1
|
Zhang JJ, Ni P, Song Y, Gao MJ, Guo XY, Zhao BQ. Effective protective mechanisms of HO-1 in diabetic complications: a narrative review. Cell Death Discov 2024; 10:433. [PMID: 39389941 PMCID: PMC11466965 DOI: 10.1038/s41420-024-02205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder with persistent hyperglycemia caused by a variety of underlying factors. Chronic hyperglycemia can lead to diverse serious consequences and diversified complications, which pose a serious threat to patients. Among the major complications are cardiovascular disease, kidney disease, diabetic foot ulcers, diabetic retinopathy, and neurological disorders. Heme oxygenase 1 (HO-1) is a protective enzyme with antioxidant, anti-inflammatory and anti-apoptotic effects, which has been intensively studied and plays an important role in diabetic complications. By inducing the expression and activity of HO-1, it can enhance the antioxidant, anti-inflammatory, and anti-apoptotic capacity of tissues, and thus reduce the degree of damage in diabetic complications. The present study aims to review the relationship between HO-1 and the pathogenesis of diabetes and its complications. HO-1 is involved in the regulation of macrophage polarization and promotes the M1 state (pro-inflammatory) towards to the M2 state (anti-inflammatory). Induction of HO-1 expression in dendritic cells inhibits them maturation and secretion of pro-inflammatory cytokines and promotes regulatory T cell (Treg cell) responses. The induction of HO-1 can reduce the production of reactive oxygen species, thereby reducing oxidative stress and inflammation. Besides, HO-1 also has an important effect in novel programmed cell death such as pyroptosis and ferroptosis, thereby playing a protective role against diabetes. In conclusion, HO-1 plays a significant role in the occurrence and development of diabetic complications and is closely associated with a variety of complications. HO-1 is anticipated to serve as a novel target for addressing diabetic complications, and it holds promise as a potential therapeutic agent for diabetes and its associated complications. We hope to provide inspiration and ideas for future studies in the mechanism and targets of HO-1 through this review.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Yi Song
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Man-Jun Gao
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Xi-Ying Guo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| |
Collapse
|
2
|
Dunaway LS, Loeb SA, Petrillo S, Tolosano E, Isakson BE. Heme metabolism in nonerythroid cells. J Biol Chem 2024; 300:107132. [PMID: 38432636 PMCID: PMC10988061 DOI: 10.1016/j.jbc.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024] Open
Abstract
Heme is an iron-containing prosthetic group necessary for the function of several proteins termed "hemoproteins." Erythrocytes contain most of the body's heme in the form of hemoglobin and contain high concentrations of free heme. In nonerythroid cells, where cytosolic heme concentrations are 2 to 3 orders of magnitude lower, heme plays an essential and often overlooked role in a variety of cellular processes. Indeed, hemoproteins are found in almost every subcellular compartment and are integral in cellular operations such as oxidative phosphorylation, amino acid metabolism, xenobiotic metabolism, and transcriptional regulation. Growing evidence reveals the participation of heme in dynamic processes such as circadian rhythms, NO signaling, and the modulation of enzyme activity. This dynamic view of heme biology uncovers exciting possibilities as to how hemoproteins may participate in a range of physiologic systems. Here, we discuss how heme is regulated at the level of its synthesis, availability, redox state, transport, and degradation and highlight the implications for cellular function and whole organism physiology.
Collapse
Affiliation(s)
- Luke S Dunaway
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Skylar A Loeb
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Sara Petrillo
- Deptartment Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Deptartment Molecular Biotechnology and Health Sciences and Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA; Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
3
|
Yeudall S, Upchurch CM, Leitinger N. The clinical relevance of heme detoxification by the macrophage heme oxygenase system. Front Immunol 2024; 15:1379967. [PMID: 38585264 PMCID: PMC10995405 DOI: 10.3389/fimmu.2024.1379967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Heme degradation by the heme oxygenase (HMOX) family of enzymes is critical for maintaining homeostasis and limiting heme-induced tissue damage. Macrophages express HMOX1 and 2 and are critical sites of heme degradation in healthy and diseased states. Here we review the functions of the macrophage heme oxygenase system and its clinical relevance in discrete groups of pathologies where heme has been demonstrated to play a driving role. HMOX1 function in macrophages is essential for limiting oxidative tissue damage in both acute and chronic hemolytic disorders. By degrading pro-inflammatory heme and releasing anti-inflammatory molecules such as carbon monoxide, HMOX1 fine-tunes the acute inflammatory response with consequences for disorders of hyperinflammation such as sepsis. We then discuss divergent beneficial and pathological roles for HMOX1 in disorders such as atherosclerosis and metabolic syndrome, where activation of the HMOX system sits at the crossroads of chronic low-grade inflammation and oxidative stress. Finally, we highlight the emerging role for HMOX1 in regulating macrophage cell death via the iron- and oxidation-dependent form of cell death, ferroptosis. In summary, the importance of heme clearance by macrophages is an active area of investigation with relevance for therapeutic intervention in a diverse array of human diseases.
Collapse
Affiliation(s)
- Scott Yeudall
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Clint M. Upchurch
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Robert M Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
4
|
Berendes LS, Westhoff PS, Wittkowski H, Seelhöfer A, Varga G, Marquardt T, Park JH. Clinical and molecular analysis of a novel variant in heme oxygenase-1 deficiency: Unraveling its role in inflammation, heme metabolism, and pulmonary phenotype. Mol Genet Metab Rep 2024; 38:101038. [PMID: 38178812 PMCID: PMC10764348 DOI: 10.1016/j.ymgmr.2023.101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Heme oxygenase 1 (HO-1) is the pivotal catalyst for the primary and rate-determining step in heme catabolism, playing a crucial role in mitigating heme-induced oxidative damage. Pathogenic variants in the HMOX1 gene which encodes HO-1, are responsible for a severe, multisystem disease characterized by recurrent inflammatory episodes, organ failure, and an ultimately fatal course. Chronic hemolysis and abnormally low bilirubin levels are cardinal laboratory features of this disorder. In this study, we describe a patient with severe interstitial lung disease, frequent episodes of hyperinflammation non-responsive to immunosuppression, and fatal pulmonary hemorrhage. Employing exome sequencing, we identified two protein truncating variants in HMOX1, c.262_268delinsCC (p.Ala88Profs*51) and a previously unreported variant, c.55dupG (p.Glu19Glyfs*14). Functional analysis in patient-derived lymphoblastoid cells unveiled the complete absence of HO-1 protein expression and a marked reduction in cell viability upon exposure to hemin. These findings confirm the pathogenicity of the identified HMOX1 variants, further underscoring their association with severe pulmonary manifestations . This study describes the profound clinical consequences stemming from disruptions in redox metabolism.
Collapse
Affiliation(s)
| | | | - Helmut Wittkowski
- University of Münster, Department of Pediatric Rheumatology and Immunology, Münster, Germany
| | - Anja Seelhöfer
- University of Münster, Department of General Pediatrics, Münster, Germany
| | - Georg Varga
- University of Münster, Department of Pediatric Rheumatology and Immunology, Münster, Germany
| | - Thorsten Marquardt
- University of Münster, Department of General Pediatrics, Münster, Germany
| | - Julien H. Park
- University of Münster, Department of General Pediatrics, Münster, Germany
| |
Collapse
|
5
|
Fahrer J, Wittmann S, Wolf AC, Kostka T. Heme Oxygenase-1 and Its Role in Colorectal Cancer. Antioxidants (Basel) 2023; 12:1989. [PMID: 38001842 PMCID: PMC10669411 DOI: 10.3390/antiox12111989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Heme oxygenase-1 (HO-1) is an enzyme located at the endoplasmic reticulum, which is responsible for the degradation of cellular heme into ferrous iron, carbon monoxide and biliverdin-IXa. In addition to this main function, the enzyme is involved in many other homeostatic, toxic and cancer-related mechanisms. In this review, we first summarize the importance of HO-1 in physiology and pathophysiology with a focus on the digestive system. We then detail its structure and function, followed by a section on the regulatory mechanisms that control HO-1 expression and activity. Moreover, HO-2 as important further HO isoform is discussed, highlighting the similarities and differences with regard to HO-1. Subsequently, we describe the direct and indirect cytoprotective functions of HO-1 and its breakdown products carbon monoxide and biliverdin-IXa, but also highlight possible pro-inflammatory effects. Finally, we address the role of HO-1 in cancer with a particular focus on colorectal cancer. Here, relevant pathways and mechanisms are presented, through which HO-1 impacts tumor induction and tumor progression. These include oxidative stress and DNA damage, ferroptosis, cell cycle progression and apoptosis as well as migration, proliferation, and epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| | | | | | - Tina Kostka
- Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger Strasse 52, D-67663 Kaiserslautern, Germany; (S.W.); (A.-C.W.)
| |
Collapse
|
6
|
Bahou WF, Marchenko N, Nesbitt NM. Metabolic Functions of Biliverdin IXβ Reductase in Redox-Regulated Hematopoietic Cell Fate. Antioxidants (Basel) 2023; 12:antiox12051058. [PMID: 37237924 DOI: 10.3390/antiox12051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cytoprotective heme oxygenases derivatize heme to generate carbon monoxide, ferrous iron, and isomeric biliverdins, followed by rapid NAD(P)H-dependent biliverdin reduction to the antioxidant bilirubin. Recent studies have implicated biliverdin IXβ reductase (BLVRB) in a redox-regulated mechanism of hematopoietic lineage fate restricted to megakaryocyte and erythroid development, a function distinct and non-overlapping from the BLVRA (biliverdin IXα reductase) homologue. In this review, we focus on recent progress in BLVRB biochemistry and genetics, highlighting human, murine, and cell-based studies that position BLVRB-regulated redox function (or ROS accumulation) as a developmentally tuned trigger that governs megakaryocyte/erythroid lineage fate arising from hematopoietic stem cells. BLVRB crystallographic and thermodynamic studies have elucidated critical determinants of substrate utilization, redox coupling and cytoprotection, and have established that inhibitors and substrates bind within the single-Rossmann fold. These advances provide unique opportunities for the development of BLVRB-selective redox inhibitors as novel cellular targets that retain potential for therapeutic applicability in hematopoietic (and other) disorders.
