1
|
Harris EM, Chamseddine S, Chu A, Senkpeil L, Nikiciuk M, Bourdine A, Magin L, Al-Musa A, Woods B, Ozdogan E, Saker S, van Konijnenburg DPH, Yee CS, Nelson RW, Lee P, Halyabar O, Hale RC, Day-Lewis M, Henderson LA, Nguyen AA, Elkins M, Ohsumi TK, Gutierrez-Arcelus M, Peyper JM, Platt CD, Grace RF, LaBere B, Chou J. T cell and autoantibody profiling for primary immune regulatory disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.02.25.24303331. [PMID: 38464255 PMCID: PMC10925364 DOI: 10.1101/2024.02.25.24303331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Limited clinical tools exist for characterizing primary immune regulatory disorders (PIRD), which are often diagnoses of exclusion. Increased CD4+CXCR5+PD1+ circulating T follicular helper (cTfh) cell percentages have been identified as a marker of active disease in some, but not all, autoimmune disorders. Objective To develop a diagnostic approach that combines measurements of cellular and serologic autoimmunity. Methods We recruited 71 controls and 101 pediatric patients with PIRD with autoimmunity. Flow cytometry was used to measure CD4+CXCR5+ T cells expressing the chemokine receptors CXCR3 and/or CCR6. IgG and IgA autoantibodies were quantified in 56 patients and 20 controls using a microarray featuring 1616 full-length, conformationally intact protein antigens. The 97.5th percentile in the controls serves as the upper limit of normal for percentages of cTfh cells, CD4+CXCR5+ T cells expressing CXCR3 and/or CCR6, and autoantibody intensity and number. Results We found that 27.7% of patients had increased percentages of CD4+CXCR5+PD1+ cTfh cells and 42.5% had increased percentages of CD4+CXCR5+ cells expressing CXCR3 and/or CCR6. Patients had significantly more diverse IgG and IgA autoantibodies than controls and 37.5% had increased numbers of high-titer autoantibodies. Integrating measurements of cTfh cells, CD4+CXCR5+ T cells with CXCR3 and/or CCR6, and numbers of high-titer autoantibodies had 71.4% sensitivity (95% CI: 0.5852 - 0.8158) and 85% specificity (95% CI: 0.6396 - 0.9476) for patients with PIRD compared to controls. Conclusion By integrating CD4+ T cell phenotyping and total burden of autoantibodies, this approach provides additional tools for the diagnosis of PIRD lacking clinical diagnostic criteria.
Collapse
Affiliation(s)
- Emily M. Harris
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Chamseddine
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Anne Chu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Northeastern University, Boston, MA
| | - Leetah Senkpeil
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew Nikiciuk
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Northeastern University, Boston, MA
| | - Aleksandra Bourdine
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Logan Magin
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Amer Al-Musa
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Woods
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sarife Saker
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Christina S.K. Yee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan W. Nelson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Pui Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Olha Halyabar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca C. Hale
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Megan Day-Lewis
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan A. Nguyen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Megan Elkins
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Toshiro K. Ohsumi
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Craig D. Platt
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachael F. Grace
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Brenna LaBere
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Current affiliation: Division of Allergy and Immunology, Phoenix Children’s Hospital, Phoenix, AZ 85016
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Ye L, Song X, Cui Y, Wu S, Wang Y, Zhang T, Weng W, Ge T. Sirolimus alleviated intractable diarrhea of IPEX syndrome: a case report and literature review. BMC Pediatr 2024; 24:806. [PMID: 39696094 PMCID: PMC11653752 DOI: 10.1186/s12887-024-05264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a rare single-gene X-linked immunodeficiency disease caused by mutations in the forkhead box protein 3 (FOXP3) gene. The typical clinical manifestations of IPEX mainly include severe atopic dermatitis, insulin-dependent type 1 diabetes mellitus, and intractable diarrhea. CASE PRESENTATION Here, we report a boy with intractable diarrhea diagnosed with early-onset IPEX syndrome due to the c.434C > T (p.Ala145Val) mutation in exon 4 of the FOXP3 gene. The patient experienced intractable diarrhea and severe weight loss, and his clinical symptoms could not be alleviated by conventional supportive and anti-infection treatment. Sirolimus, an immunosuppressant, preferentially inhibits effector T cells while allowing the proliferation of Tregs and is used to treat IPEX patients and alleviate intractable diarrhea. CONCLUSION We reviewed the literature on the use of sirolimus for the treatment of IPEX syndrome over the past two decades.
Collapse
Affiliation(s)
- Lin Ye
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Xue Song
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200062, China
| | - Shengnan Wu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Yizhong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China.
| | - Ting Ge
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, 355 Luding Road, Shanghai, 200062, China.
| |
Collapse
|
3
|
Rao VK, Pittaluga S, Uzel G. Beyond FAScinating: advances in diagnosis and management of autoimmune lymphoproliferative syndrome and activated PI3 kinase δ syndrome. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:126-136. [PMID: 39644063 DOI: 10.1182/hematology.2024000537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Refractory autoimmune mutilineage cytopenias can present in childhood associated with chronic nonmalignant lymphoproliferation (splenomegaly, hepatomegaly, and/or lymphadenopathy). Cytopenias due to peripheral destruction and sequestration have been well recognized since the 1950s and are often lumped together as eponymous syndromes, such as Evans syndrome and Canale-Smith syndrome. Though their clinical and genetic diagnostic workup may appear daunting, it can provide the basis for early intervention, genetic counseling, and empirical and targeted therapies. Autoimmune lymphoproliferative syndrome (ALPS), activated phosphatidylinositol 3-kinase delta syndrome (APDS), and many other related genetic disorders are otherwise collectively known as inborn errors of immunity (IEI). They present in early childhood as refractory autoimmune cytopenias due to immune dysregulation leading to lymphadenopathy, splenomegaly, and increased susceptibility to lymphoma. More recently, controlled clinical trials have shown that some of these immune system disorders with hematological manifestations might be more readily amenable to specific targeted treatments, thus preventing end-organ damage and associated comorbidities. Over the last 20 years, both rapamycin and mycophenolate mofetil have been successfully used as steroid-sparing long-term measures in ALPS. Current therapeutic options for APDS/PASLI (phosphoinositide 3-kinase [PI3K]-associated senescent T lymphocytes, lymphadenopathy, and immunodeficiency) include the orally bioavailable PI3Kδ inhibitor, leniolisib, which was licensed by the US Food and Drug Administration (FDA) in 2023 for use in individuals older than 12 years as a targeted treatment. Paradigms learned from patients with rare genetic disorders like ALPS and APDS may help in exploring and streamlining molecular therapy strategies in the wider group of IEIs presenting with refractory cytopenias and lymphoproliferation.
Collapse
Affiliation(s)
- V Koneti Rao
- National Institutes of Health (NIH), Bethesda, MD
| | | | - Gulbu Uzel
- National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|
4
|
Lambert MP. On the horizon: upcoming new agents for the management of ITP. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:692-699. [PMID: 39644072 DOI: 10.1182/hematology.2024000596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Treatment of immune thrombocytopenia (ITP) has evolved over the last 20 years in response to our increased understanding of the pathophysiology of this complex immune disorder. New treatments in development have taken advantage of our evolving understanding of the biology of this disease to target new mechanisms and expand the available ways in which to approach patients with this disorder. This review focuses on novel therapeutics in the ITP pipeline and discusses the pathophysiology of ITP that has led to their development.
Collapse
Affiliation(s)
- Michele P Lambert
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA; and Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Ehrenzeller SA, Lukesh NR, Stiepel RT, Middleton DD, Nuzzolo SM, Tate AJ, Batty CJ, Bachelder EM, Ainslie KM. Comparison of emulsion and spray methods for fabrication of rapamycin-loaded acetalated dextran microparticles. RSC PHARMACEUTICS 2024; 1:727-741. [PMID: 39415944 PMCID: PMC11474811 DOI: 10.1039/d4pm00054d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/04/2024] [Indexed: 10/19/2024]
Abstract
Rapamycin (rapa), an immunosuppressive medication, has demonstrated considerable effectiveness in reducing organ transplant rejection and treating select autoimmune diseases. However, the standard oral administration of rapa results in poor bioavailability, broad biodistribution, and harmful off-target effects, necessitating improved drug delivery formulations. Polymeric microparticles (MPs) are one such solution and have demonstrated promise in pre-clinical studies to improve the therapeutic efficacy of rapa. Nevertheless, MP formulations are highly diverse, and fabrication method selection is a critical consideration in formulation design. Herein, we compared common fabrication processes for the development of rapa-loaded MPs. Using the biopolymer acetalated dextran (Ace-DEX), rapa-loaded MPs were fabricated by both emulsion (homogenization and sonication) and spray (electrospray and spray drying) methods, and resultant MPs were characterized for size, morphology, surface charge, and drug release kinetics. MPs were then screened in LPS-stimulated macrophages to gauge immunosuppressive efficacy relative to soluble drug. We determined that homogenized MPs possessed the most optimal combination of sizing, tunable drug release kinetics, and immunosuppressive efficacy, and we subsequently demonstrated that these characteristics were maintained across a range of potential rapa loadings. Further, we performed in vivo trafficking studies to evaluate depot kinetics and cellular uptake at the injection site after subcutaneous injection of homogenized MPs. We observed preferential MP uptake by dendritic cells at the depot, highlighting the potential for MPs to direct more targeted drug delivery. Our results emphasize the significance of fabrication method in modulating the efficacy of MP systems and inform improved formulation design for the delivery of rapa.
Collapse
Affiliation(s)
- Stephen A Ehrenzeller
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Nicole Rose Lukesh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Denzel D Middleton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Steven M Nuzzolo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Aliyah J Tate
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Cole J Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University Chapel Hill North Carolina USA
- Department of Microbiology & Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| |
Collapse
|
6
|
[Chinese expert consensus on the diagnosis and treatment of Evans syndrome (2024)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:809-815. [PMID: 39414602 PMCID: PMC11518912 DOI: 10.3760/cma.j.cn121090-20240506-00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Indexed: 10/18/2024]
Abstract
Evans syndrome (ES) is a rare autoimmune disorder characterized by the presence of at least two autoimmune cytopenias (AIC), including immune thrombocytopenia (ITP), autoimmune hemolytic anemia (AIHA), and autoimmune neutropenia (AIN). Secondary ES accounts for 21%-50% of cases. ES is characterized by recurrent relapses, serious complications such as thrombosis and infection, and high mortality. The management of ES is highly heterogeneous, necessitating treatment for AIC, the primary disease, as well as associated complications. However, there remains a lack of prospective evidence, randomized clinical trials for ES. To standardize the diagnosis and management of ES in China effectively, this consensus was developed by the Red Blood Cell Diseases (Anemia) Group under the Chinese Society of Hematology within the Chinese Medical Association. It aims to provide valuable guidance for diagnosing and managing ES in clinical practice based on international consensus and comprehensive review of both domestic and international literature.
Collapse
|
7
|
Wang YY, Zou LP, Xu KF, Xu WS, Zhang MN, Lu Q, Tian XL, Pang LY, He W, Wang QH, Gao Y, Liu LY, Chen XQ, Ma SF, Chen HM, Dun S, Yang XY, Luo XM, Huang LL, Li YF. Long-term safety and influence on growth in patients receiving sirolimus: a pooled analysis. Orphanet J Rare Dis 2024; 19:299. [PMID: 39148107 PMCID: PMC11325711 DOI: 10.1186/s13023-024-03243-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/05/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Sirolimus is increasingly utilized in treating diseases associated with mTOR pathway overactivation. Despite its potential, the lack of evidence regarding its long-term safety across all age groups, particularly in pediatric patients, has limited its further application. This study aims to assess the long-term safety of sirolimus, with a specific focus on its impact on growth patterns in pediatric patients. METHODS This pooled analysis inlcudes two prospective cohort studies spanning 10 years, including 1,738 participants (aged 5 days to 69 years) diagnosed with tuberous sclerosis and/or lymphangioleiomyomatosis. All participants were mTOR inhibitor-naive and received 1 mg/m²/day of sirolimus, with dose adjustments during a two-week titration period to maintain trough blood concentrations between 5 and 10 ng/ml (maximum dose 2 mg). Indicators of physical growth, hematopoietic, liver, renal function, and blood lipid levels were all primary outcomes and were analyzed. The adverse events and related management were also recorded. RESULTS Sirolimus administration did not lead to deviations from normal growth ranges, but higher doses exhibited a positive association with Z-scores exceeding 2 SD in height, weight, and BMI. Transient elevations in red blood cell and white blood cell counts, along with hyperlipidemia, were primarily observed within the first year of treatment. Other measured parameters remained largely unchanged, displaying only weak correlations with drug use. Stomatitis is the most common adverse event (920/1738, 52.9%). In adult females, menstrual disorders were observed in 48.5% (112/217). CONCLUSIONS Sirolimus's long-term administration is not associated with adverse effects on children's physical growth pattern, nor significant alterations in hematopoietic, liver, renal function, or lipid levels. A potential dose-dependent influence on growth merits further exploration. TRIAL REGISTRATION Pediatric patients: Chinese clinical trial registry, No. ChiCTR-OOB-15,006,535. Adult patients: ClinicalTrials, No. NCT03193892.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Chinese PLA General Hospital, Beijing, 100853, China
| | - Li-Ping Zou
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Chinese PLA General Hospital, Beijing, 100853, China.
