1
|
Ishikawa Y, Ushijima Y, Kiyoi H. Recent advances in AML with mutated NPM1. Int J Hematol 2024; 120:556-565. [PMID: 39174699 DOI: 10.1007/s12185-024-03835-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Nucleophosmin 1 (NPM1) mutation is one of the most prevalent genetic mutations in adult acute myeloid leukemia (AML) and is particularly predominant in AML with a normal karyotype. NPM1 is a chaperone protein that plays various roles in several cellular processes. Wild-type NPM1 is normally localized to the nucleus, whereas mutant NPM1 proteins exhibit altered cytoplasmic localization. Clinically, AML with mutated NPM1 without FLT3-ITD is associated with a higher complete remission rate and improved overall survival. AML with mutated NPM1 is categorized as a distinct genetic entity in the World Health Organization classification of hematopoietic malignancies due to its unique clinical and biological features. However, the precise roles of NPM1 in normal hematopoiesis and in AML development remain unclear. Recent studies have revealed various clinical applications of NPM1 mutations in AML treatment, particularly in measurable residual disease analyses that target mutant NPM1 transcripts and in potential therapeutic applications of menin inhibitors and XPO-1 inhibitors for AML with mutated NPM1. Thus, NPM1 mutation is highly significant in AML classification, prognosis, response assessment, and molecular targeted therapies. Here, we review recent progress in clinical and biological aspects of AML with mutated NPM1 including molecular targeted therapy.
Collapse
Affiliation(s)
- Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Yoko Ushijima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| |
Collapse
|
2
|
Chen Y, Tong X, Lu R, Zhang Z, Ma T. All-trans retinoic acid in hematologic disorders: not just acute promyelocytic leukemia. Front Pharmacol 2024; 15:1404092. [PMID: 39027338 PMCID: PMC11254857 DOI: 10.3389/fphar.2024.1404092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
All-trans retinoic acid (ATRA) plays a role in tissue development, neural function, reproduction, vision, cell growth and differentiation, tumor immunity, and apoptosis. ATRA can act by inducing autophagic signaling, angiogenesis, cell differentiation, apoptosis, and immune function. In the blood system ATRA was first used with great success in acute promyelocytic leukemia (APL), where ATRA differentiated leukemia cells into mature granulocytes. ATRA can play a role not only in APL, but may also play a role in other hematologic diseases such as immune thrombocytopenia (ITP), myelodysplastic syndromes (MDS), non-APL acute myeloid leukemia (AML), aplastic anemia (AA), multiple myeloma (MM), etc., especially by regulating mesenchymal stem cells and regulatory T cells for the treatment of ITP. ATRA can also increase the expression of CD38 expressed by tumor cells, thus improving the efficacy of daratumumab and CD38-CART. In this review, we focus on the mechanism of action of ATRA, its role in various hematologic diseases, drug combinations, and ongoing clinical trials.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xia Tong
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Rongyuan Lu
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Zhengfu Zhang
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Hematology, Yanyuan People’s Hospital, Liangshan, China
| |
Collapse
|
3
|
Florio D, Marasco D. Could Targeting NPM1c+ Misfolding Be a Promising Strategy for Combating Acute Myeloid Leukemia? Int J Mol Sci 2024; 25:811. [PMID: 38255885 PMCID: PMC10815591 DOI: 10.3390/ijms25020811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of diseases classified into various types on the basis of distinct features concerning the morphology, cytochemistry and cytogenesis of leukemic cells. Among the different subtypes, the group "AML with gene mutations" includes the variations of the gene of the multifunctional protein nucleophosmin 1 (NPM1). These mutations are the most frequent (~30-35% of AML adult patients and less in pediatric ones) and occur predominantly in the C-terminal domain (CTD) of NPM1. The most important mutation is the insertion at W288, which determines the frame shift W288Cfs12/Ffs12/Lfs*12 and leads to the addition of 2-12 amino acids, which hamper the correct folding of NPM1. This mutation leads to the loss of the nuclear localization signal (NoLS) and to aberrant cytoplasmic localization, denoted as NPM1c+. Many investigations demonstrated that interfering with the cellular location and oligomerization status of NPM1 can influence its biological functions, including the proper buildup of the nucleolus, and therapeutic strategies have been proposed to target NPM1c+, particularly the use of drugs able to re-direct NPM1 localization. Our studies unveiled a direct link between AML mutations and the neat amyloidogenic character of the CTDs of NPM1c+. Herein, with the aim of exploiting these conformational features, novel therapeutic strategies are proposed that rely on the induction of the selective self-cytotoxicity of leukemic blasts by focusing on agents such as peptides, peptoids or small molecules able to enhance amyloid aggregation and targeting selectively AML-NPM1c+ mutations.
Collapse
Affiliation(s)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80131 Naples, Italy;
| |
Collapse
|
4
|
Guarnera L, Santinelli E, Galossi E, Cristiano A, Fabiani E, Falconi G, Voso MT. Microenvironment in acute myeloid leukemia: focus on senescence mechanisms, therapeutic interactions, and future directions. Exp Hematol 2024; 129:104118. [PMID: 37741607 DOI: 10.1016/j.exphem.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Acute myeloid leukemia (AML) is a disease with a dismal prognosis, mainly affecting the elderly. In recent years, new drugs have improved life expectancy and quality of life, and a better understanding of the genetic-molecular nature of the disease has shed light on previously unknown aspects of leukemogenesis. In parallel, increasing attention has been attracted to the complex interactions between cells and soluble factors in the bone marrow (BM) environment, collectively known as the microenvironment. In this review, we discuss the central role of the microenvironment in physiologic and pathologic hematopoiesis and the mechanisms of senescence, considered a fundamental protective mechanism against the proliferation of damaged and pretumoral cells. The microenvironment also represents a fertile ground for the development of myeloid malignancies, and the leukemic niche significantly interacts with drugs commonly used in AML treatment. Finally, we focus on the role of the microenvironment in the engraftment and complications of allogeneic hematopoietic stem cell transplantation, the only curative option in a conspicuous proportion of patients.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Enrico Santinelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Elisa Galossi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Antonio Cristiano
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Emiliano Fabiani
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Saint Camillus International, University of Health Sciences, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Neuro-Oncohematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
5
|
Magliulo D, Simoni M, Caserta C, Fracassi C, Belluschi S, Giannetti K, Pini R, Zapparoli E, Beretta S, Uggè M, Draghi E, Rossari F, Coltella N, Tresoldi C, Morelli MJ, Di Micco R, Gentner B, Vago L, Bernardi R. The transcription factor HIF2α partakes in the differentiation block of acute myeloid leukemia. EMBO Mol Med 2023; 15:e17810. [PMID: 37807875 PMCID: PMC10630882 DOI: 10.15252/emmm.202317810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
One of the defining features of acute myeloid leukemia (AML) is an arrest of myeloid differentiation whose molecular determinants are still poorly defined. Pharmacological removal of the differentiation block contributes to the cure of acute promyelocytic leukemia (APL) in the absence of cytotoxic chemotherapy, but this approach has not yet been translated to non-APL AMLs. Here, by investigating the function of hypoxia-inducible transcription factors HIF1α and HIF2α, we found that both genes exert oncogenic functions in AML and that HIF2α is a novel regulator of the AML differentiation block. Mechanistically, we found that HIF2α promotes the expression of transcriptional repressors that have been implicated in suppressing AML myeloid differentiation programs. Importantly, we positioned HIF2α under direct transcriptional control by the prodifferentiation agent all-trans retinoic acid (ATRA) and demonstrated that HIF2α blockade cooperates with ATRA to trigger AML cell differentiation. In conclusion, we propose that HIF2α inhibition may open new therapeutic avenues for AML treatment by licensing blasts maturation and leukemia debulking.
Collapse
Affiliation(s)
- Daniela Magliulo
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Matilde Simoni
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Carolina Caserta
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Cristina Fracassi
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Serena Belluschi
- Vita Salute San Raffaele University School of MedicineMilanItaly
- Present address:
MogrifyCambridgeUK
| | - Kety Giannetti
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Raffaella Pini
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Ettore Zapparoli
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Martina Uggè
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Eleonora Draghi
- Unit of Immunogenetics, Leukemia Genomics and ImmunobiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Federico Rossari
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Vita Salute San Raffaele University School of MedicineMilanItaly
| | - Nadia Coltella
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Cristina Tresoldi
- Unit of Hematology and Bone Marrow TransplantationIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Marco J Morelli
- Center for Omics SciencesIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Raffaella Di Micco
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)IRCCS San Raffaele Scientific InstituteMilanItaly
- Present address:
Ludwig Institute for Cancer researchLausanne UniversityLausanneSwitzerland
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and ImmunobiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Rosa Bernardi
- Division of Experimental OncologyIRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
6
|
Schlenk RF, Weber D, Krzykalla J, Kindler T, Wulf G, Hertenstein B, Salih HR, Südhoff T, Krauter J, Martens U, Wessendorf S, Runde V, Tischler HJ, Bentz M, Koller E, Heuser M, Thol F, Benner A, Ganser A, Döhner K, Döhner H. Randomized phase-III study of low-dose cytarabine and etoposide + /- all-trans retinoic acid in older unfit patients with NPM1-mutated acute myeloid leukemia. Sci Rep 2023; 13:14809. [PMID: 37684299 PMCID: PMC10491626 DOI: 10.1038/s41598-023-41964-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this randomized clinical trial was to evaluate the impact of all-trans retinoic acid (ATRA) in combination with non-intensive chemotherapy in older unfit patients (> 60 years) with newly diagnosed NPM1-mutated acute myeloid leukemia. Patients were randomized (1:1) to low-dose chemotherapy with or without open-label ATRA 45 mg/m2, days 8-28; the dose of ATRA was reduced to 45 mg/m2, days 8-10 and 15 mg/m2, days 11-28 after 75 patients due to toxicity. Up to 6 cycles of cytarabine 20 mg/day s.c., bid, days 1-7 and etoposide 100 mg/day, p.o. or i.v., days 1-3 with (ATRA) or without ATRA (CONTROL) were intended. The primary endpoint was overall survival (OS). Between May 2011 and September 2016, 144 patients (median age, 77 years; range, 64-92 years) were randomized (72, CONTROL; 72, ATRA). Baseline characteristics were balanced between the two study arms. The median number of treatment cycles was 2 in ATRA and 2.5 in CONTROL. OS was significantly shorter in the ATRA compared to the CONTROL arm (p = 0.023; median OS: 5 months versus 9.2 months, 2-years OS rate: 7% versus 10%, respectively). Rates of CR/CRi were not different between treatment arms; infections were more common in ATRA beyond treatment cycle one. The addition of ATRA to low-dose cytarabine plus etoposide in an older, unfit patient population was not beneficial, but rather led to an inferior outcome.The clinical trial is registered at clinicaltrialsregister.eu (EudraCT Number: 2010-023409-37, first posted 14/12/2010).
Collapse
Affiliation(s)
- R F Schlenk
- NCT-Trial Center, National Center of Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.
| | - D Weber
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - J Krzykalla
- Division of Biostatistics, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - T Kindler
- Department of Hematology, Medical Oncology and Pneumology, University Medical Center Mainz, Mainz, Germany
| | - G Wulf
- Department of Hematology and Oncology, University Hospital of Göttingen, Göttingen, Germany
| | - B Hertenstein
- Department of Hematology and Oncology, Klinikum Bremen Mitte, Bremen, Germany
| | - H R Salih
- Department of Hematology and Oncology, Eberhard-Karls University, Tübingen, Germany
| | - T Südhoff
- Department of Hematology and Oncology, Klinikum Passau, Passau, Germany
| | - J Krauter
- Department Hematology and Oncology, Braunschweig Municipal Hospital, Braunschweig, Germany
| | - U Martens
- Department of Hematology and Oncology, Klinikum am Gesundbrunnen, Heilbronn, Germany
| | - S Wessendorf
- Department of Hematology and Oncology, Klinikum Esslingen, Esslingen, Germany
| | - V Runde
- Department of Hematology/Oncology, Wilhelm-Anton Hospital Goch, Goch, Germany
| | - H J Tischler
- Department of Hematology and Oncology, University Hospital of Minden, Minden, Germany
| | - M Bentz
- Department of Hematology and Oncology, Städtisches Klinikum Karlsruhe, Karlsruhe, Germany
| | - E Koller
- Department of Internal Medicine III, Hanuschkrankenhaus Wien, Wien, Austria
| | - M Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - F Thol
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - A Benner
- Division of Biostatistics, German Cancer Research Center Heidelberg, Heidelberg, Germany
| | - A Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - K Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - H Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
7
|
Rérolle D, de Thé H. The PML hub: An emerging actor of leukemia therapies. J Exp Med 2023; 220:e20221213. [PMID: 37382966 PMCID: PMC10309189 DOI: 10.1084/jem.20221213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/30/2023] Open
Abstract
PML assembles into nuclear domains that have attracted considerable attention from cell and cancer biologists. Upon stress, PML nuclear bodies modulate sumoylation and other post-translational modifications, providing an integrated molecular framework for the multiple roles of PML in apoptosis, senescence, or metabolism. PML is both a sensor and an effector of oxidative stress. Emerging data has demonstrated its key role in promoting therapy response in several hematological malignancies. While these membrane-less nuclear hubs can enforce efficient cancer cell clearance, their downstream pathways deserve better characterization. PML NBs are druggable and their known modulators may have broader clinical utilities than initially thought.
