1
|
Zhang Y, Ren Y, Zhou T, Qian Z, Bao Z. Vav family exchange factors: Potential regulator in atherosclerosis. Biochem Biophys Rep 2024; 40:101878. [PMID: 39649800 PMCID: PMC11625217 DOI: 10.1016/j.bbrep.2024.101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
The Vav family of guanosine nucleotide exchange factors (GEFs) regulates the phosphorylation of tyrosinase, influencing various physiological and pathological processes by modulating the binding of Rho GTPases to GDP/GTP. Recent research has highlighted the critical role of Vav family activation in tumorigenesis, neurological disorders, immune-related dysfunctions, and other diseases. This review offers a comprehensive overview of the structure and function of Vav proteins and their significant impact on the pathophysiology of atherosclerosis. In addition, we pay attention to the development of diagnostic and therapeutic targets centered around Vav proteins.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214002, China
| | - Yongwei Ren
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China
| | - Tao Zhou
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, 215500, China
| | - Zhengyang Bao
- Department of Internal Medicine, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China
| |
Collapse
|
2
|
McFarlin BK, Bridgeman EA, Curtis JH, Vingren JL, Hill DW. Baker's yeast beta glucan supplementation was associated with an improved innate immune mRNA expression response after exercise. Methods 2024; 230:68-79. [PMID: 39097177 DOI: 10.1016/j.ymeth.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Beta glucans are found in many natural sources, however, only Baker's Yeast Beta Glucan (BYBG) has been well documented to have structure-function effects that are associated with improved innate immune response to stressors (e.g., exercise, infection, etc.). The purpose was to identify a BYBG-associated mRNA expression pattern following exercise. Participants gave IRB-approved consent and were randomized to BYBG (Wellmune®; N=9) or Placebo (maltodextrin; N=10) for 6-weeks prior to performing 90 min of whole-body exercise. Paxgene blood samples were collected prior to exercise (PRE), after exercise (POST), two hours after exercise (2H), and four hours after exercise (4H). Total RNA was isolated and analyzed for the expression of 770 innate immune response mRNA (730 mRNA targets; 40 housekeepers/controls; Nanostring nCounter). The raw data were normalized against housekeeping controls and expressed as Log2 fold change from PRE for a given condition. Significance was set at p < 0.05 with adjustments for multiple comparisons and false discovery rate. We identified 47 mRNA whose expression was changed after exercise with BYBG and classified them to four functional pathways: 1) Immune Cell Maturation (8 mRNA), 2) Immune Response and Function (5 mRNA), 3) Pattern Recognition Receptors and DAMP or PAMP Detection (25 mRNA), and 4) Detection and Resolution of Tissue Damage (9 mRNA). The identified mRNA whose expression was altered after exercise with BYBG may represent an innate immune response pattern and supports previous conclusions that BYBG improves immune response to a future sterile inflammation or infection.
Collapse
Affiliation(s)
- Brian K McFarlin
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States; University of North Texas, Dept. of Biological Sciences, Denton, TX 76203, United States.
| | - Elizabeth A Bridgeman
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States.
| | - John H Curtis
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States.
| | - Jakob L Vingren
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States; University of North Texas, Dept. of Biological Sciences, Denton, TX 76203, United States.
| | - David W Hill
- Applied Physiology Laboratory, University of North Texas, Denton, TX 76203, United States.
| |
Collapse
|
3
|
Pan D, Ladds G, Rahman KM, Pitchford SC. Exploring bias in platelet P2Y 1 signalling: Host defence versus haemostasis. Br J Pharmacol 2024; 181:580-592. [PMID: 37442808 PMCID: PMC10952580 DOI: 10.1111/bph.16191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Platelets are necessary for maintaining haemostasis. Separately, platelets are important for the propagation of inflammation during the host immune response against infection. The activation of platelets also causes inappropriate inflammation in various disease pathologies, often in the absence of changes to haemostasis. The separate functions of platelets during inflammation compared with haemostasis are therefore varied and this will be reflected in distinct pathways of activation. The activation of platelets by the nucleotide adenosine diphosphate (ADP) acting on P2Y1 and P2Y12 receptors is important for the development of platelet thrombi during haemostasis. However, P2Y1 stimulation of platelets is also important during the inflammatory response and paradoxically in scenarios where no changes to haemostasis and platelet aggregation occur. In these events, Rho-GTPase signalling, rather than the canonical phospholipase Cβ (PLCβ) signalling pathway, is necessary. We describe our current understanding of these differences, reflecting on recent advances in knowledge of P2Y1 structure, and the possibility of biased agonism occurring from activation via other endogenous nucleotides compared with ADP. Knowledge arising from these different pathways of P2Y1 stimulation of platelets during inflammation compared with haemostasis may help therapeutic control of platelet function during inflammation or infection, while preserving essential haemostasis. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Dingxin Pan
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Graham Ladds
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | - Khondaker Miraz Rahman
- Chemical Biology Group, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Simon C. Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| |
Collapse
|
4
|
Arkless KL, Pan D, Shankar‐Hari M, Amison RT, Page CP, Rahman KM, Pitchford SC. Stimulation of platelet P2Y 1 receptors by different endogenous nucleotides leads to functional selectivity via biased signalling. Br J Pharmacol 2024; 181:564-579. [PMID: 36694432 PMCID: PMC10952403 DOI: 10.1111/bph.16039] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/13/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Platelet function during inflammation is dependent on activation by endogenous nucleotides. Non-canonical signalling via the P2Y1 receptor is important for these non-thrombotic functions of platelets. However, apart from ADP, the role of other endogenous nucleotides acting as agonists at P2Y1 receptors is unknown. This study compared the effects of ADP, Ap3A, NAD+ , ADP-ribose, and Up4A on platelet functions contributing to inflammation or haemostasis. EXPERIMENTAL APPROACH Platelets obtained from healthy human volunteers were incubated with ADP, Ap3A, NAD+ , ADP-ribose, or Up4A, with aggregation and fibrinogen binding measured (examples of function during haemostasis) or before exposure to fMLP to measure platelet chemotaxis (an inflammatory function). In silico molecular docking of these nucleotides to the binding pocket of P2Y1 receptors was then assessed. KEY RESULTS Platelet aggregation and binding to fibrinogen induced by ADP was not mimicked by NAD+ , ADP-ribose, and Up4A. However, these endogenous nucleotides induced P2Y1 -dependent platelet chemotaxis, an effect that required RhoA and Rac-1 activity, but not canonical PLC activity. Analysis of molecular docking of the P2Y1 receptor revealed distinct differences of amino acid interactions and depth of fit within the binding pocket for Ap3A, NAD+ , ADP-ribose, or Up4A compared with ADP. CONCLUSION AND IMPLICATIONS Platelet function (aggregation vs motility) can be differentially modulated by biased-agonist activation of P2Y1 receptors. This may be due to the character of the ligand-binding pocket interaction. This has implications for future therapeutic strategies aimed to suppress platelet activation during inflammation without affecting haemostasis as is the requirement of current ant-platelet drugs. LINKED ARTICLES This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Kate L. Arkless
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| | - Dingxin Pan
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| | - Manu Shankar‐Hari
- School of Immunology and Microbial SciencesKing's College LondonLondonUK
- Centre for Inflammation ResearchThe University of EdinburghEdinburghUK
| | - Richard T. Amison
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| | - Clive P. Page
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| | - Khondaker Miraz Rahman
- Chemical Biology Group, Institute of Pharmaceutical ScienceKing's College LondonLondonUK
| | - Simon C. Pitchford
- Sackler Institute of Pulmonary PharmacologyInstitute of Pharmaceutical Science, King's College LondonLondonUK
| |
Collapse
|
5
|
Hornigold K, Baker MJ, Machin PA, Chetwynd SA, Johnsson AK, Pantarelli C, Islam P, Stammers M, Crossland L, Oxley D, Okkenhaug H, Walker S, Walker R, Segonds-Pichon A, Fukui Y, Malliri A, Welch HCE. The Rac-GEF Tiam1 controls integrin-dependent neutrophil responses. Front Immunol 2023; 14:1223653. [PMID: 38077328 PMCID: PMC10703174 DOI: 10.3389/fimmu.2023.1223653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023] Open
Abstract
Rac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere. Tiam1 is dispensable for the generation of reactive oxygen species but mediates degranulation and NETs release in adherent neutrophils, as well as the killing of bacteria. In vivo, Tiam1 is required for neutrophil recruitment during aseptic peritonitis and for the clearance of Streptococcus pneumoniae during pulmonary infection. However, Tiam1 functions differently to other Rac-GEFs. Instead of promoting neutrophil adhesion to ICAM1 and stimulating β2 integrin activity as could be expected, Tiam1 restricts these processes. In accordance with these paradoxical inhibitory roles, Tiam1 limits the fMLP-stimulated activation of Rac1 and Rac2 in adherent neutrophils, rather than activating Rac as expected. Tiam1 promotes the expression of several regulators of small GTPases and cytoskeletal dynamics, including αPix, Psd4, Rasa3, and Tiam2. It also controls the association of Rasa3, and potentially αPix, Git2, Psd4, and 14-3-3ζ/δ, with Rac. We propose these latter roles of Tiam1 underlie its effects on Rac and β2 integrin activity and on cell responses. Hence, Tiam1 is a novel regulator of Rac-dependent neutrophil responses that functions differently to other known neutrophil Rac-GEFs.