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100069, China.
| | - Kai-Feng Xu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Wen-Shuai Xu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Meng-Na Zhang
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Lu
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xin-Lun Tian
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Ling-Yu Pang
- Department of Neurology, Hebei Children's Hospital, Hebei, China
| | - Wen He
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qiu-Hong Wang
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Gao
- Deyang People's Hospital, Sichuan, China
| | - Li-Ying Liu
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiao-Qiao Chen
- Department of Pediatrics, The 904th Hospital of Joint Logistic Support Force, Jiangsu, China
| | - Shu-Fang Ma
- Department of Pediatrics, Binzhou Medical University Hospital, Shandong, China
| | - Hui-Min Chen
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Shuo Dun
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiao-Yan Yang
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiao-Mei Luo
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Lu-Lu Huang
- Department of Pediatrics, Zhujiang Hospital of Southern Medical University, Guangdong, China
| | - Yu-Fen Li
- Department of Pediatrics, Shandong Linyi People's Hospital, Shandong, China
| |
Collapse
|
8
|
Ziv A, Dardik R, Yacobovich J, Uziel Y, Haviv R, Avishai E, Kenet G, Toren A, Barel O, Barg AA. Atypical Presentations of Pediatric-acquired Thrombotic Thrombocytopenic Purpura. J Pediatr Hematol Oncol 2024; 46:306-310. [PMID: 38934698 DOI: 10.1097/mph.0000000000002914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Immune thrombotic thrombocytopenic purpura (iTTP) in children is a rare, severe thrombotic microangiopathy. This condition is characterized by microangiopathic hemolytic anemia, severe thrombocytopenia, and organ ischemia due to reduced activity of the von Willebrand factor-cleaving protease ADAMTS13. METHODS A retrospective case series evaluating data collected from the medical files of 4 children diagnosed with iTTP. RESULTS The presented case series depicts a variety of iTTP presentations: 1 case of primary iTTP, 1 case induced by Shiga toxin, 1 associated with RAS-associated autoimmune leukoproliferative disease (RALD), and 1 initial manifestation of systemic lupus erythematosus (SLE). Notably, 2 patients recovered without undergoing plasma exchange. CONCLUSION Early ADAMTS13 testing in children with unexplained hemolysis or thrombocytopenia is crucial. The diverse underlying causes, including infections and autoimmune disorders, underscore the complexity of iTTP in the pediatric population. These cases highlight the necessity for personalized treatment approaches that consider each patient's unique clinical situation and potential alternatives or modifications to conventional therapeutic regimens.
Collapse
Affiliation(s)
- Amit Ziv
- Faculty of Medicine, Tel Aviv University, Tel Aviv
- Pediatric Rheumatology Unit, Meir Medical Center, Kfar Saba
| | - Rima Dardik
- Faculty of Medicine, Tel Aviv University, Tel Aviv
- National Hemophilia Center, Coagulation Unit and Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer
| | - Joanne Yacobovich
- Faculty of Medicine, Tel Aviv University, Tel Aviv
- Department of Pediatric Hematology Oncology, Schneider Children's Medical Center of Israel, Petach Tikva
| | - Yosef Uziel
- Faculty of Medicine, Tel Aviv University, Tel Aviv
- Pediatric Rheumatology Unit, Meir Medical Center, Kfar Saba
| | - Ruby Haviv
- Faculty of Medicine, Tel Aviv University, Tel Aviv
- Pediatric Rheumatology Unit, Meir Medical Center, Kfar Saba
| | - Einat Avishai
- Faculty of Medicine, Tel Aviv University, Tel Aviv
- National Hemophilia Center, Coagulation Unit and Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer
| | - Gili Kenet
- Faculty of Medicine, Tel Aviv University, Tel Aviv
- National Hemophilia Center, Coagulation Unit and Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer
| | - Amos Toren
- Faculty of Medicine, Tel Aviv University, Tel Aviv
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital
| | - Ortal Barel
- Faculty of Medicine, Tel Aviv University, Tel Aviv
- Bioinformatics Unit, Sheba Cancer Research Center and Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Assaf Arie Barg
- Faculty of Medicine, Tel Aviv University, Tel Aviv
- National Hemophilia Center, Coagulation Unit and Amalia Biron Research Institute of Thrombosis and Hemostasis, Sheba Medical Center, Tel Hashomer
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital
| |
Collapse
|
9
|
Acar SO, Tahta N, Al IO, Erdem M, Gözmen S, Karapınar TH, Kılınç B, Celkan T, Kirkiz S, Koçak Ü, Ören H, Yıldırım AT, Arslantaş E, Ayhan AC, Oymak Y. Sirolimus is effective and safe in childhood relapsed-refractory autoimmune cytopenias: A multicentre study. Scand J Immunol 2024; 100:e13376. [PMID: 38741164 DOI: 10.1111/sji.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/24/2024] [Indexed: 05/16/2024]
Abstract
Autoimmune cytopenias are a heterogeneous group of disorders characterized by immune-mediated destruction of haematopoietic cell lines. Effective and well-tolerated treatment options for relapsed-refractory immune cytopenias are limited. In this study, the aim was to evaluate the efficacy and safety of sirolimus in this disease group within the paediatric age group. The study enrolled patients in the paediatric age group who used sirolimus with a diagnosis of immune cytopenia between December 2010 and December 2020, followed at six centres in Turkey. Of the 17 patients, five (29.4%) were treated for autoimmune haemolytic anaemia (AIHA), six (35.2%) for immune thrombocytopenic purpura (ITP) and six (35.2%) for Evans syndrome (ES). The mean response time was 2.7 months (range, 0-9 months). Complete response (CR) and partial response (PR) were obtained in 13 of 17 patients (76.4%) and nonresponse (NR) in four patients (23.5%). Among the 13 patients who achieved CR, three of them were NR in the follow-up and two of them had remission with low-dose steroid and sirolimus. Thus, overall response rate (ORR) was achieved in 12 of 17 patients (70.5%). In conclusion, sirolimus may be an effective and safe option in paediatric patients with relapsed-refractory immune cytopenia.
Collapse
Affiliation(s)
- Sultan Okur Acar
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Neryal Tahta
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Işık Odaman Al
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Melek Erdem
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Salih Gözmen
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Tuba Hilkay Karapınar
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| | - Burcu Kılınç
- Faculty of Medicine Hospital, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Tiraje Celkan
- Faculty of Medicine Hospital, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Serap Kirkiz
- Faculty of Medicine Hospital, Ankara Gazi University, Ankara, Turkey
| | - Ülker Koçak
- Faculty of Medicine Hospital, Ankara Gazi University, Ankara, Turkey
| | - Hale Ören
- Faculty of Medicine Hospital, Dokuz Eylül University, Izmir, Turkey
| | | | - Esra Arslantaş
- Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | | | - Yeşim Oymak
- Deparment of Hematology and Oncology, University of Health Sciences Dr. Behçet Uz Children's Hospital, Izmir, Turkey
| |
Collapse
|
10
|
Feng Y, Meng H, Mu C, Zhang Y, Liu X, Shi Y, Wang H. Clinical study reveals the efficacy of sirolimus in treating primary immune thrombocytopenia: findings from a single-center study. Blood Coagul Fibrinolysis 2024; 35:155-160. [PMID: 38625834 PMCID: PMC11064898 DOI: 10.1097/mbc.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/24/2024] [Indexed: 04/18/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease that arises because of self-destruction of circulating platelets. The mechanism remains complicated and lacks a standard clinical treatment. Current first-line and second-line medications for ITP have shown limited effectiveness, necessitating the exploration of new therapeutic options. Sirolimus is a mammalian target of rapamycin (mTOR) inhibitor that has been demonstrated to inhibit lymphocyte activity, indicating potential for SRL in the treatment of ITP. This study aimed to evaluate the clinical efficacy of sirolimus as a second-line drug in patients with ITP. The starting dose of sirolimus for adults ranged from 2 to 4 mg/day, with a maintenance dose of 1 to 2 mg/day. For children, the starting dose was 1-2 mg/day, with a maintenance dose of 0.5-1 mg/day. The dosage could be adjusted if needed to maintain a specific blood concentration of sirolimus, typically between 5 and 15 ng/ml, throughout the treatment period. After 3 months, the overall response rate was 60% (12/20), with 30% of patients (6/20) achieving a complete response (CR) and 30% (6/20) achieving a partial response (PR). The CR rate at 6 months remained consistent with the 3-month assessment. No major adverse events were reported, indicating that sirolimus was well tolerated and safe. Analysis of peripheral blood Treg cell percentages in both the control and ITP showed no significant difference before treatment. The percentage of Treg cells increased after treatment with sirolimus, suggesting that sirolimus increases Treg cells. These findings suggest that sirolimus serves as an effective second-line treatment option for ITP, demonstrating favorable clinical efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongjin Wang
- Clinical Research Center, The Third People's Hospital of Datong, Datong, Shanxi, China
| |
Collapse
|
11
|
Comella M, Palmisani E, Mariani M, Dell’Orso G, Licciardello M, Giarratana MC, Arcuri L, Pestarino S, Grossi A, Lanciotti M, Brucci G, Guardo D, Russo G, Dufour C, Fioredda F, Castagnola E, Miano M. Infection risk in patients with autoimmune cytopenias and immune dysregulation treated with mycophenolate mofetil and sirolimus. Front Immunol 2024; 15:1415389. [PMID: 38873600 PMCID: PMC11169563 DOI: 10.3389/fimmu.2024.1415389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction Autoimmune cytopenias (AICs) are a group of disorders characterized by immune-mediated destruction of blood cells. In children, they are often secondary to immune dysregulation that may require long-lasting immunosuppression. Mycophenolate mofetil and sirolimus represent two well-tolerated options to treat these disorders, often as a steroid-sparing option. However, no data are available on the infection risk for patients undergoing long-lasting treatments. Patients and methods The rate of severe infective events was calculated in episodes per 100 persons/months at risk (p/m/r) documented by the analysis of hospitalization charts between January 2015 and July 2023 of patients treated with mycophenolate mofetil or sirolimus given for isolated AIC or AICs associated with autoimmune lymphoproliferative syndrome (ALPS)/ALPS-like syndromes in two large Italian pediatric hematology units. Results From January 2015 to July 2023, 13 out of 96 patients treated with mycophenolate mofetil or sirolimus developed 16 severe infectious events requiring hospitalization. No patients died. Overall infection rate was 0.24 person/*100 months/risk (95% CI 0.09-0.3). Serious infectious events incidence was higher in patients with ALPS-like compared to others (0.42 versus 0.09; p = 0.006) and lower in patients who underwent mycophenolate treatment alone compared to those who started sirolimus after mycophenolate failure (0.04 versus 0.29, p = 0.03). Considering only patients who started treatment at the beginning of study period, overall cumulative hazard was 18.6% at 60 months (95% CI 3.4-31.4) with higher risk of infectious events after 5 years in ALPS-like patients (26.1%; 95% CI 3.2-43.5) compared to other AICs (4%; 95% CI 0-11.4; p = 0.041). Discussion To the best of our knowledge, this is the first study to describe the infectious risk related to mycophenolate and sirolimus chronic treatment in patients with AICs and immune dysregulation. Our data highlight that infection rate is very low and mainly related to the underlying hematological condition. Conclusions Mycophenolate and sirolimus represent a safe immunosuppressive therapy in AICs and immune dysregulation syndromes.