Collapse
Affiliation(s)
- Domitille Rérolle
- Center for Interdisciplinary Research in Biology, Collège de France, Inserm, PSL Research University, Paris, France
- Université Paris Cité, Inserm U944, CNRS, GenCellDis, Institut de Recherche Saint-Louis, Paris, France
| | - Hugues de Thé
- Center for Interdisciplinary Research in Biology, Collège de France, Inserm, PSL Research University, Paris, France
- Université Paris Cité, Inserm U944, CNRS, GenCellDis, Institut de Recherche Saint-Louis, Paris, France
- Chaire d'Oncologie Cellulaire et Moléculaire, Collège de France, Paris, France
- Service d'Hématologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital St. Louis, Paris, France
| |
Collapse
|
8
|
Jiang Y, Shen X, Zhi F, Wen Z, Gao Y, Xu J, Yang B, Bai Y. An overview of arsenic trioxide-involved combined treatment algorithms for leukemia: basic concepts and clinical implications. Cell Death Discov 2023; 9:266. [PMID: 37500645 PMCID: PMC10374529 DOI: 10.1038/s41420-023-01558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Arsenic trioxide is a first-line treatment drug for acute promyelocytic leukemia, which is also effective for other kinds of leukemia. Its side effects, however, limit its clinical application, especially for patients with complex leukemia symptoms. Combination therapy can effectively alleviate these problems. This review summarizes the research progress on the combination of arsenic trioxide with anticancer drugs, vitamin and vitamin analogs, plant products, and other kinds of drugs in the treatment of leukemia. Additionally, the new progress in arsenic trioxide-induced cardiotoxicity was summarized. This review aims to provide new insights for the rational clinical application of arsenic trioxide.
Collapse
Affiliation(s)
- Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Xiuyun Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Fengnan Zhi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhengchao Wen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Gao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences (2019RU070), Harbin, China.
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
9
|
Gill H, Russell N, Kwong YL. Editorial: Acute promyelocytic leukemia - towards a chemotherapy-free approach to cure in all patients, Volume II. Front Oncol 2023; 13:1238486. [PMID: 37441418 PMCID: PMC10335353 DOI: 10.3389/fonc.2023.1238486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Affiliation(s)
- Harinder Gill
- Department of Medicine, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nigel Russell
- Department of Haematology, Nottingham City Hospital and University of Nottingham, Nottingham, United Kingdom
| | - Yok-Lam Kwong
- Department of Medicine, School of Clinical Medicine, Li Ka Shing (LKS) Faculty of Medicine, the University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
10
|
Yin PY, Wang RW, Jing R, Li X, Ma JH, Li KM, Wang H. Research progress on molecular biomarkers of acute myeloid leukemia. Front Oncol 2023; 13:1078556. [PMID: 36824144 PMCID: PMC9941555 DOI: 10.3389/fonc.2023.1078556] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common type of adult acute leukemia. The pathophysiology of the disease has been studied intensively at the cellular and molecular levels. At present, cytogenetic markers are an important basis for the early diagnosis, prognostic stratification and treatment of AML. However, with the emergence of new technologies, the detection of other molecular markers, such as gene mutations and epigenetic changes, began to play important roles in evaluating the occurrence and development of diseases. Recent evidence shows that identifying new AML biomarkers contributes to a better understanding of the molecular mechanism of the disease and is essential for AML screening, diagnosis, prognosis monitoring, and individualized treatment response. In this review, we summarized the promising AML biomarkers from four aspects, which contributing to a better understanding of the disease. Of course, it must be soberly aware that we have not listed all biomarkers of AML. Anyway, the biomarkers we mentioned are representative. For example, mutations in TP53, FLT3, and ASXL1 suggest poor prognosis, low remission rate, short survival period, and often require allogeneic hematopoietic stem cell transplantation. The CEBPA double mutation, NPM1 and CBF mutation suggest that the prognosis is good, the remission rate is high, the survival period is long, and the effect of chemotherapy or autotherapy is good. As for other mutations mentioned in the article, they usually predict a moderate prognosis. All in all, we hope it could provide a reference for the precise diagnosis and treatment of AML.
Collapse
Affiliation(s)
- Pei-Yuan Yin
- Hematology Department, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong, China,Department of Blood Supply, Yantai Center Blood Station, Yantai, Shandong, China
| | - Rui-Wen Wang
- Department of Anesthesiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Rui Jing
- Hematology Department, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong, China
| | - Xing Li
- Department of Blood Supply, Yantai Center Blood Station, Yantai, Shandong, China
| | - Jing-Hua Ma
- Department of Science and Education, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China,*Correspondence: Hua Wang, ; Kai-Min Li, ; Jing-Hua Ma,
| | - Kai-Min Li
- Hematology Department, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China,*Correspondence: Hua Wang, ; Kai-Min Li, ; Jing-Hua Ma,
| | - Hua Wang
- Hematology Department, Yantai Affiliated Hospital, Binzhou Medical University, Yantai, Shandong, China,*Correspondence: Hua Wang, ; Kai-Min Li, ; Jing-Hua Ma,
| |
Collapse
|
11
|
Chin L, Wong CYG, Gill H. Targeting and Monitoring Acute Myeloid Leukaemia with Nucleophosmin-1 ( NPM1) Mutation. Int J Mol Sci 2023; 24:3161. [PMID: 36834572 PMCID: PMC9958584 DOI: 10.3390/ijms24043161] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Mutations in NPM1, also known as nucleophosmin-1, B23, NO38, or numatrin, are seen in approximately one-third of patients with acute myeloid leukaemia (AML). A plethora of treatment strategies have been studied to determine the best possible approach to curing NPM1-mutated AML. Here, we introduce the structure and function of NPM1 and describe the application of minimal residual disease (MRD) monitoring using molecular methods by means of quantitative polymerase chain reaction (qPCR), droplet digital PCR (ddPCR), next-generation sequencing (NGS), and cytometry by time of flight (CyTOF) to target NPM1-mutated AML. Current drugs, now regarded as the standard of care for AML, as well as potential drugs still under development, will also be explored. This review will focus on the role of targeting aberrant NPM1 pathways such as BCL-2 and SYK; as well as epigenetic regulators (RNA polymerase), DNA intercalators (topoisomerase II), menin inhibitors, and hypomethylating agents. Aside from medication, the effects of stress on AML presentation have been reported, and some possible mechanisms outlined. Moreover, targeted strategies will be briefly discussed, not only for the prevention of abnormal trafficking and localisation of cytoplasmic NPM1 but also for the elimination of mutant NPM1 proteins. Lastly, the advancement of immunotherapy such as targeting CD33, CD123, and PD-1 will be mentioned.
Collapse
Affiliation(s)
| | | | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Kumana CR, Kwong YL, Gill H. Oral arsenic trioxide for treating acute promyelocytic leukaemia: Implications for its worldwide epidemiology and beyond. Front Oncol 2022; 12:1026478. [PMID: 36518307 PMCID: PMC9744132 DOI: 10.3389/fonc.2022.1026478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 07/29/2023] Open
Abstract
This account describes how orally administered Arsenic-trioxide (ATO) therapy influences the epidemiology of acute promyelocytic leukaemia (APL), and how the experience that ensued may expand the indications for oral ATO as a treatment for diseases/disorders other than APL. Over the last two decades, experience with APL patients in Hong Kong treated with an oral regimen comprising ATO, all-trans retinoic acid (ATRA), and ascorbic acid (also known as "AAA") has confirmed a dramatic improvement in overall survival. Over that period, there has been an estimated 60-fold increase in the prevalence of APL (proportion of surviving APL patients in the population on December 31 including those deemed to be 'cured'). In contrast to regimens entailing intravenous (IV) ATO, the consequential therapeutic benefits of using oral ATO have been achieved with much less patient inconvenience and quality of life disruption, reduced burdens on health care facilities (hospitalisations and staff involvement), and much enhanced affordability (retail drug & other cost reductions). Numerous experimental and a few clinical studies suggest that ATO may also have a therapeutic role in many other diseases/disorders. Several such diseases (e.g. autoimmune disorders & idiopathic pulmonary fibrosis) are far more prevalent than APL, which means that very large numbers of patients may potentially benefit from ATO treatment, even if its efficacy is limited to selected populations with these diseases. The known safety of oral ATO and its advantages over repeated long-term IV delivery suggests that this route be used in future clinical studies of its possible role in treating such patients. If the clinical utility of oral ATO treatment is validated for patients enduring any such non-APL diseases, very large numbers of patients may stand to benefit.
Collapse
|
13
|
Wang R, Xu P, Chang LL, Zhang SZ, Zhu HH. Targeted therapy in NPM1-mutated AML: Knowns and unknowns. Front Oncol 2022; 12:972606. [PMID: 36237321 PMCID: PMC9552319 DOI: 10.3389/fonc.2022.972606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by malignant proliferation of myeloid hematopoietic stem/progenitor cells. NPM1 represents the most frequently mutated gene in AML and approximately 30% of AML cases carry NPM1 mutations. Mutated NPM1 result in the cytoplasmic localization of NPM1 (NPM1c). NPM1c interacts with other proteins to block myeloid differentiation, promote cell proliferation and impair DNA damage repair. NPM1 is a good prognostic marker, but some patients ultimately relapse or fail to respond to therapy. It is urgent for us to find optimal therapies for NPM1-mutated AML. Efficacy of multiple drugs is under investigation in NPM1-mutated AML, and several clinical trials have been registered. In this review, we summarize the present knowledge of therapy and focus on the possible therapeutic interventions for NPM1-mutated AML.
Collapse
Affiliation(s)
- Rong Wang
- Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
| | - Pan Xu
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| | - Lin-Lin Chang
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
| | - Shi-Zhong Zhang
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
- *Correspondence: Hong-Hu Zhu, ; Shi-Zhong Zhang,
| | - Hong-Hu Zhu
- Department of Hematology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment, Hangzhou, China
- Department of Physiology, Medical College of China Three Gorges University, Yichang, China
- Zhejiang University Cancer Center, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Hong-Hu Zhu, ; Shi-Zhong Zhang,
| |
Collapse
|
14
|
The Development and Clinical Applications of Oral Arsenic Trioxide for Acute Promyelocytic Leukaemia and Other Diseases. Pharmaceutics 2022; 14:pharmaceutics14091945. [PMID: 36145693 PMCID: PMC9504237 DOI: 10.3390/pharmaceutics14091945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Appreciation of the properties of arsenic trioxide (ATO) has redefined the treatment landscape for acute promyelocytic leukaemia (APL) and offers promise as a treatment for numerous other diseases. The benefits of ATO in patients with APL is related to its ability to counteract the effects of PML::RARA, an oncoprotein that is invariably detected in the blood or bone marrow of affected individuals. The PML::RARA oncoprotein is degraded specifically by binding to ATO. Thus ATO, in combination with all-trans retinoic acid, has become the curative treatment for ATO. The multiple mechanisms of action of ATO has also paved the way for application in various condition encompassing autoimmune or inflammatory disorders, solid organ tumours, lymphomas and other subtypes of AML. The development of oral formulation of ATO (oral ATO) has reduced costs of treatment and improved treatment convenience allowing widespread applicability. In this review, we discuss the mechanisms of action of ATO, the development of oral ATO, and the applications of oral ATO in APL and other diseases.
