1
|
Green JR, Mahalingaiah PKS, Gopalakrishnan SM, Liguori MJ, Mittelstadt SW, Blomme EAG, Van Vleet TR. Off-target pharmacological activity at various kinases: Potential functional and pathological side effects. J Pharmacol Toxicol Methods 2023; 123:107468. [PMID: 37553032 DOI: 10.1016/j.vascn.2023.107468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.
Collapse
Affiliation(s)
- Jonathon R Green
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States.
| | | | - Sujatha M Gopalakrishnan
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Michael J Liguori
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Scott W Mittelstadt
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Eric A G Blomme
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Terry R Van Vleet
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| |
Collapse
|
2
|
Mertowska P, Smolak K, Mertowski S, Grywalska E. Unraveling the Role of Toll-like Receptors in the Immunopathogenesis of Selected Primary and Secondary Immunodeficiencies. Cells 2023; 12:2055. [PMID: 37626865 PMCID: PMC10453926 DOI: 10.3390/cells12162055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The human immune system is a complex network of cells, tissues, and molecules that work together to defend the body against pathogens and maintain overall health. However, in some individuals, the immune system fails to function correctly, leading to immunodeficiencies. Immunodeficiencies can be classified into primary (PID) and secondary (SID) types, each with distinct underlying causes and manifestations. Toll-like receptors (TLRs), as key components of the immune system, have been implicated in the pathogenesis of both PID and SID. In this study, we aim to unravel the intricate involvement of TLR2, TLR4, TLR3, TLR7, TLR8, and TLR9 in the immunopathogenesis of common variable immunodeficiency-CVID (as PID)-and chronic lymphocytic leukemia-CLL (as SID). The obtained results indicate a significant increase in the percentage of all tested subpopulations of T lymphocytes and B lymphocytes showing positive expression of all analyzed TLRs in patients with CVID and CLL compared to healthy volunteers, constituting the control group, which is also confirmed by analysis of the concentration of soluble forms of these receptors in the plasma of patients. Furthermore, patients diagnosed with CVID are characterized by the percentage of all lymphocytes showing positive expression of the tested TLR2, TLR4, TLR3, and TLR9 and their plasma concentrations in relation to patients with CLL. By investigating the functions and interactions of TLRs within the immune system, we seek to shed light on their critical role in the development and progression of these immunodeficiencies. Through a comprehensive analysis of the literature and presented experimental data, we hope to deepen our understanding of the complex mechanisms by which TLRs contribute to the pathogenesis of PID and SID. Ultimately, our findings may provide valuable insights into developing targeted therapeutic strategies to mitigate the impact of these disorders on those affected by immunodeficiency.
Collapse
Affiliation(s)
| | | | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | | |
Collapse
|
3
|
Macrophage- and BCR-derived but not TLR-derived signals support the growth of CLL and Richter syndrome murine models in vivo. Blood 2022; 140:2335-2347. [PMID: 36084319 DOI: 10.1182/blood.2022016272] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
A large amount of circumstantial evidence has accumulated suggesting that Toll-like receptor (TLR) signals are involved in driving chronic lymphocytic leukemia (CLL) cell proliferation, but direct in vivo evidence for this is still lacking. We have now further addressed this possibility by pharmacologically inhibiting or genetically inactivating the TLR pathway in murine CLL and human Richter syndrome (RS) patient-derived xenograft (PDX) cells. Surprisingly, we show that pharmacologic inhibition of TLR signaling by treatment with an IRAK1/4 inhibitor delays the growth of the transplanted malignant cells in recipient mice, but genetic inactivation of the same pathway by CRISPR/Cas9-mediated disruption of IRAK4 or its proximal adaptor MyD88 has no effect. We further show that treatment with the IRAK1/4 inhibitor results in depletion of macrophages and demonstrate that these cells can support the survival and enhance the proliferation of both murine Eμ-TCL1 leukemia and human RS cells. We also show that genetic disruption of the B-cell receptor (BCR) by CRISPR/Cas9 editing of the immunoglobulin M constant region gene inhibits the growth of human RS-PDX cells in vivo, consistent with our previous finding with murine Eμ-TCL1 leukemia cells. Finally, we show that genetic disruption of IRAK4 does not result in negative selection of human CLL cell lines xenografted in immunodeficient mice. The obtained data suggest that TLR signals are unlikely to represent a major driver of CLL/RS cell proliferation and provide further evidence that signals from macrophages and the BCR promote the growth and survival of CLL and RS cells in vivo.