Collapse
Affiliation(s)
- Wadie F Bahou
- Department of Medicine, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Natalia Marchenko
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Natasha M Nesbitt
- Blood Cell Technologies, 25 Health Sciences Drive, Stony Brook, NY 11790, USA
| |
Collapse
|
7
|
Zhai H, Ni L, Wu X. The roles of heme oxygenase-1 in renal disease. FRONTIERS IN NEPHROLOGY 2023; 3:1156346. [PMID: 37675385 PMCID: PMC10479750 DOI: 10.3389/fneph.2023.1156346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 09/08/2023]
Abstract
Heme oxygenase (HO), a heat shock protein containing hemoglobin, is an important enzyme in heme catabolism. It is involved in cell homeostasis and has anti-inflammatory, antioxidant, anti-apoptosis, immunomodulation, and other functions. It is expressed at a modest level in most normal tissues. When the body suffers from ischemia hypoxia, injury, toxins, and other nociceptive stimuli, the expression increases, which can transform the oxidative microenvironment into an antioxidant environment to promote tissue recovery from damage. In recent years, research has continued to verify its value in a variety of human bodily systems. It is also regarded as a key target for the treatment of numerous disorders. With the advancement of studies, its significance in renal disease has gained increasing attention. It is thought to have a significant protective function in preventing acute kidney injury and delaying the progression of chronic renal diseases. Its protective mechanisms include anti-inflammatory, antioxidant, cell cycle regulation, apoptosis inhibition, hemodynamic regulation, and other aspects, which have been demonstrated in diverse animal models. Furthermore, as a protective factor, its potential therapeutic efficacy in renal disease has recently become a hot area of research. Although a large number of preclinical trials have confirmed its therapeutic potential in reducing kidney injury, due to the problems and side effects of HO-1 induction therapy, its efficacy and safety in clinical application need to be further explored. In this review, we summarize the current state of research on the mechanism, location, and treatment of HO and its relationship with various renal diseases.
Collapse
Affiliation(s)
- Hongfu Zhai
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of General Practice, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Dirim AB, Kalayci T, Safak S, Garayeva N, Gultekin B, Hurdogan O, Solakoglu S, Yazici H, Cefle K, Ozturk S, Yildiz A. Heme oxygenase-1 deficiency as an extremely rare cause of AA-type renal amyloidosis: Expanding the clinical features and review of the literature. Clin Rheumatol 2023; 42:597-606. [PMID: 36502441 DOI: 10.1007/s10067-022-06465-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Heme oxygenase-1 (HMOX-1) is an enzyme that regulates heme degradation. Antiinflammatory, antioxidant, and cytoprotective effects of HMOX-1 were also described. It is encoded by the HMOX1 gene, and biallelic mutations cause HMOX-1 deficiency, which is a rare chronic multisystemic inflammatory disorder. This inflammatory status could lead to the development of secondary AA-type amyloidosis theoretically. Here, we report a 30-year-old male with AA-type renal amyloidosis due to a chronic inflammatory condition of unknown origin. Paternal consanguinity and dysmorphic features raised suspicion of a rare genetic disorder. Clinical exome sequencing (CES) confirmed the HMOX-1 deficiency diagnosis related to homozygous missense G139V mutation. To the best of our knowledge, our patient is the eleventh HMOX-1 deficiency case in the literature. Also, HMOX-1 deficiency-related systemic AA-type amyloidosis has not been reported before.
Collapse
Affiliation(s)
- Ahmet Burak Dirim
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey.
| | - Tugba Kalayci
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Seda Safak
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| | - Nurane Garayeva
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| | - Burak Gultekin
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| | - Ozge Hurdogan
- Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Seyhun Solakoglu
- Department of Histology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Halil Yazici
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| | - Kivanc Cefle
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Sukru Ozturk
- Division of Medical Genetics, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Alaattin Yildiz
- Division of Nephrology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Capa, Fatih, 34093, Istanbul, Turkey
| |
Collapse
|
9
|
Toboz P, Amiri M, Tabatabaei N, Dufour CR, Kim SH, Fillebeen C, Ayemoba CE, Khoutorsky A, Nairz M, Shao L, Pajcini KV, Kim KW, Giguère V, Oliveira RL, Constante M, Santos MM, Morales CR, Pantopoulos K, Sonenberg N, Pinho S, Tahmasebi S. The amino acid sensor GCN2 controls red blood cell clearance and iron metabolism through regulation of liver macrophages. Proc Natl Acad Sci U S A 2022; 119:e2121251119. [PMID: 35994670 PMCID: PMC9436309 DOI: 10.1073/pnas.2121251119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
GCN2 (general control nonderepressible 2) is a serine/threonine-protein kinase that controls messenger RNA translation in response to amino acid availability and ribosome stalling. Here, we show that GCN2 controls erythrocyte clearance and iron recycling during stress. Our data highlight the importance of liver macrophages as the primary cell type mediating these effects. During different stress conditions, such as hemolysis, amino acid deficiency or hypoxia, GCN2 knockout (GCN2-/-) mice displayed resistance to anemia compared with wild-type (GCN2+/+) mice. GCN2-/- liver macrophages exhibited defective erythrophagocytosis and lysosome maturation. Molecular analysis of GCN2-/- cells demonstrated that the ATF4-NRF2 pathway is a critical downstream mediator of GCN2 in regulating red blood cell clearance and iron recycling.
Collapse
Affiliation(s)
- Phoenix Toboz
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Negar Tabatabaei
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Catherine R. Dufour
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Seung Hyeon Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Carine Fillebeen
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Charles E. Ayemoba
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Arkady Khoutorsky
- Department of Anesthesia and Faculty of Dentistry, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Manfred Nairz
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Lijian Shao
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Kostandin V. Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Ki-Wook Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Vincent Giguère
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Regiana L. Oliveira
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Marco Constante
- Nutrition and Microbiome Laboratory, Centre de recherche du CHUM and Department of Medicine, Université de Montréal, Montréal, QC, H3X 0A9, Canada
| | - Manuela M. Santos
- Nutrition and Microbiome Laboratory, Centre de recherche du CHUM and Department of Medicine, Université de Montréal, Montréal, QC, H3X 0A9, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, H3T 1E2, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC, H3A 1A3, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Sandra Pinho
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612
| |
Collapse
|
10
|
Ameka M, Hasty AH. Paying the Iron Price: Liver Iron Homeostasis and Metabolic Disease. Compr Physiol 2022; 12:3641-3663. [PMID: 35766833 PMCID: PMC10155403 DOI: 10.1002/cphy.c210039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Iron is an essential metal element whose bioavailability is tightly regulated. Under normal conditions, systemic and cellular iron homeostases are synchronized for optimal function, based on the needs of each system. During metabolic dysfunction, this synchrony is lost, and markers of systemic iron homeostasis are no longer coupled to the iron status of key metabolic organs such as the liver and adipose tissue. The effects of dysmetabolic iron overload syndrome in the liver have been tied to hepatic insulin resistance, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis. While the existence of a relationship between iron dysregulation and metabolic dysfunction has long been acknowledged, identifying correlative relationships is complicated by the prognostic reliance on systemic measures of iron homeostasis. What is lacking and perhaps more informative is an understanding of how cellular iron homeostasis changes with metabolic dysfunction. This article explores bidirectional relationships between different proteins involved in iron homeostasis and metabolic dysfunction in the liver. © 2022 American Physiological Society. Compr Physiol 12:3641-3663, 2022.
Collapse
Affiliation(s)
- Magdalene Ameka
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Saurage E, Davis PR, Meek R, Pollock DM, Kasztan M. Endothelin A receptor antagonist attenuated renal iron accumulation in iron overload heme oxygenase-1 knockout mice. Can J Physiol Pharmacol 2022; 100:637-650. [PMID: 35413222 PMCID: PMC10164438 DOI: 10.1139/cjpp-2022-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Progressive iron accumulation and renal impairment are prominent in both patients and mouse models of sickle cell disease (SCD). Endothelin A receptor (ETA) antagonism prevents this iron accumulation phenotype and reduces renal iron deposition in proximal tubules of SCD mice. To better understand the mechanisms of iron metabolism in the kidney and the role of ETA receptor in iron chelation and transport, we studied renal iron handling in a non-sickle cell iron overload model, heme oxygenase-1 (Hmox-1-/-) knockout mice. We found that Hmox-1-/- mice had elevated plasma endothelin-1 (ET-1), cortical ET-1 mRNA expression, and renal iron content compared to Hmox-1+/+ controls. The ETA receptor antagonist, ambrisentan, attenuated renal iron deposition, without any changes to anemia status in Hmox-1-/- mice. This was accompanied by reduced urinary iron excretion. Finally, ambrisentan had an important iron recycling effect by increasing expression of cellular iron exporter, ferroportin-1 (FPN-1) and circulating total iron levels in Hmox-1-/- mice. These findings suggest the ET-1/ETA signaling pathway contributes to in renal iron trafficking in a murine model of iron overload.