Collapse
|
15
|
Current status and future perspectives in targeted therapy of NPM1-mutated AML. Leukemia 2022; 36:2351-2367. [PMID: 36008542 PMCID: PMC9522592 DOI: 10.1038/s41375-022-01666-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Nucleophosmin 1 (NPM1) is a nucleus-cytoplasmic shuttling protein which is predominantly located in the nucleolus and exerts multiple functions, including regulation of centrosome duplication, ribosome biogenesis and export, histone assembly, maintenance of genomic stability and response to nucleolar stress. NPM1 mutations are the most common genetic alteration in acute myeloid leukemia (AML), detected in about 30–35% of adult AML and more than 50% of AML with normal karyotype. Because of its peculiar molecular and clinico-pathological features, including aberrant cytoplasmic dislocation of the NPM1 mutant and wild-type proteins, lack of involvement in driving clonal hematopoiesis, mutual exclusion with recurrent cytogenetic abnormalities, association with unique gene expression and micro-RNA profiles and high stability at relapse, NPM1-mutated AML is regarded as a distinct genetic entity in the World Health Organization (WHO) classification of hematopoietic malignancies. Starting from the structure and functions of NPM1, we provide an overview of the potential targeted therapies against NPM1-mutated AML and discuss strategies aimed at interfering with the oligomerization (compound NSC348884) and the abnormal traffic of NPM1 (avrainvillamide, XPO1 inhibitors) as well as at inducing selective NPM1-mutant protein degradation (ATRA/ATO, deguelin, (-)-epigallocatechin-3-gallate, imidazoquinoxaline derivatives) and at targeting the integrity of nucleolar structure (actinomycin D). We also discuss the current therapeutic results obtained in NPM1-mutated AML with the BCL-2 inhibitor venetoclax and the preliminary clinical results using menin inhibitors targeting HOX/MEIS1 expression. Finally, we review various immunotherapeutic approaches in NPM1-mutated AML, including immune check-point inhibitors, CAR and TCR T-cell-based therapies against neoantigens created by the NPM1 mutations.
Collapse
|
16
|
Dal Bello R, Pasanisi J, Joudinaud R, Duchmann M, Pardieu B, Ayaka P, Di Feo G, Sodaro G, Chauvel C, Kim R, Vasseur L, Chat L, Ling F, Pacchiardi K, Vaganay C, Berrou J, Benaksas C, Boissel N, Braun T, Preudhomme C, Dombret H, Raffoux E, Fenouille N, Clappier E, Adès L, Puissant A, Itzykson R. A multiparametric niche-like drug screening platform in acute myeloid leukemia. Blood Cancer J 2022; 12:95. [PMID: 35750691 PMCID: PMC9232632 DOI: 10.1038/s41408-022-00689-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Functional precision medicine in AML often relies on short-term in vitro drug sensitivity screening (DSS) of primary patient cells in standard culture conditions. We designed a niche-like DSS assay combining physiologic hypoxia (O2 3%) and mesenchymal stromal cell (MSC) co-culture with multiparameter flow cytometry to enumerate lymphocytes and differentiating (CD11/CD14/CD15+) or leukemic stem cell (LSC)-enriched (GPR56+) cells within the leukemic bulk. After functional validation of GPR56 expression as a surrogate for LSC enrichment, the assay identified three patterns of response, including cytotoxicity on blasts sparing LSCs, induction of differentiation, and selective impairment of LSCs. We refined our niche-like culture by including plasma-like amino-acid and cytokine concentrations identified by targeted metabolomics and proteomics of primary AML bone marrow plasma samples. Systematic interrogation revealed distinct contributions of each niche-like component to leukemic outgrowth and drug response. Short-term niche-like culture preserved clonal architecture and transcriptional states of primary leukemic cells. In a cohort of 45 AML samples enriched for NPM1c AML, the niche-like multiparametric assay could predict morphologically (p = 0.02) and molecular (NPM1c MRD, p = 0.04) response to anthracycline-cytarabine induction chemotherapy. In this cohort, a 23-drug screen nominated ruxolitinib as a sensitizer to anthracycline-cytarabine. This finding was validated in an NPM1c PDX model.
Collapse
Affiliation(s)
- Reinaldo Dal Bello
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Justine Pasanisi
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Romane Joudinaud
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Matthieu Duchmann
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Bryann Pardieu
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Paolo Ayaka
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Giuseppe Di Feo
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Gaetano Sodaro
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Clémentine Chauvel
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Rathana Kim
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Loic Vasseur
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Laureen Chat
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Frank Ling
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Kim Pacchiardi
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Camille Vaganay
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Jeannig Berrou
- Université Paris Cité, EA 3518, IRSL, Hôpital Saint-Louis, F-75010, Paris, France
| | - Chaima Benaksas
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Nicolas Boissel
- Service Hématologie Adolescents Jeunes Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Thorsten Braun
- Université Paris Cité, EA 3518, IRSL, Hôpital Saint-Louis, F-75010, Paris, France.,Service d'Hématologie clinique, Hôpital Avicenne, Assistance Publique-Hôpitaux de Paris, Bobigny, France
| | - Claude Preudhomme
- Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Hervé Dombret
- Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France.,Université Paris Cité, EA 3518, IRSL, Hôpital Saint-Louis, F-75010, Paris, France
| | - Emmanuel Raffoux
- Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Nina Fenouille
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Emmanuelle Clappier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.,Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Lionel Adès
- Service Hématologie Seniors, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Alexandre Puissant
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France. .,Service Hématologie Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France.
| |
Collapse
|
17
|
Hoang DH, Buettner R, Valerio M, Ghoda L, Zhang B, Kuo YH, Rosen ST, Burnett J, Marcucci G, Pullarkat V, Nguyen LXT. Arsenic Trioxide and Venetoclax Synergize against AML Progenitors by ROS Induction and Inhibition of Nrf2 Activation. Int J Mol Sci 2022; 23:6568. [PMID: 35743010 PMCID: PMC9223383 DOI: 10.3390/ijms23126568] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 01/25/2023] Open
Abstract
Venetoclax (VEN) in combination with hypomethylating agents induces disease remission in patients with de novo AML, however, most patients eventually relapse. AML relapse is attributed to the persistence of drug-resistant leukemia stem cells (LSCs). LSCs need to maintain low intracellular levels of reactive oxygen species (ROS). Arsenic trioxide (ATO) induces apoptosis via upregulation of ROS-induced stress to DNA-repair mechanisms. Elevated ROS levels can trigger the Nrf2 antioxidant pathway to counteract the effects of high ROS levels. We hypothesized that ATO and VEN synergize in targeting LSCs through ROS induction by ATO and the known inhibitory effect of VEN on the Nrf2 antioxidant pathway. Using cell fractionation, immunoprecipitation, RNA-knockdown, and fluorescence assays we found that ATO activated nuclear translocation of Nrf2 and increased transcription of antioxidant enzymes, thereby attenuating the induction of ROS by ATO. VEN disrupted ATO-induced Nrf2 translocation and augmented ATO-induced ROS, thus enhancing apoptosis in LSCs. Using metabolic assays and electron microscopy, we found that the ATO+VEN combination decreased mitochondrial membrane potential, mitochondria size, fatty acid oxidation and oxidative phosphorylation, all of which enhanced apoptosis of LSCs derived from both VEN-sensitive and VEN-resistant AML primary cells. Our results indicate that ATO and VEN cooperate in inducing apoptosis of LSCs through potentiation of ROS induction, suggesting ATO+VEN is a promising regimen for treatment of VEN-sensitive and -resistant AML.
Collapse
Affiliation(s)
- Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Ralf Buettner
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Melissa Valerio
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Lucy Ghoda
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Ya-Huei Kuo
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Steven T. Rosen
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - John Burnett
- Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Vinod Pullarkat
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| | - Le Xuan Truong Nguyen
- Gehr Family Center for Leukemia Research, Hematology Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010, USA; (D.H.H.); (R.B.); (M.V.); (L.G.); (B.Z.); (Y.-H.K.); (S.T.R.); (G.M.)
| |
Collapse
|
18
|
Pardieu B, Pasanisi J, Ling F, Dal Bello R, Penneroux J, Su A, Joudinaud R, Chat L, Wu HC, Duchmann M, Sodaro G, Chauvel C, Castelli FA, Vasseur L, Pacchiardi K, Belloucif Y, Laiguillon MC, Meduri E, Vaganay C, Alexe G, Berrou J, Benaksas C, Forget A, Braun T, Gardin C, Raffoux E, Clappier E, Adès L, de Thé H, Fenaille F, Huntly BJ, Stegmaier K, Dombret H, Fenouille N, Lobry C, Puissant A, Itzykson R. Cystine uptake inhibition potentiates front-line therapies in acute myeloid leukemia. Leukemia 2022; 36:1585-1595. [PMID: 35474100 DOI: 10.1038/s41375-022-01573-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022]
Abstract
By querying metabolic pathways associated with leukemic stemness and survival in multiple AML datasets, we nominated SLC7A11 encoding the xCT cystine importer as a putative AML dependency. Genetic and chemical inhibition of SLC7A11 impaired the viability and clonogenic capacity of AML cell lines in a cysteine-dependent manner. Sulfasalazine, a broadly available drug with xCT inhibitory activity, had anti-leukemic activity against primary AML samples in ex vivo cultures. Multiple metabolic pathways were impacted upon xCT inhibition, resulting in depletion of glutathione pools in leukemic cells and oxidative stress-dependent cell death, only in part through ferroptosis. Higher expression of cysteine metabolism genes and greater cystine dependency was noted in NPM1-mutated AMLs. Among eight anti-leukemic drugs, the anthracycline daunorubicin was identified as the top synergistic agent in combination with sulfasalazine in vitro. Addition of sulfasalazine at a clinically relevant concentration significantly augmented the anti-leukemic activity of a daunorubicin-cytarabine combination in a panel of 45 primary samples enriched in NPM1-mutated AML. These results were confirmed in vivo in a patient-derived xenograft model. Collectively, our results nominate cystine import as a druggable target in AML and raise the possibility to repurpose sulfasalazine for the treatment of AML, notably in combination with chemotherapy.
Collapse
Affiliation(s)
- Bryann Pardieu
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Justine Pasanisi
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Frank Ling
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Reinaldo Dal Bello
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Justine Penneroux
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Angela Su
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Romane Joudinaud
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Laureen Chat
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Hsin Chieh Wu
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR1050, CNRS UMR, 7241, Paris, France
| | - Matthieu Duchmann
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Gaetano Sodaro
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Clémentine Chauvel
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Florence A Castelli
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif-sur-Yvette, France
| | - Loic Vasseur
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Kim Pacchiardi
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Yannis Belloucif
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Marie-Charlotte Laiguillon
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Eshwar Meduri
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Camille Vaganay
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeannig Berrou
- Université Paris Cité, Leukemia Transfer Lab, EA 3518, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Chaima Benaksas
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Antoine Forget
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Thorsten Braun
- Université Paris Cité, Leukemia Transfer Lab, EA 3518, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Claude Gardin
- Université Paris Cité, Leukemia Transfer Lab, EA 3518, Institut de Recherche Saint-Louis, F-75010, Paris, France
| | - Emmanuel Raffoux
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Emmanuelle Clappier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Laboratoire d'Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Lionel Adès
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Hugues de Thé
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR1050, CNRS UMR, 7241, Paris, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif-sur-Yvette, France
| | - Brian J Huntly
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hervé Dombret
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nina Fenouille
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Camille Lobry
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Alexandre Puissant
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, F-75010, Paris, France.