Collapse
Affiliation(s)
- Kirsti Hornigold
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | - Martin J. Baker
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
- Cell Signalling Group, Cancer Research UK Manchester Institute, University of Manchester, Macclesfield, United Kingdom
| | - Polly A. Machin
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | | | | | - Priota Islam
- Signalling Programme, Babraham Institute, Cambridge, United Kingdom
| | | | | | - David Oxley
- Mass Spectrometry Facility, Babraham Institute, Cambridge, United Kingdom
| | | | - Simon Walker
- Imaging Facility, Babraham Institute, Cambridge, United Kingdom
| | - Rachael Walker
- Flow Cytometry Facility, Babraham Institute, Cambridge, United Kingdom
| | | | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, University of Manchester, Macclesfield, United Kingdom
| | | |
Collapse
|
6
|
Arkless KL, Fish M, Jennings A, Page CP, Shankar-Hari M, Pitchford SC. INVESTIGATION INTO P2Y RECEPTOR FUNCTION IN PLATELETS FROM PATIENTS WITH SEPSIS. Shock 2023; 60:172-180. [PMID: 37405876 PMCID: PMC10476582 DOI: 10.1097/shk.0000000000002158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
ABSTRACT Key underlying pathological mechanisms contributing to sepsis are hemostatic dysfunction and overwhelming inflammation. Platelet aggregation is required for hemostasis, and platelets are also separately involved in inflammatory responses that require different functional attributes. Nevertheless, P2Y receptor activation of platelets is required for this dichotomy of function. The aim of this study was to elucidate whether P2YR-dependent hemostatic and inflammatory functions were altered in platelets isolated from sepsis patients, compared with patients with mild sterile inflammation. Platelets from patients undergoing elective cardiac surgery (20 patients, 3 female) or experiencing sepsis after community-acquired pneumonia (10 patients, 4 female) were obtained through the IMMunE dysfunction and Recovery from SEpsis-related critical illness in adults (IMMERSE) Observational Clinical Trial. In vitro aggregation and chemotaxis assays were performed with platelets after stimulation with ADP and compared with platelets isolated from healthy control subjects (7 donors, 5 female). Cardiac surgery and sepsis both induced a robust inflammatory response with increases in circulating neutrophil counts with a trend toward decreased circulating platelet counts being observed. The ability of platelets to aggregate in response to ex vivo ADP stimulation was preserved in all groups. However, platelets isolated from patients with sepsis lost the ability to undergo chemotaxis toward N -formylmethionyl-leucyl-phenylalanine, and this suppression was evident at admission through to and including discharge from hospital. Our results suggest that P2Y 1 -dependent inflammatory function in platelets is lost in patients with sepsis resulting from community-acquired pneumonia. Further studies will need to be undertaken to determine whether this is due to localized recruitment to the lungs of a platelet responsive population or loss of function as a result of dysregulation of the immune response.
Collapse
Affiliation(s)
- Kate L. Arkless
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Matthew Fish
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Aislinn Jennings
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Clive P. Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Manu Shankar-Hari
- School of Immunology and Microbial Sciences, King’s College London, London, United Kingdom
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Simon C. Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Machin PA, Johnsson AKE, Massey EJ, Pantarelli C, Chetwynd SA, Chu JY, Okkenhaug H, Segonds-Pichon A, Walker S, Malliri A, Fukui Y, Welch HCE. Dock2 generates characteristic spatiotemporal patterns of Rac activity to regulate neutrophil polarisation, migration and phagocytosis. Front Immunol 2023; 14:1180886. [PMID: 37383235 PMCID: PMC10293741 DOI: 10.3389/fimmu.2023.1180886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Rac-GTPases and their Rac-GEF activators play important roles in neutrophil-mediated host defence. These proteins control the adhesion molecules and cytoskeletal dynamics required for neutrophil recruitment to inflamed and infected organs, and the neutrophil effector responses that kill pathogens. Methods Here, we used live cell TIRF-FRET imaging in neutrophils from Rac-FRET reporter mice with deficiencies in the Rac-GEFs Dock2, Tiam1 or Prex1/Vav1 to evaluate if these proteins activate spatiotemporally distinct pools of Rac, and to correlate patterns of Rac activity with the neutrophil responses they control. Results All the GEFs were required for neutrophil adhesion, and Prex1/Vav1 were important during spreading and for the velocity of migration during chemotaxis. However, Dock2 emerged as the prominent regulator of neutrophil responses, as this GEF was required for neutrophil polarisation and random migration, for migration velocity during chemokinesis, for the likelihood to migrate and for the speed of migration and of turning during chemotaxis, as well as for rapid particle engulfment during phagocytosis. We identified characteristic spatiotemporal patterns of Rac activity generated by Dock2 which correlate with the importance of the Rac-GEF in these neutrophil responses. We also demonstrate a requirement for Dock2 in neutrophil recruitment during aseptic peritonitis. Discussion Collectively, our data provide a first direct comparison of the pools of Rac activity generated by different types of Rac-GEFs, and identify Dock2 as a key regulator of polarisation, migration and phagocytosis in primary neutrophils.
Collapse
Affiliation(s)
- Polly A. Machin
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Anna-Karin E. Johnsson
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Ellie J. Massey
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Chiara Pantarelli
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Stephen A. Chetwynd
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Julia Y. Chu
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Hanneke Okkenhaug
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Anne Segonds-Pichon
- Bioinformatics Facility, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Simon Walker
- Imaging Facility, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| | - Angeliki Malliri
- Cell Signalling, Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Heidi C. E. Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
8
|
Xu J, Xie L. Advances in immune response to pulmonary infection: Nonspecificity, specificity and memory. Chronic Dis Transl Med 2023; 9:71-81. [PMID: 37305110 PMCID: PMC10249196 DOI: 10.1002/cdt3.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023] Open
Abstract
The lung immune response consists of various cells involved in both innate and adaptive immune processes. Innate immunity participates in immune resistance in a nonspecific manner, whereas adaptive immunity effectively eliminates pathogens through specific recognition. It was previously believed that adaptive immune memory plays a leading role during secondary infections; however, innate immunity is also involved in immune memory. Trained immunity refers to the long-term functional reprogramming of innate immune cells caused by the first infection, which alters the immune response during the second challenge. Tissue resilience limits the tissue damage caused by infection by controlling excessive inflammation and promoting tissue repair. In this review, we summarize the impact of host immunity on the pathophysiological processes of pulmonary infections and discuss the latest progress in this regard. In addition to the factors influencing pathogenic microorganisms, we emphasize the importance of the host response.
Collapse
Affiliation(s)
- Jianqiao Xu
- College of Pulmonary & Critical Care Medicine, 8th Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| |
Collapse
|
9
|
Cleary SJ, Conrad C. Investigating and imaging platelets in inflammation. Int J Biochem Cell Biol 2023; 157:106373. [PMID: 36716816 DOI: 10.1016/j.biocel.2023.106373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Blood platelets are best known for their roles in hemostasis and thrombosis, but platelets also make important contributions to inflammation, immunity, and inflammatory resolution. Experiments involving depletion, genetic modification, and live imaging of platelets in animal models have increased our mechanistic understanding of platelet contributions to inflammation. In this minireview, we provide a critical overview of experimental techniques for manipulating and imaging platelets in inflammation models. We then highlight studies using innovative approaches to elucidate molecular mechanisms through which platelet subsets, platelet Fc gamma receptors, and pro-resolution platelet functions influence inflammatory responses. We also propose future technologies and research directions which might move us closer to harnessing of platelet functions for improved therapeutic modulation of inflammatory diseases.
Collapse
Affiliation(s)
- Simon J Cleary
- Department of Medicine, UCSF, Health Sciences East 1355A, 513 Parnassus Ave., San Francisco, CA 94143, USA.
| | - Catharina Conrad
- Department of Medicine, UCSF, Health Sciences East 1355A, 513 Parnassus Ave., San Francisco, CA 94143, USA
| |
Collapse
|
10
|
Van Bruggen S, Martinod K. The coming of age of neutrophil extracellular traps in thrombosis: Where are we now and where are we headed? Immunol Rev 2022; 314:376-398. [PMID: 36560865 DOI: 10.1111/imr.13179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thrombosis remains a major problem in our society, manifesting across multiple demographic groups and with high associated morbidity and mortality. Thrombus development is the result of a complex mechanism in which multiple cell types and soluble factors play a crucial role. One cell that has gained the most attention in recent years is the neutrophil. This key member of the innate immune system can form neutrophil extracellular traps (NETs) in response to activating stimuli in circulation. NETs form a scaffold for thrombus formation, both initiating the process and stabilizing the final product. As the first responders of the host immune system, neutrophils have the flexibility to recognize a variety of molecules and can quickly interact with a range of different cell types. This trait makes them sensitive to exogenous stimuli. NET formation in response to pathogens is well established, leading to immune-mediated thrombus formation or immunothrombosis. NETs can also be formed during sterile inflammation through the activation of neutrophils by fellow immune cells including platelets, or activated endothelium. In chronic inflammatory settings, NETs can ultimately promote the development of tissue fibrosis, with organ failure as an end-stage outcome. In this review, we discuss the different pathways through which neutrophils can be activated toward NET formation and how these processes can result in a shared outcome: thrombus formation. Finally, we evaluate these different interactions and mechanisms for their potential as therapeutic targets, with neutrophil-targeted therapies providing a future approach to treating thrombosis. In contrast to current practices, such treatment could result in reduced pathogenic blood clot formation without increasing the risk of bleeding.
Collapse
Affiliation(s)
- Stijn Van Bruggen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
RNA Sequencing Reveals the Regulation Mechanism of Yunnan Baiyao in Treating Skin Infection Caused by Staphylococcus aureus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6348157. [PMID: 36276861 PMCID: PMC9581712 DOI: 10.1155/2022/6348157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Yunnan Baiyao is a well-known traditional Chinese medicine that can be formulated into a powder or capsule form. The mechanism by which it exerts its anti-inflammation effect, which is used in skin care products, needs to be further explored. In this study, we established the Staphylococcus aureus-induced mouse skin inflammatory model to investigate the effects of Yunnan Baiyao by the method of RNA-sequencing technology. The mice were randomly assigned to three groups, and those were control, model, and the Yunnan Baiyao-treated (YNtreated) group. Key genes and pathways were identified using bioinformatics analyses. In the study, we obtained 1,053 differentially expressed genes (DEGs) induced by Yunnan Baiyao. The 233 upregulated genes were enriched in 32 GO terms and 5 KEGG pathways, focused on the items, such as wound healing, cell metabolism, and proliferation, indicating the accelerating effects of Yunnan Baiyao on these aspects. The 820 downregulated genes were enriched mainly in the items, including the regulation of inflammation factor production, immune responses, and regulation of structure dermal components. Besides, Yunnan Baiyao reversed the expressions of 277 (201 decreased and 76 increased DEGs, respectively) induced by S. aureus. Ten key regulatory nodes (MMP2, PLK1, CCNB1, TLR4, CDK1, CCNA2, CDC25C, PDGFRA, MYOC, and KNG1) were identified by the construction of the protein interaction network, half of which were related to cell proliferation. VAV1 was another hub node that was affected by Yunnan Baiyao (Top 20). In the study, VAV1 and TLR4 can be considered key module genes in inflammation regulation. In conclusion, this study found that Yunnan Baiyao can significantly relieve inflammatory symptoms by regulating genes and pathways involved in the regulation of inflammation and immune response and also helped to deepen our understanding of the associated molecular mechanisms.