Collapse
Affiliation(s)
- Elizabeth Saurage
- The University of Alabama at Birmingham School of Medicine, 9967, Medicine, Division of Nephrology, Birmingham, Alabama, United States;
| | - Parker Ross Davis
- The University of Alabama at Birmingham Department of Medicine, 164494, Medicine, Division of Nephrology, Birmingham, Alabama, United States;
| | - Rachel Meek
- The University of Alabama at Birmingham School of Medicine, 9967, Medicine, Devision of Nephrology, Birmingham, Alabama, United States;
| | - David M Pollock
- The University of Alabama at Birmingham Department of Medicine, 164494, Medicine, Division of Nephrology, Birmingham, Alabama, United States;
| | - Malgorzata Kasztan
- The University of Alabama at Birmingham School of Medicine, 9967, Pediatrics, Division of Hematology-Oncology, Birmingham, Alabama, United States;
| |
Collapse
|
12
|
Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants (Basel) 2022; 11:antiox11030555. [PMID: 35326205 PMCID: PMC8944973 DOI: 10.3390/antiox11030555] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The heme oxygenase (HO) enzyme system catabolizes heme to carbon monoxide (CO), ferrous iron, and biliverdin-IXα (BV), which is reduced to bilirubin-IXα (BR) by biliverdin reductase (BVR). HO activity is represented by two distinct isozymes, the inducible form, HO-1, and a constitutive form, HO-2, encoded by distinct genes (HMOX1, HMOX2, respectively). HO-1 responds to transcriptional activation in response to a wide variety of chemical and physical stimuli, including its natural substrate heme, oxidants, and phytochemical antioxidants. The expression of HO-1 is regulated by NF-E2-related factor-2 and counter-regulated by Bach-1, in a heme-sensitive manner. Additionally, HMOX1 promoter polymorphisms have been associated with human disease. The induction of HO-1 can confer protection in inflammatory conditions through removal of heme, a pro-oxidant and potential catalyst of lipid peroxidation, whereas iron released from HO activity may trigger ferritin synthesis or ferroptosis. The production of heme-derived reaction products (i.e., BV, BR) may contribute to HO-dependent cytoprotection via antioxidant and immunomodulatory effects. Additionally, BVR and BR have newly recognized roles in lipid regulation. CO may alter mitochondrial function leading to modulation of downstream signaling pathways that culminate in anti-apoptotic, anti-inflammatory, anti-proliferative and immunomodulatory effects. This review will present evidence for beneficial effects of HO-1 and its reaction products in human diseases, including cardiovascular disease (CVD), metabolic conditions, including diabetes and obesity, as well as acute and chronic diseases of the liver, kidney, or lung. Strategies targeting the HO-1 pathway, including genetic or chemical modulation of HO-1 expression, or application of BR, CO gas, or CO donor compounds show therapeutic potential in inflammatory conditions, including organ ischemia/reperfusion injury. Evidence from human studies indicate that HO-1 expression may represent a biomarker of oxidative stress in various clinical conditions, while increases in serum BR levels have been correlated inversely to risk of CVD and metabolic disease. Ongoing human clinical trials investigate the potential of CO as a therapeutic in human disease.
Collapse
|
13
|
Heme oxygenase-1, carbon monoxide, and malaria – The interplay of chemistry and biology. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Costa Silva RCM, Correa LHT. Heme Oxygenase 1 in Vertebrates: Friend and Foe. Cell Biochem Biophys 2021; 80:97-113. [PMID: 34800278 DOI: 10.1007/s12013-021-01047-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
HO-1 is the inducible form of the enzyme heme-oxygenase. HO-1 catalyzes heme breakdown, reducing the levels of this important oxidant molecule and generating antioxidant, anti-inflammatory, and anti-apoptotic byproducts. Thus, HO-1 has been described as an important stress response mechanism during both physiologic and pathological processes. Interestingly, some findings are demonstrating that uncontrolled levels of HO-1 byproducts can be associated with cell death and tissue destruction as well. Furthermore, HO-1 can be located in the nucleus, influencing gene transcription, cellular proliferation, and DNA repair. Here, we will discuss several studies that approach HO-1 effects as a protective or detrimental mechanism in different pathological conditions. In this sense, as the major organs of vertebrates will deal specifically with distinct types of stresses, we discuss the HO-1 role in each of them, exposing the contradictions associated with HO-1 expression after different insults and circumstances.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Leonardo Holanda Travassos Correa
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
De R, Prakash KU, Edison ES. Complex Interactions in Regulation of Haematopoiesis-An Unexplored Iron Mine. Genes (Basel) 2021; 12:genes12081270. [PMID: 34440444 PMCID: PMC8391430 DOI: 10.3390/genes12081270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Iron is one of the most abundant metals on earth and is vital for the growth and survival of life forms. It is crucial for the functioning of plants and animals as it is an integral component of the photosynthetic apparatus and innumerable proteins and enzymes. It plays a pivotal role in haematopoiesis and affects the development and differentiation of different haematopoietic lineages, apart from its obvious necessity in erythropoiesis. A large amount of iron stores in humans is diverted towards the latter process, as iron is an indispensable component of haemoglobin. This review summarises the important players of iron metabolism and homeostasis that have been discovered in recent years and highlights the overall significance of iron in haematopoiesis. Its role in maintenance of haematopoietic stem cells, influence on differentiation of varied haematopoietic lineages and consequences of iron deficiency/overloading on development and maturation of different groups of haematopoietic cells have been discussed.
Collapse
|
16
|
Szade A, Szade K, Mahdi M, Józkowicz A. The role of heme oxygenase-1 in hematopoietic system and its microenvironment. Cell Mol Life Sci 2021; 78:4639-4651. [PMID: 33787980 PMCID: PMC8195762 DOI: 10.1007/s00018-021-03803-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
Hematopoietic system transports all necessary nutrients to the whole organism and provides the immunological protection. Blood cells have high turnover, therefore, this system must be dynamically controlled and must have broad regeneration potential. In this review, we summarize how this complex system is regulated by the heme oxygenase-1 (HO-1)-an enzyme, which degrades heme to biliverdin, ferrous ion and carbon monoxide. First, we discuss how HO-1 influences hematopoietic stem cells (HSC) self-renewal, aging and differentiation. We also describe a critical role of HO-1 in endothelial cells and mesenchymal stromal cells that constitute the specialized bone marrow niche of HSC. We further discuss the molecular and cellular mechanisms by which HO-1 modulates innate and adaptive immune responses. Finally, we highlight how modulation of HO-1 activity regulates the mobilization of bone marrow hematopoietic cells to peripheral blood. We critically discuss the issue of metalloporphyrins, commonly used pharmacological modulators of HO-1 activity, and raise the issue of their important HO-1-independent activities.
Collapse
Affiliation(s)
- Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Mahdi Mahdi
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| |
Collapse
|
17
|
On Iron Metabolism and Its Regulation. Int J Mol Sci 2021; 22:ijms22094591. [PMID: 33925597 PMCID: PMC8123811 DOI: 10.3390/ijms22094591] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Iron is a critical metal for several vital biological processes. Most of the body’s iron is bound to hemoglobin in erythrocytes. Iron from senescent red blood cells is recycled by macrophages in the spleen, liver and bone marrow. Dietary iron is taken up by the divalent metal transporter 1 (DMT1) in enterocytes and transported to portal blood via ferroportin (FPN), where it is bound to transferrin and taken up by hepatocytes, macrophages and bone marrow cells via transferrin receptor 1 (TfR1). While most of the physiologically active iron is bound hemoglobin, the major storage of most iron occurs in the liver in a ferritin-bound fashion. In response to an increased iron load, hepatocytes secrete the peptide hormone hepcidin, which binds to and induces internalization and degradation of the iron transporter FPN, thus controlling the amount of iron released from the cells into the blood. This review summarizes the key mechanisms and players involved in cellular and systemic iron regulation.
Collapse
|
18
|
Rossi M, Korpak K, Doerfler A, Zouaoui Boudjeltia K. Deciphering the Role of Heme Oxygenase-1 (HO-1) Expressing Macrophages in Renal Ischemia-Reperfusion Injury. Biomedicines 2021; 9:biomedicines9030306. [PMID: 33809696 PMCID: PMC8002311 DOI: 10.3390/biomedicines9030306] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), which contributes to the development of chronic kidney disease (CKD). Renal IRI combines major events, including a strong inflammatory immune response leading to extensive cell injuries, necrosis and late interstitial fibrosis. Macrophages act as key players in IRI-induced AKI by polarizing into proinflammatory M1 and anti-inflammatory M2 phenotypes. Compelling evidence exists that the stress-responsive enzyme, heme oxygenase-1 (HO-1), mediates protection against renal IRI and modulates macrophage polarization by enhancing a M2 subset. Hereafter, we review the dual effect of macrophages in the pathogenesis of IRI-induced AKI and discuss the critical role of HO-1 expressing macrophages.
Collapse
Affiliation(s)
- Maxime Rossi
- Department of Urology, CHU de Charleroi, Université libre de Bruxelles (ULB), 6000 Charleroi, Belgium;
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Correspondence: (M.R.); (K.Z.B.)
| | - Kéziah Korpak
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Department of Geriatric Medicine, CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium
| | - Arnaud Doerfler
- Department of Urology, CHU de Charleroi, Université libre de Bruxelles (ULB), 6000 Charleroi, Belgium;
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, Hôpital André Vésale, Université libre de Bruxelles (ULB), 6110 Montigny-le-Tilleul, Belgium;
- Correspondence: (M.R.); (K.Z.B.)
| |
Collapse
|
19
|
Nesbitt NM, Malone LE, Liu Z, Jares A, Gnatenko DV, Ma Y, Zhu W, Bahou WF. Divergent erythroid megakaryocyte fates in Blvrb-deficient mice establish non-overlapping cytoprotective functions during stress hematopoiesis. Free Radic Biol Med 2021; 164:164-174. [PMID: 33359909 PMCID: PMC8311568 DOI: 10.1016/j.freeradbiomed.2020.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 12/27/2022]
Abstract
Cytoprotective mechanisms of heme oxygenases function by derivatizing heme to generate carbon monoxide, ferrous iron, and isomeric biliverdins, followed by rapid NAD(P)H-dependent biliverdin reduction to the antioxidant bilirubin using two non-overlapping biliverdin reductases that display biliverdin isomer-restricted redox activity. Although cytoprotective functions of heme oxygenases are widely recognized, concomitant effects of downstream biliverdin reductases remain incomplete. A computational model predicated on murine hematopoietic single-cell transcriptomic data identified Blvrb as a biological driver linked to the tumor necrosis factor stress pathway as a predominant source of variation defining hematopoietic cell heterogeneity. In vivo studies using Blvrb-deficient mice established the dispensable role of Blvrb in steady-state hematopoiesis, although model validation using aged Blvrb-deficient mice established an important cytoprotective function in stress hematopoiesis with dichotomous megakaryocyte-biased hematopoietic recovery. Defective stress erythropoiesis was evident in Blvrb-/- spleens and in bone marrow erythroid development, occurring in conjunction with defective lipid peroxidation as a marker of oxidant mishandling. Cell autonomous effects on megakaryocyte lineage bias were documented using multipotential progenitor assays. These data provide the first physiological function of murine Blvrb in a non-redundant pathway of stress cytoprotection. Divergent effects on erythroid/megakaryocyte lineage speciation impute a novel redox-regulated mechanism for lineage partitioning.