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France.
| |
Collapse
|
19
|
Guarnera L, Ottone T, Fabiani E, Divona M, Savi A, Travaglini S, Falconi G, Panetta P, Rapanotti MC, Voso MT. Atypical Rearrangements in APL-Like Acute Myeloid Leukemias: Molecular Characterization and Prognosis. Front Oncol 2022; 12:871590. [PMID: 35494081 PMCID: PMC9039303 DOI: 10.3389/fonc.2022.871590] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 02/02/2023] Open
Abstract
Acute promyelocytic leukemia (APL) accounts for 10–15% of newly diagnosed acute myeloid leukemias (AML) and is typically caused by the fusion of promyelocytic leukemia with retinoic acid receptor α (RARA) gene. The prognosis is excellent, thanks to the all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) combination therapy. A small percentage of APLs (around 2%) is caused by atypical transcripts, most of which involve RARA or other members of retinoic acid receptors (RARB or RARG). The diagnosis of these forms is difficult, and clinical management is still a challenge for the physician due to variable response rates to ATRA and ATO. Herein we review variant APL cases reported in literature, including genetic landscape, incidence of coagulopathy and differentiation syndrome, frequent causes of morbidity and mortality in these patients, sensitivity to ATRA, ATO, and chemotherapy, and outcome. We also focus on non-RAR rearrangements, complex rearrangements (involving more than two chromosomes), and NPM1-mutated AML, an entity that can, in some cases, morphologically mimic APL.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Tiziana Ottone
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Santa Lucia Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuro-Oncohematology, Rome, Italy
| | - Emiliano Fabiani
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Department of Biomedicine and Prevention, UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Mariadomenica Divona
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Arianna Savi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Serena Travaglini
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Paola Panetta
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| | - Maria Cristina Rapanotti
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Department of Experimental Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy.,Santa Lucia Foundation, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuro-Oncohematology, Rome, Italy
| |
Collapse
|
20
|
EAPB0503, an Imidazoquinoxaline Derivative Modulates SENP3/ARF Mediated SUMOylation, and Induces NPM1c Degradation in NPM1 Mutant AML. Int J Mol Sci 2022; 23:ijms23073421. [PMID: 35408798 PMCID: PMC8998649 DOI: 10.3390/ijms23073421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022] Open
Abstract
Nucleophosmin-1 (NPM1) is a pleiotropic protein involved in numerous cellular processes. NPM1 shuttles between the nucleus and the cytoplasm, but exhibits a predominant nucleolar localization, where its fate and functions are exquisitely controlled by dynamic post-translational modifications (PTM). Sentrin/SUMO Specific Peptidase 3 (SENP3) and ARF are two nucleolar proteins involved in NPM1 PTMs. SENP3 antagonizes ARF-mediated NPM1 SUMOylation, to promote ribosomal biogenesis. In Acute Myeloid Leukemia (AML), NPM1 is frequently mutated, and exhibits an aberrant cytoplasmic localization (NPM1c). NPM1c mutations define a separate AML entity with good prognosis in some AML patients, rendering NPM1c as a potential therapeutic target. SENP3-mediated NPM1 de-SUMOylation induces resistance to therapy in NPM1c AML. Here, we demonstrate that the imidazoquinoxaline EAPB0503 prolongs the survival and results in selective reduction in the leukemia burden of NPM1c AML xenograft mice. Indeed, EAPB0503 selectively downregulates HDM2 expression and activates the p53 pathway in NPM1c expressing cells, resulting in apoptosis. Importantly, we unraveled that NPM1c expressing cells exhibit low basal levels of SUMOylation paralleled with high SENP3 and low ARF basal levels. EAPB0503 reverted these molecular players by inducing NPM1c SUMOylation and ubiquitylation, leading to its proteasomal degradation. EAPB0503-induced NPM1c SUMOylation is concurrent with SENP3 downregulation and ARF upregulation in NPM1c expressing cells. Collectively, these results provide a strong rationale for testing therapies modulating NPM1c post-translational modifications in the management of NPM1c AML.
Collapse
|
21
|
Meier-Menches SM, Neuditschko B, Janker L, Gerner MC, Schmetterer KG, Reichle A, Gerner C. A Proteomic Platform Enables to Test for AML Normalization In Vitro. Front Chem 2022; 10:826346. [PMID: 35178376 PMCID: PMC8844467 DOI: 10.3389/fchem.2022.826346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Acute promyelocytic leukaemia (APL) can be cured by the co-administration of arsenic trioxide (ATO) and all-trans retinoic acid (ATRA). These small molecules relieve the differentiation blockade of the transformed promyelocytes and trigger their maturation into functional neutrophils, which are physiologically primed for apoptosis. This normalization therapy represents a compelling alternative to cytotoxic anticancer chemotherapy, but lacks an in vitro model system for testing the efficiency of novel combination treatments consisting of inducers of differentiation and metallopharmaceuticals. Here, using proteome profiling we present an experimental framework that enables characterising the differentiation- and metal-specific effects of the combination treatment in a panel of acute myeloid leukaemia (AML) cell lines (HL-60 and U937), including APL (NB4). Differentiation had a substantial impact on the proteome on the order of 10% of the identified proteins and featured classical markers and transcription factors of myeloid differentiation. Additionally, ATO provoked specific cytoprotective effects in the AML cell lines HL-60 and U937. In HL-60, these effects included an integrated stress response (ISR) in conjunction with redox defence, while proteasomal responses and a metabolic rewiring were observed in U937 cells. In contrast, the APL cell line NB4 did not display such adaptions indicating a lack of plasticity to cope with the metal-induced stress, which may explain the clinical success of this combination treatment. Based on the induction of these cytoprotective effects, we proposed a novel metal-based compound to be used for the combination treatment instead of ATO. The organoruthenium drug candidate plecstatin-1 was previously shown to induce reactive oxygen species and an ISR. Indeed, the plecstatin-1 combination was found to affect similar pathways compared to the ATO combination in HL-60 cells and did not lead to cytoprotective response signatures in NB4. Moreover, the monocytic cell line U937 showed a low plasticity to cope with the plecstatin-1 combination, which suggests that this combination might achieve therapeutic benefit beyond APL. We propose that the cytoprotective plasticity of cancer cells might serve as a general proxy to discover novel combination treatments in vitro.
Collapse
Affiliation(s)
- Samuel M. Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Benjamin Neuditschko
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Lukas Janker
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Marlene C. Gerner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Division of Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Klaus G. Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Albrecht Reichle
- Department of Internal Medicine III, Haematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Differentiation therapy for myeloid malignancies: beyond cytotoxicity. Blood Cancer J 2021; 11:193. [PMID: 34864823 PMCID: PMC8643352 DOI: 10.1038/s41408-021-00584-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Blocked cellular differentiation is a central pathologic feature of the myeloid malignancies, myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Treatment regimens promoting differentiation have resulted in incredible cure rates in certain AML subtypes, such as acute promyelocytic leukemia. Over the past several years, we have seen many new therapies for MDS/AML enter clinical practice, including epigenetic therapies (e.g., 5-azacitidine), isocitrate dehydrogenase (IDH) inhibitors, fms-like kinase 3 (FLT3) inhibitors, and lenalidomide for deletion 5q (del5q) MDS. Despite not being developed with the intent of manipulating differentiation, induction of differentiation is a major mechanism by which several of these novel agents function. In this review, we examine the new therapeutic landscape for these diseases, focusing on the role of hematopoietic differentiation and the impact of inflammation and aging. We review how current therapies in MDS/AML promote differentiation as a part of their therapeutic effect, and the cellular mechanisms by which this occurs. We then outline potential novel avenues to achieve differentiation in the myeloid malignancies for therapeutic purposes. This emerging body of knowledge about the importance of relieving differentiation blockade with anti-neoplastic therapies is important to understand how current novel agents function and may open avenues to developing new treatments that explicitly target cellular differentiation. Moving beyond cytotoxic agents has the potential to open new and unexpected avenues in the treatment of myeloid malignancies, hopefully providing more efficacy with reduced toxicity.
Collapse
|
23
|
Hleihel R, El Hajj H, Wu HC, Berthier C, Zhu HH, Massoud R, Chakhachiro Z, El Sabban M, De The H, Bazarbachi A. A Pin1/PML/P53 axis activated by retinoic acid in NPM-1c acute myeloid leukemia. Haematologica 2021; 106:3090-3099. [PMID: 34047175 PMCID: PMC8634200 DOI: 10.3324/haematol.2020.274878] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/03/2021] [Indexed: 11/09/2022] Open
Abstract
Retinoic acid (RA) was proposed to increase survival of chemotherapy- treated patients with nucleophosmin-1 (NPM-1c)-mutated acute myeloid leukemia. We reported that, ex vivo, RA triggers NPM-1c degradation, P53 activation and growth arrest. PML organizes domains that control senescence or proteolysis. Here, we demonstrate that PML is required to initiate RA-driven NPM-1c degradation, P53 activation and cell death. Mechanistically, RA enhances PML basal expression through inhibition of activated Pin1, prior to NPM-1c degradation. Such PML induction drives P53 activation, favoring blast response to chemotherapy or arsenic in vivo. This RA/PML/P53 cascade could mechanistically explain RA-facilitated chemotherapy response in patients with NPM-1c mutated acute myeloid leukemia.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- NIMA-Interacting Peptidylprolyl Isomerase/genetics
- NIMA-Interacting Peptidylprolyl Isomerase/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/metabolism
- Tretinoin/pharmacology
- Tretinoin/therapeutic use
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Rita Hleihel
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Beirut
| | - Hsin-Chieh Wu
- Université de Paris, INSERM UMR 944, CNRS UMR 7212, Equipe labellisée par la Ligue Nationale contre le Cancer, IRSL, Hôpital St. Louis, Paris, College de France, PSL University, CIRB, INSERM UMR 1050, CNRS UMR 7241, Paris
| | - Caroline Berthier
- Université de Paris, INSERM UMR 944, CNRS UMR 7212, Equipe labellisée par la Ligue Nationale contre le Cancer, IRSL, Hôpital St. Louis, Paris; College de France, PSL University, CIRB, INSERM UMR 1050, CNRS UMR 7241, Paris
| | - Hong-Hu Zhu
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou
| | - Radwan Massoud
- Department of Internal Medicine, American University of Beirut, Beirut
| | - Zaher Chakhachiro
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut
| | - Hugues De The
- Université de Paris, INSERM UMR 944, CNRS UMR 7212, Equipe labellisée par la Ligue Nationale contre le Cancer, IRSL, Hôpital St. Louis, Paris; College de France, PSL University, CIRB, INSERM UMR 1050, CNRS UMR 7241, Paris
| | - Ali Bazarbachi
- Department of Internal Medicine, American University of Beirut, Beirut; Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut.
| |
Collapse
|
24
|
Wu HC, Rérolle D, Berthier C, Hleihel R, Sakamoto T, Quentin S, Benhenda S, Morganti C, Wu C, Conte L, Rimsky S, Sebert M, Clappier E, Souquere S, Gachet S, Soulier J, Durand S, Trowbridge JJ, Bénit P, Rustin P, El Hajj H, Raffoux E, Ades L, Itzykson R, Dombret H, Fenaux P, Espeli O, Kroemer G, Brunetti L, Mak TW, Lallemand-Breitenbach V, Bazarbachi A, Falini B, Ito K, Martelli MP, de Thé H. Actinomycin D Targets NPM1c-Primed Mitochondria to Restore PML-Driven Senescence in AML Therapy. Cancer Discov 2021; 11:3198-3213. [PMID: 34301789 PMCID: PMC7612574 DOI: 10.1158/2159-8290.cd-21-0177] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/07/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) pathogenesis often involves a mutation in the NPM1 nucleolar chaperone, but the bases for its transforming properties and overall association with favorable therapeutic responses remain incompletely understood. Here we demonstrate that an oncogenic mutant form of NPM1 (NPM1c) impairs mitochondrial function. NPM1c also hampers formation of promyelocytic leukemia (PML) nuclear bodies (NB), which are regulators of mitochondrial fitness and key senescence effectors. Actinomycin D (ActD), an antibiotic with unambiguous clinical efficacy in relapsed/refractory NPM1c-AMLs, targets these primed mitochondria, releasing mitochondrial DNA, activating cyclic GMP-AMP synthase signaling, and boosting reactive oxygen species (ROS) production. The latter restore PML NB formation to drive TP53 activation and senescence of NPM1c-AML cells. In several models, dual targeting of mitochondria by venetoclax and ActD synergized to clear AML and prolong survival through targeting of PML. Our studies reveal an unexpected role for mitochondria downstream of NPM1c and implicate a mitochondrial/ROS/PML/TP53 senescence pathway as an effector of ActD-based therapies. SIGNIFICANCE ActD induces complete remissions in NPM1-mutant AMLs. We found that NPM1c affects mitochondrial biogenesis and PML NBs. ActD targets mitochondria, yielding ROS which enforce PML NB biogenesis and restore senescence. Dual targeting of mitochondria with ActD and venetoclax sharply potentiates their anti-AML activities in vivo. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Hsin-Chieh Wu
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Domitille Rérolle
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Caroline Berthier
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Rita Hleihel
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Internal Medicine and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
- Department of Experimental Pathology, Microbiology and Immunology, American University of Beirut, Beirut, Lebanon
| | - Takashi Sakamoto
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Samuel Quentin
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Shirine Benhenda
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research and Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Chengchen Wu
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Lidio Conte
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli, ” Napoli, Italy
| | - Sylvie Rimsky
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
| | - Marie Sebert
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Emmanuelle Clappier
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Sylvie Souquere
- Institut Gustave Roussy, Cell Biology and Metabolomics Platforms, INSERM UMS 3655, Villejuif, France
| | - Stéphanie Gachet
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Jean Soulier
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Sylvère Durand
- Institut Gustave Roussy, Cell Biology and Metabolomics Platforms, INSERM UMS 3655, Villejuif, France
| | | | - Paule Bénit
- INSERM, U1141 Hôpital Robert Debré, Paris France
| | | | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, American University of Beirut, Beirut, Lebanon
| | - Emmanuel Raffoux
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Lionel Ades
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Raphael Itzykson
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Hervé Dombret
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Pierre Fenaux
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| | - Olivier Espeli
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
| | - Guido Kroemer
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli, ” Napoli, Italy
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Brunetti
- Hematology, Department of Medicine and surgery, University of Perugia, Perugia, Italy
| | - Tak W. Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Valérie Lallemand-Breitenbach
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine and Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Brunangelo Falini
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research and Departments of Cell Biology and Medicine, Albert Einstein College of Medicine, Bronx, New York
| | | | - Hugues de Thé
- Collège de France, Oncologie Cellulaire et Moléculaire, PSL University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
- Université de Paris, INSERM U944, CNRS UMR 7212, IRSL, Hôpital St. Louis, Paris, France
- Department of Hematology, Hôpital Saint Louis (Assistance publique Hôpitaux de Paris) and Paris University, Paris, France
| |
Collapse
|
25
|
Kantarjian H, Short NJ, DiNardo C, Stein EM, Daver N, Perl AE, Wang ES, Wei A, Tallman M. Harnessing the benefits of available targeted therapies in acute myeloid leukaemia. Lancet Haematol 2021; 8:e922-e933. [PMID: 34687602 PMCID: PMC8996707 DOI: 10.1016/s2352-3026(21)00270-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022]
Abstract
Research has resulted in regulatory approval of nine agents for acute myeloid leukaemia indications by the US Food and Drug Administration since 2017: the Bcl-2 inhibitor, venetoclax; two FLT3 inhibitors, midostaurin and gilteritinib; two IDH inhibitors, ivosidenib (IDH1 inhibitor) and enasidenib (IDH2 inhibitor); the anti-CD33 antibody-drug conjugate, gemtuzumab ozogamicin; the oral, poorly absorbable hypomethylating agent, azacitidine; the liposomal formulation of cytarabine and daunorubicin (5:1 ratio), CPX-351; and the hedgehog signalling pathway inhibitor, glasdegib. A 100% absorbable oral formulation of the hypomethylating agent decitabine was approved for the treatment of myelodysplastic syndrome and chronic myelomonocytic leukaemia, and might be used as an alternative to parenteral hypomethylating agents. Several of the approvals are as single-agent therapies or in specific combinations for narrow indications, thus offering poor treatment value. In this Review, we discuss ongoing research into combinations containing these commercially available targeted therapies for acute myeloid leukaemia.