Collapse
|
12
|
Ebeyer-Masotta M, Eichhorn T, Weiss R, Lauková L, Weber V. Activated Platelets and Platelet-Derived Extracellular Vesicles Mediate COVID-19-Associated Immunothrombosis. Front Cell Dev Biol 2022; 10:914891. [PMID: 35874830 PMCID: PMC9299085 DOI: 10.3389/fcell.2022.914891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Activated platelets and platelet-derived extracellular vesicles (EVs) have emerged as central players in thromboembolic complications associated with severe coronavirus disease 2019 (COVID-19). Platelets bridge hemostatic, inflammatory, and immune responses by their ability to sense pathogens via various pattern recognition receptors, and they respond to infection through a diverse repertoire of mechanisms. Dysregulated platelet activation, however, can lead to immunothrombosis, a simultaneous overactivation of blood coagulation and the innate immune response. Mediators released by activated platelets in response to infection, such as antimicrobial peptides, high mobility group box 1 protein, platelet factor 4 (PF4), and PF4+ extracellular vesicles promote neutrophil activation, resulting in the release of neutrophil extracellular traps and histones. Many of the factors released during platelet and neutrophil activation are positively charged and interact with endogenous heparan sulfate or exogenously administered heparin via electrostatic interactions or via specific binding sites. Here, we review the current state of knowledge regarding the involvement of platelets and platelet-derived EVs in the pathogenesis of immunothrombosis, and we discuss the potential of extracorporeal therapies using adsorbents functionalized with heparin to deplete platelet-derived and neutrophil-derived mediators of immunothrombosis.
Collapse
Affiliation(s)
- Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Lucia Lauková
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria
| |
Collapse
|
13
|
Ghasemzadeh M, Ahmadi J, Hosseini E. Platelet-leukocyte crosstalk in COVID-19: How might the reciprocal links between thrombotic events and inflammatory state affect treatment strategies and disease prognosis? Thromb Res 2022; 213:179-194. [PMID: 35397313 PMCID: PMC8969450 DOI: 10.1016/j.thromres.2022.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023]
Abstract
Platelet-leukocyte crosstalk is commonly manifested by reciprocal links between thrombosis and inflammation. Platelet thrombus acts as a reactive matrix that recruits leukocytes to the injury site where their massive accumulation, activation and migration promote thrombotic events while triggering inflammatory responses. As a life-threatening condition with the associations between inflammation and thrombosis, COVID-19 presents diffuse alveolar damage due to exaggerated macrophage activity and cytokine storms. These events, together with direct intracellular virus invasion lead to pulmonary vascular endothelialitis, cell membranes disruption, severe endothelial injury, and thrombosis. The developing pre-alveolar thrombus provides a hyper-reactive milieu that recruits circulating leukocytes to the injury site where their activation contributes to thrombus stabilization and thrombosis propagation, primarily through the formation of Neutrophil extracellular trap (NET). NET fragments can also circulate and deposit in further distance where they may disseminate intravascular thrombosis in severe cases of disease. Thrombi may also facilitate leukocytes migration into alveoli where their accumulation and activation exacerbate cytokine storms and tissue damage, further complicating the disease. Based on these mechanisms, whether an effective anti-inflammatory protocol can prevent thrombotic events, or on the other hand; efficient antiplatelet or anticoagulant regimens may be associated with reduced cytokine storms and tissue damage, is now of interests for several ongoing researches. Thus shedding more light on platelet-leukocyte crosstalk, the review presented here discusses the detailed mechanisms by which platelets may contribute to the pathogenesis of COVID-19, especially in severe cases where their interaction with leukocytes can intensify both inflammatory state and thrombosis in a reciprocal manner.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Corresponding authors at: Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, Iran
| | | | - Ehteramolsadat Hosseini
- Corresponding authors at: Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, Iran
| |
Collapse
|
14
|
Ebeyer-Masotta M, Eichhorn T, Weiss R, Semak V, Lauková L, Fischer MB, Weber V. Heparin-Functionalized Adsorbents Eliminate Central Effectors of Immunothrombosis, including Platelet Factor 4, High-Mobility Group Box 1 Protein and Histones. Int J Mol Sci 2022; 23:ijms23031823. [PMID: 35163743 PMCID: PMC8836755 DOI: 10.3390/ijms23031823] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/20/2022] Open
Abstract
Inflammation and thrombosis are closely intertwined in numerous disorders, including ischemic events and sepsis, as well as coronavirus disease 2019 (COVID-19). Thrombotic complications are markers of disease severity in both sepsis and COVID-19 and are associated with multiorgan failure and increased mortality. Immunothrombosis is driven by the complement/tissue factor/neutrophil axis, as well as by activated platelets, which can trigger the release of neutrophil extracellular traps (NETs) and release further effectors of immunothrombosis, including platelet factor 4 (PF4/CXCL4) and high-mobility box 1 protein (HMGB1). Many of the central effectors of deregulated immunothrombosis, including activated platelets and platelet-derived extracellular vesicles (pEVs) expressing PF4, soluble PF4, HMGB1, histones, as well as histone-decorated NETs, are positively charged and thus bind to heparin. Here, we provide evidence that adsorbents functionalized with endpoint-attached heparin efficiently deplete activated platelets, pEVs, PF4, HMGB1 and histones/nucleosomes. We propose that this elimination of central effectors of immunothrombosis, rather than direct binding of pathogens, could be of clinical relevance for mitigating thrombotic complications in sepsis or COVID-19 using heparin-functionalized adsorbents.
Collapse
Affiliation(s)
- Marie Ebeyer-Masotta
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - Tanja Eichhorn
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - René Weiss
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - Vladislav Semak
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - Lucia Lauková
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
| | - Michael B. Fischer
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
- Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, 3500 Krems, Austria; (M.E.-M.); (T.E.); (R.W.); (V.S.); (L.L.); (M.B.F.)
- Correspondence: ; Tel.: +43-2732-893-2601
| |
Collapse
|
15
|
Comer SP. Turning Platelets Off and On: Role of RhoGAPs and RhoGEFs in Platelet Activity. Front Cardiovasc Med 2022; 8:820945. [PMID: 35071371 PMCID: PMC8770426 DOI: 10.3389/fcvm.2021.820945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Platelet cytoskeletal reorganisation is a critical component of platelet activation and thrombus formation in haemostasis. The Rho GTPases RhoA, Rac1 and Cdc42 are the primary drivers in the dynamic reorganisation process, leading to the development of filopodia and lamellipodia which dramatically increase platelet surface area upon activation. Rho GTPases cycle between their active (GTP-bound) and inactive (GDP-bound) states through tightly regulated processes, central to which are the guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). GEFs catalyse the dissociation of GDP by inducing changes in the nucleotide binding site, facilitating GTP binding and activating Rho GTPases. By contrast, while all GTPases possess intrinsic hydrolysing activity, this reaction is extremely slow. Therefore, GAPs catalyse the hydrolysis of GTP to GDP, reverting Rho GTPases to their inactive state. Our current knowledge of these proteins is constantly being updated but there is considerably less known about the functionality of Rho GTPase specific GAPs and GEFs in platelets. In the present review, we discuss GAP and GEF proteins for Rho GTPases identified in platelets, their regulation, biological function and present a case for their further study in platelets.
Collapse
Affiliation(s)
- Shane P Comer
- ConwaySPHERE Research Group, UCD Conway Institute, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Lawson CD, Hornigold K, Pan D, Niewczas I, Andrews S, Clark J, Welch HCE. Small-molecule inhibitors of P-Rex guanine-nucleotide exchange factors. Small GTPases 2022; 13:307-326. [PMID: 36342857 PMCID: PMC9645260 DOI: 10.1080/21541248.2022.2131313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
P-Rex1 and P-Rex2 are guanine-nucleotide exchange factors (GEFs) that activate Rac small GTPases in response to the stimulation of G protein-coupled receptors and phosphoinositide 3-kinase. P-Rex Rac-GEFs regulate the morphology, adhesion and migration of various cell types, as well as reactive oxygen species production and cell cycle progression. P-Rex Rac-GEFs also have pathogenic roles in the initiation, progression or metastasis of several types of cancer. With one exception, all P-Rex functions are known or assumed to be mediated through their catalytic Rac-GEF activity. Thus, inhibitors of P-Rex Rac-GEF activity would be valuable research tools. We have generated a panel of small-molecule P-Rex inhibitors that target the interface between the catalytic DH domain of P-Rex Rac-GEFs and Rac. Our best-characterized compound, P-Rex inhibitor 1 (PREX-in1), blocks the Rac-GEF activity of full-length P-Rex1 and P-Rex2, and of their isolated catalytic domains, in vitro at low-micromolar concentration, without affecting the activities of several other Rho-GEFs. PREX-in1 blocks the P-Rex1 dependent spreading of PDGF-stimulated endothelial cells and the production of reactive oxygen species in fMLP-stimulated mouse neutrophils. Structure-function analysis revealed critical structural elements of PREX-in1, allowing us to develop derivatives with increased efficacy, the best with an IC50 of 2 µM. In summary, we have developed PREX-in1 and derivative small-molecule compounds that will be useful laboratory research tools for the study of P-Rex function. These compounds may also be a good starting point for the future development of more sophisticated drug-like inhibitors aimed at targeting P-Rex Rac-GEFs in cancer.
Collapse
Affiliation(s)
- CD Lawson
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - K Hornigold
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - D Pan
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - I Niewczas
- Biological Chemistry Facility, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - S Andrews
- Bioinformatics Facility, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - J Clark
- Biological Chemistry Facility, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK
| | - HCE Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3AT, UK,CONTACT HCE Welch Signalling Programme, The Babraham Institute, Babraham Research Campus, CambridgeCB22 3ATUK
| |
Collapse
|
17
|
P-Rex1 Controls Sphingosine 1-Phosphate Receptor Signalling, Morphology, and Cell-Cycle Progression in Neuronal Cells. Cells 2021; 10:cells10092474. [PMID: 34572121 PMCID: PMC8469755 DOI: 10.3390/cells10092474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates Rac-type small G proteins in response to the stimulation of a range of receptors, particularly G protein-coupled receptors (GPCRs), to control cytoskeletal dynamics and other Rac-dependent cell responses. P-Rex1 is mainly expressed in leukocytes and neurons. Whereas its roles in leukocytes have been studied extensively, relatively little is known about its functions in neurons. Here, we used CRISPR/Cas9-mediated P-Rex1 deficiency in neuronal PC12 cells that stably overexpress the GPCR S1PR1, a receptor for sphingosine 1-phosphate (S1P), to investigate the role of P-Rex1 in neuronal GPCR signalling and cell responses. We show that P-Rex1 is required for the S1P-stimulated activation of Rac1 and Akt, basal Rac3 activity, and constitutive cAMP production in PC12-S1PR1 cells. The constitutive cAMP production was not due to increased expression levels of major neuronal adenylyl cyclases, suggesting that P-Rex1 may regulate adenylyl cyclase activity. P-Rex1 was required for maintenance of neurite protrusions and spreading in S1P-stimulated PC12-S1PR1 cells, as well as for cell-cycle progression and proliferation. In summary, we identified novel functional roles of P-Rex1 in neuronal Rac, Akt and cAMP signalling, as well as in neuronal cell-cycle progression and proliferation.
