypass the time-consuming and costly B-cell selection procedure. ddPCR accuracy has been recently proved to be suitable also for mutation detection in "liquid biopsy" samples that might be used as a noninvasive and patient-friendly alternative to bone marrow aspiration especially during the disease monitoring. The relevance of MYD88L265P, both in daily management of patients and in prospective clinical trials investigating the efficacy of novel agents, makes crucial to find a sensitive, accurate, and reliable molecular technique for mutation detection. Here, we propose a protocol for MYD88L265P detection by ddPCR.
Collapse
Affiliation(s)
- Daniela Drandi
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, Torino, Italy.
| | - Martina Ferrante
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, Torino, Italy
| | - Michela Borriero
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, Torino, Italy
| | - Simone Ferrero
- Department of Molecular Biotechnology and Health Sciences, Hematology Division, University of Torino, Torino, Italy
| |
Collapse
|
18
|
Hergott CB, Kim AS. Molecular Diagnostic Testing for Hematopoietic Neoplasms: Linking Pathogenic Drivers to Personalized Diagnosis. Clin Lab Med 2022; 42:325-347. [PMID: 36150815 DOI: 10.1016/j.cll.2022.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular diagnostics inhabit an increasingly central role in characterizing hematopoietic malignancies. This brief review summarizes the genomic targets important for many major categories of hematopoietic neoplasia by focusing on disease pathogenesis. In myeloid disease, recurrent mutations in key functional classes drive clonal hematopoiesis, on which additional variants can specify clinical presentation and accelerate progression. Lymphoblastic leukemias are frequently initiated by oncogenic fusions that block lymphoid maturation while, in concert with additional mutations, driving proliferation. The links between genetic aberrations and lymphoma patient outcomes have been clarified substantially through the clustering of genomic profiles. Finally, the addition of next-generation sequencing strategies to cytogenetics is refining risk stratification for plasma cell myeloma. In all categories, molecular diagnostics shed light on the unique mechanistic underpinnings of each individual malignancy, thereby empowering more rational, personalized care for these patients.
Collapse
Affiliation(s)
- Christopher B Hergott
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Alcoceba M, García-Álvarez M, Medina A, Maldonado R, González-Calle V, Chillón MC, Sarasquete ME, González M, García-Sanz R, Jiménez C. MYD88 Mutations: Transforming the Landscape of IgM Monoclonal Gammopathies. Int J Mol Sci 2022; 23:5570. [PMID: 35628381 PMCID: PMC9141891 DOI: 10.3390/ijms23105570] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
The MYD88 gene has a physiological role in the innate immune system. Somatic mutations in MYD88, including the most common L265P, have been associated with the development of certain types of lymphoma. MYD88L265P is present in more than 90% of patients with Waldenström's macroglobulinemia (WM) and IgM monoclonal gammopathy of undetermined significance (IgM-MGUS). The absence of MYD88 mutations in WM patients has been associated with a higher risk of transformation into aggressive lymphoma, resistance to certain therapies (BTK inhibitors), and shorter overall survival. The MyD88 signaling pathway has also been used as a target for specific therapies. In this review, we summarize the clinical applications of MYD88 testing in the diagnosis, prognosis, follow-up, and treatment of patients. Although MYD88L265P is not specific to WM, few tumors present a single causative mutation in a recurrent position. The role of the oncogene in the pathogenesis of WM is still unclear, especially considering that the mutation can be found in normal B cells of patients, as recently reported. This may have important implications for early lymphoma detection in healthy elderly individuals and for the treatment response assessment based on a MYD88L265P analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ramón García-Sanz
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (M.A.); (M.G.-Á.); (A.M.); (R.M.); (V.G.-C.); (M.C.C.); (M.E.S.); (M.G.); (C.J.)
| | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Cell intrinsic and extrinsic perturbations to inflammatory signaling pathways are a hallmark of development and progression of hematologic malignancies. The interleukin 1 receptor-associated kinases (IRAKs) are a family of related signaling intermediates (IRAK1, IRAK2, IRAK3, IRAK4) that operate at the nexus of multiple inflammatory pathways implicated in the hematologic malignancies. In this review, we explicate the oncogenic role of these kinases and review recent therapeutic advances in the dawning era of IRAK-targeted therapy. RECENT FINDINGS Emerging evidence places IRAK signaling at the confluence of adaptive resistance and oncogenesis in the hematologic malignancies and solid tissue tumors. Preclinical investigations nominate the IRAK kinases as targetable molecular dependencies in diverse cancers. SUMMARY IRAK-targeted therapies that have matriculated to early phase trials are yielding promising preliminary results. However, studies of IRAK kinase signaling continue to defy conventional signaling models and raise questions as to the design of optimal treatment strategies. Efforts to refine IRAK signaling mechanisms in the malignant context will inspire deliberate IRAK-targeted drug development and informed combination therapy.
Collapse
Affiliation(s)
- Joshua Bennett
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
21
|
Spaner DE. O-GlcNAcylation in Chronic Lymphocytic Leukemia and Other Blood Cancers. Front Immunol 2021; 12:772304. [PMID: 34868034 PMCID: PMC8639227 DOI: 10.3389/fimmu.2021.772304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, aberrant O-GlcNAcylation has emerged as a new hallmark of cancer. O-GlcNAcylation is a post-translational modification that results when the amino-sugar β-D-N-acetylglucosamine (GlcNAc) is made in the hexosamine biosynthesis pathway (HBP) and covalently attached to serine and threonine residues in intracellular proteins by the glycosyltransferase O-GlcNAc transferase (OGT). O-GlcNAc moieties reflect the metabolic state of a cell and are removed by O-GlcNAcase (OGA). O-GlcNAcylation affects signaling pathways and protein expression by cross-talk with kinases and proteasomes and changes gene expression by altering protein interactions, localization, and complex formation. The HBP and O-GlcNAcylation are also recognized to mediate survival of cells in harsh conditions. Consequently, O-GlcNAcylation can affect many of the cellular processes that are relevant for cancer and is generally thought to promote tumor growth, disease progression, and immune escape. However, recent studies suggest a more nuanced view with O-GlcNAcylation acting as a tumor promoter or suppressor depending on the stage of disease or the genetic abnormalities, proliferative status, and state of the p53 axis in the cancer cell. Clinically relevant HBP and OGA inhibitors are already available and OGT inhibitors are in development to modulate O-GlcNAcylation as a potentially novel cancer treatment. Here recent studies that implicate O-GlcNAcylation in oncogenic properties of blood cancers are reviewed, focusing on chronic lymphocytic leukemia and effects on signal transduction and stress resistance in the cancer microenvironment. Therapeutic strategies for targeting the HBP and O-GlcNAcylation are also discussed.
