1
|
Gantseva AR, Gantseva ER, Sveshnikova AN, Panteleev MA, Kovalenko TA. Kinetic analysis of prothrombinase assembly and substrate delivery mechanisms. J Theor Biol 2024; 594:111925. [PMID: 39142600 DOI: 10.1016/j.jtbi.2024.111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Prothrombinase complex, composed of coagulation factors Xa (FXa) and Va (FVa) is a major enzyme of the blood coagulation network that produces thrombin via activation of its inactive precursor prothrombin (FII) on the surface of phospholipid membranes. However, pathways and mechanisms of prothrombinase formation and substrate delivery are still discussed. Here we designed a novel mathematical model that considered different potential pathways of FXa or FII binding (from the membrane or from solution) and analyzed the kinetics of thrombin formation in the presence of a wide range of reactants concentrations. We observed the inhibitory effect of large FVa concentrations and this effect was phospholipid concentration-dependent. We predicted that efficient FII activation occurred via formation of the ternary complex, in which FVa, FXa and FII were in the membrane-bound state. Prothrombin delivery was mostly membrane-dependent, but delivery from solution was predominant under conditions of phospholipid deficiency or FXa/FVa excess. Likewise, FXa delivery from solution was predominant in the case of FVa excess, but high FII did not switch the FXa delivery to the solution-dependent one. Additionally, the FXa delivery pathway did not depend on the phospholipid concentration, being the membrane-dependent one even in case of the phospholipid deficiency. These results suggest a flexible mechanism of prothrombinase functioning which utilizes different complex formation and even inhibitory mechanisms depending on conditions.
Collapse
Affiliation(s)
- A R Gantseva
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy Pereulok, 9, Dolgoprudny, Moscow Oblast 141701, Russia
| | - E R Gantseva
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, Moscow 119991, Russia
| | - A N Sveshnikova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia; Faculty of Fundamental Physical and Chemical Engineering, Lomonosov Moscow State University, GSP-1, 1 Leninskiye Gory, Moscow 119991, Russia
| | - M A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie gory, Moscow 119991, Russia; Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia
| | - T A Kovalenko
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, 30 Srednyaya Kalitnikovskaya str., Moscow 109029, Russia; National Medical Research Centre of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, 1 Samory Mashela St, 117198 Moscow, Russia.
| |
Collapse
|
2
|
Arauna D, Araya-Maturana R, Urra FA, García Á, Palomo I, Fuentes E. Altered dynamics of calcium fluxes and mitochondrial metabolism in platelet activation-related disease and aging. Life Sci 2024; 351:122846. [PMID: 38880165 DOI: 10.1016/j.lfs.2024.122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanisms controlling platelet function is crucial for exploring potential therapeutic targets related to atherothrombotic pathologies and primary hemostasis disorders. Our research, which focuses on the role of platelet mitochondria and Ca2+ fluxes in platelet activation, the formation of the procoagulant phenotype, and thrombosis, has significant implications for the development of new therapeutic strategies. Traditionally, Ca2+-dependent cellular signaling has been recognized as a determinant process throughout the platelet activation, controlled primarily by store-operated Ca2+ entry and the PLC-PKC signaling pathway. However, despite the accumulated knowledge of these regulatory mechanisms, the effectiveness of therapy based on various commonly used antiplatelet drugs (such as acetylsalicylic acid and clopidogrel, among others) has faced challenges due to bleeding risks and reduced efficacy associated with the phenomenon of high platelet reactivity. Recent evidence suggests that platelet mitochondria could play a fundamental role in these aspects through Ca2+-dependent mechanisms linked to apoptosis and forming a procoagulant phenotype. In this context, the present review describes the latest advances regarding the role of platelet mitochondria and Ca2+ fluxes in platelet activation, the formation of the procoagulant phenotype, and thrombosis.
Collapse
Affiliation(s)
- Diego Arauna
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center of Healthy Aging (CIES), MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Universidad de Talca, Talca, Chile
| | - Félix A Urra
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Interuniversity Center of Healthy Aging (CIES), MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Santiago, Chile
| | - Ángel García
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Iván Palomo
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center of Healthy Aging (CIES), MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Faculty of Health Sciences, Universidad de Talca, Talca, Chile
| | - Eduardo Fuentes
- Thrombosis and Healthy Aging Research Center, Department of Clinical Biochemistry and Immunohematology, Interuniversity Center of Healthy Aging (CIES), MIBI: Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics, Faculty of Health Sciences, Universidad de Talca, Talca, Chile.
| |
Collapse
|
3
|
Soloveva PA, Podoplelova NA, Panteleev MA. Binding of coagulation factor IXa to procoagulant platelets revisited: Low affinity and interactions with other factors. Biochem Biophys Res Commun 2024; 720:150099. [PMID: 38749192 DOI: 10.1016/j.bbrc.2024.150099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Binding of activated factor IX (fIXa) to the phosphatidylserine-expressing procoagulant platelets is a critical step in blood coagulation, which is necessary for the membrane-dependent intrinsic tenase complex assembly and factor X activation. However, the nature and parameters of the fIXa binding sites on the procoagulant platelet surface remain unclear. We used flow cytometry to elucidate the quantitative details of the fluorescently labeled fIXa binding to gel-filtered activated platelets. FIXa bound to the procoagulant platelet subpopulation only, with the parameters (maximal number of binding sites at 58900 ± 3400, Kd at 1000 ± 170 nM) similar to binding observed with phospholipid vesicles. No specific high-affinity binding sites for fIXa were detected, and binding proceeded similarly for different methods of procoagulant platelet production (thrombin, thrombin receptor activation peptide, collagen-related peptide, their combinations, or calcium ionophore A23187). Factor VIII, known to form a high affinity complex with fIXa, enhanced fIXa binding to platelets. In contrast, only competition effects were observed for factor X, which binds fIXa with much lower affinity. Unexpectedly, fIXa itself, fIX, and prothrombin also dose-dependently enhance fIXa binding at concentrations below 1000 nM, suggesting the formation of membrane-bound fIXa dimers and fIXa-prothrombin complexes on platelets. These findings provide a novel perspective on the fIXa binding site on procoagulant platelets, which does not have any major differences from pure phospholipid-based model membranes, exhibits inherently low affinity (3-5 orders of magnitude below the physiologically relevant fIXa concentration) but is significantly enhanced by its cofactor VIII, and regulated by previously unknown membrane interactions.
Collapse
Affiliation(s)
- Polina A Soloveva
- Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, 109029, Russia; Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Nadezhda A Podoplelova
- Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, 109029, Russia; National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, 117198, Russia.
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, 109029, Russia; National Medical Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, Moscow, 117198, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Gauer JS, Ajanel A, Kaselampao LM, Candir I, MacCannell AD, Roberts LD, Campbell RA, Ariëns RA. Plant-derived compounds normalize platelet bioenergetics and function in hyperglycemia. Res Pract Thromb Haemost 2024; 8:102548. [PMID: 39309231 PMCID: PMC11416496 DOI: 10.1016/j.rpth.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/16/2024] [Accepted: 08/08/2024] [Indexed: 09/25/2024] Open
Abstract
Background Polyphenols have been shown to decrease oxidative stress and modulate glycemic response. Nevertheless, their effect on platelet bioenergetics and clot structure in diabetes and hyperglycemia is unknown. Objectives To investigate the effect of polyphenols on human platelet bioenergetics and its subsequent effect on clot structure in normoglycemia vs acute hyperglycemia in vitro. Methods Four polyphenols (resveratrol, hesperetin, epigallocatechin gallate [EGCG], and quercetin) were selected for initial analysis. Healthy volunteers' isolated platelets/platelet-rich plasma were treated with 5 or 25 mM glucose to represent normoglycemia and acute hyperglycemia, respectively. Platelet-derived reactive oxygen species (ROS), citrate synthase activity (mitochondrial density), mitochondrial calcium flux, and mitochondrial respiration were performed following exposure to polyphenols (20 µM, 1 hour) to determine their effects on platelet bioenergetics. Procoagulant platelets (annexin V) and fibrin fiber density (Alexa Fluor-488 fibrinogen; Invitrogen) were analyzed by laser scanning confocal microscopy, while clot porosity was determined using platelet-rich plasma following exposure to polyphenols (20 µM, 20 minutes). Results Acute hyperglycemia increased ROS, mitochondrial calcium flux, maximal respiration, and procoagulant platelet number. Resveratrol, quercetin, and EGCG reduced platelet ROS in normoglycemic and acute hyperglycemic conditions. Mitochondrial density was decreased by quercetin and EGCG in normoglycemia. Resveratrol and EGCG reduced mitochondrial calcium flux in acute hyperglycemia. Resveratrol also decreased procoagulant platelet number and attenuated oxygen consumption rate in normoglycemia and acute hyperglycemia. No effect of hyperglycemia or polyphenols was observed on fibrin fiber density or clot pore size. Conclusion Our results suggest polyphenols attenuate increased platelet activity stemming from hyperglycemia and may benefit thrombosis-preventative strategies in patients with diabetes.