Collapse
Affiliation(s)
- Mattia Comella
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Elena Palmisani
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Mariani
- Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Gianluca Dell’Orso
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Licciardello
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Maria Carla Giarratana
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Luca Arcuri
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sara Pestarino
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Grossi
- Genetic and Genomic of Rare Disease Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Marina Lanciotti
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giorgia Brucci
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Daniela Guardo
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giovanna Russo
- Pediatric Hematology and Oncology Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Carlo Dufour
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Fioredda
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elio Castagnola
- Infectious Diseases Unit, Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maurizio Miano
- Haematology Unit, Department of Haematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
12
|
Eisenhauer N, Miano M, Naumann-Bartsch N, Leyh J, Dell'Orso G, Aigner M, Fecker G, Hinze C, Wittkowski H, Bruns H, Zierk J, Metzler M, Arkwright PD, Graw F, Mackensen A, Völkl S. Detection of signature double-negative T cells is a predictive marker to identify autoimmune lymphoproliferative syndrome associated with FAS loss of function. Am J Hematol 2024; 99:997-1000. [PMID: 38481382 DOI: 10.1002/ajh.27286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Nina Eisenhauer
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Maurizio Miano
- Hematology Unit, Department of Pediatric Hematology/Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | | | - Jörg Leyh
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
- Department of Pediatric Hematology and Oncology, Klinik Hallerwiese-Cnopfsche Kinderklinik, Nürnberg, Germany
| | - Gianluca Dell'Orso
- Hematology Unit, Department of Pediatric Hematology/Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Gisela Fecker
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Claas Hinze
- Department of Pediatric Rheumatology and Immunology, University Hospital Münster, Münster, Germany
| | - Helmut Wittkowski
- Department of Pediatric Rheumatology and Immunology, University Hospital Münster, Münster, Germany
| | - Heiko Bruns
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Jakob Zierk
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Markus Metzler
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, Royal Manchester Children's Hospital, University of Manchester, Manchester, UK
| | - Frederik Graw
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
13
|
Aylan Gelen S, Kara B, Eser Şimsek I, Güngör M, Zengin E, Sarper N. Autoimmune Hemolytic Anemia Due to Spondyloenchondrodysplasia with Spastic Paraparesis and Intracranial Calcification due to Mutation in ACP5. J Pediatr Genet 2024; 13:50-56. [PMID: 38567175 PMCID: PMC10984710 DOI: 10.1055/s-0041-1736560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/16/2021] [Indexed: 10/19/2022]
Abstract
Spondyloenchondrodysplasia (SPENCD) is a rare spondylometaphyseal skeletal dysplasia with characteristic lesions mimicking enchondromatosis and resulting in short stature. A large spectrum of immunologic abnormalities may be seen in SPENCD, including immune deficiencies and autoimmune disorders. SPENCD is caused by loss of tartrate-resistant acid phosphatase activity, due to homozygous mutations in ACP5 , playing a role in nonnucleic-acid-related stimulation/regulation of the type I interferon pathway. In this article, we presented a 19-year-old boy with SPENCD, presenting with recurrent autoimmune hemolytic anemia episodes since he was 5 years old. He had short stature, platyspondyly, metaphyseal changes, intracranial calcification, spastic paraparesis, and mild intellectual disability. He also had recurrent pneumonia attacks. The clinical diagnosis of SPENCD was confirmed by sequencing of the ACP5 gene, and a homozygous c.155A > C (p.K52T) variation was found, which was reported before as pathogenic. In conclusion, in early onset chronic autoimmune cytopenias an immune dysregulation may often have a role in the etiology. Associating findings and immunologic functions should be carefully evaluated in such patients in the light of the literature. The present case shows the importance of multisystemic evaluation for the detection of SPENCD that has a monogenic etiology.
Collapse
Affiliation(s)
- Sema Aylan Gelen
- Department of Pediatrics, Division of Pediatric Hematology, Kocaeli University Medical Faculty, Kocaeli, Türkiye
| | - Bülent Kara
- Department of Pediatrics, Division of Pediatric Neurology, Kocaeli University Medical Faculty, Kocaeli, Türkiye
| | - Isil Eser Şimsek
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Kocaeli University Medical Faculty, Kocaeli, Türkiye
| | - Mesut Güngör
- Department of Pediatrics, Division of Pediatric Neurology, Kocaeli University Medical Faculty, Kocaeli, Türkiye
| | - Emine Zengin
- Department of Pediatrics, Division of Pediatric Hematology, Kocaeli University Medical Faculty, Kocaeli, Türkiye
| | - Nazan Sarper
- Department of Pediatrics, Division of Pediatric Hematology, Kocaeli University Medical Faculty, Kocaeli, Türkiye
| |
Collapse
|
14
|
Ding M, Jin L, Zhao J, Yang L, Cui S, Wang X, He J, Chang F, Shi M, Ma J, Song S, Jin H, Liu A. Add-on sirolimus for the treatment of mild or moderate systemic lupus erythematosus via T lymphocyte subsets balance. Lupus Sci Med 2024; 11:e001072. [PMID: 38351097 PMCID: PMC10868177 DOI: 10.1136/lupus-2023-001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVE The efficacy of sirolimus in treating severe or refractory systemic lupus erythematosus (SLE) has been confirmed by small-scale clinical trials. However, few studies focused on mild or moderate SLE. Therefore, in this study we elucidated clinical efficacy of add-on sirolimus in patients with mild or moderate SLE. METHODS Data of 17 consecutive patients with SLE were retrospectively collected. SLE Disease Activity Index-2000 (SLEDAI-2K), clinical manifestation, laboratory data and peripheral T lymphocyte subsets with cytokines were collected before and 6 months after sirolimus add-on treatment. T cell subsets were detected by flow cytometry and cytokines were determined by multiplex bead-based flow fluorescent immunoassay simultaneously. Twenty healthy controls matched with age and sex were also included in our study. RESULTS (1) The numbers of peripheral blood lymphocytes, T cells, T helper (Th) cells, regulatory T (Treg) cells, Th1 cells, Th2 cells and Treg/Th17 ratios in patients with SLE were significantly lower, while the numbers of Th17 cells were evidently higher than those of healthy control (p<0.05). (2) After 6 months of sirolimus add-on treatment, urinary protein, pancytopenia, immunological indicators and SLEDAI-2K in patients with SLE were distinctively improved compared with those before sirolimus treatment (p<0.05). (3) The numbers of peripheral blood lymphocytes, T cells, Th cells, Treg cells, Th2 cells and the ratios of Treg/Th17 in patients with SLE after treatment were clearly higher than those before (p<0.05). (4) The levels of plasma interleukin (IL)-5, IL-6 and IL-10 in patients with SLE decreased notably, conversely the IL-4 levels increased remarkably compared with pretreatment (p<0.05). CONCLUSIONS (1) Patients with SLE presented imbalanced T cell subsets, especially the decreased ratio of Treg/Th17. (2) Sirolimus add-on treatment ameliorated clinical involvement, serological abnormalities and disease activity without adverse reactions in patients with SLE. (3) The multi-target therapy facilitates the enhanced numbers of Treg cells, Treg/Th17 imbalance and anti-inflammatory cytokines, simultaneously, reducing inflammatory cytokines.
Collapse
Affiliation(s)
- Meng Ding
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lu Jin
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinwen Zhao
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Yang
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaoxin Cui
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoping Wang
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingjing He
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Chang
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Shi
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Ma
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei, China
| | - Shuran Song
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongtao Jin
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Aijing Liu
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Patel PK, Chinga ML, Yilmaz M, Joychan S, Ujhazi B, Ellison M, Gordon S, Nieves D, Csomos K, Eslin D, Afify ZA, Meznarich J, Bohnsack J, Walkovich K, Seidel MG, Sharapova S, Boyarchyk O, Latysheva E, Tuzankina I, Shaker AB, Ayala I, Sriaroon P, Westermann-Clark E, Walter JE. Clinical and Treatment History of Patients with Partial DiGeorge Syndrome and Autoimmune Cytopenia at Multiple Centers. J Clin Immunol 2024; 44:42. [PMID: 38231436 DOI: 10.1007/s10875-023-01607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/05/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Patients with partial DiGeorge syndrome (pDGS) can present with immune dysregulation, the most common being autoimmune cytopenia (AIC). There is a lack of consensus on the approach to type, combination, and timing of therapies for AIC in pDGS. Recognition of immune dysregulation early in pDGS clinical course may help individualize treatment and prevent adverse outcomes from chronic immune dysregulation. OBJECTIVES Objectives of this study were to characterize the natural history, immune phenotype, and biomarkers in pDGS with AIC. METHODS Data on clinical presentation, disease severity, immunological phenotype, treatment selection, and response for patients with pDGS with AIC were collected via retrospective chart review. Flow cytometric analysis was done to assess T and B cell subsets, including biomarkers of immune dysregulation. RESULTS Twenty-nine patients with the diagnosis of pDGS and AIC were identified from 5 international institutions. Nineteen (62%) patients developed Evan's syndrome (ES) during their clinical course and twenty (69%) had antibody deficiency syndrome. These patients demonstrated expansion in T follicular helper cells, CD19hiCD21lo B cells, and double negative cells and reduction in CD4 naïve T cells and regulatory T cells. First-line treatment for 17/29 (59%) included corticosteroids and/or high-dose immunoglobulin replacement therapy. Other overlapping therapies included eltrombopag, rituximab, and T cell immunomodulators. CONCLUSIONS AIC in pDGS is often refractory to conventional AIC treatment paradigms. Biomarkers may have utility for correlation with disease state and potentially even response to therapy. Immunomodulating therapies could be initiated early based on early immune phenotyping and biomarkers before the disease develops or significantly worsens.
Collapse
Affiliation(s)
- Priya K Patel
- Johns Hopkins All Children's Hospital, 601 5Th Street South, Outpatient Care Clinic, 3Rd Floor, St. Petersburg, FL, 33701, USA.
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida Morsani College of Medicine, St Petersburg, FL, USA.
| | - Michell Lozano Chinga
- Division of Pediatric Hematology Oncology, University of Utah Primary Children's Hospital, Salt Lake City, UT, USA
- Division of Immunology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Melis Yilmaz
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida Morsani College of Medicine, St Petersburg, FL, USA
| | - Sonia Joychan
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida Morsani College of Medicine, St Petersburg, FL, USA
| | - Boglarka Ujhazi
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida Morsani College of Medicine, St Petersburg, FL, USA
| | - Maryssa Ellison
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida Morsani College of Medicine, St Petersburg, FL, USA
| | - Sumai Gordon
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida Morsani College of Medicine, St Petersburg, FL, USA
| | - Daime Nieves
- Johns Hopkins All Children's Hospital, 601 5Th Street South, Outpatient Care Clinic, 3Rd Floor, St. Petersburg, FL, 33701, USA
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida Morsani College of Medicine, St Petersburg, FL, USA
| | - Krisztian Csomos
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida Morsani College of Medicine, St Petersburg, FL, USA
| | - Don Eslin
- BayCare Medical Group, St. Joseph's Hospital, Pediatric Hematology Oncology, St. Petersburg, FL, USA
| | - Zeinab A Afify
- Division of Pediatric Hematology Oncology, University of Utah Primary Children's Hospital, Salt Lake City, UT, USA
| | - Jessica Meznarich
- Division of Pediatric Hematology Oncology, University of Utah Primary Children's Hospital, Salt Lake City, UT, USA
| | - John Bohnsack
- Division of Pediatric Hematology Oncology, University of Utah Primary Children's Hospital, Salt Lake City, UT, USA
| | - Kelly Walkovich
- BayCare Medical Group, St. Joseph's Hospital, Pediatric Hematology Oncology, St. Petersburg, FL, USA
| | - Markus G Seidel
- Clinical Department of Pediatric Hematology Oncology, Medical University of Graz, Graz, Austria
| | - Svetlana Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Oksana Boyarchyk
- Immunopathology Department, National Research Center Institute of Immunology FMBA, Moscow, Russia
| | - Elena Latysheva
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Irina Tuzankina
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Ahmad B Shaker
- BayCare Medical Group, St. Anthony's Hospital, St. Petersburg, FL, USA
| | - Irmel Ayala
- Johns Hopkins All Children's Hospital, 601 5Th Street South, Outpatient Care Clinic, 3Rd Floor, St. Petersburg, FL, 33701, USA
| | - Panida Sriaroon
- Johns Hopkins All Children's Hospital, 601 5Th Street South, Outpatient Care Clinic, 3Rd Floor, St. Petersburg, FL, 33701, USA
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida Morsani College of Medicine, St Petersburg, FL, USA
| | - Emma Westermann-Clark
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida Morsani College of Medicine, St Petersburg, FL, USA
| | - Jolan E Walter
- Johns Hopkins All Children's Hospital, 601 5Th Street South, Outpatient Care Clinic, 3Rd Floor, St. Petersburg, FL, 33701, USA
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida Morsani College of Medicine, St Petersburg, FL, USA
| |
Collapse
|
16
|
Du H, Su W, Su J, Hu J, Wu D, Long W, Zhu J. Sirolimus for the treatment of patients with refractory connective tissue disease-related thrombocytopenia: a pilot study. Rheumatology (Oxford) 2024; 63:79-84. [PMID: 37079730 DOI: 10.1093/rheumatology/kead160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/22/2023] Open
Abstract
OBJECTIVE CTD-related immune thrombocytopenia (CTD-ITP) represents an unmet medical need because the drugs that are available are only partly effective and have considerable side-effects. The aim of this study was to assess the efficacy and safety of sirolimus in refractory CTD-ITP patients. METHODS We did a single-arm, open-label, pilot study of sirolimus in patients with CTD-ITP unresponsive to, or intolerant of, conventional medications. Patients received oral sirolimus for 6 months at a starting dose of 0.5-1 mg per day, with dose adjusted according to tolerance and to maintain a therapeutic range of 6-15 ng/ml. The primary efficacy end point was changes in platelet count, and overall response assessed according to the ITP International Working Group Criteria. Safety outcomes included tolerance as assessed by the occurrence of common side-effects. RESULTS Between November 2020 and February 2022, 12 consecutively hospitalized patients with refractory CTD-ITP were enrolled and prospectively followed. Of these, six patients (50%) achieved complete response, two (16.7%) achieved partial response, and four (33.3%) were no response under therapy. Three of four patients with primary Sjögren's syndrome and two of three patients with systemic lupus erythematosus achieved overall response. One of two patients with overlapping Sjögren's syndrome and systemic lupus erythematosus achieved complete response at 6 months. No severe drug-related toxicities were observed. CONCLUSION Our results do support sirolimus as an alternative regimen for refractory CTD-ITP patients, including systemic lupus erythematosus and primary SS.
