1
|
El Hajj H, Hermine O, Bazarbachi A. Therapeutic advances for the management of adult T cell leukemia: Where do we stand? Leuk Res 2024; 147:107598. [PMID: 39366194 DOI: 10.1016/j.leukres.2024.107598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Adult T cell leukemia (ATL) is an aggressive blood malignancy secondary to chronic infection with the human T cell leukemia virus type I (HTLV-1) retrovirus. ATL encompasses four subtypes (acute, lymphoma, chronic, and smoldering), which exhibit different clinical characteristics and respond differently to various treatment strategies. Yet, all four subtypes are characterized by a dismal long-term prognosis and a low survival rate. While antiretroviral therapy improves overall survival outcomes in smoldering and chronic subtypes, survival remains poor in lymphoma subtypes despite their good response to intensive chemotherapy. Nonetheless, acute ATL remains the most aggressive form associated with profound immunosuppression, chemo-resistance and dismal prognosis. Targeted therapies such as monoclonal antibodies, epigenetic therapies, and arsenic/IFN, emerged as promising therapeutic approaches in ATL. Allogeneic hematopoietic cell transplantation is the only potentially curative modality, alas applicable to only a small percentage of patients. The recent findings demonstrating the expression of the viral oncoprotein Tax in primary ATL cells from patients with acute or chronic ATL, albeit at low levels, and their dependence on continuous Tax expression for their survival, position ATL as a virus-addicted leukemia and validates the rationale of anti-viral treatment strategies. This review provides a comprehensive overview on conventional, anti-viral and targeted therapies of ATL, with emphasis on Tax-targeted therapied in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Olivier Hermine
- Institut Imagine-INSERM, U1163, Necker Hospital, University of Paris, Paris, France; Department of Hematology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
2
|
Daian E Silva DSO, Cox LJ, Rocha AS, Lopes-Ribeiro Á, Souza JPC, Franco GM, Prado JLC, Pereira-Santos TA, Martins ML, Coelho-Dos-Reis JGA, Gomes-de-Pinho TM, Da Fonseca FG, Barbosa-Stancioli EF. Preclinical assessment of an anti-HTLV-1 heterologous DNA/MVA vaccine protocol expressing a multiepitope HBZ protein. Virol J 2023; 20:304. [PMID: 38115107 PMCID: PMC10731796 DOI: 10.1186/s12985-023-02264-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Human T-lymphotropic virus 1 (HTLV-1) is associated with the development of several pathologies and chronic infection in humans. The inefficiency of the available treatments and the challenge in developing a protective vaccine highlight the need to produce effective immunotherapeutic tools. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ) plays an important role in the HTLV-1 persistence, conferring a survival advantage to infected cells by reducing the HTLV-1 proteins expression, allowing infected cells to evade immune surveillance, and enhancing cell proliferation leading to increased proviral load. METHODS We have generated a recombinant Modified Virus Vaccinia Ankara (MVA-HBZ) and a plasmid DNA (pcDNA3.1(+)-HBZ) expressing a multiepitope protein based on peptides of HBZ to study the immunogenic potential of this viral-derived protein in BALB/c mice model. Mice were immunized in a prime-boost heterologous protocol and their splenocytes (T CD4+ and T CD8+) were immunophenotyped by flow cytometry and the humoral response was evaluated by ELISA using HBZ protein produced in prokaryotic vector as antigen. RESULTS T CD4+ and T CD8+ lymphocytes cells stimulated by HBZ-peptides (HBZ42-50 and HBZ157-176) showed polyfunctional double positive responses for TNF-α/IFN-γ, and TNF-α/IL-2. Moreover, T CD8+ cells presented a tendency in the activation of effector memory cells producing granzyme B (CD44+High/CD62L-Low), and the activation of Cytotoxic T Lymphocytes (CTLs) and cytotoxic responses in immunized mice were inferred through the production of granzyme B by effector memory T cells and the expression of CD107a by CD8+ T cells. The overall data is consistent with a directive and effector recall response, which may be able to operate actively in the elimination of HTLV-1-infected cells and, consequently, in the reduction of the proviral load. Sera from immunized mice, differently from those of control animals, showed IgG-anti-HBZ production by ELISA. CONCLUSIONS Our results highlight the potential of the HBZ multiepitope protein expressed from plasmid DNA and a poxviral vector as candidates for therapeutic vaccine.
Collapse
Affiliation(s)
- D S O Daian E Silva
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - L J Cox
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - A S Rocha
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - Á Lopes-Ribeiro
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - J P C Souza
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - G M Franco
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - J L C Prado
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
| | - T A Pereira-Santos
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - M L Martins
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
- Gerência de Desenvolvimento Técnico Científico, Fundação Centro de Hematologia e Hemoterapia do Estado de Minas Gerais - Hemominas, Belo Horizonte, Brazil
| | - J G A Coelho-Dos-Reis
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil
| | - T M Gomes-de-Pinho
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - F G Da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, Brazil
| | - E F Barbosa-Stancioli
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, CEP 31270-901, Brazil.
- GIPH - Grupo Interdisciplinar de Pesquisas em HTLV, Interdisciplinary HTLV Research Group, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Nakahata S, Enriquez-Vera D, Jahan MI, Sugata K, Satou Y. Understanding the Immunopathology of HTLV-1-Associated Adult T-Cell Leukemia/Lymphoma: A Comprehensive Review. Biomolecules 2023; 13:1543. [PMID: 37892225 PMCID: PMC10605031 DOI: 10.3390/biom13101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Human T-cell leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATL). HTLV-1 carriers have a lifelong asymptomatic balance between infected cells and host antiviral immunity; however, 5-10% of carriers lose this balance and develop ATL. Coinfection with Strongyloides promotes ATL development, suggesting that the immunological status of infected individuals is a determinant of HTLV-1 pathogenicity. As CD4+ T cells play a central role in host immunity, the deregulation of their function and differentiation via HTLV-1 promotes the immune evasion of infected T cells. During ATL development, the accumulation of genetic and epigenetic alterations in key host immunity-related genes further disturbs the immunological balance. Various approaches are available for treating these abnormalities; however, hematopoietic stem cell transplantation is currently the only treatment with the potential to cure ATL. The patient's immune state may contribute to the treatment outcome. Additionally, the activity of the anti-CC chemokine receptor 4 antibody, mogamulizumab, depends on immune function, including antibody-dependent cytotoxicity. In this comprehensive review, we summarize the immunopathogenesis of HTLV-1 infection in ATL and discuss the clinical findings that should be considered when developing treatment strategies for ATL.
Collapse
Affiliation(s)
- Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| | - Daniel Enriquez-Vera
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima 890-8544, Japan
| | - M. Ishrat Jahan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
4
|
Nakajima S, Okuma K. Mouse Models for HTLV-1 Infection and Adult T Cell Leukemia. Int J Mol Sci 2023; 24:11737. [PMID: 37511495 PMCID: PMC10380921 DOI: 10.3390/ijms241411737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Adult T cell leukemia (ATL) is an aggressive hematologic disease caused by human T cell leukemia virus type 1 (HTLV-1) infection. Various animal models of HTLV-1 infection/ATL have been established to elucidate the pathogenesis of ATL and develop appropriate treatments. For analyses employing murine models, transgenic and immunodeficient mice are used because of the low infectivity of HTLV-1 in mice. Each mouse model has different characteristics that must be considered before use for different HTLV-1 research purposes. HTLV-1 Tax and HBZ transgenic mice spontaneously develop tumors, and the roles of both Tax and HBZ in cell transformation and tumor growth have been established. Severely immunodeficient mice were able to be engrafted with ATL cell lines and have been used in preclinical studies of candidate molecules for the treatment of ATL. HTLV-1-infected humanized mice with an established human immune system are a suitable model to characterize cells in the early stages of HTLV-1 infection. This review outlines the characteristics of mouse models of HTLV-1 infection/ATL and describes progress made in elucidating the pathogenesis of ATL and developing related therapies using these mice.
Collapse
Affiliation(s)
- Shinsuke Nakajima
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kazu Okuma
- Department of Microbiology, Faculty of Medicine, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| |
Collapse
|
5
|
Seighali N, Shafiee A, Rafiee MA, Aminzade D, Mozhgani SH. Human T-cell lymphotropic virus type 1 (HTLV-1) proposed vaccines: a systematic review of preclinical and clinical studies. BMC Infect Dis 2023; 23:320. [PMID: 37170214 PMCID: PMC10173209 DOI: 10.1186/s12879-023-08289-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Numerous vaccination research experiments have been conducted on non-primate hosts to prevent or control HTLV-1 infection. Therefore, reviewing recent advancements for status assessment and strategic planning of future preventative actions to reduce HTLV-1 infection and its consequences would be essential. METHODS MEDLINE, Scopus, Web of Science, and Clinicaltrials.gov were searched from each database's inception through March 27, 2022. All original articles focusing on developing an HTLV-1 vaccine candidate were included. RESULTS A total of 47 studies were included. They used a variety of approaches to develop the HTLV-1 vaccine, including DNA-based, dendritic-cell-based, peptide/protein-based, and recombinant vaccinia virus approaches. The majority of the research that was included utilized Tax, Glycoprotein (GP), GAG, POL, REX, and HBZ as their main peptides in order to develop the vaccine. The immunization used in dendritic cell-based investigations, which were more recently published, was accomplished by an activated CD-8 T-cell response. Although there hasn't been much attention lately on this form of the vaccine, the initial attempts to develop an HTLV-1 immunization depended on recombinant vaccinia virus, and the majority of results seem positive and effective for this type of vaccine. Few studies were conducted on humans. Most of the studies were experimental studies using animal models. Adenovirus, Cytomegalovirus (CMV), vaccinia, baculovirus, hepatitis B, measles, and pox were the most commonly used vectors. CONCLUSIONS This systematic review reported recent progression in the development of HTLV-1 vaccines to identify candidates with the most promising preventive and therapeutic effects.
Collapse
Affiliation(s)
- Niloofar Seighali
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Ali Rafiee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dlnya Aminzade
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayed-Hamidreza Mozhgani
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
6
|
Zuo X, Zhou R, Yang S, Ma G. HTLV-1 persistent infection and ATLL oncogenesis. J Med Virol 2023; 95:e28424. [PMID: 36546414 DOI: 10.1002/jmv.28424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus; whereas HTLV-1 mainly persists in the infected host cell as a provirus, it also causes a malignancy called adult T-cell leukemia/lymphoma (ATLL) in about 5% of infection. HTLV-1 replication is in most cases silent in vivo and viral de novo infection rarely occurs; HTLV-1 rather relies on clonal proliferation of infected T cells for viral propagation as it multiplies the number of the provirus copies. It is mechanistically elusive how leukemic clones emerge during the course of HTLV-1 infection in vivo and eventually cause the onset of ATLL. This review summarizes our current understanding of HTLV-1 persistence and oncogenesis, with the incorporation of recent cutting-edge discoveries obtained by high-throughput sequencing.