Collapse
Affiliation(s)
- Julia S. Gauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Abigail Ajanel
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Lutale M. Kaselampao
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Isabel Candir
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Amanda D.V. MacCannell
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Lee D. Roberts
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robert A. Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
- Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA
- Department of Emergency, Washington University, Saint Louis, MO 63110, USA
| | - Robert A.S. Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Sveshnikova AN, Shibeko AM, Kovalenko TA, Panteleev MA. Kinetics and regulation of coagulation factor X activation by intrinsic tenase on phospholipid membranes. J Theor Biol 2024; 582:111757. [PMID: 38336240 DOI: 10.1016/j.jtbi.2024.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Factor X activation by the phospholipid-bound intrinsic tenase complex is a critical membrane-dependent reaction of blood coagulation. Its regulation mechanisms are unclear, and a number of questions regarding diffusional limitation, pathways of assembly and substrate delivery remain open. METHODS We develop and analyze here a detailed mechanism-driven computer model of intrinsic tenase on phospholipid surfaces. Three-dimensional reaction-diffusion-advection and stochastic simulations were used where appropriate. RESULTS Dynamics of the system was predominantly non-stationary under physiological conditions. In order to describe experimental data, we had to assume both membrane-dependent and solution-dependent delivery of the substrate. The former pathway dominated at low cofactor concentration, while the latter became important at low phospholipid concentration. Factor VIIIa-factor X complex formation was the major pathway of the complex assembly, and the model predicted high affinity for their lipid-dependent interaction. Although the model predicted formation of the diffusion-limited layer of substrate for some conditions, the effects of this limitation on the fXa production were small. Flow accelerated fXa production in a flow reactor model by bringing in fIXa and fVIIIa rather than fX. CONCLUSIONS This analysis suggests a concept of intrinsic tenase that is non-stationary, employs several pathways of substrate delivery depending on the conditions, and is not particularly limited by diffusion of the substrate.
Collapse
Affiliation(s)
- Anastasia N Sveshnikova
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Faculty of Fundamental Physico-Chemical Engineering, Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia; Department of Normal Physiology, Sechenov First Moscow State Medical University, 8/2 Trubetskaya St., 119991 Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Alexey M Shibeko
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Tatiana A Kovalenko
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Mikhail A Panteleev
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia; Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie Gory, Moscow, 119991, Russia.
| |
Collapse
|
6
|
Choi JH, Kim K. Polyhexamethylene Guanidine Phosphate Enhanced Procoagulant Activity through Oxidative-Stress-Mediated Phosphatidylserine Exposure in Platelets. TOXICS 2024; 12:50. [PMID: 38251006 PMCID: PMC10820372 DOI: 10.3390/toxics12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
Polyhexamethylene guanidine phosphate (PHMG-p) is a common biocidal disinfectant that is widely used in industry and household products. However, PHMG-p was misused as a humidifier disinfectant (HD) in South Korea, which had fatal health effects. Various health problems including cardiovascular diseases were observed in HD-exposed groups. However, the potential underlying mechanism of HD-associated cardiovascular diseases is poorly understood. Here, we examined the procoagulant activity of platelets caused by PHMG-p and clarified the underlying mechanism. PHMG-p enhanced phosphatidylserine (PS) exposure through alteration of phospholipid transporters, scramblase, and flippase. Intracellular calcium elevation, intracellular ATP depletion, and caspase-3 activation appeared to underlie phospholipid transporter dysregulation caused by PHMG-p, which was mediated by oxidative stress and mitochondrial dysfunction. Notably, antioxidant enzyme catalase and calcium chelator EGTA reversed PHMG-p-induced PS exposure and thrombin generation, confirming the contributive role of oxidative stress and intracellular calcium in the procoagulant effects of PHMG-p. These series of events led to procoagulant activation of platelets, which was revealed as enhanced thrombin generation. Collectively, PHMG-p triggered procoagulant activation of platelets, which may promote prothrombotic risks and cardiovascular diseases. These findings improve our understanding of HD-associated cardiovascular diseases.
Collapse
Affiliation(s)
| | - Keunyoung Kim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea;
| |
Collapse
|
7
|
An O, Deppermann C. Platelet lifespan and mechanisms for clearance. Curr Opin Hematol 2024; 31:6-15. [PMID: 37905750 DOI: 10.1097/moh.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
PURPOSE OF REVIEW Activated or aged platelets are removed from circulation under (patho)physiologic conditions, the exact mechanism of platelet clearance under such conditions remains unclear and are currently being investigated. This review focuses on recent findings and controversies regarding platelet clearance and the disruption of platelet life cycle. RECENT FINDINGS The platelet life span is determined by glycosylation of platelet surface receptors with sialic acid. Recently, it was shown that platelet activation and granule release leads to desialylation of glycans and accelerated clearance of platelets under pathological conditions. This phenomenon was demonstrated to be a main reason for thrombocytopenia being a complication in several infections and immune disorders. SUMMARY Although we have recently gained some insight into how aged platelets are cleared from circulation, we are still not seeing the full picture. Further investigations of the platelet clearance pathways under pathophysiologic conditions are needed as well as studies to unravel the connection between platelet clearance and platelet production.
Collapse
Affiliation(s)
- Olga An
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|
8
|
Kalinin R, Suchkov I, Povarov V, Mzhavanadze N, Zhurina O. Perioperative coagulation activation after permanent pacemaker placement. World J Cardiol 2023; 15:174-183. [PMID: 37124977 PMCID: PMC10130890 DOI: 10.4330/wjc.v15.i4.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Bradyarrhythmias are typically treated with permanent pacemakers (PM). The elimination of bradyarrhythmia by PM implantation improves the patient's quality of life and prognosis, but it can also result in a number of sequalae. It is still unclear how PM implantation affects the hemostasis system's parameters and how such parameters relate to different consequences after PM placement.
AIM To assess the blood coagulation factor activity in PM patients throughout the perioperative period.
METHODS Patients treated in the Department of Surgical Therapy of Cardiac Arrhythmias and Pacing at the Ryazan State "Regional Clinical Cardiology Dispensary" from April 2020 to December 2021 were included in the study. Before surgery, 7 and 30 d after PM placement, peripheral venous blood samples were withdrawn to measure the level of blood coagulation factor I (FI) and the activity of blood coagulation factors II (FII), V (FV), VII (FVII), VIII (FVIII), IX (FIX), X (FX), XI (FXI), XII (FXII). We used an automatic coagulometer Sysmex CA 660 (Sysmex Europe, Germany) and reagents from Siemens (Siemens Healthcare Diagnostics Products GmbH, Germany).
RESULTS The study included 146 patients. The activity of factors FV [147.7 (102.1-247.55)% vs 103.85 (60-161.6)% vs 81.8 (67.15-130.65)%, P = 0.002], FVIII [80.4 (60.15-106.25)% vs 70.3 (48.5-89.1)% vs 63.7 (41.6-88.25)%, P = 0.039], FIX [86.2 (70.75-102.95)% vs 75.4 (59.2-88.3)% vs 73.9 (56.45-93.05)%, P = 0.014], FX [188.9 (99.3-308.18)% vs 158.9 (83.3-230)% vs 127.2 (95.25-209.35)%, P = 0.022], FXI [82.6 (63.9-103.6)% vs 69.75 (53.8-97.6)% vs 67.3 (54.25-98.05)%, P = 0.002], FXII [87.6 (67.15-102.3)% vs 78.9 (63.4-97.05)% vs 81.2 (62.15-97.4)%, P < 0.001] decreased at 7 and 30 d after surgery; FII activity [157.9 (109.7-245.25)% vs 130 (86.8-192.5)% vs 144.8 (103.31-185.6)%, P = 0.021] decreased at 7 d and increased at 30 d postoperatively. There were no statistically significant changes in the FVII activity within 30 d after PM placement [182.2 (85.1-344.8)% vs 157.2 (99.1-259)% vs 108.9 (74.9-219.8)%, P = 0.128]. Subgroup analysis revealed similar changes only in patients on anticoagulant therapy. FXII activity decreased in patients on antiplatelet therapy [82 (65.8-101.9)% vs 79.9 (63.3-97.1)% vs 89.7 (75.7-102.5)%, P = 0.01] 7 d after surgery, returning to baseline values at 30 d postoperatively.