Collapse
Affiliation(s)
- Hongjia Du
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Wei Su
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jiang Su
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jiarui Hu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Dongze Wu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Wubin Long
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Department of Rheumatology and Immunology, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
17
|
Jiang D, Rosenlind K, Baxter S, Gernsheimer T, Gulsuner S, Allenspach EJ, Keel SB. Evaluating the prevalence of inborn errors of immunity in adults with chronic immune thrombocytopenia or Evans syndrome. Blood Adv 2023; 7:7202-7208. [PMID: 37792884 PMCID: PMC10702780 DOI: 10.1182/bloodadvances.2023011042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 10/06/2023] Open
Abstract
Inborn errors of immunity (IEIs) are monogenic disorders that predispose patients to immune dysregulation, autoimmunity, and infection. Autoimmune cytopenias, such as immune thrombocytopenia (ITP) and Evans syndrome (a combination of ITP and autoimmune hemolytic anemia), are increasingly recognized phenotypes of IEI. Although recent findings suggest that IEIs may commonly underlie pediatric ITP and Evans syndrome, its prevalence in adult patients with these disorders remains undefined. This study sought to estimate the prevalence of underlying IEIs among adults with persistent or chronic ITP or Evans syndrome using a next-generation sequencing panel encompassing >370 genes implicated in IEIs. Forty-four subjects were enrolled from an outpatient adult hematology clinic at a tertiary referral center in the United States, with a median age of 49 years (range, 20-83). Fourteen subjects (31.8%) had secondary ITP, including 8 (18.2%) with Evans syndrome. No cases of IEI were identified despite a high representation of subjects with a personal history of autoimmunity (45.5%) and early onset of disease (median age at diagnosis of 40 years [range, 2-77]), including 20.5% who were initially diagnosed as children. Eight subjects (18.2%) were found to be carriers of pathogenic IEI variants, which, in their heterozygous state, are not disease-causing. One case of TUBB1-related congenital thrombocytopenia was identified. Although systematic screening for IEI has been proposed for pediatric patients with Evans syndrome, findings from this real-world study suggest that inclusion of genetic testing for IEI in the routine work-up of adults with ITP and Evans syndrome has a low diagnostic yield.
Collapse
MESH Headings
- Humans
- Adult
- Child
- Young Adult
- Middle Aged
- Aged
- Aged, 80 and over
- Child, Preschool
- Adolescent
- Anemia, Hemolytic, Autoimmune/epidemiology
- Anemia, Hemolytic, Autoimmune/genetics
- Anemia, Hemolytic, Autoimmune/complications
- Purpura, Thrombocytopenic, Idiopathic/epidemiology
- Purpura, Thrombocytopenic, Idiopathic/genetics
- Purpura, Thrombocytopenic, Idiopathic/complications
- Autoimmunity
- Prevalence
- Thrombocytopenia/epidemiology
- Thrombocytopenia/genetics
- Thrombocytopenia/complications
Collapse
Affiliation(s)
- Debbie Jiang
- Division of Hematology, University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology, Massachusetts General Hospital, Boston, MA
| | | | - Sarah Baxter
- Division of Rheumatology, Seattle Children’s Hospital, Seattle, WA
| | - Terry Gernsheimer
- Division of Hematology, University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | - Siobán B. Keel
- Division of Hematology, University of Washington, Seattle, WA
- Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
18
|
Zhang Z, Hu Q, Yang C, Chen M, Han B. Sirolimus is effective for primary refractory/relapsed warm autoimmune haemolytic anaemia/Evans syndrome: a retrospective single-center study. Ann Med 2023; 55:2282180. [PMID: 37967535 PMCID: PMC10653746 DOI: 10.1080/07853890.2023.2282180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Some patients with warm autoimmune haemolytic anaemia (wAIHA) or Evans syndrome (ES) have no response to glucocorticoid or relapse. Recent studies found that sirolimus was effective in autoimmune cytopenia with a low relapse rate. METHODS Data from patients with refractory/relapsed wAIHA and ES in Peking Union Medical College Hospital from July 2016 to May 2022 who had been treated with sirolimus for at least 6 months and followed up for at least 12 months were collected retrospectively. Baseline and follow-up clinical data were recorded and the rate of complete response (CR), partial response (PR) at different time points, adverse events, relapse, outcomes, and factors that may affect the efficacy and relapse were analyzed. RESULTS There were 44 patients enrolled, with 9 (20.5%) males and a median age of 44 (range: 18-86) years. 37 (84.1%) patients were diagnosed as wAIHA, and 7 (15.9%) as ES. Patients were treated with sirolimus for a median of 23 (range: 6-80) months and followed up for a median of 25 (range: 12-80) months. 35 (79.5%) patients responded to sirolimus, and 25 (56.8%) patients achieved an optimal response of CR. Mucositis (11.4%), infection (9.1%), and alanine aminotransferase elevation (9.1%) were the most common adverse events. 5/35 patients (14.3%) relapsed at a median of 19 (range: 15-50) months. Patients with a higher sirolimus plasma trough concentration had a higher overall response (OR) and CR rate (p = 0.009, 0.011, respectively). At the time of enrolment, patients were divided into two subgroups that relapsed or refractory to glucocorticoid, and the former had poorer relapse-free survival (p = 0.032) than the other group. CONCLUSION Sirolimus is effective for patients with primary refractory/relapsed wAIHA and ES, with a low relapse rate and mild side effects. Patients with a higher sirolimus plasma trough concentration had a higher OR and CR rate, and patients who relapsed to glucocorticoid treatment had poorer relapse-free survival than those who were refractory.
Collapse
Affiliation(s)
- Zhuxin Zhang
- Department of Hematology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science, Beijing, China
| | - Qinglin Hu
- Department of Hematology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science, Beijing, China
| | - Chen Yang
- Department of Hematology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science, Beijing, China
| | - Miao Chen
- Department of Hematology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science, Beijing, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Science, Beijing, China
| |
Collapse
|
19
|
Trayer J, Browne F, O'Sullivan M, Leahy TR. Cutaneous Eruption Associated with Sirolimus in a Child with FAS-Associated Autoimmune Lymphoproliferative Syndrome. J Clin Immunol 2023; 43:1537-1539. [PMID: 37369913 DOI: 10.1007/s10875-023-01544-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Affiliation(s)
- James Trayer
- Department of Paediatric Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland.
| | - Fiona Browne
- Department of Paediatric Dermatology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Maureen O'Sullivan
- Department of Histopathology, Children's Health Ireland at Crumlin, Dublin, Ireland
- Trinity College Dublin, Dublin, Ireland
| | - Timothy Ronan Leahy
- Department of Paediatric Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
- Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Banic M, Pavlisa G, Hecimovic A, Grzelja J, Anic B, Samarzija M, Jankovic Makek M. Refractory systemic lupus erythematosus with chylous effusion successfully treated with sirolimus: a case report and literature review. Rheumatol Int 2023; 43:1743-1749. [PMID: 37326666 DOI: 10.1007/s00296-023-05363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Chylous effusion is a rare manifestation of systemic lupus erythematosus (SLE). When it does occur in SLE, it is generally well treated with standard pharmacologic or surgical measures. We present a decade of management in a case of SLE with lung affliction and development of refractory bilateral chylous effusion and pulmonary arterial hypertension (PAH). In the first years, the patient was treated under a Sjogren syndrome diagnose. After few years, her respiratory condition worsened due to chylous effusion and PAH. Immunosuppression therapy (methylprednisolone) was reintroduced, and vasodilator therapy commenced. With this, her cardiac function remained stable, but respiratory function continuously worsened despite several therapy trials with different combinations of immunosuppressant (glucocorticoids, resochin, cyclophosphamide and mycophenolate mofetil). On top of pleural effusion worsening, the patient developed ascites and severe hypoalbuminaemia. Even though albumin loss was stabilized with monthly octreotide applications, the patient remained respiratory insufficient and in need of continuous oxygen therapy. At that point, we decided to introduce sirolimus on top of glucocorticoids and mycophenolate mofetil therapy. Her clinical status, radiological finding, and lung function gradually improved and she became respiratory sufficient at rest. The patient remains in our follow-up and has been stable on given therapy for over 3 years despite overcoming a severe COVID-19 pneumonia in 2021. This case adds to the body of evidence of sirolimus effectiveness in patients with refractory systemic lupus and is, to our best knowledge, the first case to report its successful application in a patient with SLE and refractory chylous effusion.
Collapse
Affiliation(s)
- M Banic
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia
| | - G Pavlisa
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia
| | - A Hecimovic
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Salata 2, 10000, Zagreb, Croatia
| | - J Grzelja
- Department of Diagnostic and Interventional Radiology, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia
| | - B Anic
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Salata 2, 10000, Zagreb, Croatia
| | - M Samarzija
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia
- School of Medicine, University of Zagreb, Salata 2, 10000, Zagreb, Croatia
| | - M Jankovic Makek
- Department of Lung Diseases Jordanovac, University Hospital Centre Zagreb, Jordanovac 104, 10000, Zagreb, Croatia.
- School of Medicine, University of Zagreb, Salata 2, 10000, Zagreb, Croatia.
| |
Collapse
|
21
|
Xiao Z, Murakhovskaya I. Rituximab resistance in ITP and beyond. Front Immunol 2023; 14:1215216. [PMID: 37575230 PMCID: PMC10422042 DOI: 10.3389/fimmu.2023.1215216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The pathophysiology of immune thrombocytopenia (ITP) is complex and encompasses innate and adaptive immune responses, as well as megakaryocyte dysfunction. Rituximab is administered in relapsed cases and has the added benefit of inducing treatment-free remission in over 50% of patients. Nevertheless, the responses to this therapy are not long-lasting, and resistance development is frequent. B cells, T cells, and plasma cells play a role in developing resistance. To overcome this resistance, targeting these pathways through splenectomy and novel therapies that target FcγR pathway, FcRn, complement, B cells, plasma cells, and T cells can be useful. This review will summarize the pathogenetic mechanisms implicated in rituximab resistance and examine the potential therapeutic interventions to overcome it. This review will explore the efficacy of established therapies, as well as novel therapeutic approaches and agents currently in development.