Collapse
Affiliation(s)
- Xiaorui Zuo
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ruoning Zhou
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Sikai Yang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangyong Ma
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Glover A, Zhang Z, Shannon-Lowe C. Deciphering the roles of myeloid derived suppressor cells in viral oncogenesis. Front Immunol 2023; 14:1161848. [PMID: 37033972 PMCID: PMC10076641 DOI: 10.3389/fimmu.2023.1161848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Myeloid derived suppressor cells (MDSCs) are a heterogenous population of myeloid cells derived from monocyte and granulocyte precursors. They are pathologically expanded in conditions of ongoing inflammation where they function to suppress both innate and adaptive immunity. They are subdivided into three distinct subsets: monocytic (M-) MDSC, polymorphonuclear (or neutrophilic) (PMN-) MDSC and early-stage (e-) MDSC that may exhibit differential function in different pathological scenarios. However, in cancer they are associated with inhibition of the anti-tumour immune response and are universally associated with a poor prognosis. Seven human viruses classified as Group I carcinogenic agents are jointly responsible for nearly one fifth of all human cancers. These viruses represent a large diversity of species, including DNA, RNA and retroviridae. They include the human gammaherpesviruses (Epstein Barr virus (EBV) and Kaposi's Sarcoma-Associated Herpesvirus (KSHV), members of the high-risk human papillomaviruses (HPVs), hepatitis B and C (HBV, HCV), Human T cell leukaemia virus (HTLV-1) and Merkel cell polyomavirus (MCPyV). Each of these viruses encode an array of different oncogenes that perturb numerous cellular pathways that ultimately, over time, lead to cancer. A prerequisite for oncogenesis is therefore establishment of chronic infection whereby the virus persists in the host cells without being eradicated by the antiviral immune response. Although some of the viruses can directly modulate the immune response to enable persistence, a growing body of evidence suggests the immune microenvironment is modulated by expansions of MDSCs, driven by viral persistence and oncogenesis. It is likely these MDSCs play a role in loss of immune recognition and function and it is therefore essential to understand their phenotype and function, particularly given the increasing importance of immunotherapy in the modern arsenal of anti-cancer therapies. This review will discuss the role of MDSCs in viral oncogenesis. In particular we will focus upon the mechanisms thought to drive the MDSC expansions, the subsets expanded and their impact upon the immune microenvironment. Importantly we will explore how MDSCs may modulate current immunotherapies and their impact upon the success of future immune-based therapies.
Collapse
|
8
|
Santana CS, Andrade FDO, da Silva GCS, Nascimento JODS, Campos RF, Giovanetti M, Santos LA, Gois LL, Alcantara LCJ, Barreto FK. Advances in preventive vaccine development against HTLV-1 infection: A systematic review of the last 35 years. Front Immunol 2023; 14:1073779. [PMID: 36860854 PMCID: PMC9968880 DOI: 10.3389/fimmu.2023.1073779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction The Human T-lymphotropic virus type 1 (HTLV-1) was the first described human retrovirus. It is currently estimated that around 5 to 10 million people worldwide are infected with this virus. Despite its high prevalence, there is still no preventive vaccine against the HTLV-1 infection. It is known that vaccine development and large-scale immunization play an important role in global public health. To understand the advances in this field we performed a systematic review regarding the current progress in the development of a preventive vaccine against the HTLV-1 infection. Methods This review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA®) guidelines and was registered at the International Prospective Register of Systematic Reviews (PROSPERO). The search for articles was performed in PubMed, Lilacs, Embase and SciELO databases. From the 2,485 articles identified, 25 were selected according to the inclusion and exclusion criteria. Results The analysis of these articles indicated that potential vaccine designs in development are available, although there is still a paucity of studies in the human clinical trial phase. Discussion Although HTLV-1 was discovered almost 40 years ago, it remains a great challenge and a worldwide neglected threat. The scarcity of funding contributes decisively to the inconclusiveness of the vaccine development. The data summarized here intends to highlight the necessity to improve the current knowledge of this neglected retrovirus, encouraging for more studies on vaccine development aiming the to eliminate this human threat. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier (CRD42021270412).
Collapse
Affiliation(s)
- Carolina Souza Santana
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | | | | | | | - Raissa Frazão Campos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Marta Giovanetti
- Laboratório de Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil.,Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico di Roma, Rome, Italy
| | - Luciane Amorim Santos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Luana Leandro Gois
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Luiz Carlos Júnior Alcantara
- Laboratório de Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Khouri Barreto
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| |
Collapse
|
9
|
Pise-Masison CA, Franchini G. Hijacking Host Immunity by the Human T-Cell Leukemia Virus Type-1: Implications for Therapeutic and Preventive Vaccines. Viruses 2022; 14:2084. [PMID: 36298639 PMCID: PMC9609126 DOI: 10.3390/v14102084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2024] Open
Abstract
Human T-cell Leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other inflammatory diseases. High viral DNA burden (VL) in peripheral blood mononuclear cells is a documented risk factor for ATLL and HAM/TSP, and patients with HAM/TSP have a higher VL in cerebrospinal fluid than in peripheral blood. VL alone is not sufficient to differentiate symptomatic patients from healthy carriers, suggesting the importance of other factors, including host immune response. HTLV-1 infection is life-long; CD4+-infected cells are not eradicated by the immune response because HTLV-1 inhibits the function of dendritic cells, monocytes, Natural Killer cells, and adaptive cytotoxic CD8+ responses. Although the majority of infected CD4+ T-cells adopt a resting phenotype, antigen stimulation may result in bursts of viral expression. The antigen-dependent "on-off" viral expression creates "conditional latency" that when combined with ineffective host responses precludes virus eradication. Epidemiological and clinical data suggest that the continuous attempt of the host immunity to eliminate infected cells results in chronic immune activation that can be further exacerbated by co-morbidities, resulting in the development of severe disease. We review cell and animal model studies that uncovered mechanisms used by HTLV-1 to usurp and/or counteract host immunity.
Collapse
Affiliation(s)
- Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
10
|
El Hajj H, Bazarbachi A. Interplay between innate immunity and the viral oncoproteins Tax and HBZ in the pathogenesis and therapeutic response of HTLV-1 associated adult T cell leukemia. Front Immunol 2022; 13:957535. [PMID: 35935975 PMCID: PMC9352851 DOI: 10.3389/fimmu.2022.957535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
The Human T-cell Leukemia virus type 1 (HTLV-1) causes an array of pathologies, the most aggressive of which is adult T-cell leukemia (ATL), a fatal blood malignancy with dismal prognosis. The progression of these diseases is partly ascribed to the failure of the immune system in controlling the spread of virally infected cells. HTLV-1 infected subjects, whether asymptomatic carriers or symptomatic patients are prone to opportunistic infections. An increasing body of literature emphasizes the interplay between HTLV-1, its associated pathologies, and the pivotal role of the host innate and adoptive immune system, in shaping the progression of HTLV-1 associated diseases and their response to therapy. In this review, we will describe the modalities adopted by the malignant ATL cells to subvert the host innate immune response with emphasis on the role of the two viral oncoproteins Tax and HBZ in this process. We will also provide a comprehensive overview on the function of innate immunity in the therapeutic response to chemotherapy, anti-viral or targeted therapies in the pre-clinical and clinical settings.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- *Correspondence: Ali Bazarbachi,
| |
Collapse
|
11
|
Tu JJ, Maksimova V, Ratner L, Panfil AR. The Past, Present, and Future of a Human T-Cell Leukemia Virus Type 1 Vaccine. Front Microbiol 2022; 13:897346. [PMID: 35602078 PMCID: PMC9114509 DOI: 10.3389/fmicb.2022.897346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is an oncogenic human retrovirus which causes a lifelong infection. An estimated 5-10 million persons are infected with HTLV-1 worldwide - a number which is likely higher due to lack of reliable epidemiological data. Most infected individuals remain asymptomatic; however, a portion of HTLV-1-positive individuals will develop an aggressive CD4+ T-cell malignancy called adult T-cell leukemia/lymphoma (ATL), or a progressive neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Few treatment options exist for HAM/TSP outside of palliative care and ATL carries an especially poor prognosis given the heterogeneity of the disease and lack of effective long-term treatments. In addition, the risk of HTLV-1 disease development increases substantially if the virus is acquired early in life. Currently, there is no realistic cure for HTLV-1 infection nor any reliable measure to prevent HTLV-1-mediated disease development. The severity of HTLV-1-associated diseases (ATL, HAM/TSP) and limited treatment options highlights the need for development of a preventative vaccine or new therapeutic interventions. This review will highlight past HTLV-1 vaccine development efforts, the current molecular tools and animal models which might be useful in vaccine development, and the future possibilities of an effective HTLV-1 vaccine.
Collapse
Affiliation(s)
- Joshua J. Tu
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Victoria Maksimova
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Lee Ratner
- Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Amanda R. Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Toyoda K, Matsuoka M. Functional and Pathogenic Roles of Retroviral Antisense Transcripts. Front Immunol 2022; 13:875211. [PMID: 35572593 PMCID: PMC9100821 DOI: 10.3389/fimmu.2022.875211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Exogenous retroviruses such as human immunodeficiency virus type 1 (HIV-1), human T-cell leukemia virus type 1 (HTLV-1) and bovine leukemia virus (BLV) can cause various diseases including immunodeficiency, inflammatory diseases and hematologic malignancies. These retroviruses persistently infect their hosts. Therefore, they need to evade host immune surveillance. One way in which these viruses might avoid immune detection is to utilize functional RNAs, rather than proteins, for certain activities, because RNAs are not recognized by the host immune system. HTLV-1 encodes the HTLV-1 bZIP factor (HBZ) gene in the antisense strand of the provirus. The HBZ protein is constantly expressed in HTLV-1 carriers and patients with adult T-cell leukemia-lymphoma, and it plays critical roles in pathogenesis. However, HBZ not only encodes this protein, but also functions as mRNA. Thus, HBZ gene mRNA is bifunctional. HIV-1 and BLV also encode long non-coding RNAs as antisense transcripts. In this review, we reshape our current understanding of how these antisense transcripts function and how they influence disease pathogenesis.
Collapse
|
13
|
Abstract
HTLV-1 is a global infection with 5-20 million infected individuals. Although only a minority of infected individuals develop myelopathy, lymphoproliferative malignancy, or inflammatory disorders, infection is associated with immunosuppression and shorter survival. Transmission of HTLV-1 is through contaminated blood or needles, mother-to-child exposure through breast-feeding, and sexual intercourse. HTLV-1 is a delta retrovirus that expresses immunogenic Gag, Envelope, TAX, and Hbz proteins. Neutralizing antibodies have been identified directed against the surface envelope protein, and cytotoxic T-cell epitopes within TAX have been characterized. Thus far, there have been few investigations of vaccines directed against each of these proteins, with limited responses, thus far. However, with new technologies developed in the last few years, a renewed investigation is warranted in search for a safe and effective HTLV-1 vaccine.