Collapse
|
18
|
The GPCR adaptor protein norbin suppresses the neutrophil-mediated immunity of mice to pneumococcal infection. Blood Adv 2021; 5:3076-3091. [PMID: 34402884 DOI: 10.1182/bloodadvances.2020002782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Streptococcal pneumonia is a worldwide health problem that kills ∼2 million people each year, particularly young children, the elderly, and immunosuppressed individuals. Alveolar macrophages and neutrophils provide the early innate immune response to clear pneumococcus from infected lungs. However, the level of neutrophil involvement is context dependent, both in humans and in mouse models of the disease, influenced by factors such as bacterial load, age, and coinfections. Here, we show that the G protein-coupled receptor (GPCR) adaptor protein norbin (neurochondrin, NCDN), which was hitherto known as a regulator of neuronal function, is a suppressor of neutrophil-mediated innate immunity. Myeloid norbin deficiency improved the immunity of mice to pneumococcal infection by increasing the involvement of neutrophils in clearing the bacteria, without affecting neutrophil recruitment or causing autoinflammation. It also improved immunity during Escherichia coli-induced septic peritonitis. It increased the responsiveness of neutrophils to a range of stimuli, promoting their ability to kill bacteria in a reactive oxygen species-dependent manner, enhancing degranulation, phagocytosis, and the production of reactive oxygen species and neutrophil extracellular traps, raising the cell surface levels of selected GPCRs, and increasing GPCR-dependent Rac and Erk signaling. The Rac guanine-nucleotide exchange factor Prex1, a known effector of norbin, was dispensable for most of these effects, which suggested that norbin controls additional downstream targets. We identified the Rac guanine-nucleotide exchange factor Vav as one of these effectors. In summary, our study presents the GPCR adaptor protein norbin as an immune suppressor that limits the ability of neutrophils to clear bacterial infections.
Collapse
|
19
|
Rho signaling inhibition mitigates lung injury via targeting neutrophil recruitment and selectin-AKT signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119122. [PMID: 34425130 DOI: 10.1016/j.bbamcr.2021.119122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 12/22/2022]
Abstract
Neutrophils, the early responders of the immune system, eliminate intruders, but their over-activation can also instigate tissue damage leading to various autoimmune and inflammatory disease conditions. As approaches causing neutropenia are associated with immunodeficiency, targeting aberrant neutrophil infiltration offers an attractive strategy in neutrophil-centered diseases including acute lung injury. Rho GTPase family proteins Rho, Rac and Cdc42 play important role as regulators of chemotaxis in diverse systems. Rho inhibitors protected against lung injuries, while genetic Rho-deficiency exhibited neutrophil hyperactivity and exacerbated lung injury. These differential outcomes might be due to distinct effects on different cell types or activation/ inhibition of specific signaling pathways responsible for neutrophil polarity, migration and functions. In this study, we explored neutrophil centric effects of Rho signaling mitigation. Consistent with previous reports, Rho signaling inhibitor Y-27632 provided protection against acute lung injury, but without regulating LPS mediated systemic increase of neutrophils in the circulation. Interestingly, the adoptive transfer approach identified a specific defect in neutrophil migration capacity after Rho signaling mitigation. These defects were associated with loss of polarity and altered actin dynamics identified using time-lapse in vitro studies. Further analysis revealed a rescue of stimulation-dependent L-selectin shedding on neutrophils with Rho signaling inhibitor. Surprisingly, functional blocking of L-selectin (CD62L) led to defective recruitment of neutrophils into inflamed lungs. Further, single-cell level analyses identified MAPK signaling as downstream mechanism of Rho signaling and L-selectin mediated effects. p-AKT levels were diminished in detergent resistance membrane-associated signalosome upon Rho signaling inhibition and blockade of selectin. Moreover, inhibition of AKT signaling as well as selectin blocking led to defects in neutrophil polarity. Together, this study identified Rho-dependent distinct L-selectin and AKT signaling mediated regulation of neutrophil recruitment to inflamed lung tissue.
Collapse
|
20
|
Samra SK, Rajasekaran A, Sandford AJ, Ellis AK, Tebbutt SJ. Cholinergic Synapse Pathway Gene Polymorphisms Associated With Late-Phase Responses in Allergic Rhinitis. FRONTIERS IN ALLERGY 2021; 2:724328. [PMID: 35387037 PMCID: PMC8974783 DOI: 10.3389/falgy.2021.724328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/26/2021] [Indexed: 01/25/2023] Open
Abstract
Allergic rhinitis (AR) is characterized by an early-phase response (EPR), and in a subgroup of individuals, a late-phase response (LPR). We sought to investigate polymorphisms in cholinergic synapse pathway genes, previously associated with late-asthmatic responses, in the LPR. Twenty healthy participants and 74 participants with AR underwent allergen exposure using the Environmental Exposure Unit. Allergic participants were sub-phenotyped using self-reported nasal congestion scores; congestion is the predominant symptom experienced during the LPR. Acute congestion (AC, n = 36) participants developed only an EPR, while persistent congestion (PC, n = 38) participants developed both allergic responses. We interrogated blood samples collected before allergen exposure with genotyping and gene expression assays. Twenty-five SNPs located in ADCY3, AKT3, CACNA1S, CHRM3, CHRNB2, GNG4, and KCNQ4 had significantly different allele frequencies (P < 0.10) between PC and AC participants. PC participants had increased minor allele content (P = 0.009) in the 25 SNPs compared to AC participants. Two SNPs in AKT3 were associated with gene expression differences (FDR < 0.01) in PC participants. This study identified an association between the LPR and polymorphisms in the cholinergic synapse pathway genes, and developed a novel method to sub-phenotype AR using self-reported nasal congestion scores.
Collapse
Affiliation(s)
- Simranjit K. Samra
- Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Ashwini Rajasekaran
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Andrew J. Sandford
- Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anne K. Ellis
- Departments of Medicine and Biomedical & Molecular Science, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston General Hospital, Kingston, ON, Canada
| | - Scott J. Tebbutt
- Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Scott J. Tebbutt
| |
Collapse
|
21
|
Shah SA, Kanabar V, Riffo-Vasquez Y, Mohamed Z, Cleary SJ, Corrigan C, James AL, Elliot JG, Shute JK, Page CP, Pitchford SC. Platelets Independently Recruit into Asthmatic Lungs and Models of Allergic Inflammation via CCR3. Am J Respir Cell Mol Biol 2021; 64:557-568. [PMID: 33556295 PMCID: PMC8086046 DOI: 10.1165/rcmb.2020-0425oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Platelet activation and pulmonary recruitment occur in patients with asthma and in animal models of allergic asthma, in which leukocyte infiltration, airway remodeling, and hyperresponsiveness are suppressed by experimental platelet depletion. These observations suggest the importance of platelets to various characteristics of allergic disease, but the mechanisms of platelet migration and location are not understood. The aim of this study was to assess the mechanism of platelet recruitment to extravascular compartments of lungs from patients with asthma and after allergen challenge in mice sensitized to house dust mite (HDM) extract (contains the DerP1 [Dermatophagoides pteronyssinus extract peptidase 1] allergen); in addition, we assessed the role of chemokines in this process. Lung sections were immunohistochemically stained for CD42b+ platelets. Intravital microscopy in allergic mice was used to visualize platelets tagged with an anti-mouse CD49b-PE (phycoerythrin) antibody. Platelet-endothelial interactions were measured in response to HDM (DerP1) exposure in the presence of antagonists to CCR3, CCR4, and CXCR4. Extravascular CD42b+ platelets were detected in the epithelium and submucosa in bronchial biopsy specimens taken from subjects with steroid-naive mild asthma. Platelets were significantly raised in the lung parenchyma from patients with fatal asthma compared with postmortem control-lung tissue. Furthermore, in DerP1-sensitized mice, subsequent HDM exposure induced endothelial rolling, endothelial adhesion, and recruitment of platelets into airway walls, compared with sham-sensitized mice, via a CCR3-dependent mechanism in the absence of aggregation or interactions with leukocytes. Localization of singular, nonaggregated platelets occurs in lungs of patients with asthma. In allergic mice, platelet recruitment occurs via recognized vascular adhesive and migratory events, independently of leukocytes via a CCR3-dependent mechanism.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Varsha Kanabar
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Zainab Mohamed
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Christopher Corrigan
- MRC-Asthma UK Centre for Allergic Mechanisms in Asthma, Guy's Hospital-King's College London, London, United Kingdom
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - John G Elliot
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; and
| | - Janis K Shute
- Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, and
| |
Collapse
|
22
|
Ebermeyer T, Cognasse F, Berthelot P, Mismetti P, Garraud O, Hamzeh-Cognasse H. Platelet Innate Immune Receptors and TLRs: A Double-Edged Sword. Int J Mol Sci 2021; 22:ijms22157894. [PMID: 34360659 PMCID: PMC8347377 DOI: 10.3390/ijms22157894] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Platelets are hematopoietic cells whose main function has for a long time been considered to be the maintenance of vascular integrity. They have an essential role in the hemostatic response, but they also have functional capabilities that go far beyond it. This review will provide an overview of platelet functions. Indeed, stress signals may induce platelet apoptosis through proapoptotis or hemostasis receptors, necrosis, and even autophagy. Platelets also interact with immune cells and modulate immune responses in terms of activation, maturation, recruitment and cytokine secretion. This review will also show that platelets, thanks to their wide range of innate immune receptors, and in particular toll-like receptors, and can be considered sentinels actively participating in the immuno-surveillance of the body. We will discuss the diversity of platelet responses following the engagement of these receptors as well as the signaling pathways involved. Finally, we will show that while platelets contribute significantly, via their TLRs, to immune response and inflammation, these receptors also participate in the pathophysiological processes associated with various pathogens and diseases, including cancer and atherosclerosis.