Collapse
Affiliation(s)
- David E Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Department of Medical Oncology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Putowski M, Giannopoulos K. Perspectives on Precision Medicine in Chronic Lymphocytic Leukemia: Targeting Recurrent Mutations-NOTCH1, SF3B1, MYD88, BIRC3. J Clin Med 2021; 10:jcm10163735. [PMID: 34442029 PMCID: PMC8396993 DOI: 10.3390/jcm10163735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is highly heterogeneous, with extremely variable clinical course. The clinical heterogeneity of CLL reflects differences in the biology of the disease, including chromosomal alterations, specific immunophenotypic patterns and serum markers. The application of next-generation sequencing techniques has demonstrated the high genetic and epigenetic heterogeneity in CLL. The novel mutations could be pharmacologically targeted for individualized approach in some of the CLL patients. Potential neurogenic locus notch homolog protein 1 (NOTCH1) signalling targeting mechanisms in CLL include secretase inhibitors and specific antibodies to block NOTCH ligand/receptor interactions. In vitro studies characterizing the effect of the splicing inhibitors resulted in increased apoptosis of CLL cells regardless of splicing factor 3B subunit 1 (SF3B1) status. Several therapeutic strategies have been also proposed to directly or indirectly inhibit the toll-like receptor/myeloid differentiation primary response gene 88 (TLR/MyD88) pathway. Another potential approach is targeting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and inhibition of this prosurvival pathway. Newly discovered mutations and their signalling pathways play key roles in the course of the disease. This opens new opportunities in the management and treatment of CLL.
Collapse
Affiliation(s)
- Maciej Putowski
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-66-32
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Hematology, St. John’s Cancer Center, 20-090 Lublin, Poland
| |
Collapse
|
23
|
López-Oreja I, Playa-Albinyana H, Arenas F, López-Guerra M, Colomer D. Challenges with Approved Targeted Therapies against Recurrent Mutations in CLL: A Place for New Actionable Targets. Cancers (Basel) 2021; 13:3150. [PMID: 34202439 PMCID: PMC8269088 DOI: 10.3390/cancers13133150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by a high degree of genetic variability and interpatient heterogeneity. In the last decade, novel alterations have been described. Some of them impact on the prognosis and evolution of patients. The approval of BTK inhibitors, PI3K inhibitors and Bcl-2 inhibitors has drastically changed the treatment of patients with CLL. The effect of these new targeted therapies has been widely analyzed in TP53-mutated cases, but few data exist about the response of patients carrying other recurrent mutations. In this review, we describe the biological pathways recurrently altered in CLL that might have an impact on the response to these new therapies together with the possibility to use new actionable targets to optimize treatment responses.
Collapse
Affiliation(s)
- Irene López-Oreja
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra, 08005 Barcelona, Spain
| | - Heribert Playa-Albinyana
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Fabián Arenas
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Mónica López-Guerra
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Dolors Colomer
- Experimental Therapies in Lymphoid Neoplasms, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (I.L.-O.); (H.P.-A.); (F.A.); (M.L.-G.)
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28029 Madrid, Spain
- Hematopathology Section, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
24
|
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by extreme genomic heterogeneity. Numerous recurrent genetic abnormalities are associated with dismal clinical outcome in patients treated with chemo(immuno)therapy, with aberrations of the TP53 gene being the main genomic abnormalities that dictate treatment choice. In the era of novel agents the predictive significance of the genomic aberrations is highly challenged as the results of the clinical trials performed thus far question the previously established unfavorable impact of genomic aberrations, even that of the TP53 gene. The prognostic and predictive value of the most common genomic abnormalities is discussed in the present review.
Collapse
|
25
|
Kikushige Y. Pathogenesis of chronic lymphocytic leukemia and the development of novel therapeutic strategies. J Clin Exp Hematop 2020; 60:146-158. [PMID: 33148933 PMCID: PMC7810248 DOI: 10.3960/jslrt.20036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries and is characterized by the clonal expansion of mature CD5+ B cells. There have been substantial advances in the field of CLL research in the last decade, including the identification of recurrent mutations, and clarification of clonal architectures, signaling molecules, and the multistep leukemogenic process, providing a comprehensive understanding of CLL pathogenesis. Furthermore, the development of therapeutic approaches, especially that of molecular target therapies against CLL, has markedly improved the standard of care for CLL. This review focuses on the recent insights made in CLL leukemogenesis and the development of novel therapeutic strategies.
Collapse
MESH Headings
- Adult
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Molecular Targeted Therapy
- Mutation
Collapse
|
26
|
Adachi Y, Takimoto T, Takeda M, Matsumoto K, Takeuchi N, Kagawa T, Sakamoto T, Kasai T, Sugimoto C, Inoue Y, Tachibana K, Arai T, Inoue Y. Lymphoplasmacytic lymphoma involving the mediastinum and the lung, followed by amyloidosis: A surgically and genetically proven case. Respir Med Case Rep 2020; 31:101313. [PMID: 33318921 PMCID: PMC7723813 DOI: 10.1016/j.rmcr.2020.101313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022] Open
Abstract
A 60-year-old man was admitted for ground glass opacity in the lower lung field and mediastinal lymphadenopathy. Blood tests revealed elevated serum IgM levels, and the urine test detected Bence-Jones protein. Surgical biopsy from the mediastinal lymph node and lung showed small lymphocytes and plasma cells between follicles, and AL kappa amyloid deposition. Genetic examination detected MYD88 L265P mutation. Our diagnosis was lymphoplasmacytic lymphoma (LPL), involving the mediastinum and the lung, followed by amyloidosis. Mutation analysis, in addition to conventional histological evaluation, was useful for a precise diagnosis.
Collapse
Affiliation(s)
- Yuichi Adachi
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Takayuki Takimoto
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Maiko Takeda
- Department of Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Kinnosuke Matsumoto
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Naoko Takeuchi
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Tomoko Kagawa
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Tetsuki Sakamoto
- Department of Surgery, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Takahiko Kasai
- Department of Pathology, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Chikatoshi Sugimoto
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Yasushi Inoue
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Kazunobu Tachibana
- Department of Internal Medicine, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan.,Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Toru Arai
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| | - Yoshikazu Inoue
- Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, 1180 Nagasone-Cho, Kita-Ku, Sakai City, Osaka, 591-8555, Japan
| |
Collapse
|
27
|
Delgado J, Nadeu F, Colomer D, Campo E. Chronic lymphocytic leukemia: from molecular pathogenesis to novel therapeutic strategies. Haematologica 2020; 105:2205-2217. [PMID: 33054046 PMCID: PMC7556519 DOI: 10.3324/haematol.2019.236000] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Chronic lymphocytic leukemia is a well-defined lymphoid neoplasm with very heterogeneous biological and clinical behavior. The last decade has been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease including mechanisms of genetic susceptibility, insights into the relevance of immunogenetic factors driving the disease, profiling of genomic alterations, epigenetic subtypes, global epigenomic tumor cell reprogramming, modulation of tumor cell and microenvironment interactions, and dynamics of clonal evolution from early steps in monoclonal B cell lymphocytosis to progression and transformation into diffuse large B-cell lymphoma. All this knowledge has offered new perspectives that are being exploited therapeutically with novel target agents and management strategies. In this review we provide an overview of these novel advances and highlight questions and perspectives that need further progress to translate into the clinics the biological knowledge and improve the outcome of the patients.