Collapse
|
14
|
Adult T-Cell Leukemia: a Comprehensive Overview on Current and Promising Treatment Modalities. Curr Oncol Rep 2021; 23:141. [PMID: 34735653 DOI: 10.1007/s11912-021-01138-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE OF THE REVIEW Adult T-cell leukemia (ATL) is an aggressive chemo-resistant malignancy secondary to HTLV-1 retrovirus. Prognosis of ATL remains dismal. Herein, we emphasized on the current ATL treatment modalities and their drawbacks, and opened up on promising targeted therapies with special focus on the HTLV-1 regulatory proteins Tax and HBZ. RECENT FINDINGS Indolent ATL and a fraction of acute ATL exhibit long-term survival following antiviral treatment with zidovudine and interferon-alpha. Monoclonal antibodies such as mogamulizumab improved response rates, but with little effect on survival. Allogeneic hematopoietic cell transplantation results in long-term survival in one third of transplanted patients, alas only few patients are transplanted. Salvage therapy with lenalidomide in relapsed/refractory patients leads to prolonged survival in some of them. ATL remains an unmet medical need. Targeted therapies focusing on the HTLV-1 viral replication and/or viral regulatory proteins, as well as on the host antiviral immunity, represent a promising approach for the treatment of ATL.
Collapse
|
15
|
Vandermeulen C, O’Grady T, Wayet J, Galvan B, Maseko S, Cherkaoui M, Desbuleux A, Coppin G, Olivet J, Ben Ameur L, Kataoka K, Ogawa S, Hermine O, Marcais A, Thiry M, Mortreux F, Calderwood MA, Van Weyenbergh J, Peloponese JM, Charloteaux B, Van den Broeke A, Hill DE, Vidal M, Dequiedt F, Twizere JC. The HTLV-1 viral oncoproteins Tax and HBZ reprogram the cellular mRNA splicing landscape. PLoS Pathog 2021; 17:e1009919. [PMID: 34543356 PMCID: PMC8483338 DOI: 10.1371/journal.ppat.1009919] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/30/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome. Tax and HBZ are two viral regulatory proteins encoded by the human T-cell leukemia virus type 1 (HTLV-1) via sense and antisense transcripts, respectively. Both proteins are known to drive oncogenic processes that culminate in a T-cell neoplasm, known as Adult T cell leukemia/lymphoma (ATLL). We measured the effects of Tax and HBZ on host gene expression pathway by analyzing the interactome with cellular transcriptional and post-transcriptional regulators, and the transcriptome and mRNA splicing of cell lines expressing either Tax or HBZ. We compared our results with data obtained from independent cohorts of Japanese and Afro-Caribbean patients, and identified common splicing changes that might represent clinically useful biomarkers for ATLL. Finally, we provide evidence that the viral protein Tax can reprogram initial steps of the T-cell transcriptome diversification by hijacking the U2AF complex, a key cellular regulator of pre-mRNA splicing.
Collapse
Affiliation(s)
- Charlotte Vandermeulen
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
| | - Tina O’Grady
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
| | - Jerome Wayet
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
| | - Bartimee Galvan
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
| | - Sibusiso Maseko
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
| | - Majid Cherkaoui
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
| | - Alice Desbuleux
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Georges Coppin
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Julien Olivet
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Lamya Ben Ameur
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Olivier Hermine
- Service Hématologie Adultes, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Université de Paris, Laboratoire d’onco-hématologie, Institut Necker-Enfants Malades, INSERM U1151, Université de Paris, Paris, France
| | - Ambroise Marcais
- Service Hématologie Adultes, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Université de Paris, Laboratoire d’onco-hématologie, Institut Necker-Enfants Malades, INSERM U1151, Université de Paris, Paris, France
| | - Marc Thiry
- Unit of Cell and Tissue Biology, GIGA Institute, University of Liege, Liege, Belgium
| | - Franck Mortreux
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France
| | - Michael A. Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Johan Van Weyenbergh
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Catholic University of Leuven, Leuven, Belgium
| | | | - Benoit Charloteaux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Human Genetics, CHU of Liege, University of Liege, Liege, Belgium
| | - Anne Van den Broeke
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - David E. Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - Franck Dequiedt
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| |
Collapse
|
16
|
Impact of conditioning intensity and regimen on transplant outcomes in patients with adult T-cell leukemia-lymphoma. Bone Marrow Transplant 2021; 56:2964-2974. [PMID: 34462567 DOI: 10.1038/s41409-021-01445-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022]
Abstract
In allogeneic hematopoietic cell transplantation (allo-HCT) for adult T-cell leukemia-lymphoma (ATL), the optimal conditioning regimens have not yet been determined. We conducted a Japanese nationwide, retrospective study to investigate this issue. This study included 914 ATL patients who underwent allo-HCT between 1995 and 2015. In patients aged 55 years or younger, there was no statistically significant difference between reduced-intensity conditioning (RIC) regimens and myeloablative conditioning (MAC) regimens regarding risk of relapse (vs. RIC group: MAC group, hazard ratio (HR) 0.76, P = 0.071), non-relapse mortality (vs. RIC group: MAC group, HR 1.38, P = 0.115), or overall mortality (vs. RIC group: MAC group, HR 1.17, P = 0.255). Among RIC regimens, fludarabine plus melphalan-based (Flu/Mel) regimens were associated with a lower risk of relapse (Flu/Mel140 group, HR 0.59, P < 0.001; Flu/Mel80 group, HR 0.79, P = 0.021) than the Flu plus busulfan-based regimen (Flu/Bu2 group). Meanwhile, Flu/Mel140 group had a significantly higher risk of non-relapse mortality (vs. Flu/Bu2 group: HR 1.53, P = 0.025). In conclusion, it is acceptable to select a RIC regimen for younger patients. Moreover, it might be beneficial to select a Flu/Mel-based regimen for patients at high risk of relapse.
Collapse
|
17
|
Tumorigenesis and diagnostic practice applied in two oncogenic viruses: Epstein Barr virus and T-cell lymphotropic virus-1-Mini review. Biomed Pharmacother 2021; 142:111974. [PMID: 34343895 DOI: 10.1016/j.biopha.2021.111974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
To date, seven viruses have been reliably connected to various forms of human cancer: Epstein Barr Virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), high-risk Human papillomavirus (HPV), Merkel Cell Polyomavirus (MCPV), Hepatitis B virus (HBV), hepatitis C virus (HCV), and Human T-cell leukemia virus type 1 (HTLV1). This mini-review summarizes two of these viruses, EPV and HTLV-1, in terms of their general pathway of infection, the key mechanism of cancer induction, and the prominent technologies used to detect the infections. EBV is the first discovered human oncovirus and HTLV - I is the first human retrovirus and both were discovered from patient with distinct lymphoma clinical condition. Both the viruses can immortalize lymphocytes invitro and lymphomas are common manifestation of majority oncogenic viruses. Lymphomagenesis are discovered in associated with EBV, HTLV-I, Human Immunodeficiency virus (HIV), Kaposi sarcoma - associated herpes virus and hepatitis c virus. Later the undefined mechanism behind the induction of cancer by these viruses was unveiled gradually along with the responsible cofactors and mimicry mechanism. These two viruses contrast in their genetic structure, location of the infection, and latency, yet clinically, they generate similar cancer disorders. The major focus of this study is to brief the mechanism of these two unrelated viral cancer promoting agents on how they simulate a condition similar to lymphoma which may or may not undergo mimicry and cofactor utilization process, handpicked and vital genes behind the transformation mechanism are given accordingly.
Collapse
|
18
|
Forlani G, Shallak M, Accolla RS, Romanelli MG. HTLV-1 Infection and Pathogenesis: New Insights from Cellular and Animal Models. Int J Mol Sci 2021; 22:ijms22158001. [PMID: 34360767 PMCID: PMC8347336 DOI: 10.3390/ijms22158001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of the human T-cell leukemia virus-1 (HTLV-1), cellular and animal models have provided invaluable contributions in the knowledge of viral infection, transmission and progression of HTLV-associated diseases. HTLV-1 is the causative agent of the aggressive adult T-cell leukemia/lymphoma and inflammatory diseases such as the HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). Cell models contribute to defining the role of HTLV proteins, as well as the mechanisms of cell-to-cell transmission of the virus. Otherwise, selected and engineered animal models are currently applied to recapitulate in vivo the HTLV-1 associated pathogenesis and to verify the effectiveness of viral therapy and host immune response. Here we review the current cell models for studying virus–host interaction, cellular restriction factors and cell pathway deregulation mediated by HTLV products. We recapitulate the most effective animal models applied to investigate the pathogenesis of HTLV-1-associated diseases such as transgenic and humanized mice, rabbit and monkey models. Finally, we summarize the studies on STLV and BLV, two closely related HTLV-1 viruses in animals. The most recent anticancer and HAM/TSP therapies are also discussed in view of the most reliable experimental models that may accelerate the translation from the experimental findings to effective therapies in infected patients.
Collapse
Affiliation(s)
- Greta Forlani
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Mariam Shallak
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Roberto Sergio Accolla
- Laboratory of General Pathology and Immunology “Giovanna Tosi”, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (G.F.); (M.S.); (R.S.A.)
| | - Maria Grazia Romanelli
- Department of Biosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| |
Collapse
|
19
|
Nasu A, Gion Y, Nishimura Y, Nishikori A, Sakamoto M, Egusa Y, Fujita A, Yoshino T, Sato Y. Diagnostic Utility of SOX4 Expression in Adult T-Cell Leukemia/Lymphoma. Diagnostics (Basel) 2021; 11:diagnostics11050766. [PMID: 33923245 PMCID: PMC8145451 DOI: 10.3390/diagnostics11050766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
Differentiation between adult T-cell leukemia/lymphoma (ATLL) and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), is often challenging based on pathological findings alone. Although serum anti-HTLV-1 antibody positivity is required for ATLL diagnosis, this information is often not available at the time of pathological diagnosis. Therefore, we examined whether the expression of SOX4 and p16 would be helpful for differentiating the two disease entities. We immunohistochemically examined SOX4 and p16 expression (which have been implicated in ATLL carcinogenesis) in 11 ATLL patients and 20 PTCL-NOS patients and classified them into four stages according to the percentage of positive cells. Among the ATLL cases, 8/11 (73%) were SOX4-positive, while only 2/20 (10%) PTCL-NOS cases expressed SOX4. The mean total score was 4.2 (standard deviation (SD): 0.61) in the ATLL group and 0.50 (SD: 0.46) in the PTCL-NOS group (p < 0.001). Positive expression of p16 was noted in 4/11 (36%) patients with ATLL and 3/20 (15%) patients with PTCL-NOS, with mean total scores of 1.9 (SD: 0.64) and 0.70 (SD: 0.48) in the ATLL and PTCL-NOS groups, respectively (p = 0.141). These results suggest that SOX4 may be strongly expressed in ATLL compared to PTCL-NOS cases. Therefore, it may be helpful to perform immunohistochemical staining of SOX4 when pathologists face challenges discriminating between ATLL and PTCL-NOS.