Collapse
Affiliation(s)
| | - Irina Murakhovskaya
- Division of Hematology, Department of Hematology-Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
22
|
Sorin B, Fadlallah J, Garzaro M, Vigneron J, Bertinchamp R, Boutboul D, Oksenhendler E, Fieschi C, Malphettes M, Galicier L. Real-life use of mTOR inhibitor-based therapy in adults with autoimmune cytopenia highlights strong efficacy in relapsing/refractory multi-lineage autoimmune cytopenia. Ann Hematol 2023:10.1007/s00277-023-05340-0. [PMID: 37386347 DOI: 10.1007/s00277-023-05340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Data on mTOR inhibitors (mTORi) in autoimmune cytopenia (AIC), in adults are scarce. We retrospectively analysed 30 cases of refractory or relapsing AIC treated with an mTORi-based therapy. Eleven warm autoimmune hemolytic anaemia, 10 autoimmune thrombocytopenia, 6 acquired pure red cell aplasia, 3 autoimmune neutropenia were included. Twenty were multilineage AIC (67%) and 21 were secondary AIC (70%). mTORi were associated with other therapies in 23 AIC (77%). Twenty-two AIC (73%) responded to mTORi-based therapy: 5 reached a partial response (17%) and 17 a complete response (57%). Survival without unfavourable outcome (failure, requirement of a new therapy, or death) was longer in multilineage AIC compared to single-lineage AIC (p = 0.049) with a median event-free survival of 48 versus 12 months. Median event-free survival was 48 months in secondary AIC and 33 months in primary AIC (p = 0.79). mTORi were discontinued in 4 patients (15%) for safety reasons and in 3 patients for patient's choice (12%). In conclusion, mTORi could be considered as an alternative or an add-on therapy in refractory or relapsing AIC in adult patients, especially in multilineage AIC.
Collapse
Affiliation(s)
- Boris Sorin
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France.
| | - Jehane Fadlallah
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Margaux Garzaro
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Julien Vigneron
- Department of Biostatistics and Medical Information, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Rémi Bertinchamp
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - David Boutboul
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Claire Fieschi
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Marion Malphettes
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| | - Lionel Galicier
- Department of Clinical Immunology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Université de Paris, 1 Avenue Claude Vellefaux, 75010, Paris, France
| |
Collapse
|
23
|
Gray PE, David C. Inborn Errors of Immunity and Autoimmune Disease. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1602-1622. [PMID: 37119983 DOI: 10.1016/j.jaip.2023.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/01/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023]
Abstract
Autoimmunity may be a manifestation of inborn errors of immunity, specifically as part of the subgroup of primary immunodeficiency known as primary immune regulatory disorders. However, although making a single gene diagnosis can have important implications for prognosis and management, picking patients to screen can be difficult, against a background of a high prevalence of autoimmune disease in the population. This review compares the genetics of common polygenic and rare monogenic autoimmunity, and explores the molecular mechanisms, phenotypes, and inheritance of autoimmunity associated with primary immune regulatory disorders, highlighting the emerging importance of gain-of-function and non-germline somatic mutations. A novel framework for identifying rare monogenic cases of common diseases in children is presented, highlighting important clinical and immunologic features that favor single gene disease and guides clinicians in selecting appropriate patients for genomic screening. In addition, there will be a review of autoimmunity in non-genetically defined primary immunodeficiency such as common variable immunodeficiency, and of instances where primary autoimmunity can result in clinical phenocopies of inborn errors of immunity.
Collapse
Affiliation(s)
- Paul Edgar Gray
- Sydney Children's Hospital, Randwick, NSW, Australia; Western Sydney University, Penrith, NSW, Australia.
| | - Clementine David
- Sydney Children's Hospital, Randwick, NSW, Australia; The School of Women's & Children's Health, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
24
|
Istomine R, Al-Aubodah TA, Alvarez F, Smith JA, Wagner C, Piccirillo CA. The eIF4EBP-eIF4E axis regulates CD4 + T cell differentiation through modulation of T cell activation and metabolism. iScience 2023; 26:106683. [PMID: 37187701 PMCID: PMC10176268 DOI: 10.1016/j.isci.2023.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/27/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
CD4+ T cells are critical for adaptive immunity, differentiating into distinct effector and regulatory subsets. Although the transcriptional programs underlying their differentiation are known, recent research has highlighted the importance of mRNA translation in determining protein abundance. We previously conducted genome-wide analysis of translation in CD4+ T cells revealing distinct translational signatures distinguishing these subsets, identifying eIF4E as a central differentially translated transcript. As eIF4E is vital for eukaryotic translation, we examined how altered eIF4E activity affected T cell function using mice lacking eIF4E-binding proteins (BP-/-). BP-/- effector T cells showed elevated Th1 responses ex vivo and upon viral challenge with enhanced Th1 differentiation observed in vitro. This was accompanied by increased TCR activation and elevated glycolytic activity. This study highlights how regulating T cell-intrinsic eIF4E activity can influence T cell activation and differentiation, suggesting the eIF4EBP-eIF4E axis as a potential therapeutic target for controlling aberrant T cell responses.
Collapse
Affiliation(s)
- Roman Istomine
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Tho-Alfakar Al-Aubodah
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
| | - Jacob A. Smith
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carston Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC H3A 2B4, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Centre of Excellence in Translational Immunology (CETI), Montréal, QC H4A 3J1, Canada
- Corresponding author
| |
Collapse
|
25
|
Fevang B. Treatment of inflammatory complications in common variable immunodeficiency (CVID): current concepts and future perspectives. Expert Rev Clin Immunol 2023; 19:627-638. [PMID: 36996348 DOI: 10.1080/1744666x.2023.2198208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Patients with Common variable immunodeficiency (CVID) have a high frequency of inflammatory complications like autoimmune cytopenias, interstitial lung disease and enteropathy. These patients have poor prognosis and effective, timely and safe treatment of inflammatory complications in CVID are essential, but guidelines and consensus on therapy are often lacking. AREAS COVERED This review will focus on current medical treatment of inflammatory complications in CVID and point out some future perspectives based on literature indexed in PubMed. There are a number of good observational studies and case reports on treatment of specific complications but randomized controlled trials are scarce. EXPERT OPINION In clinical practice, the most urgent issues that need to be addressed are the preferred treatment of GLILD, enteropathy and liver disease. Treating the underlying immune dysregulation and immune exhaustion in CVID is an alternative approach that potentially could alleviate these and other organ-specific inflammatory complications. Therapies of potential interest and wider use in CVID include mTOR-inhibitors like sirolimus, JAK-inhibitors like tofacitinib, the monoclonal IL-12/23 antibody ustekinumab, the anti-BAFF antibody belimumab and abatacept. For all inflammatory complications, there is a need for prospective therapeutic trials, preferably randomized controlled trials, and multi-center collaborations with larger cohorts of patients will be essential.
Collapse
Affiliation(s)
- Børre Fevang
- Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Research Institute for Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
Autoimmune Lymphoproliferative Syndrome (ALPS) Disease and ALPS Phenotype: Are They Two Distinct Entities? Hemasphere 2023; 7:e845. [PMID: 36844186 PMCID: PMC9949771 DOI: 10.1097/hs9.0000000000000845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is an inherited disorder of lymphocyte homeostasis classically due to mutation of FAS, FASL, and CASP10 genes (ALPS-FAS/CASP10). Despite recent progress, about one-third of ALPS patients does not carry classical mutations and still remains gene orphan (ALPS-U, undetermined genetic defects). The aims of the present study were to compare the clinical and immunological features of ALPS-FAS/CASP10 versus those of ALPS-U affected subjects and to deepen the genetic characteristics of this latter group. Demographical, anamnestic, biochemical data were retrieved from medical record of 46 ALPS subjects. An enlarged panel of genes (next-generation sequencing) was applied to the ALPS-U group. ALPS-U subjects showed a more complex phenotype if compared to ALPS-FAS/CASP10 group, characterized by multiorgan involvement (P = 0.001) and positivity of autoimmune markers (P = 0.02). Multilineage cytopenia was present in both groups without differences with the exception of lymphocytopenia and autoimmune neutropenia that were more frequent in ALPS-U than in the ALPS-FAS/CASP10 group (P = 0.01 and P = 0.04). First- and second-line treatments were able to control the symptoms in 100% of the ALPS-FAS/CASP10 patients, while 63% of ALPS-U needed >2 lines of treatment and remission in some cases was obtained only after target therapy. In the ALPS-U group, we found in 14 of 28 (50%) patients 19 variants; of these, 4 of 19 (21%) were known as pathogenic and 8 of 19 (42%) as likely pathogenic. A characteristic flow cytometry panel including CD3CD4-CD8-+TCRαβ+, CD3+CD25+/CD3HLADR+, TCR αβ+ B220+, and CD19+CD27+ identified the ALPS-FAS/CASP10 group. ALPS-U seems to represent a distinct entity from ALPS-FAS/CASP10; this is relevant for management and tailored treatments whenever available.
Collapse
|
27
|
Affiliation(s)
- Kandace Gollomp
- The Children's Hospital of Philadelphia
- University of Pennsylvania Perelman School of Medicine
| | - David T Teachey
- The Children's Hospital of Philadelphia
- University of Pennsylvania Perelman School of Medicine
| |
Collapse
|
28
|
Kumar D, Nguyen TH, Bennett CM, Prince C, Lucas L, Park S, Lawrence T, Chappelle K, Ishaq M, Waller EK, Prahalad S, Briones M, Chandrakasan S. mTOR inhibition attenuates cTfh cell dysregulation and chronic T-cell activation in multilineage immune cytopenias. Blood 2023; 141:238-243. [PMID: 36206504 PMCID: PMC9936300 DOI: 10.1182/blood.2022015966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023] Open
Abstract
mTOR inhibitors such as sirolimus are increasingly used in the management of multilineage immune cytopenia (m-IC) in children. Although sirolimus is effective in improving IC, it is unclear how sirolimus affects the broader immune dysregulation associated with m-IC. We profiled T- and B-cell subsets longitudinally and measured cytokines and chemokines before and after sirolimus treatment. Eleven of the 12 patients with m-IC who tolerated sirolimus were followed for a median duration of 17 months. All patients had an improvement in IC, and sirolimus therapy did not result in significant decreases in T-, B- and NK-cell numbers. However, the expansion and activation of circulating T follicular helper and the Th1 bias noted before the initiation of sirolimus were significantly decreased. Features of chronic T-cell activation and exhaustion within effector memory compartments of CD4+ and CD8+ T cells decreased with sirolimus therapy. Corresponding to these changes, plasma levels of CXCL9 and CXCL10 also decreased. Interestingly, no significant improvement in the proportion of class-switched memory B cells or frequencies of CD4+ naive T cells were noted. Longer follow-up and additional studies are needed to validate these findings and evaluate the effect of sirolimus on B-cell maturation.
Collapse
Affiliation(s)
- Deepak Kumar
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Thinh H. Nguyen
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Carolyn M. Bennett
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Chengyu Prince
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Laura Lucas
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Sunita Park
- Department of Pathology, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Taylor Lawrence
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Karin Chappelle
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Mariam Ishaq
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Edmund K. Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Sampath Prahalad
- Division of Pediatric Rheumatology, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Michael Briones
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children’s Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
29
|
Wang D, Cassady K, Zou Z, Zhang X, Feng Y. Progress on the efficacy and potential mechanisms of rapamycin in the treatment of immune thrombocytopenia. Hematology 2022; 27:1282-1289. [DOI: 10.1080/16078454.2022.2151230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Dan Wang
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Nanchong, People’s Republic of China
| | | | - Zhongmin Zou
- Department of Chemical Defense Medicine, School of Military Preventive Medicine, Army Medical University, Chongqing, People’s Republic of China
| | - Xi Zhang
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| | - Yimei Feng
- Medical Center of Hematology, The Xinqiao Hospital of Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
30
|
Mustafa SS, Rider NL, Jolles S. Immunosuppression in Patients With Primary Immunodeficiency-Walking the Line. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:3088-3096. [PMID: 36049628 DOI: 10.1016/j.jaip.2022.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Individuals with primary immunodeficiency (PIDD) experience not only infectious complications but also immune dysregulation leading to autoimmunity, inflammation, and lymphoproliferative manifestations. Management of these complications often requires treatment with additional immunosuppressive medications, which pose an additional risk of infectious complications. Immunosuppression in individuals with PIDD therefore requires careful assessment and consideration of risks and benefits. Medications should be closely monitored, and strategies for risk mitigation of adverse events considered, such as exposure reduction, appropriate vaccination, use of antibiotics/antivirals, and optimization of immunoglobulin replacement therapy. In a subset of individuals who are not tolerating immune modulation or experiencing disease progression despite appropriate interventions, hematopoietic stem-cell transplantation is a management option.