Collapse
Affiliation(s)
- Hagop Kantarjian
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA.
| | - Nicholas J Short
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney DiNardo
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Eytan M Stein
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander E Perl
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Eunice S Wang
- Leukemia Service, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrew Wei
- Department of Clinical Hematology, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Martin Tallman
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
26
|
Zhao J, Zhang F, Xiao X, Wu Z, Hu Q, Jiang Y, Zhang W, Wei S, Ma X, Zhang X. Tripterygium hypoglaucum (Lévl.) Hutch and Its Main Bioactive Components: Recent Advances in Pharmacological Activity, Pharmacokinetics and Potential Toxicity. Front Pharmacol 2021; 12:715359. [PMID: 34887747 PMCID: PMC8650721 DOI: 10.3389/fphar.2021.715359] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/04/2021] [Indexed: 01/12/2023] Open
Abstract
Tripterygium hypoglaucum (Lévl.) Hutch (THH) is believed to play an important role in health care and disease treatment according to traditional Chinese medicine. Moreover, it is also the representative of medicine with both significant efficacy and potential toxicity. This characteristic causes THH hard for embracing and fearing. In order to verify its prospect for clinic, a wide variety of studies were carried out in the most recent years. However, there has not been any review about THH yet. Therefore, this review summarized its characteristic of components, pharmacological effect, pharmacokinetics and toxicity to comprehensively shed light on the potential clinical application. More than 120 secondary metabolites including terpenoids, alkaloids, glycosides, sugars, organic acids, oleanolic acid, polysaccharides and other components were found in THH based on phytochemical research. All these components might be the pharmacological bases for immunosuppression, anti-inflammatory and anti-tumour effect. In addition, recent studies found that THH and its bioactive compounds also demonstrated remarkable effect on obesity, insulin resistance, fertility and infection of virus. The main mechanism seemed to be closely related to regulation the balance of immune, inflammation, apoptosis and so on in various disease. Furthermore, the study of pharmacokinetics revealed quick elimination of the main component triptolide. The feature of celastrol was also investigated by several models. Finally, the side effect of THH was thought to be the key for its limitation in clinical application. A series of reports indicated that multiple organs or systems including liver, kidney and genital system were involved in the toxicity. Its potential serious problem in liver was paid specific attention in recent years. In summary, considering the significant effect and potential toxicity of THH as well as its components, the combined medication to inhibit the toxicity, maintain effect might be a promising method for clinical conversion. Modern advanced technology such as structure optimization might be another way to reach the efficacy and safety. Thus, THH is still a crucial plant which remains for further investigation.
Collapse
Affiliation(s)
- Junqi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fangling Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shizhang Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaomei Zhang
- Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| |
Collapse
|
27
|
Djamai H, Berrou J, Dupont M, Coudé MM, Delord M, Clappier E, Marceau-Renaut A, Kaci A, Raffoux E, Itzykson R, Berthier C, Wu HC, Hleihel R, Bazarbachi A, de Thé H, Baruchel A, Gardin C, Dombret H, Braun T. Biological Effects of BET Inhibition by OTX015 (MK-8628) and JQ1 in NPM1-Mutated (NPM1c) Acute Myeloid Leukemia (AML). Biomedicines 2021; 9:biomedicines9111704. [PMID: 34829934 PMCID: PMC8615962 DOI: 10.3390/biomedicines9111704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
BET inhibitors (BETi) including OTX015 (MK-8628) and JQ1 demonstrated antileukemic activity including NPM1c AML cells. Nevertheless, the biological consequences of BETi in NPM1c AML were not fully investigated. Even if of better prognosis AML patients with NPM1c may relapse and treatment remains difficult. Differentiation-based therapy by all trans retinoic acid (ATRA) combined with arsenic trioxide (ATO) demonstrated activity in NPM1c AML. We found that BETi, similar to ATO + ATRA, induced differentiation and apoptosis which was TP53 independent in the NPM1c cell line OCI-AML3 and primary cells. Furthermore, BETi induced proteasome-dependent degradation of NPM1c. BETi degraded NPM1c in the cytosol while BRD4 is degraded in the nucleus which suggests that restoration of the NPM1/BRD4 equilibrium in the nucleus of NPM1c cells is essential for the efficacy of BETi. While ATO + ATRA had significant biological activity in NPM1c IMS-M2 cell line, those cells were resistant to BETi. Gene profiling revealed that IMS-M2 cells probably resist to BETi by upregulation of LSC pathways independently of the downregulation of a core BET-responsive transcriptional program. ATO + ATRA downregulated a NPM1c specific HOX gene signature while anti-leukemic effects of BETi appear HOX gene independent. Our preclinical results encourage clinical testing of BETi in NPM1c AML patients.
Collapse
Affiliation(s)
- Hanane Djamai
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
| | - Jeannig Berrou
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
| | - Mélanie Dupont
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
| | - Marie-Magdelaine Coudé
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
- Laboratory of Hematology, Hôpital Saint-Louis, AP-HP, Université de Paris, 75010 Paris, France;
| | - Marc Delord
- Bioinformatics, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France;
| | - Emmanuelle Clappier
- Laboratory of Hematology, Hôpital Saint-Louis, AP-HP, Université de Paris, 75010 Paris, France;
| | | | - Anna Kaci
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
| | - Emmanuel Raffoux
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
- Leukemia Unit, Hematology Department, Hôpital Saint-Louis, AP-HP, Université de Paris, 75010 Paris, France;
| | - Raphaël Itzykson
- Leukemia Unit, Hematology Department, Hôpital Saint-Louis, AP-HP, Université de Paris, 75010 Paris, France;
- INSERM U944—CNRS UMR7212, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (C.B.); (H.-C.W.); (H.d.T.)
| | - Caroline Berthier
- INSERM U944—CNRS UMR7212, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (C.B.); (H.-C.W.); (H.d.T.)
| | - Hsin-Chieh Wu
- INSERM U944—CNRS UMR7212, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (C.B.); (H.-C.W.); (H.d.T.)
| | - Rita Hleihel
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 113-6044, Lebanon; (R.H.); (A.B.)
| | - Ali Bazarbachi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut P.O. Box 113-6044, Lebanon; (R.H.); (A.B.)
| | - Hugues de Thé
- INSERM U944—CNRS UMR7212, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (C.B.); (H.-C.W.); (H.d.T.)
| | - André Baruchel
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
- Department of Pediatric Hemato-Immunology, Hôpital Robert Debré, AP-HP, Université de Paris, 75010 Paris, France
| | - Claude Gardin
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
- Hematology Department, Hôpital Avicenne, AP-HP, Université de Paris, 93000 Bobigny, France
| | - Hervé Dombret
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
- Leukemia Unit, Hematology Department, Hôpital Saint-Louis, AP-HP, Université de Paris, 75010 Paris, France;
| | - Thorsten Braun
- Laboratoire de Transfert des Leucémies, URP-3518, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France; (H.D.); (J.B.); (M.D.); (M.-M.C.); (A.K.); (E.R.); (A.B.); (C.G.); (H.D.)
- Hematology Department, Hôpital Avicenne, AP-HP, Université de Paris, 93000 Bobigny, France
- Correspondence: ; Tel.: +33-148957072
| |
Collapse
|
28
|
All-trans retinoic acid induces differentiation in primary acute myeloid leukemia blasts carrying an inversion of chromosome 16. Int J Hematol 2021; 115:43-53. [PMID: 34546543 DOI: 10.1007/s12185-021-03224-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
All-trans retinoic acid (ATRA)-based therapy for acute promyelocytic leukemia (APL), a subtype of acute myeloid leukemia (AML), is the most successful example of differentiation therapy. Although ATRA can induce differentiation in some non-APL AML cell lines and primary blasts, clinical results of adding ATRA to standard therapy in non-APL AML patients have been inconsistent, probably due to use of different regimens and lack of diagnostic tools for identifying which patients may be sensitive to ATRA. In this study, we exposed primary blasts obtained from non-APL AML patients to ATRA to test for differentiation potential in vitro. We observed increased expression of differentiation markers, indicating a response to ATRA, in four out of fifteen primary AML samples. Three samples in which CD11b increased in response to ATRA had an inversion of chromosome 16 as well as the CBFB-MYH11 fusion gene, and the fourth sample was from a patient with KMT2A-rearranged, therapy-related AML. In conclusion, we identified a subgroup of non-APL AML patients with inv(16) and CBFB-MYH11 as the most sensitive to ATRA-mediated differentiation in vitro, and our results can help identify patients who may benefit from ATRA treatment.
Collapse
|
29
|
Therapeutic implications of menin inhibition in acute leukemias. Leukemia 2021; 35:2482-2495. [PMID: 34131281 DOI: 10.1038/s41375-021-01309-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/31/2023]
Abstract
Menin inhibitors are novel targeted agents currently in clinical development for the treatment of genetically defined subsets of acute leukemia. Menin has a tumor suppressor function in endocrine glands. Germline mutations in the gene encoding menin cause the multiple endocrine neoplasia type 1 (MEN1) syndrome, a hereditary condition associated with tumors of the endocrine glands. However, menin is also critical for leukemogenesis in subsets driven by rearrangement of the Lysine Methyltransferase 2A (KMT2A) gene, previously known as mixed-lineage leukemia (MLL), which encodes an epigenetic modifier. These seemingly opposing functions of menin can be explained by its various roles in gene regulation. Therefore, leukemias with rearrangement of KMT2A are predicted to respond to menin inhibition with early clinical data validating this proof-of-concept. These leukemias affect infants, children and adults, and lead to adverse outcomes with current standard therapies. Recent studies have identified novel targets in acute leukemia that are susceptible to menin inhibition, such as mutated Nucleophosmin 1 (NPM1), the most common genetic alteration in adult acute myeloid leukemia (AML). In addition to these alterations, other leukemia subsets with similar transcriptional dependency could be targeted through menin inhibition. This led to rationally designed clinical studies, investigating small-molecule oral menin inhibitors in relapsed acute leukemias with promising early results. Herein, we discuss the physiologic and malignant biology of menin, the mechanisms of leukemia in these susceptible subsets, and future therapeutic strategies using these inhibitors in acute leukemia.