Collapse
Affiliation(s)
- Natasha M Nesbitt
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lisa E Malone
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Zhaoyan Liu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11727, USA
| | - Alexander Jares
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Dmitri V Gnatenko
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yupo Ma
- Department of Pathology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Wei Zhu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11727, USA
| | - Wadie F Bahou
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
20
|
Heme Oxygenase-1 Deficiency and Oxidative Stress: A Review of 9 Independent Human Cases and Animal Models. Int J Mol Sci 2021; 22:ijms22041514. [PMID: 33546372 PMCID: PMC7913498 DOI: 10.3390/ijms22041514] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.
Collapse
|
21
|
Ogłuszka M, Lipiński P, Starzyński RR. Interaction between iron and omega-3 fatty acids metabolisms: where is the cross-link? Crit Rev Food Sci Nutr 2020; 62:3002-3022. [DOI: 10.1080/10408398.2020.1862047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Rafał Radosław Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
22
|
Zhou W, Jiang R, Wang Y, Li Y, Sun Z, Zhao H. hsa_circ_001653 up-regulates NR6A1 expression and elicits gastric cancer progression by binding to microRNA-377. Exp Physiol 2020; 105:2141-2153. [PMID: 33006200 DOI: 10.1113/ep088399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does hsa_circ_001653 influence the development of gastric cancer (GC) and if so how? What is the main finding and its importance? Bioinformatics analysis revealed the presence of differentially expressed hsa_circ_001653 in GC and adjacent normal tissues, and this was strongly related to the pathology of patients with GC. Knockdown of hsa_circ_001653 suppressed the proliferation, invasion and migration of GC cells, while inducing cell apoptosis via miR-377-mediated NR6A1 inhibition. The effect of hsa_circ_001653 and miR-377 on tumour growth in GC was further confirmed in vivo. ABSTRACT Gastric cancer (GC) is one of the leading causes of human mortality through malignant tumours. Circular RNAs (circRNAs) have been identified as binding to microRNAs (miRNAs) to modulate the progression of tumours. This study explores the role of hsa_circ_001653, a newly identified circRNA, in the development of GC. hsa_circ_001653 expression was measured in 86 paired normal and tumour tissues surgically resected from GC patients. Cross-talk between hsa_circ_001653 and microRNA-377 (miR-377)/nuclear receptor subfamily 6, group A, member 1 (NR6A1) was assessed using bioinformatics analysis, dual-luciferase reporter assay, Ago2 immunoprecipitation and western blot analysis. A series of functional experiments were carried out to elucidate the role of hsa_circ_001653 in GC cell proliferation, invasion, migration and apoptosis, and its underlying molecular mechanisms. Nude mice were inoculated with GC cells for in vivo analysis. hsa_circ_001653 was found to be an up-regulated circRNA in GC tissues and cells. Down-regulation of hsa_circ_001653 inhibited GC cell proliferation, migration and invasion, while stimulating cell apoptosis. hsa_circ_001653 was found to bind to miR-377, which targeted NR6A1 and repressed its expression. Inhibition of miR-377 and overexpression of NR6A1 restored the proliferation, migration and invasion in GC cells lacking hsa_circ_001653. Furthermore, inhibition of hsa_circ_001653 attenuated tumour growth in nude mice inoculated with GC cells. Collectively, the demonstration that hsa_circ_001653 exerts its anticancer effects by regulating the miR-377-NR6A1 axis increases our understanding of gastric cancer pathophysiology. The findings uncover new potential therapeutic targets for GC.
Collapse
Affiliation(s)
- Wuyuan Zhou
- Department of Hepatopancreatobillary Surgery, Xuzhou Cancer Hospital, Xuzhou, China
| | - Rongke Jiang
- Department of Oncology, Xuzhou Cancer Hospital, Xuzhou, China
| | - Yu Wang
- Department of General Surgery, Xuzhou Cancer Hospital, Xuzhou, China
| | - Yanfang Li
- Department of Oncology, Xuzhou Cancer Hospital, Xuzhou, China
| | - Ziqian Sun
- Department of Oncology, Xuzhou Cancer Hospital, Xuzhou, China
| | - Hongying Zhao
- Department of Oncology, Xuzhou Cancer Hospital, Xuzhou, China
| |
Collapse
|
23
|
Chau AS, Cole BL, Debley JS, Nanda K, Rosen ABI, Bamshad MJ, Nickerson DA, Torgerson TR, Allenspach EJ. Heme oxygenase-1 deficiency presenting with interstitial lung disease and hemophagocytic flares. Pediatr Rheumatol Online J 2020; 18:80. [PMID: 33066778 PMCID: PMC7565350 DOI: 10.1186/s12969-020-00474-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/06/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Heme oxygenase-1 (HMOX1) catalyzes the metabolism of heme into carbon monoxide, ferrous iron, and biliverdin. Through biliverdin reductase, biliverdin becomes bilirubin. HMOX1-deficiency is a rare autosomal recessive disorder with hallmark features of direct antibody negative hemolytic anemia with normal bilirubin, hyperinflammation and features similar to macrophage activation syndrome. Clinical findings have included asplenia, nephritis, hepatitis, and vasculitis. Pulmonary features and evaluation of the immune response have been limited. CASE PRESENTATION We present a young boy who presented with chronic respiratory failure due to nonspecific interstitial pneumonia following a chronic history of infection-triggered recurrent hyperinflammatory flares. Episodes included hemolysis without hyperbilirubinemia, immunodeficiency, hepatomegaly with mild transaminitis, asplenia, leukocytosis, thrombocytosis, joint pain and features of macrophage activation with negative autoimmune serologies. Lung biopsy revealed cholesterol granulomas. He was found post-mortem by whole exome sequencing to have a compound heterozygous paternal frame shift a paternal frame shift HMOX1 c.264_269delCTGG (p.L89Sfs*24) and maternal splice donor HMOX1 (c.636 + 2 T > A) consistent with HMOX1 deficiency. Western blot analysis confirmed lack of HMOX1 protein upon oxidant stimulation of the patient cells. CONCLUSIONS Here, we describe a phenotype expansion for HMOX1-deficiency to include not only asplenia and hepatomegaly, but also interstitial lung disease with cholesterol granulomas and inflammatory flares with hemophagocytosis present in the bone marrow.
Collapse
Affiliation(s)
- Alice S. Chau
- grid.34477.330000000122986657Division of Allergy & Infectious Disease, Department of Medicine, University of Washington, Seattle, Washington USA ,grid.240741.40000 0000 9026 4165Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Jack MacDonald Building – 6th floor, 1900 9th Avenue, Seattle, Washington 98101 USA
| | - Bonnie L. Cole
- grid.34477.330000000122986657Department of Pathology and Laboratory Medicine, University of Washington, Seattle, Washington USA ,grid.507913.9Brotman Baty Institute for Precision Medicine, Seattle, Washington USA
| | - Jason S. Debley
- grid.240741.40000 0000 9026 4165Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Jack MacDonald Building – 6th floor, 1900 9th Avenue, Seattle, Washington 98101 USA ,grid.34477.330000000122986657Department of Pediatrics, University of Washington, Seattle, Washington USA
| | - Kabita Nanda
- grid.34477.330000000122986657Department of Pediatrics, University of Washington, Seattle, Washington USA
| | - Aaron B. I. Rosen
- grid.240741.40000 0000 9026 4165Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Jack MacDonald Building – 6th floor, 1900 9th Avenue, Seattle, Washington 98101 USA
| | - Michael J. Bamshad
- grid.507913.9Brotman Baty Institute for Precision Medicine, Seattle, Washington USA ,grid.34477.330000000122986657Department of Pediatrics, University of Washington, Seattle, Washington USA ,grid.34477.330000000122986657Genome Sciences, University of Washington, Seattle, Washington USA
| | - Deborah A. Nickerson
- grid.507913.9Brotman Baty Institute for Precision Medicine, Seattle, Washington USA ,grid.34477.330000000122986657Genome Sciences, University of Washington, Seattle, Washington USA
| | - Troy R. Torgerson
- grid.507729.eExperimental Immunology, Allen Institute, Seattle, Washington USA
| | - Eric J. Allenspach
- grid.240741.40000 0000 9026 4165Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Jack MacDonald Building – 6th floor, 1900 9th Avenue, Seattle, Washington 98101 USA ,grid.507913.9Brotman Baty Institute for Precision Medicine, Seattle, Washington USA ,grid.34477.330000000122986657Department of Pediatrics, University of Washington, Seattle, Washington USA
| |
Collapse
|
24
|
Donor Heme Oxygenase-1 Promoter Gene Polymorphism Predicts Survival after Unrelated Bone Marrow Transplantation for High-Risk Patients. Cancers (Basel) 2020; 12:cancers12020424. [PMID: 32059452 PMCID: PMC7072481 DOI: 10.3390/cancers12020424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Heme oxygenase-1 (HO-1), an intracellular enzyme that catalyzes the degradation of heme into biliverdin, free iron, and carbon monoxide, exerts anti-inflammatory and cytoprotective effects against endothelial cell injury. The HO-1 promoter gene has one important single-nucleotide polymorphism (SNP) rs2071746 (-413A>T) that is functional, and the A allele has been reported to be associated with higher HO-1 expression levels than the T allele. We investigated the influence of the HO-1 rs2071746 SNP on the transplant outcomes in 593 patients with hematological malignancies undergoing unrelated, human leukocyte antigen (HLA)-matched, T-cell-replete bone marrow transplantation (BMT) through the Japan Donor Marrow Program. In patients with high-risk diseases, the donor A/A or A/T genotype was associated with better 5 year overall survival (35% vs. 25%; p = 0.03) and 5 year disease-free survival (35% vs. 22%; p = 0.0072), compared to the donor T/T genotype. These effects were not observed in patients with low-risk diseases. The current findings therefore indicate that HO-1 rs2071746 genotyping could be useful for selecting donors and tailoring transplant strategies for patients with high-risk hematologic malignancies.