Collapse
Affiliation(s)
- Théo Ebermeyer
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Fabrice Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Etablissement Français du Sang Auvergne-Rhône-Alpes, 25 bd Pasteur, F-42100 Saint-Étienne, France
| | - Philippe Berthelot
- Team GIMAP, CIRI—Centre International de Recherche en Infectiologie, Université de Lyon, U1111, UMR5308, F-69007 Lyon, France;
- Infectious Diseases Department, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Patrick Mismetti
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Department of Vascular Medicine and Therapeutics, INNOVTE, CHU de St-Etienne, F-42055 Saint-Etienne, France
| | - Olivier Garraud
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
| | - Hind Hamzeh-Cognasse
- INSERM U1059-SAINBIOSE, Université de Lyon, F-42023 Saint-Etienne, France; (T.E.); (F.C.); (P.M.); (O.G.)
- Correspondence:
| |
Collapse
|
23
|
Amison RT, Page CP. Novel pharmacological therapies for the treatment of bronchial asthma. Minerva Med 2021; 113:31-50. [PMID: 34236157 DOI: 10.23736/s0026-4806.21.07559-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Asthma has long been recognised as a chronic inflammatory disease of the airways, often in response to inhaled allergens prompting inappropriate activation of the immune response. involving a range of cells including mast cells, Th2 lymphocytes and eosinophils and a wide range of inflammatory mediators. First-line therapy for treatment of persistent asthma involves the use of inhaled corticosteroids (ICS) in combination with inhaled β2-agonists enabling both the control of the underlying airways inflammation and a reduction of airway hyperresponsiveness. However, many patients remain symptomatic despite high-dose therapy. There is therefore a continued unmet clinical need to develop specifically new anti-inflammatory therapies for patients with asthma, either as an add-on therapy to ICS or as replacement monotherapies. The success of fixed dose combination inhalers containing both a bronchodilator and an anti-inflammatory drug has also led to the development of "bifunctional" drugs which are molecules specifically designed to have two distinct pharmacological actions based on distinct pharmacophores. In this review we will discuss these different pharmacological approaches under development for the treatment of bronchial asthma and the available pre-clinical and clinical data.
Collapse
Affiliation(s)
- Richard T Amison
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK -
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
24
|
Abstract
ABSTRACT Hemolysis that occurs in intravascular hemolytic disorders, such as sickle cell disease and malaria, is associated with inflammation and platelet activation. Alveolar hemorrhage, for example following primary blast lung injury or acute respiratory distress syndrome, results in the escape of erythrocytes (RBCs) into alveolar spaces, where they subsequently lyse and release their intracellular contents. However, the inflammatory effects of RBCs in the airways are not fully understood. We hypothesized that RBCs in the airway induce an inflammatory response, associated with platelet activation. By instilling whole RBCs or lysed RBCs into the airways of mice, we have demonstrated that whole RBCs elicit macrophage accumulation in the lung. On the other hand, lysed RBCs induce significant inflammatory cell recruitment, particularly neutrophils and this was associated with a 50% increase in circulating platelet neutrophil complexes. Platelet depletion prior to lysed RBC exposure in the lung resulted in reduced neutrophil recruitment, suggesting that the presence of intracellular RBC components in the airways can elicit inflammation that is platelet dependent. To identify specific platelet-dependent signaling pathways involved in neutrophil recruitment, anti-P-selectin ligand and anti-PSGL1 blocking antibodies were tested; however, neither affected neutrophil recruitment. These findings implicate an involvement for other, as yet unidentified platelet-dependent signaling and adhesion mechanisms. Further understanding of how platelets contribute to lung inflammation induced by the presence of RBCs could offer novel therapeutic approaches to attenuate inflammation that occurs in conditions associated with alveolar hemorrhage.
Collapse
|
25
|
Zanandrea R, Bonan CD, Campos MM. Zebrafish as a model for inflammation and drug discovery. Drug Discov Today 2020; 25:2201-2211. [PMID: 33035664 DOI: 10.1016/j.drudis.2020.09.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/17/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Zebrafish is a small teleost (bony) fish used in many areas of pharmacology and toxicology. This animal model has advantages for the discovery of anti-inflammatory drugs, such as the potential for real-time assessment of cell migration mechanisms. Additionally, zebrafish display a repertoire of inflammatory cells, mediators, and receptors that are similar to those in mammals, including humans. Inflammatory disease modeling in either larvae or adult zebrafish represents a promising tool for the screening of new anti-inflammatory compounds, contributing to our understanding of the mechanisms involved in chronic inflammatory conditions. In this review, we provide an overview of the characterization of inflammatory responses in zebrafish, emphasizing its relevance for drug discovery in this research area.
Collapse
Affiliation(s)
- Rodrigo Zanandrea
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil
| | - Carla D Bonan
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Laboratório de Neuroquímica e Psicofarmacologia, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Maria M Campos
- Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Programa de Pós-Graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Escola de Ciências da Saúde e da Vida, Centro de Pesquisa em Toxicologia e Farmacologia, Porto Alegre, RS, Brazil.
| |
Collapse
|
26
|
Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood 2020; 136:1330-1341. [PMID: 32678428 PMCID: PMC7483437 DOI: 10.1182/blood.2020007252] [Citation(s) in RCA: 551] [Impact Index Per Article: 110.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent pathogen responsible for the coronavirus disease 2019 (COVID-19). Since its emergence, the novel coronavirus has rapidly achieved pandemic proportions causing remarkably increased morbidity and mortality around the world. A hypercoagulability state has been reported as a major pathologic event in COVID-19, and thromboembolic complications listed among life-threatening complications of the disease. Platelets are chief effector cells of hemostasis and pathological thrombosis. However, the participation of platelets in the pathogenesis of COVID-19 remains elusive. This report demonstrates that increased platelet activation and platelet-monocyte aggregate formation are observed in severe COVID-19 patients, but not in patients presenting mild COVID-19 syndrome. In addition, exposure to plasma from severe COVID-19 patients increased the activation of control platelets ex vivo. In our cohort of COVID-19 patients admitted to the intensive care unit, platelet-monocyte interaction was strongly associated with tissue factor (TF) expression by the monocytes. Platelet activation and monocyte TF expression were associated with markers of coagulation exacerbation as fibrinogen and D-dimers, and were increased in patients requiring invasive mechanical ventilation or patients who evolved with in-hospital mortality. Finally, platelets from severe COVID-19 patients were able to induce TF expression ex vivo in monocytes from healthy volunteers, a phenomenon that was inhibited by platelet P-selectin neutralization or integrin αIIb/β3 blocking with the aggregation inhibitor abciximab. Altogether, these data shed light on new pathological mechanisms involving platelet activation and platelet-dependent monocyte TF expression, which were associated with COVID-19 severity and mortality.
Collapse
|
27
|
Arrington ME, Temple B, Schaefer A, Campbell SL. The molecular basis for immune dysregulation by the hyperactivated E62K mutant of the GTPase RAC2. J Biol Chem 2020; 295:12130-12142. [PMID: 32636302 PMCID: PMC7443499 DOI: 10.1074/jbc.ra120.012915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
The RAS-related C3 botulinum toxin substrate 2 (RAC2) is a member of the RHO subclass of RAS superfamily GTPases required for proper immune function. An activating mutation in a key switch II region of RAC2 (RAC2E62K) involved in recognizing modulatory factors and effectors has been identified in patients with common variable immune deficiency. To better understand how the mutation dysregulates RAC2 function, we evaluated the structure and stability, guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) activity, and effector binding of RAC2E62K Our findings indicate the E62K mutation does not alter RAC2 structure or stability. However, it does alter GEF specificity, as RAC2E62K is activated by the DOCK GEF, DOCK2, but not by the Dbl homology GEF, TIAM1, both of which activate the parent protein. Our previous data further showed that the E62K mutation impairs GAP activity for RAC2E62K As this disease mutation is also found in RAS GTPases, we assessed GAP-stimulated GTP hydrolysis for KRAS and observed a similar impairment, suggesting that the mutation plays a conserved role in GAP activation. We also investigated whether the E62K mutation alters effector binding, as activated RAC2 binds effectors to transmit signaling through effector pathways. We find that RAC2E62K retains binding to an NADPH oxidase (NOX2) subunit, p67phox, and to the RAC-binding domain of p21-activated kinase, consistent with our earlier findings. Taken together, our findings indicate that the RAC2E62K mutation promotes immune dysfunction by promoting RAC2 hyperactivation, altering GEF specificity, and impairing GAP function yet retaining key effector interactions.
Collapse
Affiliation(s)
- Megan E Arrington
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brenda Temple
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Antje Schaefer
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sharon L Campbell
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
28
|
Ferrari D, Vuerich M, Casciano F, Longhi MS, Melloni E, Secchiero P, Zech A, Robson SC, Müller T, Idzko M. Eosinophils and Purinergic Signaling in Health and Disease. Front Immunol 2020; 11:1339. [PMID: 32733449 PMCID: PMC7360723 DOI: 10.3389/fimmu.2020.01339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are major effector cells against parasites, fungi, bacteria, and viruses. However, these cells also take part in local and systemic inflammation, which are central to eczema, atopy, rhinitis, asthma, and autoimmune diseases. A role for eosinophils has been also shown in vascular thrombotic disorders and in cancer. Many, if not all, above-mentioned conditions involve the release of intracellular nucleotides (ATP, ADP, UTP, etc.) and nucleosides (adenosine) in the extracellular environment. Simultaneously, eosinophils further release ATP, which in autocrine and paracrine manners, stimulates P2 receptors. Purinergic signaling in eosinophils mediates a variety of responses including CD11b induction, ROI production, release of granule contents and enzymes, as well as cytokines. Exposure to extracellular ATP also modulates the expression of endothelial adhesion molecules, thereby favoring eosinophil extravasation and accumulation. In addition, eosinophils express the immunosuppressive adenosine P1 receptors, which regulate degranulation and migration. However, pro-inflammatory responses induced by extracellular ATP predominate. Due to their important role in innate immunity and tissue damage, pharmacological targeting of nucleotide- and nucleoside-mediated signaling in eosinophils could represent a novel approach to alleviate eosinophilic acute and chronic inflammatory diseases. These innovative approaches might also have salutary effects, particularly in host defense against parasites and in cancer.