Collapse
Affiliation(s)
- Julio Delgado
- Department of Hematology, Hospital Clínic, University of Barcelona, Barcelona
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Ferran Nadeu
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Dolors Colomer
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
- Hematopathology Section, Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Elias Campo
- Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
- Hematopathology Section, Hospital Clínic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Shuai W, Lin P, Strati P, Patel KP, Routbort MJ, Hu S, Wei P, Khoury JD, You MJ, Loghavi S, Tang Z, Fang H, Thakral B, Medeiros LJ, Wang W. Clinicopathological characterization of chronic lymphocytic leukemia with MYD88 mutations: L265P and non-L265P mutations are associated with different features. Blood Cancer J 2020; 10:86. [PMID: 32848129 PMCID: PMC7450076 DOI: 10.1038/s41408-020-00351-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
MYD88 mutations in chronic lymphocytic leukemia (CLL) are not well characterized. Earlier reports yielded conflicting results in terms of clinicopathologic presentation and prognostic impact of MYD88 mutations in CLL patients. In addition, the morphological and immunophenotypic features of CLL cases carrying MYD88 mutations have not been explored. Finally, the clinical or biologic implications of the canonical L265P MYD88 mutation vs. mutations in other sites of MYD88 within the context of CLL are also unknown. In this study, a cohort of 1779 CLL patients underwent mutational analysis, and 56 (3.1%) cases were found to have MYD88 mutations, including 38 with L265P mutations (designated here as group A) and 18 with non-L265P mutations (group B). Cases with wild type MYD88 were included as controls. There was no morphological difference in cases with and without MYD88 mutations. Immunophenotypically, cases with mutated MYD88 (both groups A and B) more frequently had an atypical immunophenotype when compared to wild type cases. Group A patients were younger and were associated with variable favorable prognostic factors, including less elevated β2-microglobulin level, negative CD38 and ZAP70, higher frequency of mutated IGHV and isolated del(13q14.3), and lower frequency of del(11q22.3) and mutations of NOTCH1 and SF3B1. In contrast, group B patients were more similar to CLL patients with wild type MYD88. There was no difference in time to first treatment when comparing MYD88-mutated vs. wild type CLL patients before and after stratification according to IGHV mutation status. In summary, MYD88 mutations are uncommon in CLL and cases with L265P mutation have distinctive clinical, immunophenotypic, cytogenetic, and molecular features. There is no significant impact of MYD88 mutations on time to first treatment in CLL.
Collapse
Affiliation(s)
- Wen Shuai
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pei Lin
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Paolo Strati
- Departments of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keyur P Patel
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark J Routbort
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shimin Hu
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peng Wei
- Departments of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Joseph D Khoury
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - M James You
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sanam Loghavi
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhenya Tang
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hong Fang
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Beenu Thakral
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - L Jeffrey Medeiros
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Wang
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
29
|
Geyer JT, Prakash S, Orazi A. B-cell neoplasms and Hodgkin lymphoma in the spleen. Semin Diagn Pathol 2020; 38:125-134. [PMID: 32839024 DOI: 10.1053/j.semdp.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/20/2020] [Accepted: 08/06/2020] [Indexed: 11/11/2022]
Abstract
B-cell lymphoma of spleen may be primary (most commonly splenic diffuse large B-cell lymphoma) or secondary (typically low-grade non-Hodgkin lymphoma). Depending on the specific lymphoma subtype, there may be a predominantly white pulp pattern of involvement, a predominantly red pulp pattern or a focal nodular pattern. Splenectomy is the ideal specimen for a multiparametric integrative diagnosis of splenic lymphoma, as it allows for a combined study of morphology, immunohistology, flow cytometry, cytogenetics, and molecular genetic techniques. This review article describes the clinicopathologic characteristics of all the relevant B-cell neoplasms that may be encountered in a splenic biopsy or a splenectomy specimen.
Collapse
Affiliation(s)
- Julia T Geyer
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, 525 E 68th Street, Starr Pavilion 715, New York, NY 10065, United States.
| | - Sonam Prakash
- University of California San Francisco, Department of Laboratory Medicine, Box 0100, Parnassus Avenue, Room 569C, San Francisco, CA 94143, United States
| | - Attilio Orazi
- Texas Tech University Health Sciences Center, PL Foster School of Medicine, Department of Pathology, MSC 41022, 5001 El Paso Drive, El Paso, TX 79905, United States
| |
Collapse
|
30
|
Minzenmayer AN, Miranda RN, Powell PR, Parekh PK. An unusual case of cutaneous Waldenström macroglobulinemia with the MYD88 L265P mutation. J Cutan Pathol 2020; 47:850-853. [PMID: 32335928 DOI: 10.1111/cup.13722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
Waldenström macroglobulinemia is a lymphoplasmacytic lymphoma with bone marrow involvement and a monoclonal IgM gammopathy. Infiltration of the skin by neoplastic cells is very rare, and it can be difficult to distinguish from marginal zone lymphoma. The MYD88 L265P mutation is strongly associated with Waldenström macroglobulinemia, and it may be helpful in differentiating the two disorders, although the presence of this mutation is not specific, and other factors must be considered when making the final diagnosis. We present a diagnostically challenging case of cutaneous Waldenström macroglobulinemia in which the MYD88 L265P mutation was identified in the skin but not in the bone marrow, due to a low tumor burden.
Collapse
Affiliation(s)
- Andrew N Minzenmayer
- Department of Dermatology, Baylor Scott and White Central Texas, Temple, Texas, USA
| | - Roberto N Miranda
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Priscilla R Powell
- Department of Pathology, Baylor Scott and White Central Texas, Temple, Texas, USA
| | - Palak K Parekh
- Department of Dermatology, Baylor Scott and White Central Texas, Temple, Texas, USA
| |
Collapse
|
31
|
Nadeu F, Diaz-Navarro A, Delgado J, Puente XS, Campo E. Genomic and Epigenomic Alterations in Chronic Lymphocytic Leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:149-177. [PMID: 31977296 DOI: 10.1146/annurev-pathmechdis-012419-032810] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic lymphocytic leukemia is a common disease in Western countries and has heterogeneous clinical behavior. The relevance of the genetic basis of the disease has come to the forefront recently, with genome-wide studies that have provided a comprehensive view of structural variants, somatic mutations, and different layers of epigenetic changes. The mutational landscape is characterized by relatively common copy number alterations, a few mutated genes occurring in 10-15% of cases, and a large number of genes mutated in a small number of cases. The epigenomic profile has revealed a marked reprogramming of regulatory regions in tumor cells compared with normal B cells. All of these alterations are differentially distributed in clinical and biological subsets of the disease, indicating that they may underlie the heterogeneous evolution of the disease. These global studies are revealing the molecular complexity of chronic lymphocytic leukemia and provide new perspectives that have helped to understand its pathogenic mechanisms and improve the clinical management of patients.