Collapse
|
4
|
Revisiting TLR9 as a target for CLL therapy. Blood 2021; 137:3006-3008. [PMID: 34081121 DOI: 10.1182/blood.2020010618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Kennedy E, Coulter E, Halliwell E, Profitos-Peleja N, Walsby E, Clark B, Phillips EH, Burley TA, Mitchell S, Devereux S, Fegan CD, Jones CI, Johnston R, Chevassut T, Schulz R, Seiffert M, Agathanggelou A, Oldreive C, Davies N, Stankovic T, Liloglou T, Pepper C, Pepper AGS. TLR9 expression in chronic lymphocytic leukemia identifies a promigratory subpopulation and novel therapeutic target. Blood 2021; 137:3064-3078. [PMID: 33512408 PMCID: PMC8176769 DOI: 10.1182/blood.2020005964] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) remains incurable despite B-cell receptor-targeted inhibitors revolutionizing treatment. This suggests that other signaling molecules are involved in disease escape mechanisms and resistance. Toll-like receptor 9 (TLR9) is a promising candidate that is activated by unmethylated cytosine guanine dinucleotide-DNA. Here, we show that plasma from patients with CLL contains significantly more unmethylated DNA than plasma from healthy control subjects (P < .0001) and that cell-free DNA levels correlate with the prognostic markers CD38, β2-microglobulin, and lymphocyte doubling time. Furthermore, elevated cell-free DNA was associated with shorter time to first treatment (hazard ratio, 4.0; P = .003). We also show that TLR9 expression was associated with in vitro CLL cell migration (P < .001), and intracellular endosomal TLR9 strongly correlated with aberrant surface expression (sTLR9; r = 0.9). In addition, lymph node-derived CLL cells exhibited increased sTLR9 (P = .016), and RNA-sequencing of paired sTLR9hi and sTLR9lo CLL cells revealed differential transcription of genes involved in TLR signaling, adhesion, motility, and inflammation in sTLR9hi cells. Mechanistically, a TLR9 agonist, ODN2006, promoted CLL cell migration (P < .001) that was mediated by p65 NF-κB and STAT3 transcription factor activation. Importantly, autologous plasma induced the same effects, which were reversed by a TLR9 antagonist. Furthermore, high TLR9 expression promoted engraftment and rapid disease progression in a NOD/Shi-scid/IL-2Rγnull mouse xenograft model. Finally, we showed that dual targeting of TLR9 and Bruton's tyrosine kinase (BTK) was strongly synergistic (median combination index, 0.2 at half maximal effective dose), which highlights the distinct role for TLR9 signaling in CLL and the potential for combined targeting of TLR9 and BTK as a more effective treatment strategy in this incurable disease.
Collapse
Affiliation(s)
- Emma Kennedy
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Eve Coulter
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Emma Halliwell
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nuria Profitos-Peleja
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Elisabeth Walsby
- Cardiff CLL Research Group, Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Barnaby Clark
- Molecular Pathology Laboratory, King's College Hospital, London, United Kingdom
| | - Elizabeth H Phillips
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Thomas A Burley
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Simon Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Stephen Devereux
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Christopher D Fegan
- Cardiff CLL Research Group, Institute of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Christopher I Jones
- Department of Primary Care and Public Health, Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Rosalynd Johnston
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton, United Kingdom
| | - Tim Chevassut
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton, United Kingdom
| | - Ralph Schulz
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | | | - Angelo Agathanggelou
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Ceri Oldreive
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Nicholas Davies
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Tatjana Stankovic
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Triantafillos Liloglou
- Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Chris Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
| | - Andrea G S Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, United Kingdom
| |
Collapse
|
6
|
Ahmad Mokhtar AM, Hashim IF, Mohd Zaini Makhtar M, Salikin NH, Amin-Nordin S. The Role of RhoH in TCR Signalling and Its Involvement in Diseases. Cells 2021; 10:950. [PMID: 33923951 PMCID: PMC8072805 DOI: 10.3390/cells10040950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
As an atypical member of the Rho family small GTPases, RhoH shares less than 50% sequence similarity with other members, and its expression is commonly observed in the haematopoietic lineage. To date, RhoH function was observed in regulating T cell receptor signalling, and less is known in other haematopoietic cells. Its activation may not rely on the standard GDP/GTP cycling of small G proteins and is thought to be constitutively active because critical amino acids involved in GTP hydrolysis are absent. Alternatively, its activation can be regulated by other types of regulation, including lysosomal degradation, somatic mutation and transcriptional repressor, which also results in an altered protein expression. Aberrant protein expression of RhoH has been implicated not only in B cell malignancies but also in immune-related diseases, such as primary immunodeficiencies, systemic lupus erythematosus and psoriasis, wherein its involvement may provide the link between immune-related diseases and cancer. RhoH association with these diseases involves several other players, including its interacting partner, ZAP-70; activation regulators, Vav1 and RhoGDI and other small GTPases, such as RhoA, Rac1 and Cdc42. As such, RhoH and its associated proteins are potential attack points, especially in the treatment of cancer and immune-related diseases.