Collapse
|
25
|
Szade K, Zukowska M, Szade A, Nowak W, Skulimowska I, Ciesla M, Bukowska‐Strakova K, Gulati GS, Kachamakova‐Trojanowska N, Kusienicka A, Einwallner E, Kijowski J, Czauderna S, Esterbauer H, Benes V, L Weissman I, Dulak J, Jozkowicz A. Heme oxygenase-1 deficiency triggers exhaustion of hematopoietic stem cells. EMBO Rep 2020; 21:e47895. [PMID: 31885181 PMCID: PMC7001511 DOI: 10.15252/embr.201947895] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023] Open
Abstract
While intrinsic changes in aging hematopoietic stem cells (HSCs) are well characterized, it remains unclear how extrinsic factors affect HSC aging. Here, we demonstrate that cells in the niche-endothelial cells (ECs) and CXCL12-abundant reticular cells (CARs)-highly express the heme-degrading enzyme, heme oxygenase 1 (HO-1), but then decrease its expression with age. HO-1-deficient animals (HO-1-/- ) have altered numbers of ECs and CARs that produce less hematopoietic factors. HSCs co-cultured in vitro with HO-1-/- mesenchymal stromal cells expand, but have altered kinetic of growth and differentiation of derived colonies. HSCs from young HO-1-/- animals have reduced quiescence and regenerative potential. Young HO-1-/- HSCs exhibit features of premature exhaustion on the transcriptional and functional level. HO-1+/+ HSCs transplanted into HO-1-/- recipients exhaust their regenerative potential early and do not reconstitute secondary recipients. In turn, transplantation of HO-1-/- HSCs to the HO-1+/+ recipients recovers the regenerative potential of HO-1-/- HSCs and reverses their transcriptional alterations. Thus, HSC-extrinsic activity of HO-1 prevents HSCs from premature exhaustion and may restore the function of aged HSCs.
Collapse
Affiliation(s)
- Krzysztof Szade
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
| | - Monika Zukowska
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Agata Szade
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Witold Nowak
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Izabella Skulimowska
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Maciej Ciesla
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Karolina Bukowska‐Strakova
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Department of Clinical ImmunologyInstitute of PediatricsJagiellonian University Medical CollegeKrakowPoland
| | - Gunsagar Singh Gulati
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
| | - Neli Kachamakova‐Trojanowska
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Malopolska Centre of BiotechnologyJagiellonian UniversityKrakowPoland
| | - Anna Kusienicka
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Elisa Einwallner
- Department of Laboratory MedicineCenter of Translational ResearchMedical University of ViennaViennaAustria
| | - Jacek Kijowski
- Department of TransplantationInstitute of PediatricsJagiellonian University Medical CollegeKrakowPoland
| | - Szymon Czauderna
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| | - Harald Esterbauer
- Department of Laboratory MedicineCenter of Translational ResearchMedical University of ViennaViennaAustria
| | | | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCAUSA
| | - Jozef Dulak
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
- Malopolska Centre of BiotechnologyJagiellonian UniversityKrakowPoland
| | - Alicja Jozkowicz
- Department of Medical BiotechnologyFaculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakowPoland
| |
Collapse
|
26
|
Winn NC, Volk KM, Hasty AH. Regulation of tissue iron homeostasis: the macrophage "ferrostat". JCI Insight 2020; 5:132964. [PMID: 31996481 DOI: 10.1172/jci.insight.132964] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Iron is an essential element for multiple fundamental biological processes required for life; yet iron overload can be cytotoxic. Consequently, iron concentrations at the cellular and tissue level must be exquisitely governed by mechanisms that complement and fine-tune systemic control. It is well appreciated that macrophages are vital for systemic iron homeostasis, supplying or sequestering iron as needed for erythropoiesis or bacteriostasis, respectively. Indeed, recycling of iron through erythrophagocytosis by splenic macrophages is a major contributor to systemic iron homeostasis. However, accumulating evidence suggests that tissue-resident macrophages regulate local iron availability and modulate the tissue microenvironment, contributing to cellular and tissue function. Here, we summarize the significance of tissue-specific regulation of iron availability and highlight how resident macrophages are critical for this process. This tissue-dependent regulation has broad implications for understanding both resident macrophage function and tissue iron homeostasis in health and disease.
Collapse
Affiliation(s)
- Nathan C Winn
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Katrina M Volk
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
27
|
Interplay of Heme with Macrophages in Homeostasis and Inflammation. Int J Mol Sci 2020; 21:ijms21030740. [PMID: 31979309 PMCID: PMC7036926 DOI: 10.3390/ijms21030740] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Macrophages are an integral part of the mononuclear phagocyte system that is critical for maintaining immune homeostasis. They play a key role for initiation and modulation of immunological responses in inflammation and infection. Moreover, macrophages exhibit a wide spectrum of tissue-specific phenotypes in steady-state and pathophysiological conditions. Recent clinical and experimental evidence indicates that the ubiquitous compound heme is a crucial regulator of these cells, e.g., in the differentiation of monocytes to tissue-resident macrophages and/ or in activation by inflammatory stimuli. Notably, heme, an iron containing tetrapyrrole, is essential as a prosthetic group of hemoproteins (e.g., hemoglobin and cytochromes), whereas non-protein bound free or labile heme can be harmful via pro-oxidant, pro-inflammatory, and cytotoxic effects. In this review, it will be discussed how the complex interplay of heme with macrophages regulates homeostasis and inflammation via modulating macrophage inflammatory characteristics and/ or hematopoiesis. A particular focus will be the distinct roles of intra- and extracellular labile heme and the regulation of its availability by heme-binding proteins. Finally, it will be addressed how heme modulates macrophage functions via specific transcriptional factors, in particular the nuclear repressor BTB and CNC homologue (BACH)1 and Spi-C.
Collapse
|
28
|
Pek RH, Yuan X, Rietzschel N, Zhang J, Jackson L, Nishibori E, Ribeiro A, Simmons W, Jagadeesh J, Sugimoto H, Alam MZ, Garrett L, Haldar M, Ralle M, Phillips JD, Bodine DM, Hamza I. Hemozoin produced by mammals confers heme tolerance. eLife 2019; 8:e49503. [PMID: 31571584 PMCID: PMC6773446 DOI: 10.7554/elife.49503] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022] Open
Abstract
Free heme is cytotoxic as exemplified by hemolytic diseases and genetic deficiencies in heme recycling and detoxifying pathways. Thus, intracellular accumulation of heme has not been observed in mammalian cells to date. Here we show that mice deficient for the heme transporter SLC48A1 (also known as HRG1) accumulate over ten-fold excess heme in reticuloendothelial macrophage lysosomes that are 10 to 100 times larger than normal. Macrophages tolerate these high concentrations of heme by crystallizing them into hemozoin, which heretofore has only been found in blood-feeding organisms. SLC48A1 deficiency results in impaired erythroid maturation and an inability to systemically respond to iron deficiency. Complete heme tolerance requires a fully-operational heme degradation pathway as haplo insufficiency of HMOX1 combined with SLC48A1 inactivation causes perinatal lethality demonstrating synthetic lethal interactions between heme transport and degradation. Our studies establish the formation of hemozoin by mammals as a previously unsuspected heme tolerance pathway.
Collapse
Affiliation(s)
- Rini H Pek
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkUnited States
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| | - Xiaojing Yuan
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkUnited States
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| | - Nicole Rietzschel
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkUnited States
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| | - Jianbing Zhang
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkUnited States
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| | - Laurie Jackson
- Department of MedicineUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Eiji Nishibori
- Faculty of Pure and Applied SciencesUniversity of TsukubaTsukubaJapan
- Tsukuba Research Center for Energy Materials ScienceUniversity of TsukabaTsukabaJapan
| | - Ana Ribeiro
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkUnited States
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| | - William Simmons
- Genetics and Molecular Biology BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Jaya Jagadeesh
- Genetics and Molecular Biology BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | | | - Md Zahidul Alam
- Department of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Lisa Garrett
- NHGRI Embryonic Stem Cell and Transgenic Mouse CoreNational Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Malay Haldar
- Department of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Martina Ralle
- Department of Molecular and Medical GeneticsOregon Health and Science UniversityPortlandUnited States
| | - John D Phillips
- Department of MedicineUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - David M Bodine
- Genetics and Molecular Biology BranchNational Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Iqbal Hamza
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkUnited States
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| |
Collapse
|
29
|
Infused wild-type macrophages reside and self-renew in the liver to rescue the hemolysis and anemia of Hmox1-deficient mice. Blood Adv 2019; 2:2732-2743. [PMID: 30337301 DOI: 10.1182/bloodadvances.2018019737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/05/2018] [Indexed: 12/13/2022] Open
Abstract
Heme oxygenase 1 (HMOX1), the inducible enzyme that catabolizes the degradation of heme into biliverdin, iron, and carbon monoxide, plays an essential role in the clearance of senescent and damaged red blood cells, systemic iron homeostasis, erythropoiesis, vascular hemostasis, and oxidative and inflammatory stress responses. In humans, HMOX1 deficiency causes a rare and lethal disease, characterized by severe anemia, intravascular hemolysis, as well as vascular and tissue damage. Hmox1 knockout (KO) mice recapitulated the phenotypes of HMOX1-deficiency patients and could be rescued by bone marrow (BM) transplantation that engrafted donor's hematopoietic stem cells into the recipient animals after myeloablation. To find better therapy and elucidate the contribution of macrophages to the pathogenesis of HMOX1-deficiency disease, we infused wild-type (WT) macrophages into Hmox1 KO mice. Results showed that WT macrophages engrafted and proliferated in the livers of Hmox1 KO mice, which corrected the microcytic anemia, rescued the intravascular hemolysis, restored iron homeostasis, eliminated kidney iron overload and tissue damage, and provided long-term protection. These results showed that a single macrophage infusion delivered a long-term curative effect in Hmox1 KO mice, obviating the need for BM transplantation, and suggested that the HMOX1 disease stems mainly from the loss of viable reticuloendothelial macrophages. Our work provides new insights into the etiology of HMOX1 deficiency and demonstrates the potential of infusion of WT macrophages to prevent disease in patients with HMOX1 deficiency and potentially other macrophage-related diseases.