Collapse
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Andreas Zech
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Tobias Müller
- Division of Pneumology, University Hospital RWTH Aachen, Aachen, Germany
| | - Marco Idzko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Cleary SJ, Hobbs C, Amison RT, Arnold S, O'Shaughnessy BG, Lefrançais E, Mallavia B, Looney MR, Page CP, Pitchford SC. LPS-induced Lung Platelet Recruitment Occurs Independently from Neutrophils, PSGL-1, and P-Selectin. Am J Respir Cell Mol Biol 2020; 61:232-243. [PMID: 30768917 DOI: 10.1165/rcmb.2018-0182oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Platelets are recruited to inflammatory foci and contribute to host defense and inflammatory responses. Compared with platelet recruitment in hemostasis and thrombosis, the mechanisms of platelet recruitment in inflammation and host defense are poorly understood. Neutrophil recruitment to lung airspaces after inhalation of bacterial LPS requires platelets and PSGL-1 in mice. Given this association between platelets and neutrophils, we investigated whether recruitment of platelets to lungs of mice after LPS inhalation was dependent on PSGL-1, P-selectin, or interaction with neutrophils. BALB/c mice were administered intranasal LPS (O55:B5, 5 mg/kg) and, 48 hours later, lungs were collected and platelets and neutrophils quantified in tissue sections by immunohistochemistry. The effects of functional blocking antibody treatments targeting the platelet-neutrophil adhesion molecules, P-selectin or PSGL-1, or treatment with a neutrophil-depleting antibody targeting Ly6G, were tested on the extent of LPS-induced lung platelet recruitment. Separately in Pf4-Cre × mTmG mice, two-photon intravital microscopy was used to image platelet adhesion in live lungs. Inhalation of LPS caused both platelet and neutrophil recruitment to the lung vasculature. However, decreasing lung neutrophil recruitment by blocking PSGL-1, P-selectin, or depleting blood neutrophils had no effect on lung platelet recruitment. Lung intravital imaging revealed increased adhesion of platelets in the lung microvasculature which was not associated with thrombus formation. In conclusion, platelet recruitment to lungs in response to LPS occurs through mechanisms distinct from those mediating neutrophil recruitment, or the occurrence of pulmonary emboli.
Collapse
Affiliation(s)
- Simon J Cleary
- 1Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Carl Hobbs
- 2the Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom; and
| | - Richard T Amison
- 1Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Stephanie Arnold
- 1Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Blaze G O'Shaughnessy
- 1Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Emma Lefrançais
- 3Department of Medicine, University of California San Francisco, San Francisco, California
| | - Beñat Mallavia
- 3Department of Medicine, University of California San Francisco, San Francisco, California
| | - Mark R Looney
- 3Department of Medicine, University of California San Francisco, San Francisco, California
| | - Clive P Page
- 1Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| | - Simon C Pitchford
- 1Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science and
| |
Collapse
|
30
|
The Rho guanine nucleotide exchange factor P-Rex1 as a potential drug target for cancer metastasis and inflammatory diseases. Pharmacol Res 2020; 153:104676. [PMID: 32006571 DOI: 10.1016/j.phrs.2020.104676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/12/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 1 (P-Rex1) is a guanine nucleotide exchange factor (GEF) for Rac small GTPases and the Rac-related GTPase RhoG. P-Rex1 plays an important role in cell migration and relays intracellular signals generated through activation of G protein-coupled receptors and receptor tyrosine kinases. Studies of mouse models have found that P-Rex1 expression and activation is associated with tumor cell migration, brain development and pathological changes such as lung edema. Since its initial discovery, P-Rex1 has been known for its large size and multiple activation mechanisms that involve not only PIP3 but also the βγ subunits of heterotrimeric G proteins and a regulatory subunit of cyclic AMP-dependent kinase, PKA RIα. At the core of the GEF activity is the tandem Dbl homology domain and the pleckstrin homology domain (DH/PH domains) that are masked until activation signals unwind the P-Rex1 structure. Understanding the activation mechanisms will help designing therapeutics that target P-Rex1 for cancer and other diseases.
Collapse
|
31
|
Cash JN, Chandan NR, Hsu AY, Sharma PV, Deng Q, Smrcka AV, Tesmer JJG. Discovery of Small Molecules That Target the Phosphatidylinositol (3,4,5) Trisphosphate (PIP 3)-Dependent Rac Exchanger 1 (P-Rex1) PIP 3-Binding Site and Inhibit P-Rex1-Dependent Functions in Neutrophils. Mol Pharmacol 2020; 97:226-236. [PMID: 31900312 DOI: 10.1124/mol.119.117556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (3,4,5) trisphosphate (PIP3)-dependent Rac exchanger 1 (P-Rex1) is a Rho guanine-nucleotide exchange factor that was originally discovered in neutrophils and is regulated by G protein βγ subunits and the lipid PIP3 in response to chemoattractants. P-Rex1 has also become increasingly recognized for its role in promoting metastasis of breast cancer, prostate cancer, and melanoma. Recent structural, biochemical, and biologic work has shown that binding of PIP3 to the pleckstrin homology (PH) domain of P-Rex1 is required for its activation in cells. Here, differential scanning fluorimetry was used in a medium-throughput screen to identify six small molecules that interact with the P-Rex1 PH domain and block binding of and activation by PIP3 Three of these compounds inhibit N-formylmethionyl-leucyl-phenylalanine induced spreading of human neutrophils as well as activation of the GTPase Rac2, both of which are downstream effects of P-Rex1 activity. Furthermore, one of these compounds reduces neutrophil velocity and inhibits neutrophil recruitment in response to inflammation in a zebrafish model. These results suggest that the PH domain of P-Rex1 is a tractable drug target and that these compounds might be useful for inhibiting P-Rex1 in other experimental contexts. SIGNIFICANCE STATEMENT: A set of small molecules identified in a thermal shift screen directed against the phosphatidylinositol (3,4,5) trisphosphate-dependent Rac exchanger 1 (P-Rex1) pleckstrin homology domain has effects consistent with P-Rex1 inhibition in neutrophils.
Collapse
Affiliation(s)
- Jennifer N Cash
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Naincy R Chandan
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Alan Y Hsu
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Prateek V Sharma
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Qing Deng
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - Alan V Smrcka
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - John J G Tesmer
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan (J.N.C., P.V.S.); Department of Pharmacology, University of Michigan, Ann Arbor, Michigan (N.R.C., A.V.S.); and Departments of Biological Sciences (A.Y.H., Q.D., J.J.G.T.) and Medicinal Chemistry and Molecular Pharmacology (J.J.G.T.), Purdue University, West Lafayette, Indiana
| |
Collapse
|
32
|
Dumet C, Pottier J, Gouilleux-Gruart V, Watier H. Insights into the IgG heavy chain engineering patent landscape as applied to IgG4 antibody development. MAbs 2019; 11:1341-1350. [PMID: 31556789 PMCID: PMC6816381 DOI: 10.1080/19420862.2019.1664365] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite being the least abundant immunoglobulin G in human plasma, IgG4 are used therapeutically when weak effector functions are needed. The increase in engineered IgG4-based antibodies on the market led us to study the patent landscape of IgG4 Fc engineering, i.e., patents claiming modifications in the heavy chain. Thirty-seven relevant patent families were identified, comprising hundreds of IgG4 Fc variants focusing on removal of residual effector functions (since IgG4s bind to FcγRI and weakly to other FcγRs), half-life enhancement and IgG4 stability. Given the number of expired or soon to expire major patents in those 3 areas, companies developing blocking antibodies now have, or will in the near future, access to free tools to design silenced, half-life extended and stable IgG4 antibodies.
Collapse
Affiliation(s)
- Christophe Dumet
- EA7501, Team "Fc Receptors, Antibodies and Microenvironnement", Université de Tours , France
| | - Jérémy Pottier
- EA7501, Team "Fc Receptors, Antibodies and Microenvironnement", Université de Tours , France
| | - Valérie Gouilleux-Gruart
- EA7501, Team "Fc Receptors, Antibodies and Microenvironnement", Université de Tours , France.,CHRU de Tours , France
| | - Hervé Watier
- EA7501, Team "Fc Receptors, Antibodies and Microenvironnement", Université de Tours , France.,CHRU de Tours , France
| |
Collapse
|
33
|
Pitchford S, Cleary S, Arkless K, Amison R. Pharmacological strategies for targeting platelet activation in asthma. Curr Opin Pharmacol 2019; 46:55-64. [PMID: 31026626 DOI: 10.1016/j.coph.2019.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
The activation of platelets during host defence and inflammatory disorders has become increasingly documented. Clinical studies of patients with asthma reveal heightened platelet activation and accumulation into lung tissue. Accompanying studies in animal models of allergic lung inflammation, using protocols of experimentally induced thrombocytopenia proclaim an important role for platelets during the leukocyte recruitment cascade, tissue integrity, and lung function. The functions of platelets during these inflammatory events are clearly distinct to platelet functions during haemostasis and clot formation, and have led to the concept that a dichotomy (or polytomy, depending on what else platelets do) in platelet activation exists. The platelet, therefore, presents us with novel opportunities for modulating these inflammatory responses. This review discusses the rationale and effectiveness of current anti-platelet drugs in their use to supress inflammation with regard to asthma, and the need to consider novel possibilities for pharmacological modulation of platelet function associated with inflammation that are pharmacologically distinct to current anti-platelet therapies.