Collapse
Affiliation(s)
- Ana Masara Ahmad Mokhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (M.M.Z.M.); (N.H.S.)
| | - Ilie Fadzilah Hashim
- Primary Immunodeficiency Diseases Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas 13200, Penang, Malaysia;
| | - Muaz Mohd Zaini Makhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (M.M.Z.M.); (N.H.S.)
| | - Nor Hawani Salikin
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (M.M.Z.M.); (N.H.S.)
| | - Syafinaz Amin-Nordin
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
7
|
|
8
|
Chen J, Moore A, Ringshausen I. ZAP-70 Shapes the Immune Microenvironment in B Cell Malignancies. Front Oncol 2020; 10:595832. [PMID: 33194762 PMCID: PMC7653097 DOI: 10.3389/fonc.2020.595832] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Zeta-chain-associated protein kinase-70 (ZAP-70) is a tyrosine kinase mainly expressed in T cells, NK cells and a subset of B cells. Primarily it functions in T cell receptor (TCR) activation through its tyrosine kinase activity. Aberrant expression of ZAP-70 has been evidenced in different B cell malignancies, with high expression of ZAP-70 in a subset of patients with Chronic Lymphocytic Leukemia (CLL), associating with unfavorable disease outcomes. Previous studies to understand the mechanisms underlying this correlation have been focused on tumor intrinsic mechanisms, including the activation of B cell receptor (BCR) signaling. Recent evidence also suggests that ZAP-70, intrinsically expressed in tumor cells, can modulate the cross-talk between malignant B cells and the immune environment, implying a more complex role of ZAP-70 in the pathogenesis of B cell malignancies. Meanwhile, the indispensible roles of ZAP-70 in T cell and NK cell activation also demonstrate that the autologous expression of ZAP-70 in the immune environment can be a central target in modulation of tumor immunity. Here we review the evidences of the link between ZAP-70 and tumor immunology in the microenvironment in B cell malignancies. Considering an emerging role of immunotherapies in treating these conditions, understanding the distinct molecular functions of ZAP-70 in a broader cellular context could ultimately benefit patient care.
Collapse
Affiliation(s)
| | | | - Ingo Ringshausen
- Department of Haematology, Jeffrey Cheah Biomedical Centre, Wellcome Trust/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Haselager MV, Kater AP, Eldering E. Proliferative Signals in Chronic Lymphocytic Leukemia; What Are We Missing? Front Oncol 2020; 10:592205. [PMID: 33134182 PMCID: PMC7578574 DOI: 10.3389/fonc.2020.592205] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/18/2020] [Indexed: 12/23/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) cells cycle between lymphoid tissue sites where they actively proliferate, and the peripheral blood (PB) where they become quiescent. Strong evidence exists for a crucial role of B cell receptor (BCR) triggering, either by (self-)antigen or by receptor auto-engagement in the lymph node (LN) to drive CLL proliferation and provide adhesion. The clinical success of Bruton's tyrosine kinase (BTK) inhibitors is widely accepted to be based on blockade of the BCR signal. Additional signals in the LN that support CLL survival derive from surrounding cells, such as CD40L-presenting T helper cells, myeloid and stromal cells. It is not quite clear if and to what extent these non-BCR signals contribute to proliferation in situ. In vitro BCR triggering, in contrast, leads to low-level activation and does not result in cell division. Various combinations of non-BCR signals delivered via co-stimulatory receptors, Toll-like receptors (TLRs), and/or soluble cytokines are applied, leading to comparatively modest and short-lived CLL proliferation in vitro. Thus, an unresolved gap exists between the condition in the patient as we now understand it and applicable knowledge that can be harnessed in the laboratory for future therapeutic applications. Even in this era of targeted drugs, CLL remains largely incurable with frequent relapses and emergence of resistance. Therefore, we require better insight into all aspects of CLL growth and potential rewiring of signaling pathways. We aim here to provide an overview of in vivo versus in vitro signals involved in CLL proliferation, point out areas of missing knowledge and suggest future directions for research.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| | - Arnon P. Kater
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
- Department of Hematology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Academic University Medical Center, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Cancer Center Amsterdam, LYMMCARE, Amsterdam, Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, Netherlands
| |
Collapse
|
10
|
Bagacean C, Tomuleasa C, Tempescul A, Grewal R, Brooks WH, Berthou C, Renaudineau Y. Apoptotic resistance in chronic lymphocytic leukemia and therapeutic perspectives. Crit Rev Clin Lab Sci 2019; 56:321-332. [DOI: 10.1080/10408363.2019.1600468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Cristina Bagacean
- Department of Hematology, Brest University Medical School Hospital, Brest, France
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Brest, France
- Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Brest, France
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Tempescul
- Department of Hematology, Brest University Medical School Hospital, Brest, France
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Brest, France
| | - Ravnit Grewal
- South African National Bioinformatics Institute (SANBI), University of the Western Cape, Cape Town, South Africa
| | - Wesley H. Brooks
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Christian Berthou
- Department of Hematology, Brest University Medical School Hospital, Brest, France
- U1227 B Lymphocytes and Autoimmunity, University of Brest, INSERM, IBSAM, Brest, France
| | - Yves Renaudineau
- Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Brest, France
| |
Collapse
|
11
|
Schleiss C, Ilias W, Tahar O, Güler Y, Miguet L, Mayeur-Rousse C, Mauvieux L, Fornecker LM, Toussaint E, Herbrecht R, Bertrand F, Maumy-Bertrand M, Martin T, Fournel S, Georgel P, Bahram S, Vallat L. BCR-associated factors driving chronic lymphocytic leukemia cells proliferation ex vivo. Sci Rep 2019; 9:701. [PMID: 30679590 PMCID: PMC6345919 DOI: 10.1038/s41598-018-36853-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/21/2018] [Indexed: 01/18/2023] Open