Collapse
|
30
|
Heme detoxification by heme oxygenase-1 reinstates proliferative and immune balances upon genotoxic tissue injury. Cell Death Dis 2019; 10:72. [PMID: 30683864 PMCID: PMC6347604 DOI: 10.1038/s41419-019-1342-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/13/2022]
Abstract
Phenotypic changes of myeloid cells are critical to the regulation of premature aging, development of cancer, and responses to infection. Heme metabolism has a fundamental role in the regulation of myeloid cell function and activity. Here, we show that deletion of heme oxygenase-1 (HO-1), an enzyme that removes heme, results in an impaired DNA damage response (DDR), reduced cell proliferation, and increased cellular senescence. We detected increased levels of p16INK4a, H2AXγ, and senescence-associated-β-galactosidase (SA-β-Gal) in cells and tissues isolated from HO-1-deficient mice. Importantly, deficiency of HO-1 in residential macrophages in chimeric mice results in elevated DNA damage and senescence upon radiation-induced injury. Mechanistically, we found that mammalian target of rapamycin (mTOR)/S6 protein signaling is critical for heme and HO-1-regulated phenotype of macrophages. Collectively, our data indicate that HO-1, by detoxifying heme, blocks p16INK4a expression in macrophages, preventing DNA damage and cellular senescence.
Collapse
|
31
|
Sukhbaatar N, Weichhart T. Iron Regulation: Macrophages in Control. Pharmaceuticals (Basel) 2018; 11:ph11040137. [PMID: 30558109 PMCID: PMC6316009 DOI: 10.3390/ph11040137] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophages are sentinel cells of the innate immune system and have important functions in development, tissue homeostasis, and immunity. These phylogenetically ancient cells also developed a variety of mechanisms to control erythropoiesis and the handling of iron. Red pulp macrophages in the spleen, Kupffer cells in the liver, and central nurse macrophages in the bone marrow ensure a coordinated metabolism of iron to support erythropoiesis. Phagocytosis of senescent red blood cells by macrophages in the spleen and the liver provide a continuous delivery of recycled iron under steady-state conditions and during anemic stress. Central nurse macrophages in the bone marrow utilize this iron and provide a cellular scaffold and niche to promote differentiation of erythroblasts. This review focuses on the role of the distinct macrophage populations that contribute to efficient iron metabolism and highlight important cellular and systemic mechanisms involved in iron-regulating processes.
Collapse
Affiliation(s)
- Nyamdelger Sukhbaatar
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Vienna 1090, Austria.
| | - Thomas Weichhart
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Vienna 1090, Austria.
| |
Collapse
|
32
|
Weiss A, Spektor L, A. Cohen L, Lifshitz L, Magid Gold I, Zhang DL, Truman-Rosentsvit M, Leichtmann-Bardoogo Y, Nyska A, Addadi S, Rouault TA, Meyron-Holtz EG. Orchestrated regulation of iron trafficking proteins in the kidney during iron overload facilitates systemic iron retention. PLoS One 2018; 13:e0204471. [PMID: 30321179 PMCID: PMC6188744 DOI: 10.1371/journal.pone.0204471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/07/2018] [Indexed: 01/24/2023] Open
Abstract
The exact route of iron through the kidney and its regulation during iron overload are not completely elucidated. Under physiologic conditions, non-transferrin and transferrin bound iron passes the glomerular filter and is reabsorbed through kidney epithelial cells, so that hardly any iron is found in the urine. To study the route of iron reabsorption through the kidney, we analyzed the location and regulation of iron metabolism related proteins in kidneys of mice with iron overload, elicited by iron dextran injections. Transferrin Receptor 1 was decreased as expected, following iron overload. In contrast, the multi-ligand hetero-dimeric receptor-complex megalin/cubilin, which also mediates the internalization of transferrin, was highly up-regulated. Moreover, with increasing iron, intracellular ferritin distribution shifted in renal epithelium from an apical location to a punctate distribution throughout the epithelial cells. In addition, in contrast to many other tissues, the iron exporter ferroportin was not reduced by iron overload in the kidney. Iron accumulated mainly in interstitial macrophages, and more prominently in the medulla than in the cortex. This suggests that despite the reduction of Transferrin Receptor 1, alternative pathways may effectively mediate re-absorption of iron that cycles through the kidney during parenterally induced iron-overload. The most iron consuming process of the body, erythropoiesis, is regulated by the renal erythropoietin producing cells in kidney interstitium. We propose, that the efficient re-absorption of iron by the kidney, also during iron overload enables these cells to sense systemic iron and regulate its usage based on the systemic iron state.
Collapse
Affiliation(s)
- Avital Weiss
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lior Spektor
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lyora A. Cohen
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lena Lifshitz
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inbar Magid Gold
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - De-Liang Zhang
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marianna Truman-Rosentsvit
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yael Leichtmann-Bardoogo
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abraham Nyska
- Sackler School of Medicine, Tel Aviv University, and Consultant in Toxicologic Pathology, Timrat, Israel
| | | | - Tracey A. Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Esther G. Meyron-Holtz
- Laboratory for Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
33
|
Mucci A, Lopez-Rodriguez E, Hetzel M, Liu S, Suzuki T, Happle C, Ackermann M, Kempf H, Hillje R, Kunkiel J, Janosz E, Brennig S, Glage S, Bankstahl JP, Dettmer S, Rodt T, Gohring G, Trapnell B, Hansen G, Trapnell C, Knudsen L, Lachmann N, Moritz T. iPSC-Derived Macrophages Effectively Treat Pulmonary Alveolar Proteinosis in Csf2rb-Deficient Mice. Stem Cell Reports 2018; 11:696-710. [PMID: 30100408 PMCID: PMC6135208 DOI: 10.1016/j.stemcr.2018.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cell (iPSC)-derived hematopoietic cells represent a highly attractive source for cell and gene therapy. Given the longevity, plasticity, and self-renewal potential of distinct macrophage subpopulations, iPSC-derived macrophages (iPSC-Mφ) appear of particular interest in this context. We here evaluated the airway residence, plasticity, and therapeutic efficacy of iPSC-Mφ in a murine model of hereditary pulmonary alveolar proteinosis (herPAP). We demonstrate that single pulmonary macrophage transplantation (PMT) of 2.5–4 × 106 iPSC-Mφ yields efficient airway residence with conversion of iPSC-Mφ to an alveolar macrophage (AMφ) phenotype characterized by a distinct surface marker and gene expression profile within 2 months. Moreover, PMT significantly improves alveolar protein deposition and other critical herPAP disease parameters. Thus, our data indicate iPSC-Mφ as a source of functional macrophages displaying substantial plasticity and therapeutic potential that upon pulmonary transplantation will integrate into the lung microenvironment, adopt an AMφ phenotype and gene expression pattern, and profoundly ameliorate pulmonary disease phenotypes. iPSCs as a source of functional macrophages with substantial plasticity iPSC-derived macrophages have therapeutic potential in hereditary PAP Pulmonary-transplanted iPSC-Mφ integrate into the lung microenvironment iPSC-Mφ can adopt an AMφ phenotype and gene expression pattern
Collapse
Affiliation(s)
- Adele Mucci
- Research Group Reprogramming and Gene Therapy, Hannover Medical School (MHH), Hannover, Germany; Institute of Experimental Hematology, MHH, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; Cluster of Excellence REBIRTH, MHH, Hannover, Germany
| | - Elena Lopez-Rodriguez
- Department of Functional and Applied Anatomy, MHH, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Miriam Hetzel
- Research Group Reprogramming and Gene Therapy, Hannover Medical School (MHH), Hannover, Germany; Institute of Experimental Hematology, MHH, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; Cluster of Excellence REBIRTH, MHH, Hannover, Germany
| | - Serena Liu
- Department of Genome Sciences, Seattle, WA, USA
| | - Takuji Suzuki
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Pulmonary Medicine, Jichi Medical University, Shimotsukeshi, Tochigi, Japan
| | - Christine Happle
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; Department of Pediatric Pneumology, Allergology and Neonatology, MHH, Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, MHH, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; Cluster of Excellence REBIRTH, MHH, Hannover, Germany; Research Group Translational Hematology of Congenital Diseases, MHH, Hannover, Germany
| | - Henning Kempf
- Cluster of Excellence REBIRTH, MHH, Hannover, Germany; Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Roman Hillje
- Institute of Experimental Hematology, MHH, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; Cluster of Excellence REBIRTH, MHH, Hannover, Germany; Research Group Translational Hematology of Congenital Diseases, MHH, Hannover, Germany
| | - Jessica Kunkiel
- Research Group Reprogramming and Gene Therapy, Hannover Medical School (MHH), Hannover, Germany; Institute of Experimental Hematology, MHH, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; Cluster of Excellence REBIRTH, MHH, Hannover, Germany
| | - Ewa Janosz
- Research Group Reprogramming and Gene Therapy, Hannover Medical School (MHH), Hannover, Germany; Institute of Experimental Hematology, MHH, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; Cluster of Excellence REBIRTH, MHH, Hannover, Germany
| | - Sebastian Brennig
- Institute of Experimental Hematology, MHH, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; Cluster of Excellence REBIRTH, MHH, Hannover, Germany; Research Group Translational Hematology of Congenital Diseases, MHH, Hannover, Germany
| | - Silke Glage
- Cluster of Excellence REBIRTH, MHH, Hannover, Germany; Institute of Laboratory Animal Science and Central Animal Facility, MHH, Hannover, Germany
| | | | - Sabine Dettmer
- Department of Diagnostic and Interventional Radiology, MHH, Hannover, Germany
| | - Thomas Rodt
- Department of Diagnostic and Interventional Radiology, MHH, Hannover, Germany
| | | | - Bruce Trapnell
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Gesine Hansen
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany; Department of Pediatric Pneumology, Allergology and Neonatology, MHH, Hannover, Germany
| | | | - Lars Knudsen
- Department of Functional and Applied Anatomy, MHH, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, MHH, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; Cluster of Excellence REBIRTH, MHH, Hannover, Germany; Research Group Translational Hematology of Congenital Diseases, MHH, Hannover, Germany.