Collapse
Affiliation(s)
- Simon Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK.
| | - Simon Cleary
- University of California San Francisco (UCSF), Department of Medicine, San Francisco, USA
| | - Kate Arkless
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Richard Amison
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
34
|
Amison RT, Cleary SJ, Riffo-Vasquez Y, Bajwa M, Page CP, Pitchford SC. Platelets Play a Central Role in Sensitization to Allergen. Am J Respir Cell Mol Biol 2019; 59:96-103. [PMID: 29365287 DOI: 10.1165/rcmb.2017-0401oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelet activation occurs in patients with allergic inflammation, and platelets can be activated directly by allergen via an IgE-dependent process. Platelets have been shown to activate APCs such as CD11c+ dendritic cells in vitro. Although CD11c+ dendritic cells are a requisite for allergen sensitization, the role of platelets in this process is unknown. In this study, we investigated whether platelets were necessary for allergen sensitization. Balb/c mice sensitized to ovalbumin were exposed to subsequent aerosolized allergen (ovalbumin challenge). We analyzed lung CD11c+ cell activation, colocalization with platelets, and some other indices of inflammation. The role of platelets at the time of allergen sensitization was assessed through platelet depletion experiments restricted to the period of sensitization. Platelets colocalized with airway CD11c+ cells, and this association increased after allergen sensitization as well as after subsequent allergen exposure. Temporary platelet depletion (>95%) at the time of allergen sensitization led to a suppression of IgE and IL-4 synthesis and to a decrease in the pulmonary recruitment of eosinophils, macrophages, and lymphocytes after subsequent allergen exposure. Furthermore, in mice previously depleted of platelets at the time of sensitization, the recovered platelet population was shown to have reduced expression of FcεRI. Pulmonary CD11c+ cell recruitment was suppressed in these mice after allergen challenge, suggesting that the migration of CD11c+ cells in vivo may be dependent on direct platelet recognition of allergen. We conclude that platelets are necessary for efficient host sensitization to allergen. This propagates the subsequent inflammatory response during secondary allergen exposure and increases platelet association with airway CD11c+ cells.
Collapse
Affiliation(s)
- Richard T Amison
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon J Cleary
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Yanira Riffo-Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Maidda Bajwa
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
35
|
Bauzon M, Drake PM, Barfield RM, Cornali BM, Rupniewski I, Rabuka D. Maytansine-bearing antibody-drug conjugates induce in vitro hallmarks of immunogenic cell death selectively in antigen-positive target cells. Oncoimmunology 2019; 8:e1565859. [PMID: 30906660 PMCID: PMC6422391 DOI: 10.1080/2162402x.2019.1565859] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/15/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Oncology treatment has been revolutionized by the introduction of immune checkpoint inhibitor drugs, which enable 20-40% of patients to generate anti-tumor immune responses. Combination treatment approaches with chemotherapeutic drugs may enable responses in the remaining patient cohorts. In this regard, a handful of drugs are promising due to their ability to induce immunogenic cell death in target cells. However, these agents are systemically delivered and indiscriminately cytotoxic to proliferating cells. By contrast, antibody-drug conjugates can selectively deliver a cytotoxic payload to a tumor, sparing most healthy cells. The ability of antibody-drug conjugates to induce immunogenic cell death in target cells has not yet been determined, although preclinical in vivo studies suggest this possibility. Here, we describe for the first time production of the in vitro hallmarks of immunogenic cell death - ecto-calreticulin and secreted ATP and HMGB1 protein - by cells in response to treatment with antibody-drug conjugates bearing a maytansine payload.
Collapse
Affiliation(s)
| | | | | | | | | | - David Rabuka
- Catalent Biologics, Emeryville, CA, USA
- CONTACT David Rabuka Catalent Biologics, 5703 Hollis Street, Emeryville, CA 94608
| |
Collapse
|
36
|
Abstract
Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Allan J Walkey
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
37
|
A dichotomy in platelet activation: Evidence of different functional platelet responses to inflammatory versus haemostatic stimuli. Thromb Res 2018; 172:110-118. [DOI: 10.1016/j.thromres.2018.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/18/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022]
|
38
|
Cleary SJ, Page CP. Gustav Born: pioneer in imaging platelet and leukocyte biology. Platelets 2018; 29:766-770. [PMID: 30411649 DOI: 10.1080/09537104.2018.1535001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gustav Born achieved scientific fame for his application of light transmission aggregometry to the study of platelet function, but also led interdisciplinary research teams in pioneering quantitative in vivo imaging studies of platelet aggregation and leukocyte adhesion, and in conducting the first research into the biomechanical factors underlying atherosclerotic plaque rupture. Gus Born also communicated both current research findings and an integrated understanding of cardiovascular biology to a wide audience through acting as scientific advisor on several television productions. Using footage from two of these films, we discuss Gustav Born's scientific achievements and legacy.
Collapse
Affiliation(s)
- Simon J Cleary
- a Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science , King's College London , London , UK.,b Department of Medicine , University of California San Francisco , San Francisco , CA , USA
| | - Clive P Page
- a Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science , King's College London , London , UK
| |
Collapse
|
39
|
Pantarelli C, Welch HCE. Rac-GTPases and Rac-GEFs in neutrophil adhesion, migration and recruitment. Eur J Clin Invest 2018; 48 Suppl 2:e12939. [PMID: 29682742 PMCID: PMC6321979 DOI: 10.1111/eci.12939] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/17/2018] [Indexed: 12/15/2022]
Abstract
Rac-GTPases and their Rac-GEF activators play important roles in the recruitment and host defence functions of neutrophils. These proteins control the activation of adhesion molecules and the cytoskeletal dynamics that enable the adhesion, migration and tissue recruitment of neutrophils. They also regulate the effector functions that allow neutrophils to kill bacterial and fungal pathogens, and to clear debris. This review focuses on the roles of Rac-GTPases and Rac-GEFs in neutrophil adhesion, migration and recruitment.
Collapse
|
40
|
Casan JML, Wong J, Northcott MJ, Opat S. Anti-CD20 monoclonal antibodies: reviewing a revolution. Hum Vaccin Immunother 2018; 14:2820-2841. [PMID: 30096012 PMCID: PMC6343614 DOI: 10.1080/21645515.2018.1508624] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/14/2018] [Accepted: 08/02/2018] [Indexed: 12/23/2022] Open
Abstract
Since the inception of rituximab in the 1990s, anti-CD20 monoclonal antibodies have revolutionised the treatment of B cell hematological malignancies and have become a cornerstone of modern gold-standard practice. Additionally, the potent efficacy of these agents in depleting the B cell compartment has been used in the management of a broad array of autoimmune diseases. Multiple iterations of these agents have been investigated and are routinely used in clinical practice. In this review, we will discuss the physiology of CD20 and its attractiveness as a therapeutic target, as well as the pharmacology, pre-clinical and clinical data for the major anti-CD20 monoclonal antibodies: rituximab, obinutuzumab and ofatumumab.
Collapse
Affiliation(s)
- J. M. L. Casan
- Haematology Department, Monash Health, Melbourne Australia
| | - J. Wong
- Haematology Department, Monash Health, Melbourne Australia
| | - M. J. Northcott
- Rheumatology Department, Monash Health, Melbourne, Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| | - S. Opat
- Haematology Department, Monash Health, Melbourne Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
41
|
Middleton EA, Rondina MT, Schwertz H, Zimmerman GA. Amicus or Adversary Revisited: Platelets in Acute Lung Injury and Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2018; 59:18-35. [PMID: 29553813 PMCID: PMC6039872 DOI: 10.1165/rcmb.2017-0420tr] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets are essential cellular effectors of hemostasis and contribute to disease as circulating effectors of pathologic thrombosis. These are their most widely known biologic activities. Nevertheless, recent observations demonstrate that platelets have a much more intricate repertoire beyond these traditional functions and that they are specialized for contributions to vascular barrier integrity, organ repair, antimicrobial host defense, inflammation, and activities across the immune continuum. Paradoxically, on the basis of clinical investigations and animal models of disease, some of these newly discovered activities of platelets appear to contribute to tissue injury. Studies in the last decade indicate unique interactions of platelets and their precursor, the megakaryocyte, in the lung and implicate platelets as essential effectors in experimental acute lung injury and clinical acute respiratory distress syndrome. Additional discoveries derived from evolving work will be required to precisely define the contributions of platelets to complex subphenotypes of acute lung injury and to determine if these remarkable and versatile blood cells are therapeutic targets in acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Elizabeth A. Middleton
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Matthew T. Rondina
- Division of General Internal Medicine, Department of Internal Medicine
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Hansjorg Schwertz
- Division of Vascular Surgery, Department of Surgery, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A. Zimmerman
- Division of Pulmonary and Critical Care Medicine, and
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
42
|
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
43
|
Takeshita S, Yamashita Y, Shiomi K, Suzuki N, Yoshida J, Naiki-Ito A, Suzuki S, Akatsuka S, Toyokuni S, Takahashi T, Mase S, Arakawa A, Sugiura-Ogasawara M, Takahashi S. Expression of P-REX2a is associated with poor prognosis in endometrial malignancies. Oncotarget 2018; 9:24778-24786. [PMID: 29872505 PMCID: PMC5973852 DOI: 10.18632/oncotarget.25349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/24/2018] [Indexed: 12/29/2022] Open
Abstract
P-REX2a is a PTEN inhibitor that also activates Rac 1. No associations with P-REX2a and human endometrial cancers have been reported to date. In this study, we immunohistochemically analyzed 155 uterine endometrial malignancies for P-REX2a expression. The P-REX2a-positive tumors displayed worse prognosis independent of PTEN expression. Then, we transduced either P-REX2a expression vector or short hairpin RNAs targeting P-REX2a into 2 uterine endometrioid carcinoma cell lines, OMC-2 and JHUEM-14. Ectopic expression of P-REX2a led to increased cell proliferation only in the PTEN-expressing OMC-2 cells but did not show any change in the PTEN-negative JHUEM-14 cells or the P-REX2a-knockdown cells. Induction of P-REX2a increased and knockdown of P-REX2a decreased cell migration in both cell lines. Then, we performed expression microarray analysis using these cells, and pathway analysis revealed that the expression of members of the GPCR downstream pathway displayed the most significant changes induced by the knockdown of P-REX2a. Immunohistochemical analysis revealed that Vav1, a member of the GPCR downstream pathway, was expressed in 139 of the 155 endometrial tumors, and the expression levels of Vav1 and P-REX2a showed a positive correlation (r = 0.44, p < 0.001). In conclusion, P-REX2a enhanced cell motility via the GPCR downstream pathway independently of PTEN leading to progression of uterine endometrioid malignancies and poor prognosis of the patients.