Abstract
A chronic antigenic stimulation is believed to sustain the leukemogenic development of chronic lymphocytic leukemia (CLL) and most of lymphoproliferative malignancies developed from mature B cells. Reproducing a proliferative stimulation ex vivo is critical to decipher the mechanisms of leukemogenesis in these malignancies. However, functional studies of CLL cells remains limited since current ex vivo B cell receptor (BCR) stimulation protocols are not sufficient to induce the proliferation of these cells, pointing out the need of mandatory BCR co-factors in this process. Here, we investigated benefits of several BCR co-stimulatory molecules (IL-2, IL-4, IL-15, IL-21 and CD40 ligand) in multiple culture conditions. Our results demonstrated that BCR engagement (anti-IgM ligation) concomitant to CD40 ligand, IL-4 and IL-21 stimulation allowed CLL cells proliferation ex vivo. In addition, we established a proliferative advantage for ZAP70 positive CLL cells, associated to an increased phosphorylation of ZAP70/SYK and STAT6. Moreover, the use of a tri-dimensional matrix of methylcellulose and the addition of TLR9 agonists further increased this proliferative response. This ex vivo model of BCR stimulation with T-derived cytokines is a relevant and efficient model for functional studies of CLL as well as lymphoproliferative malignancies.
Collapse
Affiliation(s)
- Cédric Schleiss
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France
| | - Wassila Ilias
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France
| | - Ouria Tahar
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France.,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Yonca Güler
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France
| | - Laurent Miguet
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Laboratoire d'Hématologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Caroline Mayeur-Rousse
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Laboratoire d'Hématologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurent Mauvieux
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Laboratoire d'Hématologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Luc-Matthieu Fornecker
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Service d'Hématologie Adulte, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Elise Toussaint
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Service d'Hématologie Adulte, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Raoul Herbrecht
- Université de Strasbourg, INSERM, IRFAC UMR-S1113, Strasbourg, France.,Service d'Hématologie Adulte, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Frédéric Bertrand
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France.,Institut de Recherche Mathématique Avancée IRMA, CNRS UMR 7501, Strasbourg, France
| | - Myriam Maumy-Bertrand
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France.,Institut de Recherche Mathématique Avancée IRMA, CNRS UMR 7501, Strasbourg, France
| | - Thierry Martin
- Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France.,CNRS UPR 9021 - Immunologie et Chimie Thérapeutiques, Institut de Biologie Moléculaire et cellulaire (IBMC), Strasbourg, France
| | - Sylvie Fournel
- CNRS UMR7199, Université de Strasbourg, Illkirch, France
| | - Philippe Georgel
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France. .,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France.
| | - Laurent Vallat
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR-S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France. .,Fédération Hospitalo-Universitaire (FHU) OMICARE, Université de Strasbourg, Strasbourg, France. .,Laboratoire d'Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France. .,Université de Strasbourg, INSERM, IRFAC UMR-S1113, and Laboratoire d'Hématologie, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
12
|
TLR2 Expression on Leukemic B Cells from Patients with Chronic Lymphocytic Leukemia. Arch Immunol Ther Exp (Warsz) 2018; 67:55-65. [PMID: 30196472 PMCID: PMC6433797 DOI: 10.1007/s00005-018-0523-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023]
Abstract
Antigenic stimulation is considered as a possible trigger of neoplastic transformation in chronic lymphocytic leukemia (CLL). B-cell receptor plays a key role in the interactions between the microenvironment and leukemic cells; however, an important role has also been attributed to Toll-like receptors (TLRs). It is believed that disorders of TLR expression may play a part in the pathogenesis of CLL. In this study, we investigated the potential role of TLR2 in CLL by analyzing its expression on leukemic B cells in correlation with clinical and laboratory parameters characterizing disease activity and patients’ immune status. We assessed the frequencies of TLR2+/CD19+ cells by the flow cytometry method in peripheral blood of 119 patients with CLL. The percentage of TLR2+/CD19+ cells was significantly lower in patients with CLL as compared to the healthy volunteers. There was also a lower percentage of TLR2+/CD19+ cells in CLL patients with poor prognostic factors, such as ZAP70 and/or CD38 expression, 17p and/or 11q deletion. On the other hand, among patients with del(13q14) associated with favorable prognosis, the percentage of TLR2+/CD19+ cells was higher than among those with del(11q22) and/or del(17p13) as well as in the control group. We found an association between low percentage of CD19+/CD5+/TLR2+ cells and shorter time to treatment. We also demonstrated the relationship between low percentage of CD19+/CD5+ TLR2-positive and overall survival (OS) of CLL patients. CLL patients with a proportion of 1.6% TLR2-positive B CD5+ cells (according to the receiver operating characteristic curve analysis) or more had a longer time to treatment and longer OS than the group with a lower percentage of TLR2 positive cells. To sum up, the results of the study suggest that low TLR2 expression is associated with poor prognosis in CLL patients. The monitoring of CD19+/CD5+/TLR2+ cells number may provide useful information on disease activity. Level of TLR2 expression on leukemic B cells may be an important factor of immunological dysfunction for patients with CLL. Our study suggests that TLR2 could becomes potential biological markers for the clinical outcome in patients with CLL.