Collapse
Affiliation(s)
- Atsuko Nasu
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (A.N.); (A.N.); (M.S.); (Y.E.); (A.F.)
- Division of Anatomic Pathology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Yuka Gion
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (A.N.); (A.N.); (M.S.); (Y.E.); (A.F.)
- Correspondence: (Y.G.); (Y.S.); Tel.: +81-86-235-7150 (Y.G. & Y.S.); Fax: +81-86-235-7156 (Y.G. & Y.S.)
| | - Yoshito Nishimura
- Department of General Medicine, Okayama University Hospital, Okayama 700-8558, Japan;
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i, Honolulu, HI 96813, USA
| | - Asami Nishikori
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (A.N.); (A.N.); (M.S.); (Y.E.); (A.F.)
| | - Misa Sakamoto
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (A.N.); (A.N.); (M.S.); (Y.E.); (A.F.)
| | - Yuria Egusa
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (A.N.); (A.N.); (M.S.); (Y.E.); (A.F.)
| | - Azusa Fujita
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (A.N.); (A.N.); (M.S.); (Y.E.); (A.F.)
| | - Tadashi Yoshino
- Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan;
| | - Yasuharu Sato
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (A.N.); (A.N.); (M.S.); (Y.E.); (A.F.)
- Department of Pathology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan;
- Correspondence: (Y.G.); (Y.S.); Tel.: +81-86-235-7150 (Y.G. & Y.S.); Fax: +81-86-235-7156 (Y.G. & Y.S.)
| |
Collapse
|
20
|
Ishizawa M, Ganbaatar U, Hasegawa A, Takatsuka N, Kondo N, Yoneda T, Katagiri K, Masuda T, Utsunomiya A, Kannagi M. Short-term cultured autologous peripheral blood mononuclear cells as a potential immunogen to activate Tax-specific CTL response in adult T-cell leukemia patients. Cancer Sci 2021; 112:1161-1172. [PMID: 33410215 PMCID: PMC7935807 DOI: 10.1111/cas.14800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 01/11/2023] Open
Abstract
Activation of CD8+ Tax‐specific CTL is a new therapeutic concept for adult T‐cell leukemia (ATL) caused by HTLV‐1. A recent clinical study of the dendritic cell vaccine pulsed with Tax peptides corresponding to CTL epitopes showed promising outcomes in ATL patients possessing limited human leukocyte antigen (HLA) alleles. In this study, we aimed to develop another immunotherapy to activate Tax‐specific CTL without HLA limitation by using patients’ own HTLV‐1‐infected cells as a vaccine. To examine the potential of HTLV‐1‐infected T‐cells to activate CTL via antigen presenting cells, we established a unique co–culture system. We demonstrated that mitomycin C‐treated HLA‐A2‐negative HTLV‐1‐infected T‐cell lines or short‐term cultured peripheral blood mononuclear cells (PBMC) derived from ATL patients induced cross–presentation of Tax antigen in co–cultured HLA‐A2‐positive antigen presenting cells, resulting in activation of HLA‐A2‐restricted CD8+ Tax‐specific CTL. This effect was not inhibited by a reverse transcriptase inhibitor. IL‐12 production and CD86 expression were also induced in antigen presenting cells co–cultured with HTLV‐1‐infected cells at various levels, which were improved by pre–treatment of the infected cells with histone deacetylase inhibitors. Furthermore, monocyte‐derived dendritic cells induced from PBMC of a chronic ATL patient produced IL‐12 and expressed enhanced levels of CD86 when co–cultured with autologous lymphocytes that had been isolated from the same PBMC and cultured for several days. These findings suggest that short‐term cultured autologous PBMC from ATL patients could potentially serve as a vaccine to evoke Tax‐specific CTL responses.
Collapse
Affiliation(s)
- Miku Ishizawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Undrakh Ganbaatar
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhiko Hasegawa
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Natsuko Takatsuka
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuyo Kondo
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeru Yoneda
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kuniko Katagiri
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takao Masuda
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Mari Kannagi
- Deparment of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Molecular Virology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Microbiology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
21
|
Izaki M, Yasunaga JI, Nosaka K, Sugata K, Utsunomiya H, Suehiro Y, Shichijo T, Yamada A, Sugawara Y, Hibi T, Inomata Y, Akari H, Melamed A, Bangham C, Matsuoka M. In vivo dynamics and adaptation of HTLV-1-infected clones under different clinical conditions. PLoS Pathog 2021; 17:e1009271. [PMID: 33524072 PMCID: PMC7877780 DOI: 10.1371/journal.ppat.1009271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/11/2021] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) spreads through cell contact. Therefore, this virus persists and propagates within the host by two routes: clonal proliferation of infected cells and de novo infection. The proliferation is influenced by the host immune responses and expression of viral genes. However, the detailed mechanisms that control clonal expansion of infected cells remain to be elucidated. In this study, we show that newly infected clones were strongly suppressed, and then stable clones were selected, in a patient who was infected by live liver transplantation from a seropositive donor. Conversely, most HTLV-1+ clones persisted in patients who received hematopoietic stem cell transplantation from seropositive donors. To clarify the role of cell-mediated immunity in this clonal selection, we suppressed CD8+ or CD16+ cells in simian T-cell leukemia virus type 1 (STLV-1)-infected Japanese macaques. Decreasing CD8+ T cells had marginal effects on proviral load (PVL). However, the clonality of infected cells changed after depletion of CD8+ T cells. Consistent with this, PVL at 24 hours in vitro culture increased, suggesting that infected cells with higher proliferative ability increased. Analyses of provirus in a patient who received Tax-peptide pulsed dendritic cells indicate that enhanced anti-Tax immunity did not result in a decreased PVL although it inhibited recurrence of ATL. We postulate that in vivo selection, due to the immune response, cytopathic effects of HTLV-1 and intrinsic attributes of infected cells, results in the emergence of clones of HTLV-1-infected T cells that proliferate with minimized HTLV-1 antigen expression. HTLV-1 spreads in vivo through two routes: de novo infection and clonal proliferation of infected cells. Reverse transcriptase inhibitors and integrase inhibitors do not influence the PVL in HTLV-1-infected individuals, indicating that clonal proliferation is dominant to maintain and increase PVL in vivo in the chronic phase. It is assumed that the host immune responses are critical factors for clonal proliferation. We found that HTLV-1-infected clones dramatically changed during de novo infection whereas the clones in the chronic phase survived long-term after transplantation, indicating that HTLV-1-infected clones are selected for survival in vivo. Surprisingly, depletion of CD8+ cells had a small impact on PVL in a STLV-1 infected Japanese macaque, but modified the clonality of infected cells. The cells after depletion of CD8+ cells showed a higher proliferative activity during short-term in vitro culture. This study reveals that intrinsic attributes of selected clones contribute to clonal proliferation of infected cells.
Collapse
Affiliation(s)
- Mikiko Izaki
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kisato Nosaka
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenji Sugata
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hayato Utsunomiya
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Youko Suehiro
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| | - Takafumi Shichijo
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Asami Yamada
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuhiko Sugawara
- Department of Transplantation and Pediatric Surgery, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Taizo Hibi
- Department of Transplantation and Pediatric Surgery, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukihiro Inomata
- Department of Transplantation and Pediatric Surgery, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hirofumi Akari
- Center for Human Evolution Modeling Research, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Anat Melamed
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Charles Bangham
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
22
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
23
|
El Hajj H, Tsukasaki K, Cheminant M, Bazarbachi A, Watanabe T, Hermine O. Novel Treatments of Adult T Cell Leukemia Lymphoma. Front Microbiol 2020; 11:1062. [PMID: 32547515 PMCID: PMC7270167 DOI: 10.3389/fmicb.2020.01062] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 04/29/2020] [Indexed: 12/14/2022] Open
Abstract
Adult T cell leukemia-lymphoma (ATL) is an aggressive malignancy secondary to chronic infection with the human T cell leukemia virus type I (HTLV-I) retrovirus. ATL carries a dismal prognosis. ATL classifies into four subtypes (acute, lymphoma, chronic, and smoldering) which display different clinical features, prognosis and response to therapy, hence requiring different clinical management. Smoldering and chronic subtypes respond well to antiretroviral therapy using the combination of zidovudine (AZT) and interferon-alpha (IFN) with a significant prolongation of survival. Conversely, the watch and wait strategy or chemotherapy for these indolent subtypes allies with a poor long-term outcome. Acute ATL is associated with chemo-resistance and dismal prognosis. Lymphoma subtypes respond better to intensive chemotherapy but survival remains poor. Allogeneic hematopoietic stem cell transplantation (HSCT) results in long-term survival in roughly one third of transplanted patients but only a small percentage of patients can make it to transplant. Overall, current treatments of aggressive ATL are not satisfactory. Prognosis of refractory or relapsed patients is dismal with some encouraging results when using lenalidomide or mogamulizumab. To overcome resistance and prevent relapse, preclinical or pilot clinical studies using targeted therapies such as arsenic/IFN, monoclonal antibodies, epigenetic therapies are promising but warrant further clinical investigation. Anti-ATL vaccines including Tax peptide-pulsed dendritic cells, induced Tax-specific CTL responses in ATL patients. Finally, based on the progress in understanding the pathophysiology of ATL, and the risk-adapted treatment approaches to different ATL subtypes, treatment strategies of ATL should take into account the host immune responses and the host microenvironment including HTLV-1 infected non-malignant cells. Herein, we will provide a summary of novel treatments of ATL in vitro, in vivo, and in early clinical trials.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Experimental Pathology, Microbiology, and Immunology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kunihiro Tsukasaki
- Department of Hematology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Morgane Cheminant
- INSERM UMR 1163 and CNRS URL 8254, Imagine Institute, Paris, France.,Department of Hematology, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris-Descartes University, Paris, France
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Toshiki Watanabe
- Department of Medical Genome Sciences, The University of Tokyo, Tokyo, Japan
| | - Olivier Hermine
- INSERM UMR 1163 and CNRS URL 8254, Imagine Institute, Paris, France.,Department of Hematology, Necker-Enfants Malades University Hospital, Assistance Publique Hôpitaux de Paris, Paris-Descartes University, Paris, France
| |
Collapse
|
24
|
Mota TM, Jones RB. HTLV-1 as a Model for Virus and Host Coordinated Immunoediting. Front Immunol 2019; 10:2259. [PMID: 31616431 PMCID: PMC6768981 DOI: 10.3389/fimmu.2019.02259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022] Open
Abstract
Immunoediting is a process that occurs in cancer, whereby the immune system acts to initially repress, and subsequently promote the outgrowth of tumor cells through the stages of elimination, equilibrium, and escape. Here we present a model for a virus that causes cancer where immunoediting is coordinated through synergistic viral- and host-mediated events. We argue that the initial viral replication process of the Human T cell leukemia virus type I (HTLV-1), which causes adult T cell leukemia/lymphoma (ATL) in ~5% of individuals after decades of latency, harmonizes with the host immune system to create a population of cells destined for malignancy. Furthermore, we explore the possibility for HIV to fit into this model of immunoediting, and propose a non-malignant escape phase for HIV-infected cells that persist beyond equilibrium.