Collapse
Affiliation(s)
- Sho Takeshita
- Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medicical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Yoriko Yamashita
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Kosuke Shiomi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Nako Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Jun Yoshida
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Shinya Akatsuka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Takahashi
- Division of Molecular Carcinogenesis, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8550, Japan
| | - Shoko Mase
- Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medicical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Atsushi Arakawa
- Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medicical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Nagoya City University Graduate School of Medicical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| |
Collapse
|
44
|
Small GTPase-dependent regulation of leukocyte-endothelial interactions in inflammation. Biochem Soc Trans 2018; 46:649-658. [PMID: 29743277 DOI: 10.1042/bst20170530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Inflammation is a complex biological response that serves to protect the body's tissues following harmful stimuli such as infection, irritation or injury and initiates tissue repair. At the start of an inflammatory response, pro-inflammatory mediators induce changes in the endothelial lining of the blood vessels and in leukocytes. This results in increased vascular permeability and increased expression of adhesion proteins, and promotes adhesion of leukocytes, especially neutrophils to the endothelium. Adhesion is a prerequisite for neutrophil extravasation and chemoattractant-stimulated recruitment to inflammatory sites, where neutrophils phagocytose and kill microbes, release inflammatory mediators and cross-talk with other immune cells to co-ordinate the immune response in preparation for tissue repair. Many signalling proteins are critically involved in the complex signalling processes that underpin the inflammatory response and cross-talk between endothelium and leukocytes. As key regulators of cell-cell and cell-substratum adhesion, small GTPases (guanosine triphosphatases) act as important controls of neutrophil-endothelial cell interactions as well as neutrophil recruitment to sites of inflammation. Here, we summarise key processes that are dependent upon small GTPases in leukocytes during these early inflammatory events. We place a particular focus on the regulation of integrin-dependent events and their control by Rho and Rap family GTPases as well as their regulators during neutrophil adhesion, chemotaxis and recruitment.
Collapse
|
45
|
Abstract
Platelet P2Y1 receptor signalling via RhoGTPases is necessary for platelet-dependent leukocyte recruitment, where no platelet aggregation is observed. We investigated signalling cascades involved in distinct P2Y1-dependent platelet activities in vitro, using specific inhibitors for phospholipase C (PLC) (U73122, to inhibit the canonical pathway), and RhoGTPases: Rac1 (NSC23766) and RhoA (ROCK inhibitor GSK429286). Human platelet rich plasma (for platelet aggregation) or isolated washed platelets (for chemotaxis assays) was treated with U73122, GSK429286 or NSC23766 prior to stimulation with adenosine diphosphate (ADP) or the P2Y1 specific agonist MRS2365. Aggregation, chemotaxis (towards f-MLP), or platelet-induced human neutrophil chemotaxis (PINC) towards macrophage derived chemokine (MDC) was assessed. Molecular docking of ADP and MRS2365 to P2Y1 was analysed using AutoDock Smina followed by GOLD molecular docking in the Accelrys Discovery Studio software. Inhibition of PLC, but not Rac1 or RhoA, suppressed platelet aggregation induced by ADP and MRS2365. In contrast, platelet chemotaxis and PINC, were significantly attenuated by inhibition of platelet Rac1 or RhoA, but not PLC. MRS2365, compared to ADP had a less pronounced effect on P2Y1-induced aggregation, but a similar efficacy to stimulate platelet chemotaxis and PINC, which might be explained by differences in molecular interaction of ADP compared to MRS2365 with the P2Y1 receptor. Platelet P2Y1 receptor activation during inflammation signals through alternate pathways involving Rho GTPases in contrast to canonical P2Y1 receptor induced PLC signalling. This might be explained by selective molecular interactions of ligands within the orthosteric site of the P2Y1 receptor.
Collapse
|
46
|
Guo Y, Xiong J, Wang J, Wen J, Zhi F. Inhibition of Rac family protein impairs colitis and colitis-associated cancer in mice. Am J Cancer Res 2018; 8:70-80. [PMID: 29416921 PMCID: PMC5794722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/03/2017] [Indexed: 06/08/2023] Open
Abstract
The prevalence of inflammatory bowel disease (IBD) has increased worldwide and IBD has been demonstrated to promote the development of colorectal cancer. The Rac family of proteins are involved in key mitogenic pathways. However, to the best of our knowledge, no prior studies have investigated the expression and role of Rac on colitis and colitis-associated cancer (CAC). In the current study, Rac expression in patients with colitis was analyzed according to the expression value from NCBI GEO database (GDS3268). EHT-1864, the specific inhibitor of Rac, was intraperitoneally injected to treat mice with dextran sulfate sodium (DSS)-induced acute and chronic colitis and mice with azoxymethane (AOM)/DSS-induced CAC. Furthermore, immune cell infiltration and the expression of several inflammatory cytokines in colon tissues were analyzed by flow cytometry, immunofluorescence, and ELISAs. We demonstrated the upregulation of the Rac family of proteins in colitis. Inhibition of Rac by EHT-1864 treatment was found to have an efficient inhibitory effect on DSS-induced acute and chronic colitis and AOM/DSS-induced CAC development. We also observed that downregulation of Rac family protein expression markedly prevented macrophage and myeloid-derived suppressor cell (MDSC) infiltration in colon tissues and suppressed pro-inflammatory cytokine expression. Our study established a foundation for understanding the role of Rac in colitis and CAC and to provide a novel strategy and target for colitis and CAC therapy.
Collapse
Affiliation(s)
- Yandong Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Jing Xiong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Jing Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Jing Wen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital/The First School of Clinical Medicine, Southern Medical UniversityGuangzhou 510515, Guangdong Province, China
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This review describes the essential roles of platelets in neutrophil recruitment from the bloodstream into inflamed and infected tissues, with a focus on recent findings. RECENT FINDINGS Platelets are required for the recruitment of neutrophils to sites of inflammation and infection. They fulfil this role largely by enabling contacts of circulating neutrophils with the inflamed blood vessel wall prior to extravasation. Platelets promote both early stages of neutrophil recruitment (tethering, rolling, arrest, firm adhesion) and - as recent work has demonstrated - later stages (intravascular crawling and diapedesis). Recent studies have also begun to identify platelet-signaling pathways that can elicit the underlying interactions between platelets, neutrophils and vascular endothelial cells without stimulating concomitant platelet aggregation and thrombus formation. These pathways include Rho-guanine-nucleotide binding proteins and Rho-guanine-nucleotide exchange factors. SUMMARY Recent findings have contributed to our burgeoning understanding of the platelet-dependent mechanisms that control neutrophil recruitment to sites of inflammation and have opened up new avenues of research aimed at increasing our knowledge of these mechanisms further. These insights might lead to the development of novel anti-inflammatory drugs that will be useful in a wide range of inflammatory diseases without causing immunodeficiency.
Collapse
|
48
|
Shah SA, Page CP, Pitchford SC. Platelet-Eosinophil Interactions As a Potential Therapeutic Target in Allergic Inflammation and Asthma. Front Med (Lausanne) 2017; 4:129. [PMID: 28848732 PMCID: PMC5550710 DOI: 10.3389/fmed.2017.00129] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/24/2017] [Indexed: 01/24/2023] Open
Abstract
The importance of platelet activation during hemostasis is well understood. An understanding of these mechanisms has led to the use of several classes of anti-platelet drugs to inhibit aggregation for the prevention of thrombi during cardiovascular disease. It is now also recognized that platelets can function very differently during inflammation, as part of their role in the innate immune response against pathogens. This dichotomy in platelet function occurs through distinct physiological processes and alternative signaling pathways compared to that of hemostasis (leading to platelet aggregation) and is manifested as increased rheological interactions with leukocytes, the ability to undergo chemotaxis, communication with antigen-presenting cells, and direct anti-pathogen responses. Mounting evidence suggests platelets are also critical in the pathogenesis of allergic diseases such as asthma, where they have been associated with antigen presentation, bronchoconstriction, bronchial hyperresponsiveness, airway inflammation, and airway remodeling in both clinical and experimental studies. In particular, platelets have been reported bound to eosinophils in the blood of patients with asthma and the incidence of these events increases after both spontaneous asthma attacks in a biphasic manner, or after allergen challenge in the clinic. Platelet depletion in animal models of allergic airway inflammation causes a profound reduction in eosinophil recruitment to the lung, suggesting that the association of platelets with eosinophils is indeed an important event during eosinophil activation. Furthermore, in cases of severe asthma, and in animal models of allergic airways inflammation, platelet–eosinophil complexes move into the lung through a platelet P-selectin-mediated, eosinophil β1-integrin activation-dependent process, while platelets increase adherence of eosinophils to the vascular endothelium in vitro, demonstrating a clear interaction between these cell types in allergic inflammatory diseases. This review will explore non-thrombotic platelet activation in the context of allergy and the association of platelets with eosinophils, to reveal how these phenomena may lead to the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Sajeel A Shah
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Simon C Pitchford
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| |
Collapse
|
49
|
Amison R, Arnold S, O'Shaughnessy B, Cleary S, Ofoedu J, Idzko M, Page C, Pitchford S. Lipopolysaccharide (LPS) induced pulmonary neutrophil recruitment and platelet activation is mediated via the P2Y1 and P2Y14 receptors in mice. Pulm Pharmacol Ther 2017; 45:62-68. [DOI: 10.1016/j.pupt.2017.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 11/29/2022]
|
50
|
McCormick B, Chu JY, Vermeren S. Cross-talk between Rho GTPases and PI3K in the neutrophil. Small GTPases 2017; 10:187-195. [PMID: 28328290 DOI: 10.1080/21541248.2017.1304855] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Neutrophils are short-lived, abundant peripheral blood leukocytes that provide a first line of defense against bacterial and fungal infections while also being a key part of the inflammatory response. Chemokines induce neutrophil recruitment to inflammatory sites, where neutrophils perform several diverse functions that are aimed at fighting infections. Neutrophil effector functions are tightly regulated processes that are governed by an array of intracellular signaling pathways and initiated by receptor-ligand binding events. Dysregulated neutrophil activation can result in excessive inflammation and host damage, as is evident in several autoimmune diseases. Rho family small GTPases and agonist-activated phosphoinositide 3-kinases (PI3Ks) represent 2 classes of key regulators of the highly specialized neutrophil. Here we review cross-talk between these important signaling intermediates in the context of neutrophil functions. We include PI3K-dependent activation of Rho family small GTPases and of their guanine nucleotide exchange factors and GTPase activating proteins, as well as Rho GTPase-dependent regulation of PI3K.
Collapse
Affiliation(s)
- Barry McCormick
- a MRC Centre for Inflammation Research , The University of Edinburgh , Edinburgh , United Kingdom
| | - Julia Y Chu
- a MRC Centre for Inflammation Research , The University of Edinburgh , Edinburgh , United Kingdom
| | - Sonja Vermeren
- a MRC Centre for Inflammation Research , The University of Edinburgh , Edinburgh , United Kingdom
| |
Collapse
|