CONCLUSION PM placement and anticoagulant therapy were associated with decreased activity of clotting factors FV, FVIII, FIX, FX, FXI, FXII in the postoperative period. FVII activity did not decrease within 30 d after PM placement, which may indicate endothelial injury caused by lead placement.
Collapse
Affiliation(s)
- Roman Kalinin
- Department of Cardiovascular, Endovascular Surgery and Diagnostic Radiology, Ryazan State Medical University, Ryazan 390026, Russia
| | - Igor Suchkov
- Department of Cardiovascular, Endovascular Surgery and Diagnostic Radiology, Ryazan State Medical University, Ryazan 390026, Russia
| | - Vladislav Povarov
- Department of Cardiovascular, Endovascular Surgery and Diagnostic Radiology, Ryazan State Medical University, Ryazan 390026, Russia
- Department of Surgical Treatment of Cardiac Arrhythmias and Cardiac Pacing, Ryazan State "Regional Clinical Cardiology Dispensary", Ryazan 390026, Russia
| | - Nina Mzhavanadze
- Department of Cardiovascular, Endovascular Surgery and Diagnostic Radiology, Ryazan State Medical University, Ryazan 390026, Russia
| | - Olga Zhurina
- Scientific and Clinical Center for Hematology, Oncology and Immunology, Ryazan State Medical University, Ryazan 390026, Russia
| |
Collapse
|
9
|
Gauer JS, Duval C, Xu RG, Macrae FL, McPherson HR, Tiede C, Tomlinson D, Watson SP, Ariëns RAS. Fibrin-glycoprotein VI interaction increases platelet procoagulant activity and impacts clot structure. J Thromb Haemost 2023; 21:667-681. [PMID: 36696196 DOI: 10.1016/j.jtha.2022.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND The glycoprotein VI (GPVI) signaling pathway was previously reported to direct procoagulant platelet activity through collagen binding. However, the impact of GPVI-fibrin interaction on procoagulant platelet development and how it modulates the clot structure are unknown. OBJECTIVES To determine the effect of GPVI-fibrin interaction on the platelet phenotype and its impact on the clot structure. METHODS Procoagulant platelets in platelet-rich plasma clots were determined by scanning electron microscopy (wild-type and GPVI-deficient murine samples) and confocal microscopy. Procoagulant platelet number, clot density, clot porosity, and clot retraction were determined in platelet-rich plasma or whole blood clots of healthy volunteers in the presence of tyrosine kinase inhibitors (PRT-060318, ibrutinib, and dasatinib) and eptifibatide. RESULTS GPVI-deficient clots showed a higher nonprocoagulant vs procoagulant platelet ratio than wild-type clots. The fiber density and the procoagulant platelet number decreased in the presence of Affimer proteins, inhibiting GPVI-fibrin(ogen) interaction and the tyrosine kinase inhibitors. The effect of GPVI signaling inhibitors on the procoagulant platelet number was exacerbated by eptifibatide. The tyrosine kinase inhibitors led to an increase in clot porosity; however, no differences were observed in the final clot weight, following clot retraction with the tyrosine kinase inhibitors, except for ibrutinib. In the presence of eptifibatide, clot retraction was impaired. CONCLUSION Our findings showed that GPVI-fibrin interaction significantly contributes to the development of procoagulant platelets and that inhibition of GPVI signaling increases clot porosity. Clot contractibility was impaired by the integrin αIIbβ3 and Btk pathway inhibition. Thus, inhibition of GPVI-fibrin interactions can alleviate structural characteristics that contribute to a prothrombotic clot phenotype, having potential important implications for novel antithrombotic interventions.
Collapse
Affiliation(s)
- Julia S Gauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Cédric Duval
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Rui-Gang Xu
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Helen R McPherson
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Christian Tiede
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Darren Tomlinson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
10
|
Narwal A, Whyte CS, Mutch NJ. Location, location, location: Fibrin, cells, and fibrinolytic factors in thrombi. Front Cardiovasc Med 2023; 9:1070502. [PMID: 36741833 PMCID: PMC9889369 DOI: 10.3389/fcvm.2022.1070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
Thrombi are heterogenous in nature with composition and structure being dictated by the site of formation, initiating stimuli, shear stress, and cellular influences. Arterial thrombi are historically associated with high platelet content and more tightly packed fibrin, reflecting the shear stress in these vessels. In contrast, venous thrombi are generally erythrocyte and fibrin-rich with reduced platelet contribution. However, these conventional views on the composition of thrombi in divergent vascular beds have shifted in recent years, largely due to recent advances in thromboectomy and high-resolution imaging. Interestingly, the distribution of fibrinolytic proteins within thrombi is directly influenced by the cellular composition and vascular bed. This in turn influences the susceptibility of thrombi to proteolytic degradation. Our current knowledge of thrombus composition and its impact on resistance to thrombolytic therapy and success of thrombectomy is advancing, but nonetheless in its infancy. We require a deeper understanding of thrombus architecture and the downstream influence on fibrinolytic susceptibility. Ultimately, this will aid in a stratified and targeted approach to tailored antithrombotic strategies in patients with various thromboembolic diseases.
Collapse
|
11
|
Muravlev IA, Dobrovolsky AB, Antonova OA, Khaspekova SG, Mazurov AV. Effects of platelets activated by different agonists on fibrin formation and thrombin generation. Platelets 2022; 34:2139365. [DOI: 10.1080/09537104.2022.2139365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ivan A. Muravlev
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russian Federation
| | - Anatoly B. Dobrovolsky
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russian Federation
| | - Olga A. Antonova
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russian Federation
| | - Svetlana G. Khaspekova
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russian Federation
| | - Alexey V. Mazurov
- National Medical Research Center of Cardiology, Russian Ministry of Health, Moscow, Russian Federation
| |
Collapse
|
12
|
Lv J, Zhang L, Du W, Ling G, Zhang P. Functional gold nanoparticles for diagnosis, treatment and prevention of thrombus. J Control Release 2022; 345:572-585. [DOI: 10.1016/j.jconrel.2022.03.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/23/2022]
|
13
|
Abstract
This review discusses our understanding of platelet diversity with implications for the roles of platelets in hemostasis and thrombosis and identifies advanced technologies set to provide new insights. We use the term diversity to capture intrasubject platelet variability that can be intrinsic or governed by the environment and lead to a heterogeneous response pattern of aggregation, clot promotion, and external communication. Using choice examples, we discuss how the use of advanced technologies can provide new insights into the underlying causes of platelet molecular, structural, and functional diversity. As sources of diversity, we discuss the proliferating megakaryocytes with different allele-specific expression patterns, the asymmetrical formation of proplatelets, changes in platelets induced by aging and priming, interplatelet heterogeneity in thrombus organization and stability, and platelet-dependent communications. We provide indications how current knowledge gaps can be addressed using promising technologies, such as next-generation sequencing, proteomic approaches, advanced imaging techniques, multicolor flow and mass cytometry, multifunctional microfluidics assays, and organ-on-a-chip platforms. We then argue how this technology base can aid in characterizing platelet populations and in identifying platelet biomarkers relevant for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (J.W.M.H.)
| | - Jonathan West
- Faculty of Medicine and Centre for Hybrid Biodevices, University of Southampton, United Kingdom (J.W.)