Collapse
Affiliation(s)
- Talia M Mota
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| |
Collapse
|
25
|
Mohammadi A, Fazeli B, Poursina Z, Tehranian F, Vakili V, Boostani R, Rafatpanah H. HTLV-1-infected asymptomatic carriers compared to HAM/TSP patients over-express the apoptosis- and cytotoxicity-related molecules. Med Microbiol Immunol 2019; 208:835-844. [PMID: 31317252 DOI: 10.1007/s00430-019-00625-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023]
Abstract
HTLV-1 infection causes a chronic progressive debilitating neuroinflammatory disease which is called, HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). One of the host defense mechanisms against viral infection is apoptosis which may control HTLV-1 infection. Therefore, we aimed to investigate this process and its interaction with viral factors in HTLV-1-infected asymptomatic carriers (ACs) compared to HAM/TSP patients. Fas, FasL, TRAIL, perforin, granzyme A, granzyme B, and granulysin gene expression and serum levels of Fas, FasL, TRAIL, and granulysin in the peripheral blood of 21 sex- and age-matched healthy controls (HCs), ACs, and HAM/TSP patients were evaluated. Also, the level of granulysin secretion in the cell culture supernatant was measured. Finally, the correlation of the expression of these molecules with HTLV-1 proviral load (PVL), Tax, and HBZ mRNA expression was analyzed. ACs compared to HAM/TSP patients significantly over-expressed the Fas, FasL, TRAIL, perforin, and granzyme B molecules. Fas, FasL, TRAIL, and granulysin serum levels were not different among studied groups; whereas, the secretion of granulysin was significantly decreased in ACs and HAM/TSP patients compared to HCs. Also, HAM/TSP patients expressed higher levels of HTLV-1 PVL, Tax, and HBZ mRNA. In addition, in ACs, inverse correlations between the Fas, FasL, TRAIL, perforin, granzyme B, and granulysin levels with HBZ mRNA expression were seen. ACs compared to HAM/TSP patients over-expressed the apoptosis- and cytotoxicity-related molecules. It could be concluded that successful control of the HTLV-1 infection and suppression of HAM/TSP development stem from the strong apoptosis and cytotoxic activity in the peripheral blood of ACs.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahare Fazeli
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Poursina
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farahnaz Tehranian
- Research Center of Iranian Blood Transfusion Organization, Mashhad, Khorasan Razavi, Iran
| | - Veda Vakili
- Community Medicine Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Abstract
It has been nearly 40 years since human T-cell leukemia virus-1 (HTLV-1), the first oncogenic retrovirus in humans and the first demonstrable cause of cancer by an infectious agent, was discovered. Studies indicate that HTLV-1 is arguably one of the most carcinogenic agents to humans. In addition, HTLV-1 causes a diverse array of diseases, including myelopathy and immunodeficiency, which cause morbidity and mortality to many people in the world, including the indigenous population in Australia, a fact that was emphasized only recently. HTLV-1 can be transmitted by infected lymphocytes, from mother to child via breast feeding, by sex, by blood transfusion, and by organ transplant. Therefore, the prevention of HTLV-1 infection is possible but such action has been taken in only a limited part of the world. However, until now it has not been listed by the World Health Organization as a sexually transmitted organism nor, oddly, recognized as an oncogenic virus by the recent list of the National Cancer Institute/National Institutes of Health. Such underestimation of HTLV-1 by health agencies has led to a remarkable lack of funding supporting research and development of treatments and vaccines, causing HTLV-1 to remain a global threat. Nonetheless, there are emerging novel therapeutic and prevention strategies which will help people who have diseases caused by HTLV-1. In this review, we present a brief historic overview of the key events in HTLV-1 research, including its pivotal role in generating ideas of a retrovirus cause of AIDS and in several essential technologies applicable to the discovery of HIV and the unraveling of its genes and their function. This is followed by the status of HTLV-1 research and the preventive and therapeutic developments of today. We also discuss pending issues and remaining challenges to enable the eradication of HTLV-1 in the future.
Collapse
Affiliation(s)
- Yutaka Tagaya
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Robert Gallo
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
27
|
Kannagi M, Hasegawa A, Nagano Y, Iino T, Okamura J, Suehiro Y. Maintenance of long remission in adult T-cell leukemia by Tax-targeted vaccine: A hope for disease-preventive therapy. Cancer Sci 2019; 110:849-857. [PMID: 30666755 PMCID: PMC6398881 DOI: 10.1111/cas.13948] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/27/2018] [Accepted: 01/13/2019] [Indexed: 12/19/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive lymphoproliferative disease caused by human T-cell leukemia virus type 1 (HTLV-1). Multi-agent chemotherapy can reduce ATL cells but frequently allows relapses within a short period of time. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) following chemotherapy is now a standard therapy for ATL in Japan as it can achieve long-term remission in approximately one-third of recipient ATL patients; however, it also has a risk of treatment-related mortality. Allo-HSCT often induces HTLV-1 Tax-specific cytotoxic T cells (CTL) as well as graft-versus-host (GVH) response in ATL patients. This observation led to development of a new therapeutic vaccine to activate Tax-specific CTL, anticipating anti-ATL effects without GVH response. The newly developed Tax-DC vaccine consists of autologous dendritic cells pulsed with Tax peptides corresponding to CTL epitopes that have been identified in post-allo-HSCT ATL patients. In a pilot study of Tax-DC therapy in three ATL patients after various initial therapies, two patients survived for more than 4 years after vaccination without severe adverse effects (UMIN000011423). The Tax-DC vaccine is currently under phase I trial, showing a promising clinical outcome so far. These findings indicate the importance of patients' own HTLV-1-specific T-cell responses in maintaining remission and provide a new approach to anti-ATL immunotherapy targeting Tax. Although Tax-targeted vaccination is ineffective against Tax-negative ATL cells, it can be a safe alternative maintenance therapy for Tax-positive ATL and may be further applicable for treatment of indolent ATL or even prophylaxis of ATL development among HTLV-1-carriers.
Collapse
Affiliation(s)
- Mari Kannagi
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Atsuhiko Hasegawa
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiko Nagano
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadafumi Iino
- Center for Advanced Medicine Innovation, Kyushu University, Fukuoka, Japan
| | - Jun Okamura
- Institute for Clinical Research, National Kyushu Cancer Center, Fukuoka, Japan
| | - Youko Suehiro
- Department of Hematology, National Kyushu Cancer Center, Fukuoka, Japan
| |
Collapse
|
28
|
[Astute strategies of HTLV-1 with driven viral genes]. Uirusu 2019; 69:37-46. [PMID: 32938893 DOI: 10.2222/jsv.69.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the world's first retrovirus with pathogenicity to cause adult T-cell leukemia-lymphoma (ATL) and chronic inflammatory diseases,such as HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP) and HTLV-1 uveitis. As the virological characteristic, HTLV-1 can transmit efficiently only through cell-to-cell contact. Spread of infection and viral persistence is ingeniously driven by several viral genes as exemplified by HTLV-1 bZIP factor (HBZ) and tax. After the infection, the virus promotes proliferation and immortalization of the infected cells with acculturating immunophenotype into effector/memory T cells. In addition, HBZ enhances expression of co-inhibitory receptors on the surface of infected cells, potentially leading to suppression of host immune responses. These viral strategies can also result in unforeseen by-product, the pathogenicity of HTLV-1-associated diseases. In this review, with recent progress of HTLV-1 researches, we focus on astute regulation systems of the viral genes developed by HTLV-1.
Collapse
|
29
|
Kobayashi-Ishihara M, Terahara K, Martinez JP, Yamagishi M, Iwabuchi R, Brander C, Ato M, Watanabe T, Meyerhans A, Tsunetsugu-Yokota Y. HIV LTR-Driven Antisense RNA by Itself Has Regulatory Function and May Curtail Virus Reactivation From Latency. Front Microbiol 2018; 9:1066. [PMID: 29887842 PMCID: PMC5980963 DOI: 10.3389/fmicb.2018.01066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/04/2018] [Indexed: 01/21/2023] Open
Abstract
Latently infected T lymphocytes are an important barrier toward eliminating a persistent HIV infection. Here we describe an HIV-based recombinant fluorescent-lentivirus referred to as “rfl-HIV” that enables to analyze sense and antisense transcription by means of fluorescence reporter genes. This model virus exhibited similar transcriptional and functional properties of the antisense transcript as observed with a wild type HIV, and largely facilitated the generation of latently-infected T cells clones. We show that latently-infected cells can be divided into two types, those with and those without antisense transcription. Upon addition of latency reversal agents, only the cells that lack antisense transcripts are readily reactivated to transcribe HIV. Thus, antisense transcripts may exhibit a dominant suppressor activity and can lock an integrated provirus into a non-reactivatable state. These findings could have important implications for the development of strategies to eradicate HIV from infected individuals.
Collapse
Affiliation(s)
- Mie Kobayashi-Ishihara
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.,Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Kazutaka Terahara
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Javier P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Makoto Yamagishi
- Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryutaro Iwabuchi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Christian Brander
- IrsiCaixa - AIDS Research Institute, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya, Vic, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Manabu Ato
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshiki Watanabe
- Department of Advanced Medical Innovation, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Andreas Meyerhans
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Yasuko Tsunetsugu-Yokota
- Department of Immunology, National Institute of Infectious Diseases, Tokyo, Japan.,Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,Department of Medical Technology, School of Human Sciences, Tokyo University of Technology, Tokyo, Japan
| |
Collapse
|
30
|
Moodad S, Akkouche A, Hleihel R, Darwiche N, El-Sabban M, Bazarbachi A, El Hajj H. Mouse Models That Enhanced Our Understanding of Adult T Cell Leukemia. Front Microbiol 2018; 9:558. [PMID: 29643841 PMCID: PMC5882783 DOI: 10.3389/fmicb.2018.00558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
Adult T cell Leukemia (ATL) is an aggressive lymphoproliferative malignancy secondary to infection by the human T-cell leukemia virus type I (HTLV-I) and is associated with a dismal prognosis. ATL leukemogenesis remains enigmatic. In the era of precision medicine in oncology, mouse models offer one of the most efficient in vivo tools for the understanding of the disease biology and developing novel targeted therapies. This review provides an up-to-date and comprehensive account of mouse models developed in the context of ATL and HTLV-I infection. Murine ATL models include transgenic animals for the viral proteins Tax and HBZ, knock-outs for key cellular regulators, xenografts and humanized immune-deficient mice. The first two groups provide a key understanding of the role of viral and host genes in the development of ATL, as well as their relationship with the immunopathogenic processes. The third group represents a valuable platform to test new targeted therapies against ATL.