Collapse
Affiliation(s)
- Ferran Nadeu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; ,
| | - Ander Diaz-Navarro
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Julio Delgado
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Hematology Department, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| | - Xose S Puente
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Elías Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; , , .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; , .,Hematopathology Section, Laboratory of Pathology, Hospital Clinic of Barcelona, University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
32
|
Nfkbie-deficiency leads to increased susceptibility to develop B-cell lymphoproliferative disorders in aged mice. Blood Cancer J 2020; 10:38. [PMID: 32170099 PMCID: PMC7070037 DOI: 10.1038/s41408-020-0305-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant NF-κB activation is a hallmark of most B-cell malignancies. Recurrent inactivating somatic mutations in the NFKBIE gene, which encodes IκBε, an inhibitor of NF-κB-inducible activity, are reported in several B-cell malignancies with highest frequencies in chronic lymphocytic leukemia and primary mediastinal B-cell lymphoma, and account for a fraction of NF-κB pathway activation. The impact of NFKBIE deficiency on B-cell development and function remains, however, largely unknown. Here, we show that Nfkbie-deficient mice exhibit an amplification of marginal zone B cells and an expansion of B1 B-cell subsets. In germinal center (GC)-dependent immune response, Nfkbie deficiency triggers expansion of GC B-cells through increasing cell proliferation in a B-cell autonomous manner. We also show that Nfkbie deficiency results in hyperproliferation of a B1 B-cell subset and leads to increased NF-κB activation in these cells upon Toll-like receptor stimulation. Nfkbie deficiency cooperates with mutant MYD88 signaling and enhances B-cell proliferation in vitro. In aged mice, Nfkbie absence drives the development of an oligoclonal indolent B-cell lymphoproliferative disorders, resembling monoclonal B-cell lymphocytosis. Collectively, these findings shed light on an essential role of IκBε in finely tuning B-cell development and function.
Collapse
|
33
|
Lymphoplasmacytic lymphoma and Waldenström macroglobulinaemia: clinicopathological features and differential diagnosis. Pathology 2020; 52:6-14. [DOI: 10.1016/j.pathol.2019.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
|
34
|
Abstract
Chronic lymphocytic leukaemia (CLL), the most frequent type of leukaemia in adults, is a lymphoproliferative disorder that is characterized by the expansion of monoclonal, mature CD5+CD23+ B cells in the peripheral blood, secondary lymphoid tissues and bone marrow. CLL is an incurable disease with a heterogeneous clinical course, for which the treatment decision still relies on conventional parameters (such as clinical stage and lymphocyte doubling time). During the past 5 years, relevant advances have been made in understanding CLL biology. Indeed, substantial progress has been made in the identification of the putative cell of origin of CLL, and comprehensive studies have dissected the genomic, epigenomic and transcriptomic landscape of CLL. Advances in clinical management include improvements in our understanding of the prognostic value of different genetic lesions, particularly those associated with chemoresistance and progression to highly aggressive forms of CLL, and the advent of new therapies targeting crucial biological pathways. In this Review, we discuss new insights into the genetic lesions involved in the pathogenesis of CLL and how these genetic insights influence clinical management and the development of new therapeutic strategies for this disease.
Collapse
|
35
|
Lim MS, Bailey NG, King RL, Piris M. Molecular Genetics in the Diagnosis and Biology of Lymphoid Neoplasms. Am J Clin Pathol 2019; 152:277-301. [PMID: 31278738 DOI: 10.1093/ajcp/aqz078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The 2017 Workshop of the Society for Hematopathology/European Association for Haematopathology reviewed the role of molecular genetics in the diagnosis and biology of lymphoid neoplasms. METHODS The Workshop Panel reviewed 82 cases. RESULTS Molecular genetic testing reveals alterations that expand the spectrum of diseases such as DUSP22 rearrangement in ALK-negative anaplastic large cell lymphoma, large B-cell lymphoma with IRF4 rearrangement, MYD88 mutations in B-cell lymphomas, Burkitt-like lymphoma with 11q aberrations, and diagnostic criteria for high-grade B-cell lymphomas. Therapeutic agents and natural tumor progression may be associated with transcriptional reprogramming that lead to transdifferentiation and lineage switch. CONCLUSIONS Application of emerging technical advances has revealed the complexity of genetic events in lymphomagenesis, progression, and acquired resistance to therapies. They also contribute to enhanced understanding of the biology of indolent vs aggressive behavior, clonal evolution, tumor progression, and transcriptional reprogramming associated with transdifferentiation events that may occur subsequent to therapy.
Collapse
Affiliation(s)
- Megan S Lim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | | | - Miguel Piris
- Department of Pathology, Centro de Investigación Biomédica en Red de Oncología, Hospital Universitario Fundación Jimenez Diaz, Madrid, Spain
| |
Collapse
|
36
|
Targeting IRAK4 disrupts inflammatory pathways and delays tumor development in chronic lymphocytic leukemia. Leukemia 2019; 34:100-114. [PMID: 31197259 PMCID: PMC8075947 DOI: 10.1038/s41375-019-0507-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/04/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a critical role in Toll-like receptor (TLR) signal transduction and innate immune responses. Recruitment and subsequent activation of IRAK4 upon TLR stimulation is mediated by the myeloid differentiation primary response 88 (MYD88) adaptor protein. Around 3% of chronic lymphocytic leukemia (CLL) patients have activating mutations of MYD88, a driver mutation in this disease. Here, we studied the effects of TLR activation and the pharmacological inhibition of IRAK4 with ND2158, an IRAK4 competitive inhibitor, as a therapeutic approach in CLL. Our in vitro studies demonstrated that ND2158 preferentially killed CLL cells in a dose-dependent manner. We further observed a decrease in NF-κB and STAT3 signaling, cytokine secretion, proliferation and migration of primary CLL cells from MYD88-mutated and -unmutated cases. In the Eµ-TCL1 adoptive transfer mouse model of CLL, ND2158 delayed tumor progression and modulated the activity of myeloid and T cells. Our findings show the importance of TLR signaling in CLL development and suggest IRAK4 as a therapeutic target for this disease.