| |
Collapse
|
14
|
Veuthey L, Aliotta A, Bertaggia Calderara D, Pereira Portela C, Alberio L. Mechanisms Underlying Dichotomous Procoagulant COAT Platelet Generation-A Conceptual Review Summarizing Current Knowledge. Int J Mol Sci 2022; 23:2536. [PMID: 35269679 PMCID: PMC8910683 DOI: 10.3390/ijms23052536] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Procoagulant platelets are a subtype of activated platelets that sustains thrombin generation in order to consolidate the clot and stop bleeding. This aspect of platelet activation is gaining more and more recognition and interest. In fact, next to aggregating platelets, procoagulant platelets are key regulators of thrombus formation. Imbalance of both subpopulations can lead to undesired thrombotic or bleeding events. COAT platelets derive from a common pro-aggregatory phenotype in cells capable of accumulating enough cytosolic calcium to trigger specific pathways that mediate the loss of their aggregating properties and the development of new adhesive and procoagulant characteristics. Complex cascades of signaling events are involved and this may explain why an inter-individual variability exists in procoagulant potential. Nowadays, we know the key agonists and mediators underlying the generation of a procoagulant platelet response. However, we still lack insight into the actual mechanisms controlling this dichotomous pattern (i.e., procoagulant versus aggregating phenotype). In this review, we describe the phenotypic characteristics of procoagulant COAT platelets, we detail the current knowledge on the mechanisms of the procoagulant response, and discuss possible drivers of this dichotomous diversification, in particular addressing the impact of the platelet environment during in vivo thrombus formation.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (L.V.); (A.A.); (D.B.C.); (C.P.P.)
| |
Collapse
|
15
|
Navarro S, Stegner D, Nieswandt B, Heemskerk JWM, Kuijpers MJE. Temporal Roles of Platelet and Coagulation Pathways in Collagen- and Tissue Factor-Induced Thrombus Formation. Int J Mol Sci 2021; 23:ijms23010358. [PMID: 35008781 PMCID: PMC8745329 DOI: 10.3390/ijms23010358] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022] Open
Abstract
In hemostasis and thrombosis, the complex process of thrombus formation involves different molecular pathways of platelet and coagulation activation. These pathways are considered as operating together at the same time, but this has not been investigated. The objective of our study was to elucidate the time-dependency of key pathways of thrombus and clot formation, initiated by collagen and tissue factor surfaces, where coagulation is triggered via the extrinsic route. Therefore, we adapted a microfluidics whole-blood assay with the Maastricht flow chamber to acutely block molecular pathways by pharmacological intervention at desired time points. Application of the technique revealed crucial roles of glycoprotein VI (GPVI)-induced platelet signaling via Syk kinase as well as factor VIIa-induced thrombin generation, which were confined to the first minutes of thrombus buildup. A novel anti-GPVI Fab EMF-1 was used for this purpose. In addition, platelet activation with the protease-activating receptors 1/4 (PAR1/4) and integrin αIIbβ3 appeared to be prolongedly active and extended to later stages of thrombus and clot formation. This work thereby revealed a more persistent contribution of thrombin receptor-induced platelet activation than of collagen receptor-induced platelet activation to the thrombotic process.
Collapse
Affiliation(s)
- Stefano Navarro
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; (S.N.); (D.S.); (B.N.)
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; (S.N.); (D.S.); (B.N.)
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg, Würzburg Josef-Schneider-Straße 2, 97080 Wurzburg, Germany; (S.N.); (D.S.); (B.N.)
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Wurzburg, Germany
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6214 KD Maastricht, The Netherlands
- Correspondence: (J.W.M.H.); (M.J.E.K.); Tel.: +31-43-3881674 (M.J.E.K.)
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, Professor Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Correspondence: (J.W.M.H.); (M.J.E.K.); Tel.: +31-43-3881674 (M.J.E.K.)
| |
Collapse
|
16
|
Masalceva AA, Kaneva VN, Panteleev MA, Ataullakhanov F, Volpert V, Afanasyev I, Nechipurenko DY. Analysis of microvascular thrombus mechanobiology with a novel particle-based model. J Biomech 2021; 130:110801. [PMID: 34768079 DOI: 10.1016/j.jbiomech.2021.110801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/20/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022]
Abstract
Platelet accumulation at the site of a vascular injury is regulated by soluble platelet agonists, which induce various types of platelet responses, including integrin activation and granule secretion. The interplay between local biochemical cues, mechanical interactions between platelets and macroscopic thrombus dynamics is poorly understood. Here we describe a novel computational model of microvascular clot formation for the detailed analysis of thrombus mechanics. We adopt a previously developed two-dimensional particle-based model focused on the thrombus shell formation and revise it to introduce the platelet agonists. Blood flow is simulated via a computational fluid dynamics approach. In order to model soluble platelet activators, we apply Langevin dynamics to a large number of non-dimensional virtual particles. Taking advantage of the available data on platelet dense granule secretion kinetics, we model platelet degranulation as a stochastic agonist-dependent process. The new model qualitatively reproduces the enhanced thrombus formation due to dense granule secretion, in line with in vivo findings, and provides a mechanism for the thrombin confinement at the early stages of clot formation. Our calculations also predict that the release of platelet dense granules results in the additional mechanical stabilization of the inner layers of thrombus. Distribution of the inter-platelet forces throughout the aggregate reveals multiple weak spots in the outer regions of a thrombus, which are expected to result in the mechanical disruptions at the later stages of clot formation.
Collapse
Affiliation(s)
- Anastasia A Masalceva
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Science, Moscow, Russia
| | - Valeriia N Kaneva
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Science, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mikhail A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Science, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Fazoil Ataullakhanov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Science, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
| | - Vitaly Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France; INRIA Team Dracula, INRIA Lyon La Doua, 69603 Villeurbanne, France; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russia
| | - Ilya Afanasyev
- Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia; Research Computing Center of Moscow State University, Moscow, Russia
| | - Dmitry Yu Nechipurenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Science, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia.
| |
Collapse
|
17
|
Hindle MS, Spurgeon BEJ, Cheah LT, Webb BA, Naseem KM. Multidimensional flow cytometry reveals novel platelet subpopulations in response to prostacyclin. J Thromb Haemost 2021; 19:1800-1812. [PMID: 33834609 DOI: 10.1111/jth.15330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/01/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Robust platelet activation leads to the generation of subpopulations characterized by differential expression of phosphatidylserine (PS). Prostacyclin (PGI2 ) modulates many aspects of platelet function, but its influence on platelet subpopulations is unknown. OBJECTIVES AND METHODS We used fluorescent flow cytometry coupled to multidimensional fast Fourier transform-accelerated interpolation-based t-stochastic neighborhood embedding analysis to examine the influence of PGI2 on platelet subpopulations. RESULTS Platelet activation (SFLLRN/CRP-XL) in whole blood revealed three platelet subpopulations with unique combinations of fibrinogen (fb) binding and PS exposure. These subsets, PSlo /fbhi (68%), PShi /fblo (23%), and PShi /fbhi (8%), all expressed CD62P and partially shed CD42b. PGI2 significantly reduced fibrinogen binding and prevented the majority of PS exposure, but did not significantly reduce CD62P, CD154, or CD63 leading to the generation of four novel subpopulations, CD62Phi /PSlo /fblo (64%), CD62Phi /PSlo /fbhi (22%), CD62Phi /PShi /fblo (3%), and CD62Plo /PSlo /fblo (12%). Mechanistically this was linked to PGI2 -mediated inhibition of mitochondrial depolarization upstream of PS exposure. Combining phosphoflow with surface staining, we showed that PGI2 -treated platelets were characterized by both elevated vasodilator-stimulated phosphoprotein phosphorylation and CD62P. The resistance to cyclic AMP signaling was also observed for CD154 and CD63 expression. Consistent with the functional role of CD62P, exposure of blood to PGI2 failed to prevent SFLLRN/CRP-XL-induced platelet-monocyte aggregation despite reducing markers of hemostatic function. CONCLUSION The combination of multicolor flow cytometry assays with unbiased computational tools has identified novel platelet subpopulations that suggest differential regulation of platelet functions by PGI2 . Development of this approach with increased surface and intracellular markers will allow the identification of rare platelet subtypes and novel biomarkers.