Collapse
|
13
|
Affiliation(s)
- Byron B. Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Lin Shen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
14
|
Liu Y, Wang Y, Yang J, Bi Y, Wang H. ZAP-70 in chronic lymphocytic leukemia: A meta-analysis. Clin Chim Acta 2018; 483:82-88. [PMID: 29680229 DOI: 10.1016/j.cca.2018.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Recent studies have reported that zeta-chain-associated protein kinase 70 (ZAP-70) expression plays a prognostic role in chronic lymphocytic leukemia (CLL). However, these results remain controversial. Thus, we performed a meta-analysis to clarify the prognostic value of ZAP-70 expression in CLL. MATERIALS AND METHODS Relevant studies were searched in PubMed, Embase, Cochrane library, and Web of Science up to January 2018. Clinicopathological features and prognostic data were extracted from the studies. We pooled estimates and 95% confidence intervals (CIs) and estimated the heterogeneity of studies using Mantel-Haenszel or DerSimonian and Laird method. RESULTS Twelve studies that included 1956 patients with CLL were eligible for inclusion. The pooled results revealed that increased ZAP-70 expression was significantly associated with poor overall survival (hazard ratio [HR] = 2.48, 95% CI: 1.72-3.59, P = 0.019, I2 = 53.0%) and event-free survival (HR = 4.17, 95% CI: 2.17-8.01, P = 0.014, I2 = 68.2%) in a random-effects model with significant heterogeneity. Clinicopathological analysis demonstrated that ZAP-70 expression was significantly associated with unmutated immunoglobulin heavy-chain genes, CD38 expression, serum β-2 microglobulin, and lymphocyte doubling time. CONCLUSIONS Our findings indicated that ZAP-70 was a strong prognostic biomarker for patients with CLL.
Collapse
Affiliation(s)
- Yini Liu
- Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, Donghu Road 115, Wuhan 430071, China
| | - Yangfeng Wang
- Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, Donghu Road 115, Wuhan 430071, China
| | - Jule Yang
- Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, Donghu Road 115, Wuhan 430071, China
| | - Yongyi Bi
- Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, Donghu Road 115, Wuhan 430071, China
| | - Hong Wang
- Department of Occupational and Environmental Health, School of Health Sciences, Wuhan University, Donghu Road 115, Wuhan 430071, China.
| |
Collapse
|
15
|
Till KJ, Allen JC, Talab F, Lin K, Allsup D, Cawkwell L, Bentley A, Ringshausen I, Duckworth AD, Pettitt AR, Kalakonda N, Slupsky JR. Lck is a relevant target in chronic lymphocytic leukaemia cells whose expression variance is unrelated to disease outcome. Sci Rep 2017; 7:16784. [PMID: 29196709 PMCID: PMC5711840 DOI: 10.1038/s41598-017-17021-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
Pathogenesis of chronic lymphocytic leukaemia (CLL) is contingent upon antigen receptor (BCR) expressed by malignant cells of this disease. Studies on somatic hypermutation of the antigen binding region, receptor expression levels and signal capacity have all linked BCR on CLL cells to disease prognosis. Our previous work showed that the src-family kinase Lck is a targetable mediator of BCR signalling in CLL cells, and that variance in Lck expression associated with ability of BCR to induce signal upon engagement. This latter finding makes Lck similar to ZAP70, another T-cell kinase whose aberrant expression in CLL cells also associates with BCR signalling capacity, but also different because ZAP70 is not easily pharmacologically targetable. Here we describe a robust method of measuring Lck expression in CLL cells using flow cytometry. However, unlike ZAP70 whose expression in CLL cells predicts prognosis, we find Lck expression and disease outcome in CLL are unrelated despite observations that its inhibition produces effects that biologically resemble the egress phenotype taken on by CLL cells treated with idelalisib. Taken together, our findings provide insight into the pathobiology of CLL to suggest a more complex relationship between expression of molecules within the BCR signalling pathway and disease outcome.