Collapse
|
37
|
Jiang M, Li J, Zhou J, Xing C, Xu JJ, Guo F. High-resolution melting analysis for rapid and sensitive MYD88 screening in chronic lymphocytic leukemia. Oncol Lett 2019; 18:814-821. [PMID: 31289558 PMCID: PMC6540357 DOI: 10.3892/ol.2019.10342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
High resolution melting (HRM) assay is a novel technology for the fast, high-throughput, sensitive, post-PCR analysis of genetic mutations. Myeloid differentiation primary response 88 (MYD88) mutations are frequently reported in chronic lymphocytic leukemia (CLL) and confer a worse prognosis. The objective of the present study was to assess the value of HRM analysis for the rapid screening of MYD88 mutations in patients with CLL. Genomic DNA samples were extracted from the bone marrow of 129 newly diagnosed patients with CLL. A plasmid with an MYD88-L265P mutation was constructed, and the p.L265P substitution, which is the predominant MYD88 mutation in CLL, was detected using HRM analysis and direct sequencing. The plasmid pCMV-MYD88-L265P-Mu was successfully constructed as a positive control, and was verified by direct sequencing. The normalized and shifted melting curves of 6/129 (4.65%) samples were clearly different from those of other patients by HRM analysis. In addition, the 794T>C mutation in MYD88 was identified in 6 (4.65%) patients by direct sequencing. Sensitivity evaluation revealed that the HRM assay had a higher sensitivity (to 1% dilution) than direct sequencing, in addition to being convenient and time-saving. The MYD88 p.L256P mutation has been implicated to be associated with adverse prognosis in CLL. HRM analysis has the potential to be a routine prescreening technique to identify the MYD88 p.L256P mutation and may facilitate the clinical treatment of CLL.
Collapse
Affiliation(s)
- Min Jiang
- Department of Blood Transfusion, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jie Li
- Department of Special Requirements Ward, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jun Zhou
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Chao Xing
- Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Jing-Jing Xu
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Feng Guo
- Department of Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215001, P.R. China
| |
Collapse
|
38
|
Georgiadis P, Gavriil M, Rantakokko P, Ladoukakis E, Botsivali M, Kelly RS, Bergdahl IA, Kiviranta H, Vermeulen RCH, Spaeth F, Hebbels DGAJ, Kleinjans JCS, de Kok TMCM, Palli D, Vineis P, Kyrtopoulos SA. DNA methylation profiling implicates exposure to PCBs in the pathogenesis of B-cell chronic lymphocytic leukemia. ENVIRONMENT INTERNATIONAL 2019; 126:24-36. [PMID: 30776747 PMCID: PMC7063446 DOI: 10.1016/j.envint.2019.01.068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 05/03/2023]
Abstract
OBJECTIVES To characterize the impact of PCB exposure on DNA methylation in peripheral blood leucocytes and to evaluate the corresponding changes in relation to possible health effects, with a focus on B-cell lymphoma. METHODS We conducted an epigenome-wide association study on 611 adults free of diagnosed disease, living in Italy and Sweden, in whom we also measured plasma concentrations of 6 PCB congeners, DDE and hexachlorobenzene. RESULTS We identified 650 CpG sites whose methylation correlates strongly (FDR < 0.01) with plasma concentrations of at least one PCB congener. Stronger effects were observed in males and in Sweden. This epigenetic exposure profile shows extensive and highly statistically significant overlaps with published profiles associated with the risk of future B-cell chronic lymphocytic leukemia (CLL) as well as with clinical CLL (38 and 28 CpG sites, respectively). For all these sites, the methylation changes were in the same direction for increasing exposure and for higher disease risk or clinical disease status, suggesting an etiological link between exposure and CLL. Mediation analysis reinforced the suggestion of a causal link between exposure, changes in DNA methylation and disease. Disease connectivity analysis identified multiple additional diseases associated with differentially methylated genes, including melanoma for which an etiological link with PCB exposure is established, as well as developmental and neurological diseases for which there is corresponding epidemiological evidence. Differentially methylated genes include many homeobox genes, suggesting that PCBs target stem cells. Furthermore, numerous polycomb protein target genes were hypermethylated with increasing exposure, an effect known to constitute an early marker of carcinogenesis. CONCLUSIONS This study provides mechanistic evidence in support of a link between exposure to PCBs and the etiology of CLL and underlines the utility of omic profiling in the evaluation of the potential toxicity of environmental chemicals.
Collapse
Affiliation(s)
- Panagiotis Georgiadis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Marios Gavriil
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Panu Rantakokko
- National Institute for Health and Welfare, Department of Health Security, Environmental Health unit, P.O. Box 95, Kuopio, Finland
| | - Efthymios Ladoukakis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Maria Botsivali
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece
| | - Rachel S Kelly
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Ingvar A Bergdahl
- Department of Biobank Research, and Occupational and Environmental Medicine, Department of Public Health and Clinical Medicine, Umeå University, Sweden
| | - Hannu Kiviranta
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands
| | - Florentin Spaeth
- Department of Radiation Sciences, Oncology, Umeå University, Sweden
| | | | | | | | - Domenico Palli
- The Institute for Cancer Research and Prevention, Florence, Italy
| | - Paolo Vineis
- MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Soterios A Kyrtopoulos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., Athens 11635, Greece.
| |
Collapse
|
39
|
Hernández-Sánchez M, Rodríguez-Vicente AE, González-Gascón Y Marín I, Quijada-Álamo M, Hernández-Sánchez JM, Martín-Izquierdo M, Hernández-Rivas JÁ, Benito R, Hernández-Rivas JM. DNA damage response-related alterations define the genetic background of patients with chronic lymphocytic leukemia and chromosomal gains. Exp Hematol 2019; 72:9-13. [PMID: 30807786 DOI: 10.1016/j.exphem.2019.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/24/2019] [Accepted: 02/14/2019] [Indexed: 12/30/2022]
Abstract
The presence of chromosomal gains other than trisomy 12 suggesting a hyperdiploid karyotype is extremely rare in chronic lymphocytic leukemia (CLL) and is associated with a dismal prognosis. However, the genetic mechanisms and mutational background of these patients have not been fully explored. To improve our understanding of the genetic underpinnings of this subgroup of CLL, seven CLL patients with several chromosomal gains were sequenced using a next-generation sequencing (NGS)-targeted approach. The mutational status of 54 genes was evaluated using a custom-designed gene panel including recurrent mutated genes observed in CLL and widely associated with CLL pathogenesis. A total of 21 mutations were detected; TP53 (42.8%), ATM (28.5%), SF3B1 (28.5%), and BRAF (28.5%) were the most recurrently mutated genes. Of these mutations, 61.9% were detected in genes previously associated with a poor prognosis in CLL. Interestingly, five of the seven patients exhibited alterations in TP53 or ATM (deletion and/or mutation), genes involved in the DNA damage response (DDR), which could be related to a high genetic instability in this subgroup of patients. In conclusion, CLL patients with several chromosomal gains exhibit high genetic instability, with mutations in CLL driver genes and high-risk genetic alterations involving ATM and/or TP53 genes.