Collapse
Affiliation(s)
- S Shahzad Mustafa
- Rochester Regional Health, Division of Allergy, Immunology, and Rheumatology, University of Rochester School of Medicine and Dentistry, Rochester, NY; Liberty University College of Osteopathic Medicine and the Liberty Mountain, Chair, Division of Clinical Informatics; Associate Professor of Pediatrics, Allergy-Immunology Medical Group, Rochester, NY.
| | - Nicholas L Rider
- Liberty University College of Osteopathic Medicine and the Liberty Mountain Medical Group, Lynchburg, Va
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| |
Collapse
|
31
|
Batlle-Masó L, Garcia-Prat M, Parra-Martínez A, Franco-Jarava C, Aguiló-Cucurull A, Velasco P, Antolín M, Rivière JG, Martín-Nalda A, Soler-Palacín P, Martínez-Gallo M, Colobran R. Detection and evolutionary dynamics of somatic FAS variants in autoimmune lymphoproliferative syndrome: Diagnostic implications. Front Immunol 2022; 13:1014984. [PMID: 36466883 PMCID: PMC9716137 DOI: 10.3389/fimmu.2022.1014984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a rare primary immune disorder characterized by impaired apoptotic homeostasis. The clinical characteristics include lymphoproliferation, autoimmunity (mainly cytopenia), and an increased risk of lymphoma. A distinctive biological feature is accumulation (>2.5%) of an abnormal cell subset composed of TCRαβ+ CD4-CD8- T cells (DNTs). The most common genetic causes of ALPS are monoallelic pathogenic variants in the FAS gene followed by somatic FAS variants, mainly restricted to DNTs. Identification of somatic FAS variants has been typically addressed by Sanger sequencing in isolated DNTs. However, this approach can be costly and technically challenging, and may not be successful in patients with normal DNT counts receiving immunosuppressive treatment. In this study, we identified a novel somatic mutation in FAS (c.718_719insGTCG) by Sanger sequencing on purified CD3+ cells. We then followed the evolutionary dynamics of the variant along time with an NGS-based approach involving deep amplicon sequencing (DAS) at high coverage (20,000-30,000x). Over five years of clinical follow-up, we obtained six blood samples for molecular study from the pre-treatment (DNTs>7%) and treatment (DNTs<2%) periods. DAS enabled detection of the somatic variant in all samples, even the one obtained after five years of immunosuppressive treatment (DNTs: 0.89%). The variant allele frequency (VAF) range was 4%-5% in pre-treatment samples and <1.5% in treatment samples, and there was a strong positive correlation between DNT counts and VAF (Pearson’s R: 0.98, p=0.0003). We then explored whether the same approach could be used in a discovery setting. In the last follow-up sample (DNT: 0.89%) we performed somatic variant calling on the FAS exon 9 DAS data from whole blood and purified CD3+ cells using VarScan 2. The c.718_719insGTCG variant was identified in both samples and showed the highest VAF (0.67% blood, 1.58% CD3+ cells) among >400 variants called. In summary, our study illustrates the evolutionary dynamics of a somatic FAS mutation before and during immunosuppressive treatment. The results show that pathogenic somatic FAS variants can be identified with the use of DAS in whole blood of ALPS patients regardless of their DNT counts.
Collapse
Affiliation(s)
- Laura Batlle-Masó
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Marina Garcia-Prat
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Alba Parra-Martínez
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Clara Franco-Jarava
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
| | - Aina Aguiló-Cucurull
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
| | - Pablo Velasco
- Pediatric Oncology and Hematology Department, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
| | - Jacques G. Rivière
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Andrea Martín-Nalda
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Pere Soler-Palacín
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Department of Cell Biology, Autonomous University of Barcelona (UAB), Physiology and Immunology, Bellaterra, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Translational Immunology Group, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Immunology Division, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Department of Clinical and Molecular Genetics, Vall d’Hebron University Hospital (HUVH), Barcelona, Spain
- Department of Cell Biology, Autonomous University of Barcelona (UAB), Physiology and Immunology, Bellaterra, Spain
- *Correspondence: Roger Colobran,
| |
Collapse
|
32
|
Fu R, Yu H. [How I diagnose and treat autoimmune hemolytic anemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:910-915. [PMID: 36709181 PMCID: PMC9808870 DOI: 10.3760/cma.j.issn.0253-2727.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 01/30/2023]
Affiliation(s)
- R Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - H Yu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
33
|
Chen X, Wang J, Lan J, Ge X, Xu H, Zhang Y, Li Z. Initial sirolimus dosage recommendations for pediatric patients with PIK3CD mutation-related immunodeficiency disease. Front Pharmacol 2022; 13:919487. [PMID: 36188573 PMCID: PMC9515533 DOI: 10.3389/fphar.2022.919487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Sirolimus is used to treat pediatric patients with PIK3CD mutation-related immunodeficiency disease. However, the initial dosages of sirolimus remain undecided. The present study aims to explore initial dosages in pediatric patients with PIK3CD mutation-related immunodeficiency disease. Pediatric patients with this disease were analyzed using the population pharmacokinetic (PPK) model and the Monte Carlo simulation. Body weight and concomitant use of posaconazole were included in the final PPK model, where, under the same weight, clearances of sirolimus were 1 : 0.238 between children without and children with posaconazole. Without posaconazole, the initial dosages of sirolimus were 0.07, 0.06, 0.05, and 0.04 mg/kg/day for body weights of 10–14, 14–25, 25–50, and 50–60 kg, respectively. With posaconazole, the initial dosages of sirolimus were 0.02 mg/kg/day for body weights of 10–60 kg. This is the first attempt to build a sirolimus PPK model for recommending initial dosages in children with PIK3CD mutation-related immunodeficiency disease, thereby providing a reference for individualized clinical drug administration.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianger Lan
- Department of Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xilin Ge
- Department of Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Hong Xu, ; Yu Zhang, ; Zhiping Li,
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hong Xu, ; Yu Zhang, ; Zhiping Li,
| | - Zhiping Li
- Department of Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Hong Xu, ; Yu Zhang, ; Zhiping Li,
| |
Collapse
|
34
|
Pacillo L, Giardino G, Amodio D, Giancotta C, Rivalta B, Rotulo GA, Manno EC, Cifaldi C, Palumbo G, Pignata C, Palma P, Rossi P, Finocchi A, Cancrini C. Targeted treatment of autoimmune cytopenias in primary immunodeficiencies. Front Immunol 2022; 13:911385. [PMID: 36052091 PMCID: PMC9426461 DOI: 10.3389/fimmu.2022.911385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/15/2022] [Indexed: 11/14/2022] Open
Abstract
Primary Immunodeficiencies (PID) are a group of rare congenital disorders of the immune system. Autoimmune cytopenia (AIC) represents the most common autoimmune manifestation in PID patients. Treatment of AIC in PID patients can be really challenging, since they are often chronic, relapsing and refractory to first line therapies, thus requiring a broad variety of alternative therapeutic options. Moreover, immunosuppression should be fine balanced considering the increased susceptibility to infections in these patients. Specific therapeutic guidelines for AIC in PID patients are lacking. Treatment choice should be guided by the underlying disease. The study of the pathogenic mechanisms involved in the genesis of AIC in PID and our growing ability to define the molecular underpinnings of immune dysregulation has paved the way for the development of novel targeted treatments. Ideally, targeted therapy is directed against an overexpressed or overactive gene product or substitutes a defective protein, restoring the impaired pathway. Actually, the molecular diagnosis or a specific drug is not always available. However, defining the category of PID or the immunological phenotype can help to choose a semi-targeted therapy directed towards the suspected pathogenic mechanism. In this review we overview all the therapeutic interventions available for AIC in PID patients, according to different immunologic targets. In particular, we focus on T and/or B cells targeting therapies. To support decision making in the future, prospective studies to define treatment response and predicting/stratifying biomarkers for patients with AIC and PID are needed.
Collapse
Affiliation(s)
- Lucia Pacillo
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Donato Amodio
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Carmela Giancotta
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Beatrice Rivalta
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Gioacchino Andrea Rotulo
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Emma Concetta Manno
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Cristina Cifaldi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giuseppe Palumbo
- Department of Onco Hematology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Paolo Palma
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Paolo Rossi
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Andrea Finocchi
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Caterina Cancrini
- Academic Department of Pediatrics (DPUO), Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
- *Correspondence: Caterina Cancrini,
| |
Collapse
|
35
|
Lv Y, Shi H, Liu H, Zhou L. Current therapeutic strategies and perspectives in refractory ITP: What have we learned recently? Front Immunol 2022; 13:953716. [PMID: 36003388 PMCID: PMC9393521 DOI: 10.3389/fimmu.2022.953716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune bleeding disorder featured by increased platelet destruction and deficient megakaryocyte maturation. First-line treatments include corticosteroids, intravenous immunoglobulin and intravenous anti-D immunoglobulin. Second-line treatments consist of rituximab, thrombopoietin receptor agonists and splenectomy. Although most patients benefit from these treatments, an individualized treatment approach is warranted due to the large heterogeneity among ITP patients. In addition, ITP patients may relapse and there remains a subset of patients who become refractory to treatments. The management of these refractory patients is still a challenge. This review aims to summarize emerging therapeutic approaches for refractory ITP in several categories according to their different targets, including macrophages, platelets/megakaryocytes, T cells, B cells, and endothelial cells. Moreover, current management strategies and combination regimens of refractory ITP are also discussed.
Collapse
Affiliation(s)
- Yue Lv
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Huiping Shi
- Soochow University Medical College, Suzhou, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| | - Lu Zhou
- Department of Hematology, Affiliated Hospital and Medical School of Nantong University, Nantong, China
| |
Collapse
|
36
|
Raymond LS, Leiding J, Forbes-Satter LR. Diagnostic Modalities in Primary Immunodeficiency. Clin Rev Allergy Immunol 2022; 63:90-98. [PMID: 35290615 DOI: 10.1007/s12016-022-08933-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 01/12/2023]
Abstract
As the field of inborn errors of immunity expands, providers continually update and fine-tune their diagnostic approach and selection of testing modalities to increase diagnostic accuracy. Here, we first describe a mechanistic consideration of laboratory testing, highlighting both benefits and drawbacks of currently clinically available testing modalities. Next, we provide methods in evaluation of patients presenting with concern for inborn errors of immunity as defined by the International Union of Immunological Societies 2019 phenotypic categories: primary antibody deficiencies, cellular and humoral immune deficiency, disorders of the innate immune system, and syndrome-associated and primary immune regulation disorders (PIRDs). Using the suggested approach in this paper as a roadmap highlights the importance of thorough history taking and physical examination as the foundation to guide further diagnostic tests. This is followed by enumeration and functional testing. Finally, to determine the underlying molecular etiology-specific genetic panels, chromosomal microarrays, and broad genetic testing (whole exome sequencing or whole genome sequencing) are available.
Collapse
Affiliation(s)
- Loveita S Raymond
- Department of Medicine, Baylor College of Medicine, Houston, USA.,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, USA
| | - Jennifer Leiding
- Department of Pediatrics, John's Hopkins University, All Children's Hospital, Baltimore, USA
| | - Lisa R Forbes-Satter
- Department of Medicine, Baylor College of Medicine, Houston, USA. .,Department of Pediatrics, John's Hopkins University, All Children's Hospital, Baltimore, USA. .,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, USA.
| |
Collapse
|
37
|
Xu Y, Chen Y, Zhang X, Ma J, Liu Y, Cui L, Wang F. Glycolysis in Innate Immune Cells Contributes to Autoimmunity. Front Immunol 2022; 13:920029. [PMID: 35844594 PMCID: PMC9284233 DOI: 10.3389/fimmu.2022.920029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases (AIDs) refer to connective tissue inflammation caused by aberrant autoantibodies resulting from dysfunctional immune surveillance. Most of the current treatments for AIDs use non-selective immunosuppressive agents. Although these therapies successfully control the disease process, patients experience significant side effects, particularly an increased risk of infection. There is a great need to study the pathogenesis of AIDs to facilitate the development of selective inhibitors for inflammatory signaling to overcome the limitations of traditional therapies. Immune cells alter their predominant metabolic profile from mitochondrial respiration to glycolysis in AIDs. This metabolic reprogramming, known to occur in adaptive immune cells, i.e., B and T lymphocytes, is critical to the pathogenesis of connective tissue inflammation. At the cellular level, this metabolic switch involves multiple signaling molecules, including serine-threonine protein kinase, mammalian target of rapamycin, and phosphoinositide 3-kinase. Although glycolysis is less efficient than mitochondrial respiration in terms of ATP production, immune cells can promote disease progression by enhancing glycolysis to satisfy cellular functions. Recent studies have shown that active glycolytic metabolism may also account for the cellular physiology of innate immune cells in AIDs. However, the mechanism by which glycolysis affects innate immunity and participates in the pathogenesis of AIDs remains to be elucidated. Therefore, we reviewed the molecular mechanisms, including key enzymes, signaling pathways, and inflammatory factors, that could explain the relationship between glycolysis and the pro-inflammatory phenotype of innate immune cells such as neutrophils, macrophages, and dendritic cells. Additionally, we summarize the impact of glycolysis on the pathophysiological processes of AIDs, including systemic lupus erythematosus, rheumatoid arthritis, vasculitis, and ankylosing spondylitis, and discuss potential therapeutic targets. The discovery that immune cell metabolism characterized by glycolysis may regulate inflammation broadens the avenues for treating AIDs by modulating immune cell metabolism.