Collapse
Affiliation(s)
- Kathleen J Till
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - John C Allen
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Fatima Talab
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Ke Lin
- Department of Haematology, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, UK
| | - David Allsup
- Department of Haematology, Queens Centre for Oncology and Haematology, Hull and East Yorkshire Hospitals NHS Trust, Yorkshire, UK
| | - Lynn Cawkwell
- School of Life Sciences, University of Hull, Hull, UK
- Hull York Medical School, University of Hull, Hull, UK
| | | | - Ingo Ringshausen
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Andrew D Duckworth
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Andrew R Pettitt
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Nagesh Kalakonda
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
16
|
Fonte E, Vilia MG, Reverberi D, Sana I, Scarfò L, Ranghetti P, Orfanelli U, Cenci S, Cutrona G, Ghia P, Muzio M. Toll-like receptor 9 stimulation can induce IκBζ expression and IgM secretion in chronic lymphocytic leukemia cells. Haematologica 2017; 102:1901-1912. [PMID: 28775123 PMCID: PMC5664394 DOI: 10.3324/haematol.2017.165878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic lymphocytic leukemia cells strongly depend on external stimuli for their survival. Both antigen receptor and co-stimulatory receptors, including Toll-like receptors, can modulate viability and proliferation of leukemic cells. Toll-like receptor ligands, and particularly the TLR9 ligand CpG, mediate heterogeneous responses in patients' samples reflecting the clinical course of the subjects. However, the molecular framework of the key signaling events underlying such heterogeneity is undefined. We focused our studies on a subset of chronic lymphocytic leukemia cases characterized by expression of CD38 and unmutated immunoglobulin genes, who respond to CpG with enhanced metabolic cell activity. We report that, while CpG induces NFKBIZ mRNA in all the samples analyzed, it induces the IκBζ protein in a selected group of cases, through an unanticipated post-transcriptional mechanism. Interestingly, IκBζ plays a causal role in sustaining CpG-induced cell viability and chemoresistance, and CpG stimulation can unleash immunoglobulin secretion by IκBζ-positive malignant cells. These results identify and characterize IκBζ as a marker and effector molecule of distinct key pathways in chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Eleonora Fonte
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Maria Giovanna Vilia
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| | | | - Ilenia Sana
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Lydia Scarfò
- B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy.,Università Vita-Salute San Raffaele, Milano, Italy
| | - Pamela Ranghetti
- B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Ugo Orfanelli
- Age Related Diseases Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Simone Cenci
- Age Related Diseases Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Hospital, Milano, Italy
| | - Giovanna Cutrona
- UOC Patologia Molecolare, IRCCS AOU S. Martino-IST, Genova, Italy
| | - Paolo Ghia
- B-Cell Neoplasia Unit and Strategic Research Program on CLL, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy.,Università Vita-Salute San Raffaele, Milano, Italy
| | - Marta Muzio
- Cell Signaling Unit, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Milano, Italy
| |
Collapse
|
17
|
Jayappa KD, Portell CA, Gordon VL, Capaldo BJ, Bekiranov S, Axelrod MJ, Brett LK, Wulfkuhle JD, Gallagher RI, Petricoin EF, Bender TP, Williams ME, Weber MJ. Microenvironmental agonists generate de novo phenotypic resistance to combined ibrutinib plus venetoclax in CLL and MCL. Blood Adv 2017; 1:933-946. [PMID: 29034364 PMCID: PMC5637393 DOI: 10.1182/bloodadvances.2016004176] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
Abstract
De novo resistance and rapid recurrence often characterize responses of B-cell malignancies to ibrutinib (IBR), indicating a need to develop drug combinations that block compensatory survival signaling and give deeper, more durable responses. To identify such combinations, we previously performed a combinatorial drug screen and identified the Bcl-2 inhibitor venetoclax (VEN) as a promising partner for combination with IBR in Mantle Cell Lymphoma (MCL). We have opened a multi-institutional clinical trial to test this combination. However, analysis of primary samples from patients with MCL as well as chronic lymphocytic leukemia (CLL) revealed unexpected heterogeneous de novo resistance even to the IBR+VEN combination. In the current study, we demonstrate that resistance to the combination can be generated by microenvironmental agonists: IL-10, CD40L and, most potently, CpG-oligodeoxynucleotides (CpG-ODN), which is a surrogate for unmethylated DNA and a specific agonist for TLR9 signaling. Incubation with these agonists caused robust activation of NF-κB signaling, especially alternative NF-κB, which led to enhanced expression of the anti-apoptotic proteins Mcl-1, Bcl-xL, and survivin, thus decreasing dependence on Bcl-2. Inhibitors of NF-κB signaling blocked overexpression of these anti-apoptotic proteins and overcame resistance. Inhibitors of Mcl-1, Bcl-xL, or survivin also overcame this resistance, and showed synergistic benefit with the IBR+VEN combination. We conclude that microenvironmental factors, particularly the TLR9 agonist, can generate de novo resistance to the IBR+VEN combination in CLL and MCL cells. This signaling pathway presents targets for overcoming drug resistance induced by extrinsic microenvironmental factors in diverse B-cell malignancies.