Collapse
Affiliation(s)
- María Hernández-Sánchez
- Servicio de Hematología, IBSAL, IBMCC, CIC Universidad de Salamanca-CSIC, Hospital Universitario, Salamanca, Spain; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | - Miguel Quijada-Álamo
- Servicio de Hematología, IBSAL, IBMCC, CIC Universidad de Salamanca-CSIC, Hospital Universitario, Salamanca, Spain
| | | | - Marta Martín-Izquierdo
- Servicio de Hematología, IBSAL, IBMCC, CIC Universidad de Salamanca-CSIC, Hospital Universitario, Salamanca, Spain
| | - José Ángel Hernández-Rivas
- Servicio de Hematología, Hospital Universitario Infanta Leonor, Universidad Complutense de Madrid, Madrid, Spain
| | - Rocío Benito
- Servicio de Hematología, IBSAL, IBMCC, CIC Universidad de Salamanca-CSIC, Hospital Universitario, Salamanca, Spain
| | - Jesús María Hernández-Rivas
- Servicio de Hematología, IBSAL, IBMCC, CIC Universidad de Salamanca-CSIC, Hospital Universitario, Salamanca, Spain; Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain.
| |
Collapse
|
40
|
Awada H, Kewan T, Covut F, Daw H, Haddad A. Simultaneous Presentation of Waldenström's Macroglobulinemia and MYD88 Gene Mutation with Multiple Myeloma. Cureus 2019; 11:e3822. [PMID: 30868035 PMCID: PMC6402863 DOI: 10.7759/cureus.3822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Waldenström's macroglobulinemia (WM) and multiple myeloma (MM) are two distinct forms of mature hematologic B-cell malignancies. A missense somatic mutation in MYD88 gene (MYD88L265P) has been found in hematologic B-cell malignancies. The simultaneous presentation of Waldenström's macroglobulinemia and MYD88 mutation with multiple myeloma in the same patient is very rare and only a few cases have been reported in the literature.
Collapse
Affiliation(s)
- Hassan Awada
- Internal Medicine, Cleveland Clinic - Fairview Hospital, Cleveland, USA
| | - Tariq Kewan
- Internal Medicine, Cleveland Clinic - Fairview Hospital, Cleveland, USA
| | - Fahrettin Covut
- Internal Medicine, Cleveland Clinic - Fairview Hospital, Cleveland, USA
| | - Hamed Daw
- Hematology and Oncology, Cleveland Clinic - Fairview Hospital, Cleveland, USA
| | - Abdo Haddad
- Hematology and Oncology, Cleveland Clinic - Fairview Hospital, Cleveland, USA
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Chronic lymphocytic leukemia is heterogeneous disease characterized by a variable clinical course that is greatly influenced by various patient and disease characteristics. Over the last two decades, advent of new diagnostic methodologies has led to the identification of several factors of prognostic and predictive relevance. Furthermore, recent advances in next-generation sequencing techniques has identified recurrent novel mutations in NOTCH1, SF3B1, BIRC3, and ATM genes whose role as prognostic and predictive markers is currently being investigated. These biologic markers carry new prognostic information and their incorporation into prognostic scoring systems will likely lead to refined multi-parameter risk models. RECENT FINDINGS While the prognostic impact of many of the most commonly used markers on clinical outcomes in patients treated with chemo-immunotherapy is well documented, it is important to review their predictive and prognostic role in the era of novel targeted therapies. This article will discuss the currently available information on the clinical relevance of prognostic markers in patients treated with novel targeted therapies.
Collapse
Affiliation(s)
- Prajwal Boddu
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 428, Houston, TX, 77030, USA
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 428, Houston, TX, 77030, USA.
| |
Collapse
|
42
|
Improgo MR, Tesar B, Klitgaard JL, Magori‐Cohen R, Yu L, Kasar S, Chaudhary D, Miao W, Fernandes SM, Hoang K, Westlin WF, Kim HT, Brown JR. MYD88 L265P mutations identify a prognostic gene expression signature and a pathway for targeted inhibition inCLL. Br J Haematol 2018; 184:925-936. [DOI: 10.1111/bjh.15714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Ma. Reina Improgo
- Department of Medical Oncology Dana‐Farber Cancer Institute Cambridge MA USA
- Department of Medicine Harvard Medical School Cambridge MA USA
| | - Bethany Tesar
- Department of Medical Oncology Dana‐Farber Cancer Institute Cambridge MA USA
- Department of Medicine Harvard Medical School Cambridge MA USA
| | - Josephine L. Klitgaard
- Department of Medical Oncology Dana‐Farber Cancer Institute Cambridge MA USA
- Department of Medicine Harvard Medical School Cambridge MA USA
| | - Reuma Magori‐Cohen
- Department of Biostatistics and Computational Biology Dana‐Farber Cancer Institute Cambridge MA USA
- Department of Biostatistics Harvard School of Public Health Cambridge MA USA
| | - Lijian Yu
- Department of Medical Oncology Dana‐Farber Cancer Institute Cambridge MA USA
- Department of Medicine Harvard Medical School Cambridge MA USA
| | - Siddha Kasar
- Department of Medical Oncology Dana‐Farber Cancer Institute Cambridge MA USA
- Department of Medicine Harvard Medical School Cambridge MA USA
| | | | | | - Stacey M. Fernandes
- Department of Medical Oncology Dana‐Farber Cancer Institute Cambridge MA USA
| | - Kevin Hoang
- Department of Medical Oncology Dana‐Farber Cancer Institute Cambridge MA USA
| | | | - Haesook T. Kim
- Department of Biostatistics and Computational Biology Dana‐Farber Cancer Institute Cambridge MA USA
| | - Jennifer R. Brown
- Department of Medical Oncology Dana‐Farber Cancer Institute Cambridge MA USA
- Department of Medicine Harvard Medical School Cambridge MA USA
| |
Collapse
|
43
|
Zorofchian S, El-Achi H, Yan Y, Esquenazi Y, Ballester LY. Characterization of genomic alterations in primary central nervous system lymphomas. J Neurooncol 2018; 140:509-517. [PMID: 30171453 DOI: 10.1007/s11060-018-2990-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/22/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Primary central nervous system lymphoma (PCNSL) is a non-Hodgkin lymphoma that affects the central nervous system (CNS). Although previous studies have reported the most common mutated genes in PCNSL, including MYD88 and CD79b, our understanding of genetic characterizations in primary CNS lymphomas is limited. The aim of this study was to perform a retrospective analysis investigating the most frequent mutation types, and their frequency, in PCNSL. METHODS Fifteen patients with a diagnosis of PCNSL from our institution were analyzed for mutations in 406 genes and rearrangements in 31 genes by next generation sequencing (NGS). RESULTS Missense mutations were identified as the most common mutation type (32%) followed by frame shift mutations (23%). The highest mutation rate was reported in the MYD88 (33.3%), CDKN2A/B (33.3%), and TP53 (26.7%) genes. Intermediate tumor mutation burden (TMB) and high TMB was detected in 13.3% and 26.7% of PCNSL, respectively. The most frequent gene rearrangement involved the IGH-BCL6 genes (20%). CONCLUSIONS This study shows the most common genetic alterations in PCNSL as determined by a commercial next generation sequencing assay. MYD88 and CD79b are frequently mutated in PCNSL, IGH-BCL6 is the most frequent gene rearrangement and approximately 1/4 of cases show a high TMB. Mutations in multiple genes, in addition to high TMB and gene rearrangements, highlights the complex molecular heterogeneity of PCNSL. Knowledge about genetic alterations in PCNSL can inform the development of novel targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Soheil Zorofchian
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Hanadi El-Achi
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Yuanqing Yan
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA.