Collapse
Affiliation(s)
- Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongkang Chen
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Fang Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
38
|
DeFilipp Z, Hefazi M, Chen YB, Blazar BR. Emerging approaches to improve allogeneic hematopoietic cell transplantation outcomes for nonmalignant diseases. Blood 2022; 139:3583-3593. [PMID: 34614174 PMCID: PMC9728560 DOI: 10.1182/blood.2020009014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Many congenital or acquired nonmalignant diseases (NMDs) of the hematopoietic system can be potentially cured by allogeneic hematopoietic cell transplantation (HCT) with varying types of donor grafts, degrees of HLA matching, and intensity of conditioning regimens. Unique features that distinguish the use of allogeneic HCT in this population include higher rates of graft failure, immune-mediated cytopenias, and the potential to achieve long-term disease-free survival in a mixed chimerism state. Additionally, in contrast to patients with hematologic malignancies, a priority is to completely avoid graft-versus-host disease in patients with NMD because there is no theoretical beneficial graft-versus-leukemia effect that can accompany graft-versus-host responses. In this review, we discuss the current approach to each of these clinical issues and how emerging novel therapeutics hold promise to advance transplant care for patients with NMDs.
Collapse
Affiliation(s)
- Zachariah DeFilipp
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, MA
| | | | - Yi-Bin Chen
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, MA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN
| |
Collapse
|
39
|
Miano M, Guardo D, Grossi A, Palmisani E, Fioredda F, Terranova P, Cappelli E, Lupia M, Traverso M, Dell'Orso G, Corsolini F, Beccaria A, Lanciotti M, Ceccherini I, Dufour C. Underlying Inborn Errors of Immunity in Patients With Evans Syndrome and Multilineage Cytopenias: A Single-Centre Analysis. Front Immunol 2022; 13:869033. [PMID: 35655776 PMCID: PMC9152001 DOI: 10.3389/fimmu.2022.869033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Background Evans syndrome (ES) is a rare disorder classically defined as the simultaneous or sequential presence of autoimmune haemolytic anaemia and immune thrombocytopenia, but it has also been described as the presence of at least two autoimmune cytopenias. Recent reports have shown that ES is often a manifestation of an underlying inborn error of immunity (IEI) that can benefit from specific treatments. Aims The aim of this study is to investigate the clinical and immunological characteristics and the underlying genetic background of a single-centre cohort of patients with ES. Methods Data were obtained from a retrospective chart review of patients with a diagnosis of ES followed in our centre. Genetic studies were performed with NGS analysis of 315 genes related to both haematological and immunological disorders, in particular IEI. Results Between 1985 and 2020, 40 patients (23 men, 17 women) with a median age at onset of 6 years (range 0-16) were studied. ES was concomitant and sequential in 18 (45%) and 22 (55%) patients, respectively. Nine of the 40 (8%) patients had a positive family history of autoimmunity. Other abnormal immunological features and signs of lymphoproliferation were present in 24/40 (60%) and 27/40 (67%) of cases, respectively. Seventeen out of 40 (42%) children fit the ALPS diagnostic criteria. The remaining 21 (42%) and 2 (5%) were classified as having an ALPS-like and an idiopathic disease, respectively. Eighteen patients (45%) were found to have an underlying genetic defect on genes FAS, CASP10, TNFSF13B, LRBA, CTLA4, STAT3, IKBGK, CARD11, ADA2, and LIG4. No significant differences were noted between patients with or without variant and between subjects with classical ES and the ones with other forms of multilineage cytopenias. Conclusions This study shows that nearly half of patients with ES have a genetic background being in most cases secondary to IEI, and therefore, a molecular evaluation should be offered to all patients.
Collapse
Affiliation(s)
- Maurizio Miano
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Daniela Guardo
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Grossi
- Unità Operativa Semplice DIpartimentale (UOSD) Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elena Palmisani
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Paola Terranova
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Enrico Cappelli
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Lupia
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Monica Traverso
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Gianluca Dell'Orso
- Stem Cell Transplantation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Fabio Corsolini
- Laboratory of Molecular Genetics and Biobanks, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Beccaria
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Isabella Ceccherini
- Unità Operativa Semplice DIpartimentale (UOSD) Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Carlo Dufour
- Hematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
40
|
Even-Or E, Schejter YD, NaserEddin A, Zaidman I, Shadur B, Stepensky P. Autoimmune Cytopenias Post Hematopoietic Stem Cell Transplantation in Pediatric Patients With Osteopetrosis and Other Nonmalignant Diseases. Front Immunol 2022; 13:879994. [PMID: 35693771 PMCID: PMC9185137 DOI: 10.3389/fimmu.2022.879994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Autoimmune cytopenia (AIC) is a rare complication post hematopoietic stem cell transplantation (HSCT), with a higher incidence in nonmalignant diseases. The etiology of post-HSCT AIC is poorly understood, and in many cases, the cytopenia is prolonged and refractory to treatment. Diagnosis of post-HSCT AIC may be challenging, and there is no consensus for a standard of care. In this retrospective study, we summarize our experience over the past five years with post-HSCT AIC in pediatric patients with osteopetrosis and other nonmalignant diseases. All pediatric patients who underwent HSCT for nonmalignant diseases at Hadassah Medical Center over the past five years were screened for post-HSCT AIC, and data were collected from the patient’s medical records. From January 2017 through December 2021, 140 pediatric patients underwent HSCT for osteopetrosis (n=40), and a variety of other nonmalignant diseases. Thirteen patients (9.3%) presented with post-HSCT AIC. Of these, 7 had osteopetrosis (17.5%), and 6 had other underlying nonmalignant diseases. Factors associated with developing AIC included unrelated or non-sibling family donors (n=10), mixed chimerism (n=6), and chronic GvHD (n=5). Treatment modalities included steroids, IVIG, rituximab, bortezomib, daratumumab, eltrombopag, plasmapheresis, and repeated HSCT. Response to treatment was variable; Seven patients (54%) recovered completely, and three patients (23%) recovered partially, still suffering from mild-moderate thrombocytopenia. Three patients died (23%), two following progressive lung disease and one from sepsis and multi-organ failure after a 3rd HSCT. In our experience, post-HSCT AICs in pediatric patients with nonmalignant diseases may pose a challenging post-transplant complication with a variable presentation and a wide spectrum of severity. A relatively high prevalence is seen in patients with osteopetrosis, possibly due to difficult engraftment and high rates of mixed chimerism. There is a dire need for novel treatment modalities for better management of the more severe and refractory cases.
Collapse
Affiliation(s)
- Ehud Even-Or
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Ehud Even-Or,
| | - Yael Dinur Schejter
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adeeb NaserEddin
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irina Zaidman
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bella Shadur
- Immunology Division, The Garvan Institute of Medical Research Graduate Research School, University of New South Wales, Sydney, NSW, Australia
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
41
|
Xu Z, Chu M. Advances in Immunosuppressive Agents Based on Signal Pathway. Front Pharmacol 2022; 13:917162. [PMID: 35694243 PMCID: PMC9178660 DOI: 10.3389/fphar.2022.917162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/02/2022] [Indexed: 12/13/2022] Open
Abstract
Immune abnormality involves in various diseases, such as infection, allergic diseases, autoimmune diseases, as well as transplantation. Several signal pathways have been demonstrated to play a central role in the immune response, including JAK/STAT, NF-κB, PI3K/AKT-mTOR, MAPK, and Keap1/Nrf2/ARE pathway, in which multiple targets have been used to develop immunosuppressive agents. In recent years, varieties of immunosuppressive agents have been approved for clinical use, such as the JAK inhibitor tofacitinib and the mTOR inhibitor everolimus, which have shown good therapeutic effects. Additionally, many immunosuppressive agents are still in clinical trials or preclinical studies. In this review, we classified the immunosuppressive agents according to the immunopharmacological mechanisms, and summarized the phase of immunosuppressive agents.
Collapse
Affiliation(s)
- Zhiqing Xu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacology, Jilin University, Changchun, China
| | - Ming Chu
- Department of Immunology, National Health Commission (NHC) Key Laboratory of Medical Immunology (Peking University), School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
42
|
Sharma S, Pilania RK, Anjani G, Sudhakar M, Arora K, Tyagi R, Dhaliwal M, Vignesh P, Rawat A, Singh S. Lymphoproliferation in Inborn Errors of Immunity: The Eye Does Not See What the Mind Does Not Know. Front Immunol 2022; 13:856601. [PMID: 35603189 PMCID: PMC9114776 DOI: 10.3389/fimmu.2022.856601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Inborn errors of immunity (IEIs) are a group of heterogeneous disorders characterized by a broad clinical spectrum of recurrent infections and immune dysregulation including autoimmunity and lymphoproliferation (LP). LP in the context of IEI may be the presenting feature of underlying immune disorder or may develop during the disease course. However, the correct diagnosis of LP in IEI as benign or malignant often poses a diagnostic dilemma due to the non-specific clinical features and overlapping morphological and immunophenotypic features which make it difficult to treat. There are morphological clues to LP associated with certain IEIs. A combination of ancillary techniques including EBV-associated markers, flow cytometry, and molecular assays may prove useful in establishing a correct diagnosis in an appropriate clinical setting. The present review attempts to provide comprehensive insight into benign and malignant LP, especially the pathogenesis, histological clues, diagnostic strategies, and treatment options in patients with IEIs.
Collapse
Affiliation(s)
- Saniya Sharma
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Pilania
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gummadi Anjani
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Murugan Sudhakar
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanika Arora
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Tyagi
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manpreet Dhaliwal
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Department of Pediatrics (Clinical Immunology and Rheumatology), Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
43
|
Development of New Drugs for Autoimmune Hemolytic Anemia. Pharmaceutics 2022; 14:pharmaceutics14051035. [PMID: 35631621 PMCID: PMC9147507 DOI: 10.3390/pharmaceutics14051035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Autoimmune hemolytic anemia (AIHA) is a rare disorder characterized by the autoantibody-mediated destruction of red blood cells, and treatments for it still remain challenging. Traditional first-line immunosuppressive therapy, which includes corticosteroids and rituximab, is associated with adverse effects as well as treatment failures, and relapses are common. Subsequent lines of therapy are associated with higher rates of toxicity, and some patients remain refractory to currently available treatments. Novel therapies have become promising for this vulnerable population. In this review, we will discuss the mechanism of action, existing data, and ongoing clinical trials of current novel therapies for AIHA, including B-cell-directed therapy, phagocytosis inhibition, plasma cell-directed therapy, and complement inhibition.
Collapse
|
44
|
Phillips AD, Kakkis JJ, Tsao PY, Pierson SK, Fajgenbaum DC. Increased mTORC2 pathway activation in lymph nodes of iMCD-TAFRO. J Cell Mol Med 2022; 26:3147-3152. [PMID: 35488725 PMCID: PMC9170805 DOI: 10.1111/jcmm.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/11/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
Idiopathic multicentric Castleman disease (iMCD) is a rare and life‐threatening haematologic disorder involving polyclonal lymphoproliferation and organ dysfunction due to excessive cytokine production, including interleukin‐6 (IL‐6). Clinical trial and real‐world data demonstrate that IL‐6 inhibition is effective in 34–50% of patients. mTOR, which functions through mTORC1 and mTORC2, is a recently discovered therapeutic target. The mTOR inhibitor sirolimus, which preferentially inhibits mTORC1, has led to sustained remission in a small cohort of anti‐IL‐6‐refractory iMCD patients with thrombocytopenia, anasarca, fever, renal dysfunction and organomegaly (iMCD‐TAFRO). However, sirolimus has not shown uniform effect, potentially due to its limited mTORC2 inhibition. To investigate mTORC2 activation in iMCD, we quantified the mTORC2 effector protein pNDRG1 by immunohistochemistry of lymph node tissue from six iMCD‐TAFRO and eight iMCD patients who do not meet TAFRO criteria (iMCD‐not‐otherwise‐specified; iMCD‐NOS). mTORC2 activation was increased in all regions of iMCD‐TAFRO lymph nodes and the interfollicular space of iMCD‐NOS compared with control tissue. Immunohistochemistry also revealed increased pNDRG1 expression in iMCD‐TAFRO germinal centres compared with autoimmune lymphoproliferative syndrome (ALPS), an mTOR‐driven, sirolimus‐responsive lymphoproliferative disorder, and comparable staining between iMCD‐NOS and ALPS. These results suggest increased mTORC2 activity in iMCD and that dual mTORC1/mTORC2 inhibitors may be a rational therapeutic approach.