Collapse
Affiliation(s)
- Kallesh D Jayappa
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Craig A Portell
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Cancer Center, University of Virginia, Charlottesville, VA, United States
| | - Vicki L Gordon
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Brian J Capaldo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Mark J Axelrod
- Gilead Sciences, 199 E. Blaine St., Seattle, WA, United States
| | - L Kyle Brett
- Utica Park Clinic, Medical Oncology, 1245 S Utica Ave Suite #100, Tulsa, OK, United States
| | - Julia D Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Timothy P Bender
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Beirne B. Carter Center for Immunology Research, Charlottesville, VA, United States
| | - Michael E Williams
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Cancer Center, University of Virginia, Charlottesville, VA, United States
| | - Michael J Weber
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- Cancer Center, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
18
|
Stache V, Verlaat L, Gätjen M, Heinig K, Westermann J, Rehm A, Höpken UE. The splenic marginal zone shapes the phenotype of leukemia B cells and facilitates their niche-specific retention and survival. Oncoimmunology 2017; 6:e1323155. [PMID: 28680761 DOI: 10.1080/2162402x.2017.1323155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022] Open
Abstract
Microenvironmental regulation in lymphoid tissues is essential for the development of chronic lymphocytic leukemia. We identified cellular and molecular factors provided by the splenic marginal zone (MZ), which alter the migratory and adhesive behavior of leukemic cells. We used the Cxcr5-/-Eµ-Tcl1 leukemia mouse model, in which tumor cells are excluded from B cell follicles and instead accumulate within the MZ. Genes involved in MZ B cell development and genes encoding for adhesion molecules were upregulated in MZ-localized Cxcr5-/-Eµ-Tcl1 cells. Likewise, surface expression of the adhesion and homing molecules, CD49d/VLA-4 and CXCR7, and of NOTCH2 was increased. In vitro, exposing Eµ-Tcl1 cells or human CLL cells to niche-specific stimuli, like B cell receptor- or Toll-like receptor ligands, caused surface expression of these molecules characteristic for a follicular or MZ-like microenvironment, respectively. In vivo, inhibition of VLA-4-mediated adhesion and CXCL13-mediated follicular homing displaced leukemic cells not only from the follicle, but also from the MZ and reduced leukemia progression. We conclude that MZ-specific factors shape the phenotype of leukemic cells and facilitate their niche-specific retention. This strong microenvironmental influence gains pathogenic significance independent from tumor-specific genetic aberrations.
Collapse
Affiliation(s)
- Vanessa Stache
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Lydia Verlaat
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Marcel Gätjen
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Kristina Heinig
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Jörg Westermann
- Department of Hematology, Oncology and Tumorimmunology, Charité-University Medicine , Berlin, Germany
| | - Armin Rehm
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| | - Uta E Höpken
- Max-Delbrück-Center for Molecular Medicine, MDC, Berlin, Germany
| |
Collapse
|
19
|
Slinger E, Thijssen R, Kater AP, Eldering E. Targeting antigen-independent proliferation in chronic lymphocytic leukemia through differential kinase inhibition. Leukemia 2017; 31:2601-2607. [PMID: 28462919 DOI: 10.1038/leu.2017.129] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 04/11/2017] [Accepted: 04/20/2017] [Indexed: 12/17/2022]
Abstract
The clinical success of B-cell receptor (BCR) signaling pathway inhibitors in chronic lymphocytic leukemia (CLL) is attributed to inhibition of adhesion in and migration towards the lymph node. Proliferation of CLL cells is restricted to this protective niche, but the underlying mechanism(s) is/are not known. Treatment with BCR pathway inhibitors results in rapid reductions of total clone size, while CLL cell survival is not affected, which points towards inhibition of proliferation. In vitro, BCR stimulation does not induce proliferation of CLL, but triggering via Toll-like receptor, tumor necrosis factor or cytokine receptors does. Here, we investigated the effects of clinically applied inhibitors that target BCR signaling, in the context of proliferation triggered either via CD40L/IL-21 or after CpG stimulation. CD40L/IL-21-induced proliferation could be inhibited by idelalisib and ibrutinib. We demonstrate this was due to blockade of CD40L-induced ERK-signaling. Targeting JAKs, but not SYK, blocked CD40L/IL-21-induced proliferation. In contrast, PI3K, BTK as well as SYK inhibition prevented CpG-induced proliferation. Knockdown experiments showed that CD40L/IL-21 did not co-opt upstream BCR components such as CD79A, in contrast to CpG-induced proliferation. Our data indicate that currently applied BTK/PI3K inhibitors target antigen-independent proliferation in CLL, and suggest that targeting of JAK and/or SYK might be clinically useful.