Collapse
Affiliation(s)
- Sara Moodad
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdou Akkouche
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba El Hajj
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
31
|
Kuribayashi W, Takizawa K, Sugata K, Kuramitsu M, Momose H, Sasaki E, Hiradate Y, Furuhata K, Asada Y, Iwama A, Matsuoka M, Mizukami T, Hamaguchi I. Impact of the SCF signaling pathway on leukemia stem cell-mediated ATL initiation and progression in an HBZ transgenic mouse model. Oncotarget 2018; 7:51027-51043. [PMID: 27340921 PMCID: PMC5239456 DOI: 10.18632/oncotarget.10210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
Adult T-cell leukemia (ATL) is a malignant disease caused by human T-lymphotropic virus type 1. In aggressive ATL, the response to chemotherapy is extremely poor. We hypothesized that this poor response is due to the existence of chemotherapy-resistant cells, such as leukemic stem cells. Previously, we successfully identified an ATL stem cell (ATLSC) candidate as the c-kit+/CD38−/CD71− cells in an ATL mouse model using Tax transgenic mice. Here, with a new ATL mouse model using HBZ-transgenic mice, we further discovered that the functional ATLSC candidate, which commonly expresses c-kit, is drug-resistant and has the ability to initiate tumors and reconstitute lymphomatous cells. We characterized the ATLSCs as c-kit+/CD4−/CD8− cells and found that they have a similar gene expression profile as T cell progenitors. Additionally, we found that AP-1 gene family members, including Junb, Jund, and Fosb, were up-regulated in the ATLSC fraction. The results of an in vitro assay showed that ATLSCs cultured with cytokines known to promote stem cell expansion, such as stem cell factor (SCF), showed highly proliferative activity and maintained their stem cell fraction. Inhibition of c-kit–SCF signaling with the neutralizing antibody ACK2 affected ATLSC self-renewal and proliferation. Experiments in Sl/Sld mice, which have a mutation in the membrane-bound c-kit ligand, found that ATL development was completely blocked in these mice. These results clearly suggest that the c-kit–SCF signal plays a key role in ATLSC self-renewal and in ATL initiation and disease progression.
Collapse
Affiliation(s)
- Wakako Kuribayashi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan.,Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan.,Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazuya Takizawa
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Kenji Sugata
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Madoka Kuramitsu
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Haruka Momose
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Eita Sasaki
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Yuki Hiradate
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Keiko Furuhata
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Yoshihisa Asada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Takuo Mizukami
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| | - Isao Hamaguchi
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Disease, Tokyo, Japan
| |
Collapse
|
32
|
Futsch N, Mahieux R, Dutartre H. HTLV-1, the Other Pathogenic Yet Neglected Human Retrovirus: From Transmission to Therapeutic Treatment. Viruses 2017; 10:v10010001. [PMID: 29267225 PMCID: PMC5795414 DOI: 10.3390/v10010001] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Going back to their discovery in the early 1980s, both the Human T-cell Leukemia virus type-1 (HTLV-1) and the Human Immunodeficiency Virus type-1 (HIV-1) greatly fascinated the virology scene, not only because they were the first human retroviruses discovered, but also because they were associated with fatal diseases in the human population. In almost four decades of scientific research, both viruses have had different fates, HTLV-1 being often upstaged by HIV-1. However, although being very close in terms of genome organization, cellular tropism, and viral replication, HIV-1 and HTLV-1 are not completely commutable in terms of treatment, especially because of the opposite fate of the cells they infect: death versus immortalization, respectively. Nowadays, the antiretroviral therapies developed to treat HIV-1 infected individuals and to limit HIV-1 spread among the human population have a poor or no effect on HTLV-1 infected individuals, and thus, do not prevent the development of HTLV-1-associated diseases, which still lack highly efficient treatments. The present review mainly focuses on the course of HTLV-1 infection, from the initial infection of the host to diseases development and associated treatments, but also investigates HIV-1/HTLV-1 co-infection events and their impact on diseases development.
Collapse
Affiliation(s)
- Nicolas Futsch
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, F-69007 Lyon, France.
- Equipe labellisée "Ligue Nationale Contre le Cancer", France.
| |
Collapse
|
33
|
Abstract
Human T cell leukemia virus type 1 (HTLV-1), also known as human T lymphotropic virus type 1, was the first exogenous human retrovirus discovered. Unlike the distantly related lentivirus HIV-1, HTLV-1 causes disease in only 5-10% of infected people, depending on their ethnic origin. But whereas HIV-1 infection and the consequent diseases can be efficiently contained in most cases by antiretroviral drug treatment, there is no satisfactory treatment for the malignant or inflammatory diseases caused by HTLV-1. The purpose of the present article is to review recent advances in the understanding of the mechanisms by which the virus persists in vivo and causes disabling or fatal diseases.
Collapse
Affiliation(s)
- Charles R M Bangham
- Division of Infectious Diseases, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom;
| |
Collapse
|
34
|
Simian T Lymphotropic Virus 1 Infection of Papio anubis: tax Sequence Heterogeneity and T Cell Recognition. J Virol 2017; 91:JVI.00950-17. [PMID: 28724769 DOI: 10.1128/jvi.00950-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
Baboons naturally infected with simian T lymphotropic virus (STLV) are a potentially useful model system for the study of vaccination against human T lymphotropic virus (HTLV). Here we expanded the number of available full-length baboon STLV-1 sequences from one to three and related the T cell responses that recognize the immunodominant Tax protein to the tax sequences present in two individual baboons. Continuously growing T cell lines were established from two baboons, animals 12141 and 12752. Next-generation sequencing (NGS) of complete STLV genome sequences from these T cell lines revealed them to be closely related but distinct from each other and from the baboon STLV-1 sequence in the NCBI sequence database. Overlapping peptides corresponding to each unique Tax sequence and to the reference baboon Tax sequence were used to analyze recognition by T cells from each baboon using intracellular cytokine staining (ICS). Individual baboons expressed more gamma interferon and tumor necrosis factor alpha in response to Tax peptides corresponding to their own STLV-1 sequence than in response to Tax peptides corresponding to the reference baboon STLV-1 sequence. Thus, our analyses revealed distinct but closely related STLV-1 genome sequences in two baboons, extremely low heterogeneity of STLV sequences within each baboon, no evidence for superinfection within each baboon, and a ready ability of T cells in each baboon to recognize circulating Tax sequences. While amino acid substitutions that result in escape from CD8+ T cell recognition were not observed, premature stop codons were observed in 7% and 56% of tax sequences from peripheral blood mononuclear cells from animals 12141 and 12752, respectively.IMPORTANCE It has been estimated that approximately 100,000 people suffer serious morbidity and 10,000 people die each year from the consequences associated with human T lymphotropic virus (HTLV) infection. There are no antiviral drugs and no preventive vaccine. A preventive vaccine would significantly impact the global burden associated with HTLV infections. Here we provide fundamental information on the simian T lymphotropic virus (STLV) naturally transmitted in a colony of captive baboons. The limited viral sequence heterogeneity in individual baboons, the identity of the viral gene product that is the major target of cellular immune responses, the persistence of viral amino acid sequences that are the major targets of cellular immune responses, and the emergence in vivo of truncated variants in the major target of cellular immune responses all parallel what are seen with HTLV infection of humans. These results justify the use of STLV-infected baboons as a model system for vaccine development efforts.
Collapse
|
35
|
Zhang LL, Wei JY, Wang L, Huang SL, Chen JL. Human T-cell lymphotropic virus type 1 and its oncogenesis. Acta Pharmacol Sin 2017; 38:1093-1103. [PMID: 28392570 PMCID: PMC5547553 DOI: 10.1038/aps.2017.17] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023] Open
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATL), a rapidly progressing clonal malignancy of CD4+ T lymphocytes. Exploring the host-HTLV-1 interactions and the molecular mechanisms underlying HTLV-1-mediated tumorigenesis is critical for developing efficient therapies against the viral infection and associated leukemia/lymphoma. It has been demonstrated to date that several HTLV-1 proteins play key roles in the cellular transformation and immortalization of infected T lymphocytes. Of note, the HTLV-1 oncoprotein Tax inhibits the innate IFN response through interaction with MAVS, STING and RIP1, causing the suppression of TBK1-mediated phosphorylation of IRF3/IRF7. The HTLV-1 protein HBZ disrupts genomic integrity and inhibits apoptosis and autophagy of the target cells. Furthermore, it is revealed that HBZ enhances the proliferation of ATL cells and facilitates evasion of the infected cells from immunosurveillance. These studies provide insights into the molecular mechanisms by which HTLV-1 mediates the formation of cancer as well as useful strategies for the development of new therapeutic interventions against ATL. In this article, we review the recent advances in the understanding of the pathogenesis, the underlying mechanisms, clinical diagnosis and treatment of the disease caused by HTLV-1 infection. In addition, we discuss the future direction for targeting HTLV-1-associated cancers and strategies against HTLV-1.
Collapse
Affiliation(s)
- Lan-lan Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing-yun Wei
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Long Wang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shi-le Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Chan CP, Kok KH, Jin DY. Human T-Cell Leukemia Virus Type 1 Infection and Adult T-Cell Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:147-166. [PMID: 29052136 DOI: 10.1007/978-981-10-5765-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is the first retrovirus discovered to cause adult T-cell leukemia (ATL), a highly aggressive blood cancer. HTLV-1 research in the past 35 years has been most revealing in the mechanisms of viral oncogenesis. HTLV-1 establishes a lifelong persistent infection in CD4+ T lymphocytes. The infection outcome is governed by host immunity. ATL develops in 2-5% of infected individuals 30-50 years after initial exposure. HTLV-1 encodes two oncoproteins Tax and HBZ, which are required for initiation of cellular transformation and maintenance of cell proliferation, respectively. HTLV-1 oncogenesis is driven by a clonal selection and expansion process during which both host and viral factors cooperate to impair genome stability, immune surveillance, and other mechanisms of tumor suppression. A better understanding of HTLV-1 biology and leukemogenesis will reveal new strategies and modalities for ATL prevention and treatment.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Kin-Hang Kok
- Department of Microbiology, The University of Hong Kong, 145 Pokfulam Road, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
37
|
Rowan AG, Witkover A, Melamed A, Tanaka Y, Cook LBM, Fields P, Taylor GP, Bangham CRM. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells. PLoS Pathog 2016; 12:e1006030. [PMID: 27893842 PMCID: PMC5125714 DOI: 10.1371/journal.ppat.1006030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL) responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL), human T lymphotropic virus type-1 (HTLV-1), contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1) to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease.