| | - Thomas Moritz
- Research Group Reprogramming and Gene Therapy, Hannover Medical School (MHH), Hannover, Germany; Institute of Experimental Hematology, MHH, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany; Cluster of Excellence REBIRTH, MHH, Hannover, Germany
| |
Collapse
|
34
|
The macrophage heme-heme oxygenase-1 system and its role in inflammation. Biochem Pharmacol 2018; 153:159-167. [PMID: 29452096 DOI: 10.1016/j.bcp.2018.02.010] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023]
Abstract
Heme oxygenase (HO)-1, the inducible isoform of the heme-degrading enzyme HO, plays a critical role in inflammation and iron homeostasis. Regulatory functions of HO-1 are mediated via the catalytic breakdown of heme, which is an iron-containing tetrapyrrole complex with potential pro-oxidant and pro-inflammatory effects. In addition, the HO reaction produces the antioxidant and anti-inflammatory compounds carbon monoxide (CO) and biliverdin, subsequently converted into bilirubin, along with iron, which is reutilized for erythropoiesis. HO-1 is up-regulated by a plethora of stimuli and injuries in most cell types and tissues and provides salutary effects by restoring physiological homeostasis. Notably, HO-1 exhibits critical immuno-modulatory functions in macrophages, which are a major cell population of the mononuclear phagocyte system. Macrophages play key roles as sentinels and regulators of the immune system and HO-1 in these cells appears to be of critical importance for driving resolution of inflammatory responses. In this review, the complex functions and regulatory mechanisms of HO-1 in macrophages will be high-lighted. A particular focus will be the intricate interactions of HO-1 with its substrate heme, which play a contradictory role in distinct physiological and pathophysiological settings. The therapeutic potential of targeted modulation of the macrophage heme-HO-1 system will be discussed in the context of inflammatory disorders.
Collapse
|
35
|
Hetzel M, Mucci A, Blank P, Nguyen AHH, Schiller J, Halle O, Kühnel MP, Billig S, Meineke R, Brand D, Herder V, Baumgärtner W, Bange FC, Goethe R, Jonigk D, Förster R, Gentner B, Casanova JL, Bustamante J, Schambach A, Kalinke U, Lachmann N. Hematopoietic stem cell gene therapy for IFNγR1 deficiency protects mice from mycobacterial infections. Blood 2018; 131:533-545. [PMID: 29233822 DOI: 10.1182/blood-2017-10-812859] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by severe infections caused by weakly virulent mycobacteria. Biallelic null mutations in genes encoding interferon gamma receptor 1 or 2 (IFNGR1 or IFNGR2) result in a life-threatening disease phenotype in early childhood. Recombinant interferon γ (IFN-γ) therapy is inefficient, and hematopoietic stem cell transplantation has a poor prognosis. Thus, we developed a hematopoietic stem cell (HSC) gene therapy approach using lentiviral vectors that express Ifnγr1 either constitutively or myeloid specifically. Transduction of mouse Ifnγr1-/- HSCs led to stable IFNγR1 expression on macrophages, which rescued their cellular responses to IFN-γ. As a consequence, genetically corrected HSC-derived macrophages were able to suppress T-cell activation and showed restored antimycobacterial activity against Mycobacterium avium and Mycobacterium bovis Bacille Calmette-Guérin (BCG) in vitro. Transplantation of genetically corrected HSCs into Ifnγr1-/- mice before BCG infection prevented manifestations of severe BCG disease and maintained lung and spleen organ integrity, which was accompanied by a reduced mycobacterial burden in lung and spleen and a prolonged overall survival in animals that received a transplant. In summary, we demonstrate an HSC-based gene therapy approach for IFNγR1 deficiency, which protects mice from severe mycobacterial infections, thereby laying the foundation for a new therapeutic intervention in corresponding human patients.
Collapse
Affiliation(s)
- Miriam Hetzel
- Institute of Experimental Hematology and
- Research Group Reprogramming and Gene Therapy, REBIRTH Cluster-of Excellence, Hannover Medical School, Hannover, Germany
| | - Adele Mucci
- Institute of Experimental Hematology and
- Research Group Reprogramming and Gene Therapy, REBIRTH Cluster-of Excellence, Hannover Medical School, Hannover, Germany
| | - Patrick Blank
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Ariane Hai Ha Nguyen
- Institute of Experimental Hematology and
- Young Research Group Translational Hematology of Congenital Diseases, REBIRTH Cluster-of Excellence
| | - Jan Schiller
- Institute of Experimental Hematology and
- Young Research Group Translational Hematology of Congenital Diseases, REBIRTH Cluster-of Excellence
| | | | | | - Sandra Billig
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Robert Meineke
- Institute of Experimental Hematology and
- Young Research Group Translational Hematology of Congenital Diseases, REBIRTH Cluster-of Excellence
| | | | | | | | - Franz-Christoph Bange
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, Scientific Institute Hospital San Raffaele, Milan, Italy
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
- Pediatric Hematology-Immunology Unit and
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France; and
| | - Axel Schambach
- Institute of Experimental Hematology and
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology and
- Young Research Group Translational Hematology of Congenital Diseases, REBIRTH Cluster-of Excellence
| |
Collapse
|
36
|
Muckenthaler MU, Rivella S, Hentze MW, Galy B. A Red Carpet for Iron Metabolism. Cell 2017; 168:344-361. [PMID: 28129536 DOI: 10.1016/j.cell.2016.12.034] [Citation(s) in RCA: 816] [Impact Index Per Article: 116.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/17/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023]
Abstract
200 billion red blood cells (RBCs) are produced every day, requiring more than 2 × 1015 iron atoms every second to maintain adequate erythropoiesis. These numbers translate into 20 mL of blood being produced each day, containing 6 g of hemoglobin and 20 mg of iron. These impressive numbers illustrate why the making and breaking of RBCs is at the heart of iron physiology, providing an ideal context to discuss recent progress in understanding the systemic and cellular mechanisms that underlie the regulation of iron homeostasis and its disorders.
Collapse
Affiliation(s)
- Martina U Muckenthaler
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and University of Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany
| | - Stefano Rivella
- Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and University of Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Bruno Galy
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Specific expression of heme oxygenase-1 by myeloid cells modulates renal ischemia-reperfusion injury. Sci Rep 2017; 7:197. [PMID: 28298633 PMCID: PMC5428056 DOI: 10.1038/s41598-017-00220-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/14/2017] [Indexed: 12/21/2022] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a major risk factor for delayed graft function in renal transplantation. Compelling evidence exists that the stress-responsive enzyme, heme oxygenase-1 (HO-1) mediates protection against IRI. However, the role of myeloid HO-1 during IRI remains poorly characterized. Mice with myeloid-restricted deletion of HO-1 (HO-1M-KO), littermate (LT), and wild-type (WT) mice were subjected to renal IRI or sham procedures and sacrificed after 24 hours or 7 days. In comparison to LT, HO-1M-KO exhibited significant renal histological damage, pro-inflammatory responses and oxidative stress 24 hours after reperfusion. HO-1M-KO mice also displayed impaired tubular repair and increased renal fibrosis 7 days after IRI. In WT mice, HO-1 induction with hemin specifically upregulated HO-1 within the CD11b+ F4/80lo subset of the renal myeloid cells. Prior administration of hemin to renal IRI was associated with significant increase of the renal HO-1+ CD11b+ F4/80lo myeloid cells in comparison to control mice. In contrast, this hemin-mediated protection was abolished in HO-1M-KO mice. In conclusion, myeloid HO-1 appears as a critical protective pathway against renal IRI and could be an interesting therapeutic target in renal transplantation.
Collapse
|
38
|
Kabel AM, Abd Elmaaboud MA, Atef A, Baali MH. RETRACTED: Ameliorative potential of linagliptin and/or calcipotriol on bleomycin-induced lung fibrosis: In vivo and in vitro study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 50:216-226. [PMID: 28192751 DOI: 10.1016/j.etap.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted due to the authors’ plagiarism of text and images from the work of Eman Said Abd-Elkhalek, Hatem Abdel-Rahman Salem, Ghada Mohamed SuddeK, Marwa Ahmed Zaghloul and Ramy Ahmed Abdel-Salam, Faculties of Pharmacy and Medicine, Mansoura University, Mansoura, Egypt.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt; Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia.
| | | | - Aliaa Atef
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohammed H Baali
- Senior Medical Student, Faculty of Medicine, Taif University, Taif, Saudi Arabia
| |
Collapse
|
39
|
Bolisetty S, Zarjou A, Agarwal A. Heme Oxygenase 1 as a Therapeutic Target in Acute Kidney Injury. Am J Kidney Dis 2017; 69:531-545. [PMID: 28139396 DOI: 10.1053/j.ajkd.2016.10.037] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/22/2016] [Indexed: 01/06/2023]
Abstract
A common clinical condition, acute kidney injury (AKI) significantly influences morbidity and mortality, particularly in critically ill patients. The pathophysiology of AKI is complex and involves multiple pathways, including inflammation, autophagy, cell-cycle progression, and oxidative stress. Recent evidence suggests that a single insult to the kidney significantly enhances the propensity to develop chronic kidney disease. Therefore, the generation of effective therapies against AKI is timely. In this context, the cytoprotective effects of heme oxygenase 1 (HO-1) in animal models of AKI are well documented. HO-1 modulates oxidative stress, autophagy, and inflammation and regulates the progression of cell cycle via direct and indirect mechanisms. These beneficial effects of HO-1 induction during AKI are mediated in part by the by-products of the HO reaction (iron, carbon monoxide, and bile pigments). This review highlights recent advances in the molecular mechanisms of HO-1-mediated cytoprotection and discusses the translational potential of HO-1 induction in AKI.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Abolfazl Zarjou
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL
| | - Anupam Agarwal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, AL; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL; Birmingham Veterans Administration Medical Center, Birmingham, AL.