Collapse
|
30
|
Yue LM, Chau D, Kwong YL, Tse E. Arsenic trioxide inhibits anaplastic lymphoma kinase (ALK)-positive diffuse large B-cell lymphoma through targeting ALK-fusion oncoprotein. Br J Haematol 2021; 194:1085-1090. [PMID: 34121173 DOI: 10.1111/bjh.17581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lok-Man Yue
- Division of Haematology and Medical Oncology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - David Chau
- Division of Haematology and Medical Oncology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yok-Lam Kwong
- Division of Haematology and Medical Oncology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Eric Tse
- Division of Haematology and Medical Oncology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
31
|
Wahiduzzaman M, Ota A, Hosokawa Y. Novel Mechanistic Insights into the Anti-cancer Mode of Arsenic Trioxide. Curr Cancer Drug Targets 2021; 20:115-129. [PMID: 31736446 DOI: 10.2174/1568009619666191021122006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Arsenic, a naturally-occurring toxic element, and a traditionally-used drug, has received a great deal of attention worldwide due to its curative anti-cancer properties in patients with acute promyelocytic leukemia. Among the arsenicals, arsenic trioxide has been most widely used as an anti-cancer drug. Recent advances in cancer therapeutics have led to a paradigm shift away from traditional cytotoxic drugs towards the targeting of proteins closely associated with driving the cancer phenotype. Due to the diverse anti-cancer effects of ATO on different types of malignancies, numerous studies have made efforts to uncover the mechanisms of ATO-induced tumor suppression. From in vitro cellular models to studies in clinical settings, ATO has been extensively studied. The outcomes of these studies have opened doors to establishing improved molecular-targeted therapies for cancer treatment. The efficacy of ATO has been augmented by combination with other drugs. In this review, we discuss recent arsenic-based cancer therapies and summarize the novel underlying molecular mechanisms of the anti-cancer effects of ATO.
Collapse
Affiliation(s)
- Md Wahiduzzaman
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, School of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
32
|
Retinoids in hematology: a timely revival? Blood 2021; 137:2429-2437. [PMID: 33651885 DOI: 10.1182/blood.2020010100] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/17/2021] [Indexed: 12/27/2022] Open
Abstract
The retinoic acid receptors (RARA, RARB, and RARG) are ligand-regulated nuclear receptors that act as transcriptional switches. These master genes drew significant interest in the 1990s because of their key roles in embryogenesis and involvement in a rare malignancy, acute promyelocytic leukemia (APL), in which the RARA (and very rarely, RARG or RARB) genes are rearranged, underscoring the central role of deregulated retinoid signaling in leukemogenesis. Several recent provocative observations have revived interest in the roles of retinoids in non-APL acute myeloid leukemia (AML), as well as in normal hematopoietic differentiation. We review the role of retinoids in hematopoiesis, as well as in the treatment of non-APL AMLs. From this perspective, broader uses of retinoids in the management of hematopoietic tumors are discussed.
Collapse
|
33
|
Bruserud Ø, Tsykunova G, Hernandez-Valladares M, Reikvam H, Tvedt THA. Therapeutic Use of Valproic Acid and All-Trans Retinoic Acid in Acute Myeloid Leukemia-Literature Review and Discussion of Possible Use in Relapse after Allogeneic Stem Cell Transplantation. Pharmaceuticals (Basel) 2021; 14:ph14050423. [PMID: 34063204 PMCID: PMC8147490 DOI: 10.3390/ph14050423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Even though allogeneic stem cell transplantation is the most intensive treatment for acute myeloid leukemia (AML), chemo-resistant leukemia relapse is still one of the most common causes of death for these patients, as is transplant-related mortality, i.e., graft versus host disease, infections, and organ damage. These relapse patients are not always candidates for additional intensive therapy or re-transplantation, and many of them have decreased quality of life and shortened expected survival. The efficiency of azacitidine for treatment of posttransplant AML relapse has been documented in several clinical trials. Valproic acid is an antiepileptic fatty acid that exerts antileukemic activity through histone deacetylase inhibition. The combination of valproic acid and all-trans retinoic acid (ATRA) is well tolerated even by unfit or elderly AML patients, and low-toxicity chemotherapy (e.g., azacitidine) can be added to this combination. The triple combination of azacitidine, valproic acid, and ATRA may therefore represent a low-intensity and low-toxicity alternative for these patients. In the present review, we review and discuss the general experience with valproic acid/ATRA in AML therapy and we discuss its possible use in low-intensity/toxicity treatment of post-allotransplant AML relapse. Our discussion is further illustrated by four case reports where combined treatments with sequential azacitidine/hydroxyurea, valproic acid, and ATRA were used.
Collapse
Affiliation(s)
- Øystein Bruserud
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
- Correspondence:
| | - Galina Tsykunova
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | - Maria Hernandez-Valladares
- The Proteomics Facility of the University of Bergen (PROBE), University of Bergen, N-5021 Bergen, Norway;
| | - Hakon Reikvam
- Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway; (G.T.); (T.H.A.T.)
| | | |
Collapse
|
34
|
Chen X, Qin Y, Zhang Z, Xing Z, Wang Q, Lu W, Yuan H, Du C, Yang X, Shen Y, Zhao B, Shao H, Wang X, Wu H, Qi Y. Hyper-SUMOylation of ERG Is Essential for the Progression of Acute Myeloid Leukemia. Front Mol Biosci 2021; 8:652284. [PMID: 33842551 PMCID: PMC8032903 DOI: 10.3389/fmolb.2021.652284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Leukemia is a malignant disease of hematopoietic tissue characterized by the differentiation arrest and malignant proliferation of immature hematopoietic precursor cells in bone marrow. ERG (ETS-related gene) is an important member of the E26 transformation-specific (ETS) transcription factor family that plays a crucial role in physiological and pathological processes. However, the role of ERG and its modification in leukemia remains underexplored. In the present study, we stably knocked down or overexpressed ERG in leukemia cells and observed that ERG significantly promotes the proliferation and inhibits the differentiation of AML (acute myeloid leukemia) cells. Further experiments showed that ERG was primarily modified by SUMO2, which was deconjugated by SENP2. PML promotes the SUMOylation of ERG, enhancing its stability. Arsenic trioxide decreased the expression level of ERG, further promoting cell differentiation. Furthermore, the mutation of SUMO sites in ERG inhibited its ability to promote the proliferation and inhibit the differentiation of leukemia cells. Our results demonstrated the crucial role of ERG SUMOylation in the development of AML, providing powerful targeted therapeutic strategies for the clinical treatment of AML.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qiqi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wenbin Lu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hong Yuan
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Congcong Du
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huanjie Shao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
35
|
Tayari MM, Santos HGD, Kwon D, Bradley TJ, Thomassen A, Chen C, Dinh Y, Perez A, Zelent A, Morey L, Cimmino L, Shiekhattar R, Swords RT, Watts JM. Clinical Responsiveness to All-trans Retinoic Acid Is Potentiated by LSD1 Inhibition and Associated with a Quiescent Transcriptome in Myeloid Malignancies. Clin Cancer Res 2021; 27:1893-1903. [PMID: 33495312 DOI: 10.1158/1078-0432.ccr-20-4054] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In preclinical studies, the lysine-specific histone demethylase 1A (LSD1) inhibitor tranylcypromine (TCP) combined with all-trans retinoic acid (ATRA) induces differentiation and impairs survival of myeloid blasts in non-acute promyelocytic leukemia acute myeloid leukemia (AML). We conducted a phase I clinical trial (NCT02273102) to evaluate the safety and activity of ATRA plus TCP in patients with relapsed/refractory AML and myelodysplasia (MDS). PATIENTS AND METHODS Seventeen patients were treated with ATRA and TCP (three dose levels: 10 mg twice daily, 20 mg twice daily, and 30 mg twice daily). RESULTS ATRA-TCP had an acceptable safety profile. The MTD of TCP was 20 mg twice daily. Best responses included one morphologic leukemia-free state, one marrow complete remission with hematologic improvement, two stable disease with hematologic improvement, and two stable disease. By intention to treat, the overall response rate was 23.5% and clinical benefit rate was 35.3%. Gene expression profiling of patient blasts showed that responding patients had a more quiescent CD34+ cell phenotype at baseline, including decreased MYC and RARA expression, compared with nonresponders that exhibited a more proliferative CD34+ phenotype, with gene expression enrichment for cell growth signaling. Upon ATRA-TCP treatment, we observed significant induction of retinoic acid-target genes in responders but not nonresponders. We corroborated this in AML cell lines, showing that ATRA-TCP synergistically increased differentiation capacity and cell death by regulating the expression of key gene sets that segregate patients by their clinical response. CONCLUSIONS These data indicate that LSD1 inhibition sensitizes AML cells to ATRA and may restore ATRA responsiveness in subsets of patients with MDS and AML.
Collapse
Affiliation(s)
- Mina M Tayari
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Helena G Dos Santos
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Deukwoo Kwon
- Sylvester Comprehensive Cancer Center, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida
| | - Terrence J Bradley
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Amber Thomassen
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Charles Chen
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Yvonne Dinh
- Department of Immuno-Oncology, Oncology Division, IQVIA Biotech, Miami, Florida
| | - Aymee Perez
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Arthur Zelent
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology PAS, Warsaw, Poland
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Luisa Cimmino
- Sylvester Comprehensive Cancer Center, Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Ronan T Swords
- Medical Director, AbbVie Pharmaceuticals, Chicago, Illinois
| | - Justin M Watts
- Sylvester Comprehensive Cancer Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
36
|
Fang S, Wan X, Zou X, Sun S, Hao X, Liang C, Zhang Z, Zhang F, Sun B, Li H, Yu B. Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis 2021; 12:88. [PMID: 33462182 PMCID: PMC7814005 DOI: 10.1038/s41419-020-03357-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/30/2023]
Abstract
Inducing autophagy and inhibiting apoptosis may provide a therapeutic treatment for atherosclerosis (AS). For the treatment of progressive AS, arsenic trioxide (ATO) has been used to coat vascular stents. However, the effect of ATO on autophagy of macrophages is still unknown. Therefore, the aims of this study were to characterize the effects and the mechanism of actions of ATO on autophagy in macrophages. Our results showed that ATO-induced activation of autophagy was an earlier event than ATO-induced inhibition of the expression of apoptosis markers in macrophages and foam cells. Nuclear transcription factor EB (TFEB) prevents atherosclerosis by activating macrophage autophagy and promoting lysosomal biogenesis. Here, we report that ATO triggered the nuclear translocation of TFEB, which in turn promoted autophagy and autophagosome-lysosome fusion. Both the latter events were prevented by TFEB knockdown. Moreover, ATO decreased the p-AKT and p-mTOR in the PI3K/AKT/mTOR signaling pathway, thus inducing autophagy. Correspondingly, treatment with the autophagy inhibitor 3-methyladenine (3-MA) abolished the autophagy-inducing effects of ATO. Meanwhile, PI3K inhibitor (LY294002) and mTOR inhibitor (rapamycin) cooperated with ATO to induce autophagy. Furthermore, reactive oxygen species (ROS) were generated in macrophages after treatment with ATO. The ROS scavenger N-acetyl-1-cysteine (NAC) abolished ATO-induced nuclear translocation of TFEB, as well as changes in key molecules of the AKT/mTOR signaling pathway and downstream autophagy. More importantly, ATO promoted autophagy in the aorta of ApoE-/- mice and reduced atherosclerotic lesions in early AS, which were reversed by 3-MA treatment. In summary, our data indicated that ATO promoted ROS induction, which resulted in nuclear translocation of TFEB and inhibition of the PI3K/AKT/mTOR pathway. These actions ultimately promoted macrophage autophagy and reduced atherosclerotic lesions at early stages. These findings may provide a new perspective for the clinical treatment of early-stage atherosclerosis and should be further studied.