Collapse
Affiliation(s)
- Alexis D Phillips
- Center for Cytokine Storm Treatment & Laboratory, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph J Kakkis
- Center for Cytokine Storm Treatment & Laboratory, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patricia Y Tsao
- Center for Cytokine Storm Treatment & Laboratory, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sheila K Pierson
- Center for Cytokine Storm Treatment & Laboratory, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David C Fajgenbaum
- Center for Cytokine Storm Treatment & Laboratory, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
45
|
Ahmed FF, Reza MS, Sarker MS, Islam MS, Mosharaf MP, Hasan S, Mollah MNH. Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. PLoS One 2022; 17:e0266124. [PMID: 35390032 PMCID: PMC8989220 DOI: 10.1371/journal.pone.0266124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/15/2022] [Indexed: 12/18/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is one of the most severe global pandemic due to its high pathogenicity and death rate starting from the end of 2019. Though there are some vaccines available against SAER-CoV-2 infections, we are worried about their effectiveness, due to its unstable sequence patterns. Therefore, beside vaccines, globally effective supporting drugs are also required for the treatment against SARS-CoV-2 infection. To explore commonly effective repurposable drugs for the treatment against different variants of coronavirus infections, in this article, an attempt was made to explore host genomic biomarkers guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. At first, we identified 138 differentially expressed genes (DEGs) between SARS-CoV-1 infected and control samples by analyzing high throughput gene-expression profiles to select drug target key receptors. Then we identified top-ranked 11 key DEGs (SMAD4, GSK3B, SIRT1, ATM, RIPK1, PRKACB, MED17, CCT2, BIRC3, ETS1 and TXN) as hub genes (HubGs) by protein-protein interaction (PPI) network analysis of DEGs highlighting their functions, pathways, regulators and linkage with other disease risks that may influence SARS-CoV-1 infections. The DEGs-set enrichment analysis significantly detected some crucial biological processes (immune response, regulation of angiogenesis, apoptotic process, cytokine production and programmed cell death, response to hypoxia and oxidative stress), molecular functions (transcription factor binding and oxidoreductase activity) and pathways (transcriptional mis-regulation in cancer, pathways in cancer, chemokine signaling pathway) that are associated with SARS-CoV-1 infections as well as SARS-CoV-2 infections by involving HubGs. The gene regulatory network (GRN) analysis detected some transcription factors (FOXC1, GATA2, YY1, FOXL1, TP53 and SRF) and micro-RNAs (hsa-mir-92a-3p, hsa-mir-155-5p, hsa-mir-106b-5p, hsa-mir-34a-5p and hsa-mir-19b-3p) as the key transcriptional and post- transcriptional regulators of HubGs, respectively. We also detected some chemicals (Valproic Acid, Cyclosporine, Copper Sulfate and arsenic trioxide) that may regulates HubGs. The disease-HubGs interaction analysis showed that our predicted HubGs are also associated with several other diseases including different types of lung diseases. Then we considered 11 HubGs mediated proteins and their regulatory 6 key TFs proteins as the drug target proteins (receptors) and performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 anti-viral drugs out of 3410. We found Rapamycin, Tacrolimus, Torin-2, Radotinib, Danoprevir, Ivermectin and Daclatasvir as the top-ranked 7 candidate-drugs with respect to our proposed target proteins for the treatment against SARS-CoV-1 infections. Then, we validated these 7 candidate-drugs against the already published top-ranked 11 target proteins associated with SARS-CoV-2 infections by molecular docking simulation and found their significant binding affinity scores with our proposed candidate-drugs. Finally, we validated all of our findings by the literature review. Therefore, the proposed candidate-drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections with comorbidities, since the proposed HubGs are also associated with several comorbidities.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
- Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi, Bangladesh
| | - Md. Selim Reza
- Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi, Bangladesh
| | - Md. Shahin Sarker
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Samiul Islam
- Department of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Md. Parvez Mosharaf
- Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi, Bangladesh
| | - Sohel Hasan
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshhi, Bangladesh
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi, Bangladesh
| |
Collapse
|
46
|
Sirolimus is effective for refractory/relapsed/intolerant acquired pure red cell aplasia: results of a prospective single-institutional trial. Leukemia 2022; 36:1351-1360. [PMID: 35256763 DOI: 10.1038/s41375-022-01532-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Some patients with acquired pure red cell aplasia (aPRCA) have no response or are intolerant to cyclosporine A. From April 2017 to August 2020, patients diagnosed with aPRCA at Peking Union Medical College Hospital who were refractory/recurrent/intolerant to at least 6 months of full-dose cyclosporin A (CsA) with/without steroids were recruited and treated with sirolimus for at least 6 months. Finally, a total of 64 patients were enrolled. The overall response rate and complete response rate after 3, 6 and 12 months of sirolimus were 60.9%, 84.4%, and 73.5% and 50.0%, 65.6%, and 66.0%, respectively. At a median of 14.5 (6-47) months of follow-up, 14.8% (8/54) of the patients relapsed. Apart from haemoglobin improvement, patients had decreased creatine levels and serum ferritin levels at the end of the follow-up compared with the baseline (169.3 μmol/L vs. 146.4 μmol/L, p = 0.041; 2121.5 ng/mL vs. 1018.3 ng/mL, p = 0.013). Adverse events were recorded in 19 patients, including infections and increase of creatine. Secondary aPRCA with stable underlying diseases had similar results as those with primary aPRCA. In summary, sirolimus is effective for patients with refractory/recurrent/intolerant aRPCA with a low recurrence rate and toxicities.
Collapse
|
47
|
Michel M. Adult Evans' Syndrome. Hematol Oncol Clin North Am 2022; 36:381-392. [DOI: 10.1016/j.hoc.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Consonni F, Gambineri E, Favre C. ALPS, FAS, and beyond: from inborn errors of immunity to acquired immunodeficiencies. Ann Hematol 2022; 101:469-484. [PMID: 35059842 PMCID: PMC8810460 DOI: 10.1007/s00277-022-04761-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Autoimmune lymphoproliferative syndrome (ALPS) is a primary immune regulatory disorder characterized by benign or malignant lymphoproliferation and autoimmunity. Classically, ALPS is due to mutations in FAS and other related genes; however, recent research revealed that other genes could be responsible for similar clinical features. Therefore, ALPS classification and diagnostic criteria have changed over time, and several ALPS-like disorders have been recently identified. Moreover, mutations in FAS often show an incomplete penetrance, and certain genotypes have been associated to a dominant or recessive inheritance pattern. FAS mutations may also be acquired or could become pathogenic when associated to variants in other genes, delineating a possible digenic type of inheritance. Intriguingly, variants in FAS and increased TCR αβ double-negative T cells (DNTs, a hallmark of ALPS) have been identified in multifactorial autoimmune diseases, while FAS itself could play a potential role in carcinogenesis. These findings suggest that alterations of FAS-mediated apoptosis could trespass the universe of inborn errors of immunity and that somatic mutations leading to ALPS could only be the tip of the iceberg of acquired immunodeficiencies.
Collapse
Affiliation(s)
- Filippo Consonni
- Anna Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Eleonora Gambineri
- Division of Pediatric Oncology/Hematology, BMT Unit, Meyer University Children's Hospital, Viale Gaetano Pieraccini 24, 50139, Florence, Italy.
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy.
| | - Claudio Favre
- Division of Pediatric Oncology/Hematology, BMT Unit, Meyer University Children's Hospital, Viale Gaetano Pieraccini 24, 50139, Florence, Italy
| |
Collapse
|
49
|
Kumar D, Prince C, Bennett CM, Briones M, Lucas L, Russell A, Patel K, Chonat S, Graciaa S, Edington H, White MH, Kobrynski L, Abdalgani M, Parikh S, Chandra S, Bleesing J, Marsh R, Park S, Waller EK, Prahalad S, Chandrakasan S. T-follicular helper cell expansion and chronic T-cell activation are characteristic immune anomalies in Evans syndrome. Blood 2022; 139:369-383. [PMID: 34424963 PMCID: PMC8777200 DOI: 10.1182/blood.2021012924] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
Pediatric Evans syndrome (pES) is increasingly identified as the presenting manifestation of several inborn errors of immunity. Despite an improved understanding of genetic defects in pES, the underlying immunobiology of pES is poorly defined, and characteristic diagnostic immune parameters are lacking. We describe the immune characteristics of 24 patients with pES and compared them with 22 patients with chronic immune thrombocytopenia (cITP) and 24 healthy controls (HCs). Compared with patients with cITP and HC, patients with pES had increased circulating T-follicular helper cells (cTfh), increased T-cell activation, and decreased naïve CD4+ T cells for age. Despite normal or high immunoglobulin G (IgG) in most pES at presentation, class-switched memory B cells were decreased. Within the cTfh subset, we noted features of postactivation exhaustion with upregulation of several canonical checkpoint inhibitors. T-cell receptor β chain (TCR-β) repertoire analysis of cTfh cells revealed increased oligoclonality in patients with pES compared with HCs. Among patients with pES, those without a known gene defect had a similar characteristic immune abnormality as patients with defined genetic defects. Similarly, patients with pES with normal IgG had similar T-cell abnormalities as patients with low IgG. Because genetic defects have been identified in less than half of patients with pES, our findings of similar immune abnormalities across all patients with pES help establish a common characteristic immunopathology in pES, irrespective of the underlying genetic etiology.
Collapse
MESH Headings
- Adolescent
- Adult
- Anemia, Hemolytic, Autoimmune/immunology
- Anemia, Hemolytic, Autoimmune/pathology
- Child
- Child, Preschool
- Female
- Humans
- Infant
- Lymphocyte Activation
- Male
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Purpura, Thrombocytopenic, Idiopathic/pathology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/pathology
- Thrombocytopenia/immunology
- Thrombocytopenia/pathology
- Young Adult
Collapse
Affiliation(s)
- Deepak Kumar
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Chengyu Prince
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Carolyn M Bennett
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Michael Briones
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Laura Lucas
- Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta, Atlanta; GA
| | - Athena Russell
- Genetics and Molecular Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA
| | - Kiran Patel
- Allergy/Immunology Section, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Satheesh Chonat
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Sara Graciaa
- Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta, Atlanta; GA
| | - Holly Edington
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Michael H White
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Lisa Kobrynski
- Allergy/Immunology Section, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | | | - Suhag Parikh
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jack Bleesing
- Division of Bone Marrow Transplantation and Immune Deficiency, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Rebecca Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sunita Park
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta, GA
| | - Edmund K Waller
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA; and
| | - Sampath Prahalad
- Division of Pediatric Rheumatology, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
50
|
Xing L, Wang Y, Liu H, Gao S, Shao Q, Yue L, Liu Z, Wang H, Shao Z, Fu R. Case Report: Sirolimus Alleviates Persistent Cytopenia After CD19 CAR-T-Cell Therapy. Front Oncol 2022; 11:798352. [PMID: 35004324 PMCID: PMC8733571 DOI: 10.3389/fonc.2021.798352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells show good efficacy in the treatment of relapsed and refractory B-cell tumors, such as acute B-cell leukemia (ALL) and diffuse large B-cell lymphoma (DLBCL). The main toxicities of CAR-T include cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, cytopenia, and severe infection. It is still very difficult for CAR-T to kill tumor cells to the maximum extent and avoid damaging normal organs. Here, we report a case of DLBCL with persistent grade 4 thrombocytopenia and severe platelet transfusion dependence treated with CD19 CAR-T cells. We used sirolimus to inhibit the sustained activation of CAR-T cells and restore normal bone marrow hematopoiesis and peripheral blood cells. Moreover, sirolimus treatment did not affect the short-term efficacy of CAR-T cells, and DLBCL was in complete remission at the end of follow-up. In conclusion, sirolimus can represent a new strategy for the management of CAR-T cell therapy-related toxicity, including but not limited to hematotoxicity. However, further controlled clinical studies are required to confirm these findings.
Collapse
Affiliation(s)
- Limin Xing
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yihao Wang
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hui Liu
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Shan Gao
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Qing Shao
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Lanzhu Yue
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Huaquan Wang
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zonghong Shao
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Rong Fu
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|