Collapse
Affiliation(s)
- Aileen G. Rowan
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Aviva Witkover
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Anat Melamed
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Lucy B. M. Cook
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Paul Fields
- Guy’s and St Thomas’ Hospital, London, United Kingdom
| | - Graham P. Taylor
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Charles R. M. Bangham
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Panfil AR, Martinez MP, Ratner L, Green PL. Human T-cell leukemia virus-associated malignancy. Curr Opin Virol 2016; 20:40-46. [PMID: 27591679 PMCID: PMC5102797 DOI: 10.1016/j.coviro.2016.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/05/2016] [Accepted: 08/16/2016] [Indexed: 12/30/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a tumorigenic delta retrovirus and the causative infectious agent of a non-Hodgkin's peripheral T-cell malignancy called adult T-cell leukemia/lymphoma (ATL). ATL develops in approximately 5% of infected individuals after a significant clinical latency period of several decades. Clinical classifications of ATL include smoldering, chronic, lymphoma, and acute subtypes, with varying median survival ranges of a few months to several years. Depending on the ATL subtype and disease symptoms, treatment options include 'watchful waiting', chemotherapy, antiviral therapy, allogeneic hematopoietic stem cell transplantation (alloHSCT), and targeted therapies. Herein we review the characteristics and development of ATL, as well as current and future treatment options and perspectives.
Collapse
Affiliation(s)
- Amanda R Panfil
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Michael P Martinez
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Lee Ratner
- Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Patrick L Green
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
39
|
Striving to cure adult T-cell leukaemia/lymphoma: a role for allogeneic stem cell transplant? Bone Marrow Transplant 2016; 51:1549-1555. [PMID: 27618683 DOI: 10.1038/bmt.2016.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 11/09/2022]
Abstract
Adult T-cell leukaemia/lymphoma (ATL) is an aggressive HTLV-1-related malignancy, rare outside of regions where the retrovirus is endemic. Although the use of antiviral therapy has improved outcomes, particularly for indolent forms of ATL, response to combination chemotherapy is poor and outcomes for aggressive subtypes remains dismal. Consolidation with allogeneic stem cell transplant (alloSCT) has an increasing role in the management of ATL in eligible patients, offering favourable long-term remission rates. However, relatively high-transplant-related mortality and issues with donor recruitment for certain ethnicities remain problematic. In this review, we discuss the rationale for and issues surrounding alloSCT in ATL in the context of conventional and emerging therapies.
Collapse
|
40
|
Sugata K, Yasunaga JI, Miura M, Akari H, Utsunomiya A, Nosaka K, Watanabe Y, Suzushima H, Koh KR, Nakagawa M, Kohara M, Matsuoka M. Enhancement of anti-STLV-1/HTLV-1 immune responses through multimodal effects of anti-CCR4 antibody. Sci Rep 2016; 6:27150. [PMID: 27250643 PMCID: PMC4890010 DOI: 10.1038/srep27150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/16/2016] [Indexed: 12/31/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia and inflammatory diseases. Because anti-HTLV-1 immune responses are critical for suppressing infected cells, enhancing cellular immunity is beneficial for the treatment of HTLV-1-associated diseases. Using simian T-cell leukemia virus type 1 (STLV-1) infected Japanese macaques, we analyzed the immune responses to viral antigens and the dynamics of virus-infected cells. The chemokine receptor CCR4 is expressed on STLV-1 infected cells, and administration of humanized monoclonal antibody to CCR4, mogamulizumab, dramatically decreased the number of STLV-1-infected cells in vivo. Concurrently, mogamulizumab treatment enhanced STLV-1 specific CD4+ and CD8+ T cell responses by simultaneously targeting CCR4+ effector regulatory T (Treg) cells and infected cells. Mogamulizumab promoted the phagocytosis of CCR4+ infected cells by macrophages, which likely enhanced antigen presentation. Vaccination with recombinant vaccinia virus (rVV) expressing viral antigens suppressed the proviral load and the number of Tax-expressing cells. Enhanced T-cell responses were also observed in some ATL patients who were treated with mogamulizumab. This study shows that mogamulizumab works not only by killing CCR4+ infected cells directly, but also by enhancing T cell responses by increasing the phagocytosis of infected cells by antigen-presenting cells and suppressing CCR4+ effector Treg cells.
Collapse
Affiliation(s)
- Kenji Sugata
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan.,Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Michi Miura
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hirofumi Akari
- Laboratory of Evolutional Virology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura Bun-in Hospital, Kagoshima, Japan
| | - Kisato Nosaka
- Department of Hematology, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Yuko Watanabe
- Department of Hematology, Kumamoto Shinto General Hospital, Kumamoto, Japan
| | - Hitoshi Suzushima
- Department of Hematology, Kumamoto Shinto General Hospital, Kumamoto, Japan
| | - Ki-Ryang Koh
- Department of Hematology, Osaka General Hospital of West Japan Railway Company, Osaka, Japan
| | - Masanori Nakagawa
- North Medical Center, Kyoto Prefectural University of Medicine, Yosano-cho, Kyoto, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Cellular Immune Responses against Simian T-Lymphotropic Virus Type 1 Target Tax in Infected Baboons. J Virol 2016; 90:5280-5291. [PMID: 26984729 DOI: 10.1128/jvi.00281-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/12/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED There are currently 5 million to 10 million human T-lymphotropic virus type 1 (HTLV-1)-infected people, and many of them will develop severe complications resulting from this infection. A vaccine is urgently needed in areas where HTLV-1 is endemic. Many vaccines are best tested in nonhuman primate animal models. As a first step in designing an effective HTLV-1 vaccine, we defined the CD8(+) and CD4(+) T cell response against simian T-lymphotropic virus type 1 (STLV-1), a virus closely related to HTLV-1, in olive baboons (Papio anubis). Consistent with persistent antigenic exposure, we observed that STLV-1-specific CD8(+) T cells displayed an effector memory phenotype and usually expressed CD107a, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α). To assess the viral targets of the cellular immune response in STLV-1-infected animals, we used intracellular cytokine staining to detect responses against overlapping peptides covering the entire STLV-1 proteome. Our results show that, similarly to humans, the baboon CD8(+) T cell response narrowly targeted the Tax protein. Our findings suggest that the STLV-1-infected baboon model may recapitulate some of the important aspects of the human response against HTLV-1 and could be an important tool for the development of immune-based therapy and prophylaxis. IMPORTANCE HTLV-1 infection can lead to many different and often fatal conditions. A vaccine deployed in areas of high prevalence might reduce the incidence of HTLV-1-induced disease. Unfortunately, there are very few animal models of HTLV-1 infection useful for testing vaccine approaches. Here we describe cellular immune responses in baboons against a closely related virus, STLV-1. We show for the first time that the immune response against STLV-1 in naturally infected baboons is largely directed against the Tax protein. Similar findings in humans and the sequence similarity between the human and baboon viruses suggest that the STLV-1-infected baboon model might be useful for developing a vaccine against HTLV-1.
Collapse
|
42
|
Shiohama Y, Naito T, Matsuzaki T, Tanaka R, Tomoyose T, Takashima H, Fukushima T, Tanaka Y, Saito M. Absolute quantification of HTLV-1 basic leucine zipper factor (HBZ) protein and its plasma antibody in HTLV-1 infected individuals with different clinical status. Retrovirology 2016; 13:29. [PMID: 27117327 PMCID: PMC4847349 DOI: 10.1186/s12977-016-0263-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human T cell leukemia virus type 1 (HTLV-1) basic leucine zipper factor (HBZ), which is encoded by a minus strand mRNA, is thought to play important roles in the development of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). However, a comprehensive analysis of HBZ, including mRNA and protein expression, humoral immunoreactivity against HBZ, and HTLV-1 proviral load (PVL), in HTLV-1-infected individuals with different clinical status has not been reported previously. RESULTS In this study, using novel monoclonal antibody-based in-house enzyme-linked immunosorbent assay systems, we report the absolute quantification of HBZ protein and its plasma antibody in clinical samples from HTLV-1-infected individuals with different clinical status. The data were compared to both HBZ mRNA levels and PVL. The results showed that plasma anti-HBZ antibody was detectable only in 10.4 % (5/48) of asymptomatic carriers (ACs), 10.8 % (13/120) of HAM/TSP patients, and 16.7 % (7/42) of ATL patients. HBZ protein was detected in three out of five patients with acute ATL, but was not detected in patients with HAM/TSP (0/10) or ACs (0/4). Thus, an antibody response to HBZ was not associated with the PVL or the expression of HBZ (both at the mRNA and protein levels) or the clinical status of the infection. CONCLUSIONS The present results emphasize the extremely low expression and immunogenicity of HBZ in natural HTLV-1 infection. However, there is a possibility that the low but distinct expression of HBZ protein in PBMCs is associated with the survival of HTLV-1-infected cells and the development of ATL.
Collapse
Affiliation(s)
- Yasuo Shiohama
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.,Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tadasuke Naito
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Toshio Matsuzaki
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Reiko Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Takeaki Tomoyose
- Division of Endocrinology, Diabetes and Metabolism, Hematology and Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Takuya Fukushima
- Laboratory of Hematoimmnology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan
| | - Mineki Saito
- Department of Microbiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan.