| | - Leomar Y Ballester
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA. .,Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center, 6431 Fannin St., MSB 2.136, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Design and MinION testing of a nanopore targeted gene sequencing panel for chronic lymphocytic leukemia. Sci Rep 2018; 8:11798. [PMID: 30087429 PMCID: PMC6081477 DOI: 10.1038/s41598-018-30330-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/27/2018] [Indexed: 12/12/2022] Open
Abstract
We report a customized gene panel assay based on multiplex long-PCR followed by third generation sequencing on nanopore technology (MinION), designed to analyze five frequently mutated genes in chronic lymphocytic leukemia (CLL): TP53, NOTCH1, BIRC3, SF3B1 and MYD88. For this purpose, 12 patients were selected according to specific cytogenetic and molecular features significantly associated with their mutational status. In addition, simultaneous analysis of the targets genes was performed by molecular assays or Sanger Sequencing. Data analysis included mapping to the GRCh37 human reference genome, variant calling and annotation, and average sequencing depth/error rate analysis. The sequencing depth resulted on average higher for smaller amplicons, and the final breadth of coverage of the panel was 94.1%. The error rate was about 6% and 2% for insertions/deletions and single nucleotide variants, respectively. Our gene panel allows analysis of the prognostically relevant genes in CLL, with two PCRs per patient. This strategy offers an easy and affordable workflow, although further advances are required to improve the accuracy of the technology and its use in the clinical field. Nevertheless, the rapid and constant development of nanopore technology, in terms of chemistry advances, more accurate basecallers and analysis software, offers promise for a wide use of MinION in the future.
Collapse
|
45
|
Clonal diversity predicts adverse outcome in chronic lymphocytic leukemia. Leukemia 2018; 33:390-402. [PMID: 30038380 DOI: 10.1038/s41375-018-0215-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/17/2018] [Accepted: 06/26/2018] [Indexed: 11/09/2022]
Abstract
Genomic analyses of chronic lymphocytic leukemia (CLL) identified somatic mutations and associations of clonal diversity with adverse outcomes. Clonal evolution likely has therapeutic implications but its dynamic is less well studied. We studied clonal composition and prognostic value of seven recurrently mutated driver genes using targeted next-generation sequencing in 643 CLL patients and found higher frequencies of mutations in TP53 (35 vs. 12%, p < 0.001) and SF3B1 (20 vs. 11%, p < 0.05) and increased number of (sub)clonal (p < 0.0001) mutations in treated patients. We next performed an in-depth evaluation of clonal evolution on untreated CLL patients (50 "progressors" and 17 matched "non-progressors") using a 404 gene-sequencing panel and identified novel mutated genes such as AXIN1, SDHA, SUZ12, and FOXO3. Progressors carried more mutations at initial presentation (2.5 vs. 1, p < 0.0001). Mutations in specific genes were associated with increased (SF3B1, ATM, and FBXW7) or decreased progression risk (AXIN1 and MYD88). Mutations affecting specific signaling pathways, such as Notch and MAP kinase pathway were enriched in progressive relative to non-progressive patients. These data extend earlier findings that specific genomic alterations and diversity of subclones are associated with disease progression and persistence of disease in CLL and identify novel recurrently mutated genes and associated outcomes.
Collapse
|
46
|
Vetro C, Haferlach T, Jeromin S, Stengel A, Zenger M, Nadarajah N, Baer C, Weissmann S, Kern W, Meggendorfer M, Haferlach C. Identification of prognostic parameters in CLL with no abnormalities detected by chromosome banding and FISH analyses. Br J Haematol 2018; 183:47-59. [PMID: 30022491 DOI: 10.1111/bjh.15498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/07/2018] [Indexed: 01/09/2023]
Abstract
Chronic Lymphocytic Leukaemia (CLL) is a heterogeneous disease with a clinical course dependent on cytogenetic features. However, in 15-20% of cases both chromosome banding and fluorescence in situ hybridisation analyses do not show any kind of abnormality. With the aim to identify dependable molecular prognostic factors in this subgroup, we performed a comprehensive analysis on 171 patients including genomic arrays (comparative genomic hybridisation and single nucleotide polymorphism), immunoglobulin heavy chain variable region genes (IGHV) status, flow cytometry and targeted sequencing. Genomic arrays detected 73 aberrations in 39 patients (23%). Most frequently, patients had 1 aberration (25/171; 15%), while 14 patients (8%) had at least 2 aberrations. IGHV status was unmutated in 53/171 (31%) patients. SF3B1 was the most frequently mutated gene (26/171 patients; 15%), followed by NOTCH1 (15/171; 9%). At univariate analysis, an adverse impact on time to treatment (TTT) was evident for SF3B1 mutations, higher white blood cell count, higher CLL cells percentage by flow cytometry, CD38 positivity, IGHV unmutated status and at least 2 genomic array abnormalities. Of these, SF3B1 mutations, CLL cells percentage, IGHV unmutated status and number of genomic array aberrations maintained their impact in multivariate analysis. In conclusion, by integrating genomic and molecular data, we identified patients at higher risk for treatment need.