Collapse
Affiliation(s)
- Matthew S Hindle
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Benjamin E J Spurgeon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lih T Cheah
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Beth A Webb
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Khalid M Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
18
|
MacKeigan DT, Ni T, Shen C, Stratton TW, Ma W, Zhu G, Bhoria P, Ni H. Updated Understanding of Platelets in Thrombosis and Hemostasis: The Roles of Integrin PSI Domains and their Potential as Therapeutic Targets. Cardiovasc Hematol Disord Drug Targets 2021; 20:260-273. [PMID: 33001021 DOI: 10.2174/1871529x20666201001144541] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 11/22/2022]
Abstract
Platelets are small blood cells known primarily for their ability to adhere and aggregate at injured vessels to arrest bleeding. However, when triggered under pathological conditions, the same adaptive mechanism of platelet adhesion and aggregation may cause thrombosis, a primary cause of heart attack and stroke. Over recent decades, research has made considerable progress in uncovering the intricate and dynamic interactions that regulate these processes. Integrins are heterodimeric cell surface receptors expressed on all metazoan cells that facilitate cell adhesion, movement, and signaling, to drive biological and pathological processes such as thrombosis and hemostasis. Recently, our group discovered that the plexin-semaphorin-integrin (PSI) domains of the integrin β subunits exert endogenous thiol isomerase activity derived from their two highly conserved CXXC active site motifs. Given the importance of redox reactions in integrin activation and its location in the knee region, this PSI domain activity may be critically involved in facilitating the interconversions between integrin conformations. Our monoclonal antibodies against the β3 PSI domain inhibited its thiol isomerase activity and proportionally attenuated fibrinogen binding and platelet aggregation. Notably, these antibodies inhibited thrombosis without significantly impairing hemostasis or causing platelet clearance. In this review, we will update mechanisms of thrombosis and hemostasis, including platelet versatilities and immune-mediated thrombocytopenia, discuss critical contributions of the newly discovered PSI domain thiol isomerase activity, and its potential as a novel target for anti-thrombotic therapies and beyond.
Collapse
Affiliation(s)
- Daniel T MacKeigan
- Department of Physiology, University of Toronto, Toronto, ON M5S, Canada
| | - Tiffany Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Chuanbin Shen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Tyler W Stratton
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Wenjing Ma
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Guangheng Zhu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Preeti Bhoria
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Canada
| | - Heyu Ni
- Department of Physiology, University of Toronto, Toronto, ON M5S, Canada
| |
Collapse
|
19
|
Podoplelova NA, Nechipurenko DY, Ignatova AA, Sveshnikova AN, Panteleev MA. Procoagulant Platelets: Mechanisms of Generation and Action. Hamostaseologie 2021; 41:146-153. [PMID: 33860522 DOI: 10.1055/a-1401-2706] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During the past decades, it has been increasingly recognized that the major function of accelerating membrane-dependent reactions of blood coagulation is predominantly implemented by a subset of activated platelets. These procoagulant platelets (also called collagen- and thrombin-activated or COAT, coated, necrotic, although there could be subtle differences between these definitions) are uniquely characterized by both procoagulant activity and, at the same time, inactivated integrins and profibrinolytic properties. The mechanisms of their generation both in vitro and in situ have been increasingly becoming clear, suggesting unique and multidirectional roles in hemostasis and thrombosis. In this mini-review, we shall highlight the existing concepts and challenges in this field.
Collapse
Affiliation(s)
- N A Podoplelova
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia
| | - D Y Nechipurenko
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - A A Ignatova
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia
| | - A N Sveshnikova
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - M A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
20
|
Factor XIII-A: An Indispensable "Factor" in Haemostasis and Wound Healing. Int J Mol Sci 2021; 22:ijms22063055. [PMID: 33802692 PMCID: PMC8002558 DOI: 10.3390/ijms22063055] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
Factor XIII (FXIII) is a transglutaminase enzyme that catalyses the formation of ε-(γ-glutamyl)lysyl isopeptide bonds into protein substrates. The plasma form, FXIIIA2B2, has an established function in haemostasis, with fibrin being its principal substrate. A deficiency in FXIII manifests as a severe bleeding diathesis emphasising its crucial role in this pathway. The FXIII-A gene (F13A1) is expressed in cells of bone marrow and mesenchymal lineage. The cellular form, a homodimer of the A subunits denoted FXIII-A, was perceived to remain intracellular, due to the lack of a classical signal peptide for its release. It is now apparent that FXIII-A can be externalised from cells, by an as yet unknown mechanism. Thus, three pools of FXIII-A exist within the circulation: plasma where it circulates in complex with the inhibitory FXIII-B subunits, and the cellular form encased within platelets and monocytes/macrophages. The abundance of this transglutaminase in different forms and locations in the vasculature reflect the complex and crucial roles of this enzyme in physiological processes. Herein, we examine the significance of these pools of FXIII-A in different settings and the evidence to date to support their function in haemostasis and wound healing.
Collapse
|
21
|
Sang Y, Roest M, de Laat B, de Groot PG, Huskens D. Interplay between platelets and coagulation. Blood Rev 2021; 46:100733. [PMID: 32682574 PMCID: PMC7354275 DOI: 10.1016/j.blre.2020.100733] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Haemostasis stops bleeding at the site of vascular injury and maintains the integrity of blood vessels through clot formation. This regulated physiological process consists of complex interactions between endothelial cells, platelets, von Willebrand factor and coagulation factors. Haemostasis is initiated by a damaged vessel wall, followed with a rapid adhesion, activation and aggregation of platelets to the exposed subendothelial extracellular matrix. At the same time, coagulation factors aggregate on the procoagulant surface of activated platelets to consolidate the platelet plug by forming a mesh of cross-linked fibrin. Platelets and coagulation mutually influence each other and there are strong indications that, thanks to the interplay between platelets and coagulation, haemostasis is far more effective than the two processes separately. Clinically this is relevant because impaired interaction between platelets and coagulation may result in bleeding complications, while excessive platelet-coagulation interaction induces a high thrombotic risk. In this review, platelets, coagulation factors and the complex interaction between them will be discussed in detail.
Collapse
Affiliation(s)
- Yaqiu Sang
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Mark Roest
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | - Bas de Laat
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands
| | | | - Dana Huskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Synapse Research Institute, Maastricht, the Netherlands.
| |
Collapse
|
22
|
Aliotta A, Bertaggia Calderara D, Zermatten MG, Marchetti M, Alberio L. Thrombocytopathies: Not Just Aggregation Defects-The Clinical Relevance of Procoagulant Platelets. J Clin Med 2021; 10:jcm10050894. [PMID: 33668091 PMCID: PMC7956450 DOI: 10.3390/jcm10050894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/31/2021] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Platelets are active key players in haemostasis. Qualitative platelet dysfunctions result in thrombocytopathies variously characterized by defects of their adhesive and procoagulant activation endpoints. In this review, we summarize the traditional platelet defects in adhesion, secretion, and aggregation. In addition, we review the current knowledge about procoagulant platelets, focusing on their role in bleeding or thrombotic pathologies and their pharmaceutical modulation. Procoagulant activity is an important feature of platelet activation, which should be specifically evaluated during the investigation of a suspected thrombocytopathy.
Collapse
Affiliation(s)
- Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Maxime G. Zermatten
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
| | - Matteo Marchetti
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
- Service de Médecine Interne, Hôpital de Nyon, CH-1260 Nyon, Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (A.A.); (D.B.C.); (M.G.Z.); (M.M.)
- Correspondence:
| |
Collapse
|
23
|
Whyte CS, Morrow GB, Baik N, Booth NA, Jalal MM, Parmer RJ, Miles LA, Mutch NJ. Exposure of plasminogen and a novel plasminogen receptor, Plg-RKT, on activated human and murine platelets. Blood 2021; 137:248-257. [PMID: 32842150 PMCID: PMC7820873 DOI: 10.1182/blood.2020007263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/15/2020] [Indexed: 11/20/2022] Open
Abstract
Plasminogen activation rates are enhanced by cell surface binding. We previously demonstrated that exogenous plasminogen binds to phosphatidylserine-exposing and spread platelets. Platelets contain plasminogen in their α-granules, but secretion of plasminogen from platelets has not been studied. Recently, a novel transmembrane lysine-dependent plasminogen receptor, Plg-RKT, has been described on macrophages. Here, we analyzed the pool of plasminogen in platelets and examined whether platelets express Plg-RKT. Plasminogen content of the supernatant of resting and collagen/thrombin-stimulated platelets was similar. Pretreatment with the lysine analog, ε-aminocaproic acid, significantly increased platelet-derived plasminogen (0.33 vs 0.08 nmol/108 platelets) in the stimulated supernatant, indicating a lysine-dependent mechanism of membrane retention. Lysine-dependent, platelet-derived plasminogen retention on thrombin and convulxin activated human platelets was confirmed by flow cytometry. Platelets initiated fibrinolytic activity in fluorescently labeled plasminogen-deficient clots and in turbidimetric clot lysis assays. A 17-kDa band, consistent with Plg-RKT, was detected in the platelet membrane fraction by western blotting. Confocal microscopy of stimulated platelets revealed Plg-RKT colocalized with platelet-derived plasminogen on the activated platelet membrane. Plasminogen exposure was significantly attenuated in thrombin- and convulxin-stimulated platelets from Plg-RKT-/- mice compared with Plg-RKT+/+ littermates. Membrane exposure of Plg-RKT was not dependent on plasminogen, as similar levels of the receptor were detected in plasminogen-/- platelets. These data highlight Plg-RKT as a novel plasminogen receptor in human and murine platelets. We show for the first time that platelet-derived plasminogen is retained on the activated platelet membrane and drives local fibrinolysis by enhancing cell surface-mediated plasminogen activation.