| |
Collapse
|
43
|
Manivannan K, Rowan AG, Tanaka Y, Taylor GP, Bangham CRM. CADM1/TSLC1 Identifies HTLV-1-Infected Cells and Determines Their Susceptibility to CTL-Mediated Lysis. PLoS Pathog 2016; 12:e1005560. [PMID: 27105228 PMCID: PMC4841533 DOI: 10.1371/journal.ppat.1005560] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/18/2016] [Indexed: 12/20/2022] Open
Abstract
Human T cell lymphotropic virus-1 (HTLV-1) primarily infects CD4+ T cells, causing inflammatory disorders or a T cell malignancy in 5% to 10% of carriers. The cytotoxic T lymphocyte (CTL) response is a key factor that controls the viral load and thus the risk of disease. The ability to detect the viral protein Tax in primary cells has made it possible to estimate the rate at which Tax-expressing infected cells are eliminated by CTLs in persistently infected people. However, most HTLV-1-infected cells are Tax–at a given time, and their immunophenotype is poorly defined. Here, we aimed to identify a cell-surface molecule expressed by both Tax+ and Tax–HTLV-1-infected cells and use it to analyse the CTL response in fresh peripheral blood mononuclear cells. Cell adhesion molecule 1 (CADM1/TSLC1) was the best single marker of HTLV-1 infection, identifying HTLV-1-infected cells with greater sensitivity and specificity than CD25, CCR4 or ICAM-1. CADM1+CD4+ T cells carried a median of 65% of proviral copies in peripheral blood. In a cohort of 23 individuals, we quantified the rate of CTL-mediated killing of Tax+ and Tax−CADM1+ cells. We show that CADM1 expression is associated with enhanced susceptibility of infected cells to CTL lysis: despite the immunodominance of Tax in the CTL response, Tax+CADM1– cells were inefficiently lysed by CTLs. Upregulation of the CADM1 ligand CRTAM on CD8+ T cells correlated with efficient lysis of infected cells. Tax–CADM1+ cells were lysed at a very low rate by autologous CTLs, however, were efficiently killed when loaded with exogenous peptide antigen. High expression of CADM1 on most HTLV-1-infected cells in the face of enhanced CTL counterselection implies that CADM1 confers a strong benefit on the virus. Human T cell lymphotropic virus-1 (HTLV-1) infects white blood cells (CD4+ T cells) for the lifetime of the host. The immune response limits viral spread, and people with a weak immune response have a high risk of developing an aggressive blood cancer, or a condition involving irreversible spinal cord damage. Virus and host are engaged in a constant battle: virus proteins drive the host cell to divide or infect new cells. We know that the viral protein Tax is an important target of the immune response, and cells which produce Tax are killed quickly. Infected cells which do not produce Tax are difficult to detect, so we have no idea how quickly they are killed. In this paper we show that most infected cells have a host protein ‘CADM1’ on their surface. We measured killing of CADM1 cells and saw that Tax+CADM1+ cells are the only infected cells which are strongly targeted by the immune response. We also found that infected cells which did not have CADM1 on the surface escaped killing, showing that CADM1 aids in immune control of HTLV-1. These findings are an important step forward in our understanding of cellular turnover and immune control in chronic infection.
Collapse
Affiliation(s)
- Kiruthika Manivannan
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Aileen G. Rowan
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Graham P. Taylor
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Charles R. M. Bangham
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Ma G, Yasunaga JI, Matsuoka M. Multifaceted functions and roles of HBZ in HTLV-1 pathogenesis. Retrovirology 2016; 13:16. [PMID: 26979059 PMCID: PMC4793531 DOI: 10.1186/s12977-016-0249-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/07/2016] [Indexed: 01/08/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus responsible for the development of adult T-cell leukemia (ATL). Although HTLV-1 harbors an oncogene, tax, that transforms T cells in vitro and induces leukemia in transgenic mice, tax expression is frequently disrupted in ATL, making the oncogenesis of ATL a bit mysterious. The HTLV-1 bZIP factor (HBZ) gene was discovered in 2002 and has been found to promote T-cell proliferation and cause lymphoma in transgenic mice. Thus HBZ has become a novel hotspot of HTLV-1 research. This review summarizes the current findings on HBZ with a special focus on its potential links to the oncogenesis of ATL. We propose viewing HBZ as a critical contributing factor in ATL development.
Collapse
Affiliation(s)
- Guangyong Ma
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Jun-Ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan.
| |
Collapse
|
45
|
Zhao T. The Role of HBZ in HTLV-1-Induced Oncogenesis. Viruses 2016; 8:v8020034. [PMID: 26848677 PMCID: PMC4776189 DOI: 10.3390/v8020034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 02/06/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and chronic inflammatory diseases. HTLV-1 bZIP factor (HBZ) is transcribed as an antisense transcript of the HTLV-1 provirus. Among the HTLV-1-encoded viral genes, HBZ is the only gene that is constitutively expressed in all ATL cases. Recent studies have demonstrated that HBZ plays an essential role in oncogenesis by regulating viral transcription and modulating multiple host factors, as well as cellular signaling pathways, that contribute to the development and continued growth of cancer. In this article, I summarize the current knowledge of the oncogenic function of HBZ in cell proliferation, apoptosis, T-cell differentiation, immune escape, and HTLV-1 pathogenesis.
Collapse
Affiliation(s)
- Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
| |
Collapse
|
46
|
Molecular Studies of HTLV-1 Replication: An Update. Viruses 2016; 8:v8020031. [PMID: 26828513 PMCID: PMC4776186 DOI: 10.3390/v8020031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 02/08/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) was the first human retrovirus discovered. Studies on HTLV-1 have been instrumental for our understanding of the molecular pathology of virus-induced cancers. HTLV-1 is the etiological agent of an adult T-cell leukemia (ATL) and can lead to a variety of neurological pathologies, including HTLV-1-associated-myelopathy/tropical spastic paraparesis (HAM/TSP). The ability to treat the aggressive ATL subtypes remains inadequate. HTLV-1 replicates by (1) an infectious cycle involving virus budding and infection of new permissive target cells and (2) mitotic division of cells harboring an integrated provirus. Virus replication initiates host antiviral immunity and the checkpoint control of cell proliferation, but HTLV-1 has evolved elegant strategies to counteract these host defense mechanisms to allow for virus persistence. The study of the molecular biology of HTLV-1 replication has provided crucial information for understanding HTLV-1 replication as well as aspects of viral replication that are shared between HTLV-1 and human immunodeficiency virus type 1 (HIV-1). Here in this review, we discuss the various stages of the virus replication cycle—both foundational knowledge as well as current updates of ongoing research that is important for understanding HTLV-1 molecular pathogenesis as well as in developing novel therapeutic strategies.
Collapse
|
47
|
Yasuma K, Yasunaga JI, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, Nakagawa M, Suzuki Y, Matsuoka M. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog 2016; 12:e1005372. [PMID: 26735971 PMCID: PMC4703212 DOI: 10.1371/journal.ppat.1005372] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) infects CD4+ T cells and induces proliferation of infected cells in vivo, which leads to the onset of adult T-cell leukemia (ATL) in some infected individuals. The HTLV-1 bZIP factor (HBZ) gene, which is encoded in the minus strand of HTLV-1, plays critical roles in pathogenesis. In this study, RNA-seq and ChIP-seq analyses using HBZ transduced T cells revealed that HBZ upregulates the expression and promoter acetylation levels of a co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT), in addition to those of regulatory T cells related genes, Foxp3 and Ccr4. TIGIT was expressed on CD4+ T cells from HBZ-transgenic (HBZ-Tg) mice, and on ATL cells and HTLV-1 infected CD4+ T cells of HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in vivo. Expression of Blimp1 and IL-10 was upregulated in TIGIT+CD4+ cells of HBZ-Tg mice compared with TIGIT-CD4+ T cells, suggesting the correlation between TIGIT expression and IL-10 production. When CD4+ T cells from HBZ-Tg mice were stimulated with TIGIT’s ligand, CD155, their production of the inhibitory cytokine IL-10 was enhanced. Furthermore, dendritic cells from HBZ-Tg mice produced high levels of IL-10 after stimulation. These data suggest that HBZ alters immune system to suppressive state via TIGIT and IL-10. Importantly, TIGIT suppressed T-cell responses to another HTLV-1 virus protein, Tax, in vitro. Blocking of TIGIT and PD-1 slightly increased anti-Tax T-cell activity in some HAM/TSP patients. These results suggest that HBZ-induced TIGIT on HTLV-1 infected cells impairs T-cell responses to viral antigens. This study shows that HBZ-induced TIGIT plays a pivotal role in attenuating host immune responses and shaping a microenvironment favorable to HTLV-1. HTLV-1 is a T-cell-tropic, latently infectious virus that causes a T-cell malignancy, ATL, and inflammatory diseases. The mechanisms by which HTLV-1 evades the immune response and establishes chronic infection are not yet understood. Recent studies have demonstrated that TIGIT, a co-inhibitory molecule, is expressed on tumor infiltrating T cells and T cells during viral infection, which suppresses the anti-tumor and anti-viral immune responses. Furthermore, blockade of co-inhibitory molecules of TIGIT and programmed cell death-1 (PD-1) disrupts immune checkpoints and enhances anti-tumor activity. We found that TIGIT is upregulated by HBZ, and TIGIT impairs anti-virus immune responses through an immunosuppressive cytokine, IL-10. These findings show that HTLV-1 utilizes a co-inhibitory molecule on infected cells to evade the host immune responses. We also found that blocking of TIGIT and PD-1 on peripheral blood mononuclear cells in HTLV-1 infected patients enhances immune responses to virus. These findings suggest a mechanism by which HTLV-1 shapes a microenvironment favorable to its persistence using induced TIGIT. TIGIT is a potential therapeutic target for ATL and HTLV-1 infected patients.
Collapse
Affiliation(s)
- Keiko Yasuma
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Jun-ichirou Yasunaga
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail: (JY); (MM)
| | - Keiko Takemoto
- Laboratory of Biological Protection, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kenji Sugata
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yuichi Mitobe
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Norihiro Takenouchi
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Masanori Nakagawa
- North Medical Center, Kyoto Prefectural University of Medicine, Yosano-cho, Kyoto, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
- * E-mail: (JY); (MM)
| |
Collapse
|
48
|
Pérès E, Bagdassarian E, This S, Villaudy J, Rigal D, Gazzolo L, Duc Dodon M. From Immunodeficiency to Humanization: The Contribution of Mouse Models to Explore HTLV-1 Leukemogenesis. Viruses 2015; 7:6371-86. [PMID: 26690200 PMCID: PMC4690867 DOI: 10.3390/v7122944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022] Open
Abstract
The first discovered human retrovirus, Human T-Lymphotropic Virus type 1 (HTLV-1), is responsible for an aggressive form of T cell leukemia/lymphoma. Mouse models recapitulating the leukemogenesis process have been helpful for understanding the mechanisms underlying the pathogenesis of this retroviral-induced disease. This review will focus on the recent advances in the generation of immunodeficient and human hemato-lymphoid system mice with a particular emphasis on the development of mouse models for HTLV-1-mediated pathogenesis, their present limitations and the challenges yet to be addressed.
Collapse
Affiliation(s)
- Eléonore Pérès
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
| | - Eugénie Bagdassarian
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
- Master BioSciences, Département de Biologie, ENS Lyon, 69366 Lyon Cedex 7, France.
| | - Sébastien This
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
- Master BioSciences, Département de Biologie, ENS Lyon, 69366 Lyon Cedex 7, France.
| | - Julien Villaudy
- AIMM Therapeutics, Meibergdreef 59, 1105 BA Amsterdam Zuidoost, The Netherlands.
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 BA Amsterdam Zuidoost, The Netherlands.
| | | | - Louis Gazzolo
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
| | - Madeleine Duc Dodon
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 7, France.
- SFR UMS3444 BioSciences Lyon-Gerland-Lyon Sud (UMS3444), 69366 Lyon Cedex 7, France.
| |
Collapse
|
49
|
Abstract
In this issue of Blood, Sugata et al report that vaccination against human T-cell leukemia virus type 1 (HTLV-1) basic leucine zipper (bZIP) factor (HBZ) could be used for immunotherapy in adult T-cell leukemia-lymphoma (ATL) patients.
Collapse
|