| |
Collapse
|
40
|
Phenotypic characterization of a novel HO-1 depletion model in the rat. Transgenic Res 2016; 26:51-64. [PMID: 27778153 DOI: 10.1007/s11248-016-9986-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
Although the protective role of HO-1 induction in various forms of kidney disease is well established, mechanisms other than heme catabolism to biliverdin, bilirubin and carbon monoxide have recently been identified. Unraveling these mechanisms requires the generation of appropriate animal models. The present study describes the generation of a HO-1 deficient Hmox1 -/- rat model and characterizes its renal and extrarenal phenotype. Hmox1 -/- rats had growth retardation and splenomegaly compared to their Hmox1 +/+ littermates. Focal segmental glomerulosclerosis-type lesions and interstitial inflammatory infiltrates were prominent morphologic findings and were associated with increased blood urea nitrogen, serum creatinine and albuminuria. There was no increase in iron deposition in glomeruli, tubules or interstitium. Iron deposition in spleen and liver was reduced. Electron microscopic examination of glomeruli revealed edematous podocytes with scant areas of foot process effacement but otherwise well preserved processes and slit-diaphragms. Of the filtration barrier proteins examined, β-catenin expression was markedly reduced both in glomeruli and extrarenal tissues. Since the rat is the preferred laboratory animal in experimental physiology and pathophysiology, the rat model of HO-1 deficiency may provide a novel tool for investigation of the role of this enzyme in renal function and disease.
Collapse
|
41
|
Mucci A, Kunkiel J, Suzuki T, Brennig S, Glage S, Kühnel MP, Ackermann M, Happle C, Kuhn A, Schambach A, Trapnell BC, Hansen G, Moritz T, Lachmann N. Murine iPSC-Derived Macrophages as a Tool for Disease Modeling of Hereditary Pulmonary Alveolar Proteinosis due to Csf2rb Deficiency. Stem Cell Reports 2016; 7:292-305. [PMID: 27453007 PMCID: PMC4982988 DOI: 10.1016/j.stemcr.2016.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent an innovative source for the standardized in vitro generation of macrophages (Mφ). We here describe a robust and efficient protocol to obtain mature and functional Mφ from healthy as well as disease-specific murine iPSCs. With regard to morphology, surface phenotype, and function, our iPSC-derived Mφ (iPSC-Mφ) closely resemble their counterparts generated in vitro from bone marrow cells. Moreover, when we investigated the feasibility of our differentiation system to serve as a model for rare congenital diseases associated with Mφ malfunction, we were able to faithfully recapitulate the pathognomonic defects in GM-CSF signaling and Mφ function present in hereditary pulmonary alveolar proteinosis (herPAP). Thus, our studies may help to overcome the limitations placed on research into certain rare disease entities by the lack of an adequate supply of disease-specific primary cells, and may aid the development of novel therapeutic approaches for herPAP patients.
Collapse
Affiliation(s)
- Adele Mucci
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Junior Research Group Translational Hematology of Congenital Diseases, Cluster of Excellence REBIRTH, Hannover Medical School, Carl-Neuberg-Street 1, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Jessica Kunkiel
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Takuji Suzuki
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sebastian Brennig
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Junior Research Group Translational Hematology of Congenital Diseases, Cluster of Excellence REBIRTH, Hannover Medical School, Carl-Neuberg-Street 1, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Silke Glage
- Institute of Laboratory Animal Science and Central Animal Facility, Hannover Medical School, 30625 Hannover, Germany
| | - Mark P Kühnel
- Department of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Mania Ackermann
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Junior Research Group Translational Hematology of Congenital Diseases, Cluster of Excellence REBIRTH, Hannover Medical School, Carl-Neuberg-Street 1, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Alexandra Kuhn
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce C Trapnell
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Thomas Moritz
- Research Group Reprogramming and Gene Therapy, Cluster of Excellence REBIRTH, Hannover Medical School, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Nico Lachmann
- Junior Research Group Translational Hematology of Congenital Diseases, Cluster of Excellence REBIRTH, Hannover Medical School, Carl-Neuberg-Street 1, 30625 Hannover, Germany; Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
42
|
Wang L, Zhao B, Chen Y, Ma L, Chen EZ, Mao EQ. Biliary tract external drainage increases the expression levels of heme oxygenase-1 in rat livers. Eur J Med Res 2015. [PMID: 26199001 PMCID: PMC4511237 DOI: 10.1186/s40001-015-0152-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Heme oxygenase-1 (HO-1) protects cells by anti-oxidation, maintaining normal microcirculation and anti-inflammatory under stress. This study investigated the effects of biliary tract external drainage (BTED) on the expression levels of HO-1 in rat livers. Methods Biliary tract external drainage was performed by inserting a cannula into the bile duct. Sixty Sprague–Dawley rats were randomized to the following groups: sham 1 h group; BTED 1 h group; bile duct ligation (BDL) 1 h group; sham 6 h group and BTED 6 h group. The expression levels of HO-1 mRNA were analyzed using real-time RT-PCR. The expression levels of HO-1 were analyzed using immunohistochemistry. Results The expression levels of HO-1 mRNA in the liver of the BTED group increased significantly compared with the sham group 1 and 6 h after surgery (p < 0.05).The expression levels of HO-1 in the BTED group increased significantly compared with the sham group 1 and 6 h after surgery. The expression levels of HO-1 mRNA in the liver in the BDL group decreased significantly compared with the sham group 1 h after surgery (p < 0.05).The expression levels of HO-1 in the BDL group decreased significantly compared with the sham group at this time. Conclusion Biliary tract external drainages increase the expression levels of HO-1 in the liver.
Collapse
Affiliation(s)
- Lu Wang
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Bing Zhao
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Ying Chen
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Li Ma
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Er-Zhen Chen
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - En-Qiang Mao
- Department of Emergency Intensive Care Unit, Shanghai Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
43
|
Smith A, McCulloh RJ. Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front Physiol 2015; 6:187. [PMID: 26175690 PMCID: PMC4485156 DOI: 10.3389/fphys.2015.00187] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/11/2015] [Indexed: 01/29/2023] Open
Abstract
The goal here is to describe our current understanding of heme metabolism and the deleterious effects of "free" heme on immunological processes, endothelial function, systemic inflammation, and various end-organ tissues (e.g., kidney, lung, liver, etc.), with particular attention paid to the role of hemopexin (HPX). Because heme toxicity is the impetus for much of the pathology in sepsis, sickle cell disease (SCD), and other hemolytic conditions, the biological importance and clinical relevance of HPX, the predominant heme binding protein, is reinforced. A perspective on the function of HPX and haptoglobin (Hp) is presented, updating how these two proteins and their respective receptors act simultaneously to protect the body in clinical conditions that entail hemolysis and/or systemic intravascular (IVH) inflammation. Evidence from longitudinal studies in patients supports that HPX plays a Hp-independent role in genetic and non-genetic hemolytic diseases without the need for global Hp depletion. Evidence also supports that HPX has an important role in the prognosis of complex illnesses characterized predominantly by the presence of hemolysis, such as SCD, sepsis, hemolytic-uremic syndrome, and conditions involving IVH and extravascular hemolysis (EVH), such as that generated by extracorporeal circulation during cardiopulmonary bypass (CPB) and from blood transfusions. We propose that quantitating the amounts of plasma heme, HPX, Hb-Hp, heme-HPX, and heme-albumin levels in various disease states may aid in the diagnosis and treatment of the above-mentioned conditions, which is crucial to developing targeted plasma protein supplementation (i.e., "replenishment") therapies for patients with heme toxicity due to HPX depletion.
Collapse
Affiliation(s)
- Ann Smith
- School of Biological Sciences, University of Missouri-Kansas CityKansas City, MO, USA
| | - Russell J. McCulloh
- Pediatric and Adult Infectious Diseases, Children's Mercy-Kansas CityKansas City, MO, USA
- School of Medicine, University of Missouri-Kansas CityKansas City, MO, USA
| |
Collapse
|
44
|
Zhao H, Ozen M, Wong RJ, Stevenson DK. Heme oxygenase-1 in pregnancy and cancer: similarities in cellular invasion, cytoprotection, angiogenesis, and immunomodulation. Front Pharmacol 2015; 5:295. [PMID: 25642189 PMCID: PMC4294126 DOI: 10.3389/fphar.2014.00295] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/18/2014] [Indexed: 01/28/2023] Open
Abstract
Pregnancy can be defined as a “permissible” process, where a semi-allogeneic fetus and placenta are allowed to grow and survive within the mother. Similarly, in tumor growth, antigen-specific malignant cells proliferate and evade into normal tissues of the host. The microenvironments of the placenta and tumors are amazingly comparable, sharing similar mechanisms exploited by fetal or cancer cells with regard to surviving in a hypoxic microenvironment, invading tissues via degradation and vasculogenesis, and escaping host attack through immune privilege. Heme oxygease-1 (HO-1) is a stress-response protein that has antioxidative, anti-apoptotic, pro-angiogenic, and anti-inflammatory properties. Although a large volume of research has been published in recent years investigating the possible role(s) of HO-1 in pregnancy and in cancer development, the molecular mechanisms that regulate these “yin-yang” processes have still not been fully elucidated. Here, we summarize and compare pregnancy and cancer development, focusing primarily on the function of HO-1 in cellular invasion, cytoprotection, angiogenesis, and immunomodulation. Due to the similarities of both processes, a thorough understanding of the molecular mechanisms of each process may reveal and guide the development of new approaches to prevent not only pregnancy disorders; but also, to study cancer.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine Stanford, CA, USA
| | - Maide Ozen
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine Stanford, CA, USA
| | - Ronald J Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine Stanford, CA, USA
| | - David K Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine Stanford, CA, USA
| |
Collapse
|
45
|
|