Collapse
Affiliation(s)
- Claire S Whyte
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Gael B Morrow
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Nagyung Baik
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Nuala A Booth
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Mohammed M Jalal
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Robert J Parmer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medicine, University of California San Diego, San Diego, CA; and
| | - Lindsey A Miles
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Nicola J Mutch
- Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
24
|
Tohidi-Esfahani I, Lee CSM, Liang HPH, Chen VMY. Procoagulant platelets: Laboratory detection and clinical significance. Int J Lab Hematol 2021; 42 Suppl 1:59-67. [PMID: 32543068 DOI: 10.1111/ijlh.13197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Platelets play a critical role in both haemostasis and thrombosis, and it is now evident that not all platelets behave the same when they are called to action. A functionally distinct subpopulation of platelets forms in response to maximal agonist stimulation: the procoagulant platelet. This platelet subpopulation is defined by its ability to expose phosphatidylserine on its surface, allowing for coagulation factor complexes to form and generate bursts of thrombin and fibrin to stabilize platelet clots. Reduced levels of procoagulant platelets have been linked to bleeding in Scott's syndrome and haemophilia A patients, and elevated levels have been demonstrated in many thrombotic disorders, including identifying patients at higher risk for stroke recurrence. One obstacle for incorporating an assay for measuring procoagulant platelets into clinical management algorithms is the lack of consensus on the exact definition and markers for this subpopulation. This review will outline the biological characteristics of procoagulant platelets and the laboratory assays currently used to identify them in research settings. It will summarize the findings of clinical research demonstrating the relevance of measuring the procoagulant platelet levels in patients and will discuss how an appropriate assay can be used to elucidate the mechanism behind the formation of this subpopulation, facilitating novel drug discovery to improve upon current outcomes in cardiovascular and other thrombotic disorders.
Collapse
Affiliation(s)
- Ibrahim Tohidi-Esfahani
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Christine S M Lee
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Hai Po H Liang
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Vivien M Y Chen
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Aliotta A, Krüsi M, Bertaggia Calderara D, Zermatten MG, Gomez FJ, Batista Mesquita Sauvage AP, Alberio L. Characterization of Procoagulant COAT Platelets in Patients with Glanzmann Thrombasthenia. Int J Mol Sci 2020; 21:E9515. [PMID: 33327658 PMCID: PMC7765091 DOI: 10.3390/ijms21249515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022] Open
Abstract
Patients affected by the rare Glanzmann thrombasthenia (GT) suffer from defective or low levels of the platelet-associated glycoprotein (GP) IIb/IIIa, which acts as a fibrinogen receptor, and have therefore an impaired ability to aggregate platelets. Because the procoagulant activity is a dichotomous facet of platelet activation, diverging from the aggregation endpoint, we were interested in characterizing the ability to generate procoagulant platelets in GT patients. Therefore, we investigated, by flow cytometry analysis, platelet functions in three GT patients as well as their ability to generate procoagulant collagen-and-thrombin (COAT) platelets upon combined activation with convulxin-plus-thrombin. In addition, we further characterized intracellular ion fluxes during the procoagulant response, using specific probes to monitor by flow cytometry kinetics of cytosolic calcium, sodium, and potassium ion fluxes. GT patients generated higher percentages of procoagulant COAT platelets compared to healthy donors. Moreover, they were able to mobilize higher levels of cytosolic calcium following convulxin-plus-thrombin activation, which is congruent with the greater procoagulant activity. Further investigations will dissect the role of GPIIb/IIIa outside-in signalling possibly implicated in the regulation of platelet procoagulant activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lorenzo Alberio
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Rue du Bugnon 46, CH-1011 Lausanne, Switzerland; (A.A.); (M.K.); (D.B.C.); (M.G.Z.); (F.J.G.); (A.P.B.M.S.)
| |
Collapse
|
26
|
Morrow GB, Whyte CS, Mutch NJ. Functional plasminogen activator inhibitor 1 is retained on the activated platelet membrane following platelet activation. Haematologica 2020; 105:2824-2833. [PMID: 33256381 PMCID: PMC7716352 DOI: 10.3324/haematol.2019.230367] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/21/2019] [Indexed: 01/14/2023] Open
Abstract
Platelets harbor the primary reservoir of circulating plasminogen activator inhibitor 1 (PAI-1), but the reportedly low functional activity of this pool of inhibitor has led to debate over its contribution to thrombus stability. Here we analyze the fate of PAI-1 secreted from activated platelets and examine its role in maintaining thrombus integrity. Activation of platelets results in translocation of PAI-1 to the outer leaflet of the membrane, with maximal exposure in response to strong dual agonist stimulation. PAI-1 is found to co-localize in the cap of PS-exposing platelets with its cofactor, vitronectin, and fibrinogen. Inclusion of tirofiban or Gly-Pro-Arg-Pro significantly attenuated exposure of PAI-1, indicating a crucial role for integrin αIIbβ3 and fibrin in delivery of PAI-1 to the activated membrane. Separation of platelets post-stimulation into soluble and cellular components revealed the presence of PAI-1 antigen and activity in both fractions, with approximately 40% of total platelet-derived PAI-1 remaining associated with the cellular fraction. Using a variety of fibrinolytic models we found that platelets produce a strong stabilizing effect against tPA-mediated clot lysis. Platelet lysate, as well as soluble and cellular fractions stabilize thrombi against premature degradation in a PAI-1 dependent manner. Our data show for the first time that a functional pool of PAI-1 is anchored to the membrane of stimulated platelets and regulates local fibrinolysis. We reveal a key role for integrin αIIbβ3 and fibrin in delivery of PAI-1 from platelet α-granules to the activated membrane. These data suggest that targeting platelet-associated PAI-1 may represent a viable target for novel profibrinolytic agents.
Collapse
Affiliation(s)
- Gael B. Morrow
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Nicola J. Mutch
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
27
|
Martyanov AA, Ignatova AA, Svidelskaya GS, Ponomarenko EA, Gambaryan SP, Sveshnikova AN, Panteleev MA. Programmed Cell Death and Functional Activity of Platelets in Case of Oncohematologic Diseases. BIOCHEMISTRY (MOSCOW) 2020; 85:1267-1276. [PMID: 33202211 DOI: 10.1134/s0006297920100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Programmed cell death of non-nucleated blood cells - platelets - could be associated with pathophysiology of oncologic and oncohematologic diseases. It contributes to both bleedings (caused by the thrombocytopenia, which is induced by elimination of the platelets) and thrombosis (caused by the processes of blood coagulation on the surface of phosphatidylserine exposing platelets). Here we characterized functional responses of platelets from the patients with various oncological disorders undergoing chemotherapy and compared them to the platelets from the healthy donors and platelets pre-incubated with apoptosis inducer ABT-737. Some patients exhibited diminished capability of platelets to aggregate. Immunophenotyping of these platelets revealed their pre-activation in comparison to the platelets from the healthy donors. Calcium signaling analysis revealed that in the patient-derived platelets, as well as in the apoptotic platelets, intracellular calcium levels were increased in resting cells. However, moderate level of this increase together with weak expression of phosphatidylserine allows us to assume that apoptotic processes in the circulating platelets from the patients are limited.