Collapse
Affiliation(s)
- Shaohong Fang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Xin Wan
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoyi Zou
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Song Sun
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinran Hao
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chenchen Liang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Zhenming Zhang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
| | - Fangni Zhang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Sun
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hulun Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.
| |
Collapse
|
37
|
van Gils N, Verhagen HJMP, Rutten A, Menezes RX, Tsui ML, Vermue E, Dekens E, Brocco F, Denkers F, Kessler FL, Ossenkoppele GJ, Janssen JJWM, Smit L. IGFBP7 activates retinoid acid-induced responses in acute myeloid leukemia stem and progenitor cells. Blood Adv 2020; 4:6368-6383. [PMID: 33351133 PMCID: PMC7756998 DOI: 10.1182/bloodadvances.2020002812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022] Open
Abstract
Treatment of acute promyelocytic leukemia (APL) with all-trans retinoic acid (ATRA) in combination with low doses of arsenic trioxide or chemotherapy leads to exceptionally high cure rates (>90%). ATRA forces APL cells into differentiation and cell death. Unfortunately, ATRA-based therapy has not been effective among any other acute myeloid leukemia (AML) subtype, and long-term survival rates remain unacceptably low; only 30% of AML patients survive 5 years after diagnosis. Here, we identified insulin-like growth factor binding protein 7 (IGFBP7) as part of ATRA-induced responses in APL cells. Most importantly, we observed that addition of recombinant human IGFBP7 (rhIGFBP7) increased ATRA-driven responses in a subset of non-APL AML samples: those with high RARA expression. In nonpromyelocytic AML, rhIGFBP7 treatment induced a transcriptional program that sensitized AML cells for ATRA-induced differentiation, cell death, and inhibition of leukemic stem/progenitor cell survival. Furthermore, the engraftment of primary AML in mice was significantly reduced following treatment with the combination of rhIGFBP7 and ATRA. Mechanistically, we showed that the synergism of ATRA and rhIGFBP7 is due, at least in part, to reduction of the transcription factor GFI1. Together, these results suggest a potential clinical utility of IGFBP7 and ATRA combination treatment to eliminate primary AML (leukemic stem/progenitor) cells and reduce relapse in AML patients.
Collapse
Affiliation(s)
- Noortje van Gils
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Han J M P Verhagen
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Arjo Rutten
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Renee X Menezes
- Department of Epidemiology and Biostatistics, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| | - Mei-Ling Tsui
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Eline Vermue
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Esmée Dekens
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Fabio Brocco
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Fedor Denkers
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Floortje L Kessler
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Gert J Ossenkoppele
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Jeroen J W M Janssen
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Linda Smit
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| |
Collapse
|
38
|
Nguyen CH, Grandits AM, Vassiliou GS, Staber PB, Heller G, Wieser R. Evi1 Counteracts Anti-Leukemic and Stem Cell Inhibitory Effects of All-Trans Retinoic Acid on Flt3-ITD/ Npm1c-Driven Acute Myeloid Leukemia Cells. Biomedicines 2020; 8:E385. [PMID: 32998330 PMCID: PMC7600968 DOI: 10.3390/biomedicines8100385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
All-trans retinoic acid (atRA) has a dramatic impact on the survival of patients with acute promyelocytic leukemia, but its therapeutic value in other types of acute myeloid leukemia (AML) has so far remained unclear. Given that AML is a stem cell-driven disease, recent studies have addressed the effects of atRA on leukemic stem cells (LSCs). atRA promoted stemness of MLL-AF9-driven AML in an Evi1-dependent manner but had the opposite effect in Flt3-ITD/Nup98-Hoxd13-driven AML. Overexpression of the stem cell-associated transcription factor EVI1 predicts a poor prognosis in AML, and is observed in different genetic subtypes, including cytogenetically normal AML. Here, we therefore investigated the effects of Evi1 in a mouse model for cytogenetically normal AML, which rests on the combined activity of Flt3-ITD and Npm1c mutations. Experimental expression of Evi1 on this background strongly promoted disease aggressiveness. atRA inhibited leukemia cell viability and stem cell-related properties, and these effects were counteracted by overexpression of Evi1. These data further underscore the complexity of the responsiveness of AML LSCs to atRA and point out the need for additional investigations which may lay a foundation for a precision medicine-based use of retinoids in AML.
Collapse
Affiliation(s)
- Chi Huu Nguyen
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (C.H.N.); (A.M.G.); (G.H.)
- Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Alexander M. Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (C.H.N.); (A.M.G.); (G.H.)
- Comprehensive Cancer Center, 1090 Vienna, Austria
| | - George S. Vassiliou
- Wellcome Medical Research Council Cambridge Stem Cell Institute, Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK;
| | - Philipp B. Staber
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (C.H.N.); (A.M.G.); (G.H.)
- Comprehensive Cancer Center, 1090 Vienna, Austria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (C.H.N.); (A.M.G.); (G.H.)
- Comprehensive Cancer Center, 1090 Vienna, Austria
| |
Collapse
|
39
|
Nguyen CH, Grandits AM, Purton LE, Sill H, Wieser R. All-trans retinoic acid in non-promyelocytic acute myeloid leukemia: driver lesion dependent effects on leukemic stem cells. Cell Cycle 2020; 19:2573-2588. [PMID: 32900260 PMCID: PMC7644151 DOI: 10.1080/15384101.2020.1810402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive, often fatal hematopoietic malignancy. All-trans retinoic acid (atRA), one of the first molecularly targeted drugs in oncology, has greatly improved the outcome of a subtype of AML, acute promyelocytic leukemia (APL). In contrast, atRA has so far provided little therapeutic benefit in the much larger group of patients with non-APL AML. Attempts to identify genetically or molecularly defined subgroups of patients that may respond to atRA have not yielded consistent results. Since AML is a stem cell-driven disease, understanding the effectiveness of atRA may require an appreciation of its impact on AML stem cells. Recent studies reported that atRA decreased stemness of AML with an FLT3-ITD mutation, yet increased it in AML1-ETO driven or EVI1-overexpressing AML. This review summarizes the role of atRA in normal hematopoiesis and in AML, focusing on its impact on AML stem cells.
Collapse
Affiliation(s)
- Chi H Nguyen
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| | - Alexander M Grandits
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research and Department of Medicine at St. Vincent's Hospital, The University of Melbourne , Melbourne, Australia
| | - Heinz Sill
- Division of Hematology, Medical University of Graz , Graz, Austria
| | - Rotraud Wieser
- Division of Oncology, Department of Medicine I, Medical University of Vienna , Vienna, Austria.,Comprehensive Cancer Center , Vienna, Austria
| |
Collapse
|
40
|
Moodad S, El Hajj R, Hleihel R, Hajjar L, Tawil N, Karam M, Hamie M, Abou Merhi R, El Sabban M, El Hajj H. Lenalidomide in Combination with Arsenic Trioxide: an Effective Therapy for Primary Effusion Lymphoma. Cancers (Basel) 2020; 12:E2483. [PMID: 32883022 PMCID: PMC7563318 DOI: 10.3390/cancers12092483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Primary effusion lymphoma (PEL) is a rare aggressive subset of non-Hodgkin B cell lymphoma. PEL is secondary to Kaposi sarcoma herpes virus (KSHV) and predominantly develops in serous cavities. Conventional chemotherapy remains the treatment of choice for PEL and yields high response rates with no significant comorbidities. Yet, chemotherapy often fails in achieving or maintaining long-term remission. Lenalidomide (Lena), an immunomodulatory drug, displayed some efficacy in the treatment of PEL. On the other hand, arsenic trioxide (ATO) in combination with other agents effectively treated a number of blood malignancies, including PEL. In this study, we present evidence that the combination of ATO/Lena significantly enhanced survival of PEL mice, decreased the volume of exacerbated ascites in the peritoneum, and reduced tumor infiltration in organs of treated animals. In ex vivo treated PEL cells, ATO/Lena decreased the proliferation and downregulated the expression of KSHV latent viral proteins. This was associated with decreased NF-κB activation, resulting in reactivation of viral replication, downregulation of interleukin-6 (IL-6) and IL-10, inhibition of vascular endothelial growth factor, and apoptosis. Our results elucidate the mechanism of action of ATO/Lena and present it as a promising targeted therapeutic modality in PEL management, which warrants further clinical investigation.
Collapse
Affiliation(s)
- Sara Moodad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 202627, Lebanon; (S.M.); (R.H.); (M.H.)
| | - Rana El Hajj
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut, Beirut 202627, Lebanon;
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 202627, Lebanon; (S.M.); (R.H.); (M.H.)
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut 202627, Lebanon; (L.H.); (M.E.S.)
| | - Layal Hajjar
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut 202627, Lebanon; (L.H.); (M.E.S.)
| | - Nadim Tawil
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 202627, Lebanon; (N.T.); (M.K.)
| | - Martin Karam
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 202627, Lebanon; (N.T.); (M.K.)
| | - Maguy Hamie
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 202627, Lebanon; (S.M.); (R.H.); (M.H.)
| | - Raghida Abou Merhi
- Department of Biology, Faculty of Sciences, GSBT laboratory, Lebanese University, Hadath 31143, Lebanon;
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut 202627, Lebanon; (L.H.); (M.E.S.)
| | - Hiba El Hajj
- Department of Experimental Pathology, Immunology, and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 202627, Lebanon; (N.T.); (M.K.)
| |
Collapse
|
41
|
Nucleophosmin 1 Mutations in Acute Myeloid Leukemia. Genes (Basel) 2020; 11:genes11060649. [PMID: 32545659 PMCID: PMC7348733 DOI: 10.3390/genes11060649] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein involved in ribosome biogenesis, the maintenance of genomic integrity and the regulation of the ARF-p53 tumor-suppressor pathway among multiple other functions. Mutations in the corresponding gene cause a cytoplasmic dislocation of the NPM1 protein. These mutations are unique to acute myeloid leukemia (AML), a disease characterized by clonal expansion, impaired differentiation and the proliferation of myeloid cells in the bone marrow. Despite our improved understanding of NPM1 mutations and their consequences, the underlying leukemia pathogenesis is still unclear. Recent studies that focused on dysregulated gene expression in AML with mutated NPM1 have shed more light into these mechanisms. In this article, we review the current evidence on normal functions of NPM1 and aberrant functioning in AML, and highlight investigational strategies targeting these mutations.
Collapse
|
42
|
Geoffroy MC, de Thé H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers (Basel) 2020; 12:E967. [PMID: 32295268 PMCID: PMC7226009 DOI: 10.3390/cancers12040967] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Most acute promyelocytic leukemia (APL) are caused by PML-RARA, a translocation-driven fusion oncoprotein discovered three decades ago. Over the years, several other types of rare X-RARA fusions have been described, while recently, oncogenic fusion proteins involving other retinoic acid receptors (RARB or RARG) have been associated to very rare cases of acute promyelocytic leukemia. PML-RARA driven pathogenesis and the molecular basis for therapy response have been the focus of many studies, which have now converged into an integrated physio-pathological model. The latter is well supported by clinical and molecular studies on patients, making APL one of the rare hematological disorder cured by targeted therapies. Here we review recent data on APL-like diseases not driven by the PML-RARA fusion and discuss these in view of current understanding of "classic" APL pathogenesis and therapy response.
Collapse
Affiliation(s)
- Marie-Claude Geoffroy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
| | - Hugues de Thé
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Biochimie, Hôpital St-Louis, 75010 Paris, France
- Collège de France, PSL Research University, INSERM U1050, CNRS UMR 7241, 75005 Paris, France
| |
Collapse
|
43
|
Ye Y, Gaugler B, Mohty M, Malard F. Old dog, new trick: Trivalent arsenic as an immunomodulatory drug. Br J Pharmacol 2020; 177:2199-2214. [PMID: 32022256 DOI: 10.1111/bph.15011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Trivalent arsenic (As(III)) is recently found to be an immunomodulatory agent. As(III) has therapeutic potential in several autoimmune and inflammatory diseases in vivo. In vitro, it selectively induces apoptosis of immune cells due to different sensitivity. At a non-toxic level, As(III) shows its multifaceted nature by inducing either pro- or anti-inflammatory functions of immune subsets. These effects are exerted by either As(III)-protein interactions or as a consequence of As(III)-induced homeostasis imbalance. The immunomodulatory properties also show synergistic effects of As(III) with cancer immunotherapy. In this review, we summarize the immunomodulatory effects of As(III), focusing on the effects of As(III) on immune subsets in vitro, on mouse models of immune-related diseases, and the role of As(III) in cancer immunotherapy. Updates of the mechanisms of action, the pioneer clinical trials, dosing, and adverse events of therapeutic As(III) are also provided.