Collapse
Affiliation(s)
- E Slinger
- Cancer Center Amsterdam, Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | - R Thijssen
- Cancer Center Amsterdam, Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Cancer Center Amsterdam, Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands
| | - A P Kater
- Cancer Center Amsterdam, Department of Hematology, Academic Medical Center, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| | - E Eldering
- Cancer Center Amsterdam, Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.,Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam, The Netherlands
| |
Collapse
|
20
|
Serdaroglu A, Müller SA, Schepers U, Bräse S, Weichert W, Lichtenthaler SF, Kuhn PH. An optimised version of the secretome protein enrichment with click sugars (SPECS) method leads to enhanced coverage of the secretome. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600423] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Alperen Serdaroglu
- Institut für Allgemeine Pathologie und pathologische Anatomie; Technische Universität München; München Germany
- Institute for Advanced Study; Technische Universität München; Garching Germany
| | - Stephan A. Müller
- Lehrstuhl für Neuroproteomik; Klinikum rechts der Isar; Technische Universität München; München Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V.; München Germany
| | - Ute Schepers
- Institut für Toxikologie und Genetik; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Stefan Bräse
- Institut für Toxikologie und Genetik; Karlsruhe Institute of Technology; Karlsruhe Germany
| | - Wilko Weichert
- Institut für Allgemeine Pathologie und pathologische Anatomie; Technische Universität München; München Germany
| | - Stefan F. Lichtenthaler
- Institute for Advanced Study; Technische Universität München; Garching Germany
- Lehrstuhl für Neuroproteomik; Klinikum rechts der Isar; Technische Universität München; München Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V.; München Germany
- Munich Cluster for Systems Neurology (SyNergy); Munich Germany
| | - Peer-Hendrik Kuhn
- Institut für Allgemeine Pathologie und pathologische Anatomie; Technische Universität München; München Germany
- Institute for Advanced Study; Technische Universität München; Garching Germany
| |
Collapse
|
21
|
Abstract
In this issue of Blood, Wagner et al describe a complex signaling model that explains the mechanism of action of a long-known prognostic marker in chronic lymphocytic leukemia (CLL) and integrates its function with the innate immune system and B-cell receptor signaling.
Collapse
|
22
|
Allen JC, Talab F, Slupsky JR. Targeting B-cell receptor signaling in leukemia and lymphoma: how and why? Int J Hematol Oncol 2016; 5:37-53. [PMID: 30302202 DOI: 10.2217/ijh-2016-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/13/2016] [Indexed: 01/04/2023] Open
Abstract
B-lymphocytes are dependent on B-cell receptor (BCR) signaling for the constant maintenance of their physiological function, and in many B-cell malignancies this signaling pathway is prone to aberrant activation. This understanding has led to an ever-increasing interest in the signaling networks activated following ligation of the BCR in both normal and malignant cells, and has been critical in establishing an array of small molecule inhibitors targeting BCR-induced signaling. By dissecting how different malignancies signal through BCR, researchers are contributing to the design of more customized therapeutics which have greater efficacy and lower toxicity than previous therapies. This allows clinicians access to an array of approaches to best treat patients whose malignancies have BCR signaling as a driver of pathogenesis.
Collapse
Affiliation(s)
- John C Allen
- Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK.,Department of Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GE, UK
| | - Fatima Talab
- Redx Oncology Plc, Duncan Building, Royal Liverpool University Hospital, Daulby Street, Liverpool, L69 3GA, UK.,Redx Oncology Plc, Duncan Building, Royal Liverpool University Hospital, Daulby Street, Liverpool, L69 3GA, UK
| | - Joseph R Slupsky
- Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.,Department of Molecular & Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| |
Collapse
|
23
|
Xiao W, Chen WW, Sorbara L, Davies-Hill T, Pittaluga S, Raffeld M, Jaffe ES. Hodgkin lymphoma variant of Richter transformation: morphology, Epstein-Barr virus status, clonality, and survival analysis-with comparison to Hodgkin-like lesion. Hum Pathol 2016; 55:108-116. [PMID: 27184478 DOI: 10.1016/j.humpath.2016.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
Hodgkin/Reed-Sternberg (HRS) cells in the setting of chronic lymphocytic leukemia (CLL) exist in 2 forms: type I with isolated HRS cells in a CLL background (Hodgkin-like lesion) and type II with typical classic Hodgkin lymphoma, a variant of Richter transformation (CHL-RT). The clinical significance of the 2 morphological patterns is unclear, and their biological features have not been compared. We retrospectively reviewed 77 cases: 26 of type I and 51 of type II CHL-RT; 3 cases progressed from type I to type II. We examined clinical features, Epstein-Barr virus (EBV) status, and clonal relatedness after microdissection. Median age for type I was 62 years versus 73 years for type II (P=.01); 27% (type I) versus 73% (type II) had a history of CLL. HRS cells were positive for EBV in 71% (55/77), similar in types I and II. Clonality analysis was performed in 33 cases (type I and type II combined): HRS cells were clonally related to the underlying CLL in 14 and unrelated in 19. ZAP-70 expression of the CLL cells but not EBV status or morphological pattern was correlated with clonal relatedness: all 14 clonally related cases were ZAP-70 negative, whereas 74% (14/19) of clonally unrelated cases were ZAP-70 positive. Overall median survival (types I and II) after diagnosis was 44 months. Advanced age was an adverse risk factor for survival, but not histologic pattern, type I versus type II. HRS-like cells in a background of CLL carries a similar clinical risk to that of CHL-RT and may progress to classic Hodgkin lymphoma in some cases.
Collapse
Affiliation(s)
- Wenbin Xiao
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Wayne W Chen
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lynn Sorbara
- Molecular Diagnostic Unit, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Theresa Davies-Hill
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark Raffeld
- Molecular Diagnostic Unit, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|