Collapse
Affiliation(s)
- A A Martyanov
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 109029, Russia.,Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A A Ignatova
- Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| | - G S Svidelskaya
- Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| | - E A Ponomarenko
- Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia
| | - S P Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - A N Sveshnikova
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 109029, Russia.,Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia.,Department of Normal Physiology, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - M A Panteleev
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 109029, Russia. .,Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, 117198, Russia.,Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
28
|
Kholmukhamedov A. Procoagulant Platelets. Platelets 2020. [DOI: 10.5772/intechopen.92638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are two well-known subpopulations of activated platelets: pro-aggregatory and procoagulant. Procoagulant platelets represent a subpopulation of activated platelets, which are morphologically and functionally distinct from pro-aggregatory ones. Although various names have been used to describe these platelets in the literature (CoaT, CoaTed, highly activated, ballooned, capped, etc.), there is a consensus on their phenotypic features including exposure of high levels of phosphatidylserine (PSer) on the surface; decreased aggregatory and adhesive properties; support of active tenase and prothrombinase complexes; maximal generation by co-stimulation of glycoprotein VI (GPVI) and protease-activated receptors (PAR). In this chapter, morphologic and functional features of procoagulant platelets, as well as the mechanisms of their formation, will be discussed.
Collapse
|
29
|
Trigani KT, Diamond SL. Intrathrombus Fibrin Attenuates Spatial Sorting of Phosphatidylserine Exposing Platelets during Clotting Under Flow. Thromb Haemost 2020; 121:46-57. [PMID: 32961573 DOI: 10.1055/s-0040-1715648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND As thrombosis proceeds, certain platelets in a clot expose phosphatidylserine (PS) on their outer membrane. These PS+ platelets subsequently sort to the perimeter of the mass via platelet contraction. It remains unclear how thrombin and fibrin may alter PS+ platelet sorting within a clot. OBJECTIVE We investigated the role of fibrin in PS+ platelet sorting. METHODS We used an 8-channel microfluidic assay of clotting over collagen (±tissue factor) at 100 s-1 initial wall shear rate. Temporal PS+ platelet sorting was measured using a Pearson's correlation coefficient between the annexin V distribution in a clot at 9 versus 15 minutes. Spatial PS+ platelet sorting was measured using an autocorrelation metric of the final annexin V distribution. RESULTS By 6 minutes, PS+ platelets were distributed throughout the platelet deposits and became highly spatially sorted by 15 minutes when thrombin and fibrin were blocked with Phe-Pro-Arg-chloromethylketone (PPACK). Fibrin polymerization (no PPACK) attenuated temporal and spatial PS sorting and clot contraction. With Gly-Pro-Arg-Pro (GPRP) added to block fibrin polymerization, PS sorting was prominent as was clot contraction. Exogenously added tissue plasminogen activator drove fibrinolysis that in turn promoted clot contraction and PS sorting, albeit to a lesser degree than the PPACK or GPRP conditions. Clots lacking fibrin displayed 3.6 times greater contraction than clots with fibrin. CONCLUSION PS sorting correlated with clot contraction, as previously reported. However, fibrin inversely correlated with both percent contraction and PS sorting. Fibrin attenuated clot contraction and PS sorting relative to clots without fibrin.
Collapse
Affiliation(s)
- Kevin T Trigani
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Scott L Diamond
- Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
30
|
Nechipurenko DY, Shibeko AM, Sveshnikova AN, Panteleev MA. In Silico Hemostasis Modeling and Prediction. Hamostaseologie 2020; 40:524-535. [PMID: 32916753 DOI: 10.1055/a-1213-2117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Computational physiology, i.e., reproduction of physiological (and, by extension, pathophysiological) processes in silico, could be considered one of the major goals in computational biology. One might use computers to simulate molecular interactions, enzyme kinetics, gene expression, or whole networks of biochemical reactions, but it is (patho)physiological meaning that is usually the meaningful goal of the research even when a single enzyme is its subject. Although exponential rise in the use of computational and mathematical models in the field of hemostasis and thrombosis began in the 1980s (first for blood coagulation, then for platelet adhesion, and finally for platelet signal transduction), the majority of their successful applications are still focused on simulating the elements of the hemostatic system rather than the total (patho)physiological response in situ. Here we discuss the state of the art, the state of the progress toward the efficient "virtual thrombus formation," and what one can already get from the existing models.
Collapse
Affiliation(s)
- Dmitry Y Nechipurenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Aleksey M Shibeko
- Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anastasia N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mikhail A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.,Center for Theoretical Problems of Physicochemical Pharmacology of the Russian Academy of Sciences, Moscow, Russia.,Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
31
|
Han HH, Zhang HT, Wang R, Yan Y, Liu X, Wang Y, Zhu Y, Wang JC. Improving long circulation and procoagulant platelet targeting by engineering of hirudin prodrug. Int J Pharm 2020; 589:119869. [PMID: 32919000 DOI: 10.1016/j.ijpharm.2020.119869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/28/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
To reduce systemic bleeding risks during anticoagulant treatment, a new concept named "precise anticoagulation" was proposed to localize the effects of anticoagulants via the targeted delivery of prodrugs to the coagulation site. In this study, the fusion protein Annexin V-hirudin 3-ABD (hAvHA) was constructed to achieve the prolonged circulation and targeted delivery of hirudin to coagulation sites. hAvHA was inactive as a prodrug, and it could bind to albumin during circulation. The drug was quickly activated via factor Xa-mediated cleavage once coagulation occurred, and hirudin was efficiently released to exert antithrombin activity in vitro. The hAvHA protein could be activated in mouse blood and exert significant anticoagulation effects. The results of FITC labeling illustrated that hAvHA bound to procoagulant platelets, suggesting the Annexin V modification permits targeted delivery to sites of thrombosis. hAvHA bound to albumin in vitro with an equilibrium dissociation constant of 8 pM, suggesting the ABD modification permitted prolonged circulation in vivo. Moreover, the bleeding time was much shorter in hAvHA-treated mice than in hirudin-treated mice. Therefore, our results suggested that that hAvHA is a potential and promising anticoagulant in vivo.
Collapse
Affiliation(s)
- Hu-Hu Han
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hai-Tao Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hunan, China
| | - Ru Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaoyan Liu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yinye Wang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yuanjun Zhu
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Jian-Cheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
32
|
Brouns SLN, van Geffen JP, Campello E, Swieringa F, Spiezia L, van Oerle R, Provenzale I, Verdoold R, Farndale RW, Clemetson KJ, Spronk HMH, van der Meijden PEJ, Cavill R, Kuijpers MJE, Castoldi E, Simioni P, Heemskerk JWM. Platelet-primed interactions of coagulation and anticoagulation pathways in flow-dependent thrombus formation. Sci Rep 2020; 10:11910. [PMID: 32680988 PMCID: PMC7368055 DOI: 10.1038/s41598-020-68438-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
In haemostasis and thrombosis, platelet, coagulation and anticoagulation pathways act together to produce fibrin-containing thrombi. We developed a microspot-based technique, in which we assessed platelet adhesion, platelet activation, thrombus structure and fibrin clot formation in real time using flowing whole blood. Microspots were made from distinct platelet-adhesive surfaces in the absence or presence of tissue factor, thrombomodulin or activated protein C. Kinetics of platelet activation, thrombus structure and fibrin formation were assessed by fluorescence microscopy. This work revealed: (1) a priming role of platelet adhesion in thrombus contraction and subsequent fibrin formation; (2) a surface-independent role of tissue factor, independent of the shear rate; (3) a mechanism of tissue factor-enhanced activation of the intrinsic coagulation pathway; (4) a local, suppressive role of the anticoagulant thrombomodulin/protein C pathway under flow. Multiparameter analysis using blood samples from patients with (anti)coagulation disorders indicated characteristic defects in thrombus formation, in cases of factor V, XI or XII deficiency; and in contrast, thrombogenic effects in patients with factor V-Leiden. Taken together, this integrative phenotyping approach of platelet–fibrin thrombus formation has revealed interaction mechanisms of platelet-primed key haemostatic pathways with alterations in patients with (anti)coagulation defects. It can help as an important functional add-on whole-blood phenotyping.