Collapse
Affiliation(s)
- Yishan Ye
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Mohamad Mohty
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Florent Malard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| |
Collapse
|
44
|
Wang QQ, Jiang Y, Naranmandura H. Therapeutic strategy of arsenic trioxide in the fight against cancers and other diseases. Metallomics 2020; 12:326-336. [PMID: 32163072 DOI: 10.1039/c9mt00308h] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arsenic trioxide (ATO) has been recognized as a drug for the treatment of various diseases in traditional medicine for more than two thousand years. Although ATO has recently shown excellent efficacy for the treatment of acute promyelocytic leukemia (APL), it could not provide satisfactory outcomes as a single-agent for the management of non-APL leukemia or different solid tumors. Nevertheless, combination treatment strategies, e.g., ATO with other agents, have shown promising results against different diseases. Here, we introduce in depth the latest evidence and detailed insights into ATO-mediated cures for APL by targeting PML/RARα chimeric protein, followed by the preclinical and clinical efficacy of ATO on various non-APL malignancies and solid tumors. Likewise, the antiviral activity of ATO against human immunodeficiency virus (HIV) and hepatitis C virus (HCV) was also discussed briefly. Our review would provide a clear prospect for the combination of ATO with other agents for treatment of numerous neoplastic diseases, and open a new era in the clinically applicable range of arsenicals.
Collapse
Affiliation(s)
- Qian Qian Wang
- Department of Hematology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
45
|
Zhu H, Qian J, Sun W, You L, Wang QQ, Naranmandura H, Jin J. Venetoclax and arsenic showed synergistic anti-leukemia activity in vitro and in vivo for acute myeloid leukemia with the NPM1 mutation. Am J Hematol 2020; 95:E55-E57. [PMID: 31907961 DOI: 10.1002/ajh.25719] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Hong‐Hu Zhu
- Department of Hematology, The First Affiliated Hospital, College of MedicineZhejiang University Hangzhou China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment Hangzhou China
- Institute of HematologyZhejiang University Zhejiang China
| | - Jie‐Jing Qian
- Department of Hematology, The First Affiliated Hospital, College of MedicineZhejiang University Hangzhou China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment Hangzhou China
- Institute of HematologyZhejiang University Zhejiang China
| | - Wan‐Jun Sun
- Department of HematologyPLA Rocket Force Characteristic Medical Center Beijing China
| | - Liang‐Shun You
- Department of Hematology, The First Affiliated Hospital, College of MedicineZhejiang University Hangzhou China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment Hangzhou China
- Institute of HematologyZhejiang University Zhejiang China
| | - Qian Qian Wang
- Department of Hematology, The First Affiliated Hospital, College of MedicineZhejiang University Hangzhou China
- Department of Pharmacology, School of MedicineZhejiang University Hangzhou China
| | - Hua Naranmandura
- Department of Hematology, The First Affiliated Hospital, College of MedicineZhejiang University Hangzhou China
- Department of Pharmacology, School of MedicineZhejiang University Hangzhou China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of MedicineZhejiang University Hangzhou China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment Hangzhou China
- Institute of HematologyZhejiang University Zhejiang China
| |
Collapse
|
46
|
Chen Y, Hu J. Nucleophosmin1 (NPM1) abnormality in hematologic malignancies, and therapeutic targeting of mutant NPM1 in acute myeloid leukemia. Ther Adv Hematol 2020; 11:2040620719899818. [PMID: 32071709 PMCID: PMC6997955 DOI: 10.1177/2040620719899818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/18/2019] [Indexed: 01/07/2023] Open
Abstract
Nucleophosmin (NPM1) is an abundant nucleolar protein that is
implicated in a variety of biological processes and in the pathogenesis of
several human malignancies. For hematologic malignancies, approximately
one-third of anaplastic large-cell non-Hodgkin’s lymphomas were found to express
a fusion between NPM1 and the catalytic domain of anaplastic
lymphoma receptor tyrosine kinase. About 50–60% of acute myeloid leukemia
patients with normal karyotype carry NPM1 mutations, which are
characterized by cytoplasmic dislocation of the NPM1 protein.
Nevertheless, NPM1 is overexpressed in various hematologic and
solid tumor malignancies. NPM1 overexpression is considered a
prognostic marker of recurrence and progression of cancer. Thus,
NPM1 abnormalities play a critical role in several types of
hematologic malignancies. This has led to intense interest in the development of
an NPM1 targeting strategy for cancer therapy. The aim of this
review is to summarize present knowledge on NPM1 origin,
pathogenesis, and therapeutic interventions in hematologic malignancies.
Collapse
Affiliation(s)
- Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
47
|
Retinoic Acid Receptors in Acute Myeloid Leukemia Therapy. Cancers (Basel) 2019; 11:cancers11121915. [PMID: 31805753 PMCID: PMC6966485 DOI: 10.3390/cancers11121915] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Retinoic acid (RA) signaling pathways regulate fundamental biological processes, such as cell proliferation, development, differentiation, and apoptosis. Retinoid receptors (RARs and RXRs) are ligand-dependent transcription factors. All-trans retinoic acid (ATRA) is the principal endogenous ligand for the retinoic acid receptor alpha (RARA) and is produced by the enzymatic oxidation of dietary vitamin A, whose deficiency is associated with several pathological conditions. Differentiation therapy using ATRA revolutionized the outcome of acute promyelocytic leukemia (APL), although attempts to replicate these results in other cancer types have been met with more modest results. A better knowledge of RA signaling in different leukemia contexts is required to improve initial designs. Here, we will review the RA signaling pathway in normal and malignant hematopoiesis, and will discuss the advantages and the limitations related to retinoid therapy in acute myeloid leukemia.
Collapse
|
48
|
Garciaz S, N'guyen Dasi L, Finetti P, Chevalier C, Vernerey J, Poplineau M, Platet N, Audebert S, Pophillat M, Camoin L, Bertucci F, Calmels B, Récher C, Birnbaum D, Chabannon C, Vey N, Duprez E. Epigenetic down-regulation of the HIST1 locus predicts better prognosis in acute myeloid leukemia with NPM1 mutation. Clin Epigenetics 2019; 11:141. [PMID: 31606046 PMCID: PMC6790061 DOI: 10.1186/s13148-019-0738-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The epigenetic machinery is frequently altered in acute myeloid leukemia. Focusing on cytogenetically normal (CN) AML, we previously described an abnormal H3K27me3 enrichment covering 70 kb on the HIST1 cluster (6.p22) in CN-AML patient blasts. Here, we further investigate the molecular, functional, and prognosis significance of this epigenetic alteration named H3K27me3 HIST1 in NPM1-mutated (NPM1mut) CN-AML. RESULTS We found that three quarter of the NPM1mut CN-AML patients were H3K27me3 HIST1high. H3K27me3 HIST1high group of patients was associated with a favorable outcome independently of known molecular risk factors. In gene expression profiling, the H3K27me3 HIST1high mark was associated with lower expression of the histone genes HIST1H1D, HIST1H2BG, HIST1H2AE, and HIST1H3F and an upregulation of genes involved in myelomonocytic differentiation. Mass spectrometry analyses confirmed that the linker histone protein H1d, but not the other histone H1 subtypes, was downregulated in the H3K27me3 HIST1high group of patients. H1d knockdown primed ATRA-mediated differentiation of OCI-AML3 and U937 AML cell lines, as assessed on CD11b/CD11c markers, morphological and gene expression analyses. CONCLUSIONS Our data suggest that NPM1mut AML prognosis depends on the epigenetic silencing of the HIST1 cluster and that, among the H3K27me3 silenced histone genes, HIST1H1D plays a role in AML blast differentiation.
Collapse
Affiliation(s)
- Sylvain Garciaz
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Lia N'guyen Dasi
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Pascal Finetti
- Predictive Oncology Laboratory, CRCM, Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Christine Chevalier
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France.,Institut Pasteur, G5 Chromatin and Infection, Paris, France
| | - Julien Vernerey
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Mathilde Poplineau
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Nadine Platet
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France
| | - Stéphane Audebert
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Matthieu Pophillat
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - François Bertucci
- Predictive Oncology Laboratory, CRCM, Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Boris Calmels
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France.,Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Centre d'Investigations Cliniques en Biothérapies, Marseille, France
| | - Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Toulouse, France Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse, UMR1037-INSERM, ERL5294 CNRS, Toulouse, France
| | - Daniel Birnbaum
- Predictive Oncology Laboratory, CRCM, Inserm, U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Christian Chabannon
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France.,Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Centre d'Investigations Cliniques en Biothérapies, Marseille, France
| | - Norbert Vey
- Aix-Marseille University, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Estelle Duprez
- Epigenetic Factors in Normal and Malignant Hematopoiesis Team, Aix Marseille University, CNRS, Inserm, Institut Paoli-Calmettes, CRCM, 27 Boulevard Lei Roure, 13273, Marseille Cedex 09, France.
| |
Collapse
|
49
|
[Study of the effects and mechanism of all-trans retinoic acid on leukemic cell line U937 cells with NPM1 mutation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 38:863-868. [PMID: 29166739 PMCID: PMC7364968 DOI: 10.3760/cma.j.issn.0253-2727.2017.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the effect and mechanism of all-trans retinoic acid (ATRA) on leukemic cell line U937 cells with NPM1 mutation. Methods: Human acute myeloid leukemia cell line U937 was explored, NPM1 mutated (A type) plasmids were transfected into U937 to form stable clones A1 and A2, which were identified by Western blot and Co-immunoprecipitation. The cell proliferation was measured by methylthiazolyl tetrazolium bromide (MTT) ; cell cycle and cell apoptosis were explored by flow cytometric; cell colony formation was measured by microscope count, the molecular pathways related to cell proliferation were measured by Western blot. Results: ①The cell proliferations of mutant A1 and A2 were inhibited significantly by 52.6% and 35.8% (P<0.05) , respectively under ATRA exposure. ②The percentages of G(0)/G(1) stage of mutant A1 and A2 increased by 20.1% and 35.8%, respectively under ATRA exposure. ③All the U937 leukemic cells were inhibited under ATRA exposure; the decreased percentages of vector, wild-type and mutant NPM1 cells were 32.7%, 57.9% and 90.9% respectively. ④p-ERK decreased obviously after ATRA exposure in NPM1 mutated leukemic cells. ⑤More mutant NPM1 cells inclined to apoptosis under the exposure of ATRA and cytotoxic drugs than cytotoxic drugs alone, meanwhile more cells apoptosis occurred when ATRA was administrated after cytotoxic drugs exposure. Conclusions: ATRA could inhibit cell proliferation and colony formation, blocked the cell cycle in the G(0)/G(1) stage accompanied by the significant reduction of p-ERK in U937 leukemic cells with NPM1 mutation. Besides, ATRA could synergize with drugs to suppress the leukemic cells survival more effectively when ATRA was administered after the cytotoxic drugs exposure in U937 leukemic cells with NPM1 mutation.
Collapse
|
50
|
Di Natale C, La Manna S, Malfitano AM, Di Somma S, Florio D, Scognamiglio PL, Novellino E, Netti PA, Marasco D. Structural insights into amyloid structures of the C-terminal region of nucleophosmin 1 in type A mutation of acute myeloid leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:637-644. [PMID: 30710643 DOI: 10.1016/j.bbapap.2019.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/11/2019] [Accepted: 01/26/2019] [Indexed: 12/22/2022]
Abstract
Acute myeloid leukemia (AML) is a clinically and a molecularly heterogeneous disease characterized by the accumulation of undifferentiated and uncontrolled proliferation of hematopoietic progenitor cells. The sub-group named "AML with gene mutations" includes mutations in nucleophosmin (NPM1) assumed as a distinct leukemic entity. NPM1 is an abundant multifunctional protein belonging to the nucleoplasmin family of nuclear chaperones. AML mutated protein is translocated into the cytoplasm (NPM1c+) retaining all functional domains except the loss of a unique NoLs (nucleolar localization signal) at the C-term domain (CTD) and the subsequent disruption of a three helix bundle as tertiary structure. The oligomeric state of NPM1 is of outmost importance for its biological roles and our previous studies linked an aggregation propensity of distinct regions of CTD to leukomogenic potentials of AML mutations. Here we investigated a polypeptide spanning the third and second helices of the bundle of type A mutated CTD. By a combination of several techniques, we ascertained the amyloid character of the aggregates and of fibrils resulting from a self-recognition mechanism. Further amyloid assemblies resulted cytoxic in MTT assay strengthening a new idea of a therapeutic strategy in AML consisting in the self-degradation of mutated NPM1.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples "Federico II", Italy; Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Italy
| | | | - Sarah Di Somma
- Department of Translational Medicine, University of Naples "Federico II", Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", Italy
| | | | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Italy.
| |
Collapse
|