Collapse
Affiliation(s)
| | | | | | - Anna Stengel
- MLL Munich Leukaemia Laboratory, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Sacco A, Fenotti A, Affò L, Bazzana S, Russo D, Presta M, Malagola M, Anastasia A, Motta M, Patterson CJ, Rossi G, Imberti L, Treon SP, Ghobrial IM, Roccaro AM. The importance of the genomic landscape in Waldenström's Macroglobulinemia for targeted therapeutical interventions. Oncotarget 2018; 8:35435-35444. [PMID: 28423722 PMCID: PMC5471067 DOI: 10.18632/oncotarget.16130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/20/2017] [Indexed: 12/13/2022] Open
Abstract
The Literature has recently reported on the importance of genomics in the field of hematologic malignancies, including B-cell lymphoproliferative disorders such as Waldenström's Macrolgobulinemia (WM). Particularly, whole exome sequencing has led to the identification of the MYD88L265P and CXCR4C1013G somatic variants in WM, occurring in about 90% and 30% of the patients, respectively. Subsequently, functional studies have demonstrated their functional role in supporting WM pathogenesis and disease progression, both in vitro and in vivo, thus providing the pre-clinical evidences for extremely attractive targets for novel therapeutic interventions in WM. Of note, recent evidences have also approached and defined the transcriptome profiling of WM cells, revealing a signature that mirrors the somatic aberrations demonstrated within the tumor clone. A parallel research field has also reported on microRNAs (miRNAs), highlighting the oncogenic role of miRNA-155 in WM. In the present review, we focus on the latest reports on genomics and miRNAs in WM, providing an overview of the clinical relevance of the latest acquired knowledge about genomics and miRNA aberrations in WM.
Collapse
Affiliation(s)
- Antonio Sacco
- ASST Spedali Civili, Coordinamento e Progettazione Ricerca Clinica, CREA Laboratory, Brescia, BS, Italy
| | | | | | | | - Domenico Russo
- University of Brescia Medical School, Adult Bone Marrow Transplantation Unit, Brescia, BS, Italy
| | - Marco Presta
- University of Brescia Medical School, Dept. of Molecular and Translational Medicine, Brescia, BS, Italy
| | - Michele Malagola
- University of Brescia Medical School, Adult Bone Marrow Transplantation Unit, Brescia, BS, Italy
| | | | - Marina Motta
- ASST Spedali Civili, Dept. of Hematology, Brescia, BS, Italy
| | - Christopher J Patterson
- Dana-Farber Cancer Institute, Dept. Medical Oncology, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Rossi
- ASST Spedali Civili, Dept. of Hematology, Brescia, BS, Italy
| | - Luisa Imberti
- ASST Spedali Civili, Coordinamento e Progettazione Ricerca Clinica, CREA Laboratory, Brescia, BS, Italy
| | - Steven P Treon
- Dana-Farber Cancer Institute, Dept. Medical Oncology, Harvard Medical School, Boston, MA, USA
| | - Irene M Ghobrial
- Dana-Farber Cancer Institute, Dept. Medical Oncology, Harvard Medical School, Boston, MA, USA
| | - Aldo M Roccaro
- ASST Spedali Civili, Coordinamento e Progettazione Ricerca Clinica, CREA Laboratory, Brescia, BS, Italy
| |
Collapse
|
48
|
Miao Y, Fan L, Wu YJ, Xia Y, Qiao C, Wang Y, Wang L, Hong M, Zhu HY, Xu W, Li JY. Low expression of CD200 predicts shorter time-to-treatment in chronic lymphocytic leukemia. Oncotarget 2017; 7:13551-62. [PMID: 26910908 PMCID: PMC4924660 DOI: 10.18632/oncotarget.6948] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/26/2015] [Indexed: 11/25/2022] Open
Abstract
CD200, formerly known as OX-2, is a type I glycoprotein that is expressed on a variety of cell types. CD200 has been shown to be overexpressed in chronic lymphocytic leukemia (CLL). Although previous studies have confirmed the diagnostic value of CD200 in differentiating CLL from to other B-cell chronic lymphoproliferative disorders especially mantle cell lymphoma, whether CD200 has prognostic significance in CLL remains to be determined. We evaluated the mean fluorescence intensity (MFI) of CD200 in 307 consecutive, untreated patients with CLL in our center using flow cytometry. Using a CD200 MFI cutoff of 189.5, these cases could be divided into two groups. Patients with lower CD200 MFI (< 189.5) had a significantly shorter time-to-treatment (TTT) than those with higher CD200 MFI (≥ 189.5) (median TTT: 2 months vs 28 months, p = 0.0008). However, the effect of CD200 MFI on overall survival was not significant (CD200 MFI < 189.5: undefined vs CD200 MFI ≥ 189.5: undefined, P = 0.2379). In subgroup analysis, CD200 MFI retained its prognostic value in patients with favourable characteristics such as Binet stage A disease, mutated IGHV status, normal TP53 or negative CD38 expression. In conclusion, our study identified CD200 MFI as a potential prognostic factor in CLL.
Collapse
Affiliation(s)
- Yi Miao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yu-Jie Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yi Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Chun Qiao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Min Hong
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Hua-Yuan Zhu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
49
|
MYD88 mutations predict unfavorable prognosis in Chronic Lymphocytic Leukemia patients with mutated IGHV gene. Blood Cancer J 2017; 7:651. [PMID: 29242635 PMCID: PMC5802429 DOI: 10.1038/s41408-017-0014-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/04/2017] [Accepted: 08/17/2017] [Indexed: 12/03/2022] Open
|
50
|
Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms. Mod Pathol 2017; 30:1338-1366. [PMID: 28664939 DOI: 10.1038/modpathol.2017.58] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 12/18/2022]
Abstract
Genomic profiling studies have provided new insights into the pathogenesis of mature B-cell neoplasms and have identified markers with prognostic impact. Recurrent mutations in tumor-suppressor genes (TP53, BIRC3, ATM), and common signaling pathways, such as the B-cell receptor (CD79A, CD79B, CARD11, TCF3, ID3), Toll-like receptor (MYD88), NOTCH (NOTCH1/2), nuclear factor-κB, and mitogen activated kinase signaling, have been identified in B-cell neoplasms. Chronic lymphocytic leukemia/small lymphocytic lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and marginal zone lymphomas of splenic, nodal, and extranodal types represent examples of B-cell neoplasms in which novel molecular biomarkers have been discovered in recent years. In addition, ongoing retrospective correlative and prospective outcome studies have resulted in an enhanced understanding of the clinical utility of novel biomarkers. This progress is reflected in the 2016 update of the World Health Organization classification of lymphoid neoplasms, which lists as many as 41 mature B-cell neoplasms (including provisional categories). Consequently, molecular genetic studies are increasingly being applied for the clinical workup of many of these neoplasms. In this review, we focus on the diagnostic, prognostic, and/or therapeutic utility of molecular biomarkers in mature B-cell neoplasms.
Collapse
|