Collapse
Affiliation(s)
- Sanne L N Brouns
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Johanna P van Geffen
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Elena Campello
- Department of Medicine, University of Padua Medical School, Padua, Italy
| | - Frauke Swieringa
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.,Department of Protein Dynamics, Leibniz Institute for Analytical Sciences, ISAS, Dortmund, Germany
| | - Luca Spiezia
- Department of Medicine, University of Padua Medical School, Padua, Italy
| | - René van Oerle
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Isabella Provenzale
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Remco Verdoold
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | | | - Kenneth J Clemetson
- Department of Haematology, Inselspital, University of Berne, Berne, Switzerland
| | - Henri M H Spronk
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Paola E J van der Meijden
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Rachel Cavill
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Elisabetta Castoldi
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Paolo Simioni
- Department of Medicine, University of Padua Medical School, Padua, Italy.
| | - Johan W M Heemskerk
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre+, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
33
|
Tomaiuolo M, Litvinov RI, Weisel JW, Stalker TJ. Use of electron microscopy to study platelets and thrombi. Platelets 2020; 31:580-588. [PMID: 32423268 PMCID: PMC7332414 DOI: 10.1080/09537104.2020.1763939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 01/23/2023]
Abstract
Electron microscopy has been a valuable tool for the study of platelet biology and thrombosis for more than 70 years. Early studies using conventional transmission and scanning electron microscopy (EM) provided a foundation for our initial understanding of platelet structure and how it changes upon platelet activation. EM approaches have since been utilized to study platelets and thrombi in the context of basic, translational and clinical research, and they are instrumental in the diagnosis of multiple platelet function disorders. In this brief review, we provide a sampling of the many contributions EM based studies have made to the field, including both historical highlights and contemporary applications. We will also discuss exciting new imaging modalities based on EM and their utility for the study of platelets, hemostasis and thrombosis into the future.
Collapse
Affiliation(s)
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
34
|
Jongen MSA, MacArthur BD, Englyst NA, West J. Single platelet variability governs population sensitivity and initiates intrinsic heterotypic responses. Commun Biol 2020; 3:281. [PMID: 32499608 PMCID: PMC7272428 DOI: 10.1038/s42003-020-1002-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Investigations into the nature of platelet functional variety and consequences for homeostasis require new methods for resolving single platelet phenotypes. Here we combine droplet microfluidics with flow cytometry for high throughput single platelet function analysis. A large-scale sensitivity continuum was shown to be a general feature of human platelets from individual donors, with hypersensitive platelets coordinating significant sensitivity gains in bulk platelet populations and shown to direct aggregation in droplet-confined minimal platelet systems. Sensitivity gains scaled with agonist potency (convulxin > TRAP-14>ADP) and reduced the collagen and thrombin activation threshold required for platelet population polarization into pro-aggregatory and pro-coagulant states. The heterotypic platelet response results from an intrinsic behavioural program. The method and findings invite future discoveries into the nature of hypersensitive platelets and how community effects produce population level responses in health and disease. Maaike S. A. Jongen et al. combine droplet microfluidics with flow cytometry to resolve single platelet responses to agonists. They demonstrate that hyperactive platelets enhance the platelet population response by paracrine signaling as a function of agonist potency and heterotypic responses result from an intrinsic behavioural program.
Collapse
Affiliation(s)
- Maaike S A Jongen
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ben D MacArthur
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.,Mathematical Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Nicola A Englyst
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK.,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Jonathan West
- Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ, UK. .,Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
35
|
Döhrmann M, Makhoul S, Gross K, Krause M, Pillitteri D, von Auer C, Walter U, Lutz J, Volf I, Kehrel BE, Jurk K. CD36-fibrin interaction propagates FXI-dependent thrombin generation of human platelets. FASEB J 2020; 34:9337-9357. [PMID: 32463151 DOI: 10.1096/fj.201903189r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/11/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
Thrombin converts fibrinogen to fibrin and activates blood and vascular cells in thrombo-inflammatory diseases. Platelets are amplifiers of thrombin formation when activated by leukocyte- and vascular cell-derived thrombin. CD36 on platelets acts as sensitizer for molecules with damage-associated molecular patterns, thereby increasing platelet reactivity. Here, we investigated the role of CD36 in thrombin-generation on human platelets, including selected patients with advanced chronic kidney disease (CKD). Platelets deficient in CD36 or blocked by anti-CD36 antibody FA6.152 showed impaired thrombin generation triggered by thrombin in calibrated automated thrombography. Using platelets with congenital function defects, blocking antibodies, pharmacological inhibitors, and factor-depleted plasma, CD36-sensitive thrombin generation was dependent on FXI, fibrin, and platelet signaling via GPIbα and SFKs. CD36-deficiency or blocking suppressed thrombin-induced platelet αIIbβ3 activation, granule exocytosis, binding of adhesion proteins and FV, FVIII, FIX, FX, but not anionic phospholipid exposure determined by flow cytometry. CD36 ligated specifically soluble fibrin, which recruited distinct coagulation factors via thiols. Selected patients with CKD showed elevated soluble fibrin plasma levels and enhanced thrombin-induced thrombin generation, which was normalized by CD36 blocking. Thus, CD36 is an important amplifier of platelet-dependent thrombin generation when exposure of anionic phospholipids is limited. This pathway might contribute to hypercoagulability in CKD.
Collapse
Affiliation(s)
- Mareike Döhrmann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Stephanie Makhoul
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kathrin Gross
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manuela Krause
- Deutsche Klinik für Diagnostik HELIOS Klinik, Wiesbaden, Germany
| | | | - Charis von Auer
- Third Department of Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jens Lutz
- Section of Nephrology, I. Department of Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Medical Clinic, Section of Nephrology and Infectious Diseases, Gemeinschaftsklinikum Mittelrhein, Koblenz, Germany
| | - Ivo Volf
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Beate E Kehrel
- Department of Anesthesiology, Intensive Care and Pain Medicine, Experimental and Clinical Hemostasis, University of Muenster, Muenster, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany.,Department of Anesthesiology, Intensive Care and Pain Medicine, Experimental and Clinical Hemostasis, University of Muenster, Muenster, Germany
| |
Collapse
|
36
|
Reddy EC, Rand ML. Procoagulant Phosphatidylserine-Exposing Platelets in vitro and in vivo. Front Cardiovasc Med 2020; 7:15. [PMID: 32195268 PMCID: PMC7062866 DOI: 10.3389/fcvm.2020.00015] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
The physiological heterogeneity of platelets leads to diverse responses and the formation of discrete subpopulations upon platelet stimulation. Procoagulant platelets are an example of such subpopulations, a key characteristic of which is exposure either of the anionic aminophospholipid phosphatidylserine (PS) or of tissue factor on the activated platelet surface. This review focuses on the former, in which PS exposure on a subpopulation of platelets facilitates assembly of the intrinsic tenase and prothrombinase complexes, thereby accelerating thrombin generation on the activated platelet surface, contributing importantly to the hemostatic process. Mechanisms involved in platelet PS exposure, and accompanying events, induced by physiologically relevant agonists are considered then contrasted with PS exposure resulting from intrinsic pathway-mediated apoptosis in platelets. Pathologies of PS exposure, both inherited and acquired, are described. A consideration of platelet PS exposure as an antithrombotic target concludes the review.
Collapse
Affiliation(s)
- Emily C Reddy
- Developmental and Stem Cell Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Margaret L Rand
- Division of Haematology/Oncology, Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Departments of Laboratory Medicine & Pathobiology, Biochemistry, and Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Müller WE, Schröder HC, Wang X. Inorganic Polyphosphates As Storage for and Generator of Metabolic Energy in the Extracellular Matrix. Chem Rev 2019; 119:12337-12374. [PMID: 31738523 PMCID: PMC6935868 DOI: 10.1021/acs.chemrev.9b00460] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 12/14/2022]
Abstract
Inorganic polyphosphates (polyP) consist of linear chains of orthophosphate residues, linked by high-energy phosphoanhydride bonds. They are evolutionarily old biopolymers that are present from bacteria to man. No other molecule concentrates as much (bio)chemically usable energy as polyP. However, the function and metabolism of this long-neglected polymer are scarcely known, especially in higher eukaryotes. In recent years, interest in polyP experienced a renaissance, beginning with the discovery of polyP as phosphate source in bone mineralization. Later, two discoveries placed polyP into the focus of regenerative medicine applications. First, polyP shows morphogenetic activity, i.e., induces cell differentiation via gene induction, and, second, acts as an energy storage and donor in the extracellular space. Studies on acidocalcisomes and mitochondria provided first insights into the enzymatic basis of eukaryotic polyP formation. In addition, a concerted action of alkaline phosphatase and adenylate kinase proved crucial for ADP/ATP generation from polyP. PolyP added extracellularly to mammalian cells resulted in a 3-fold increase of ATP. The importance and mechanism of this phosphotransfer reaction for energy-consuming processes in the extracellular matrix are discussed. This review aims to give a critical overview about the formation and function of this unique polymer that is capable of storing (bio)chemically useful energy.
Collapse
Affiliation(s)
- Werner E.G. Müller
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heinz C. Schröder
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator
Grant Research
Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany
| |
Collapse
|
38
|
Agbani EO, Hers I, Poole AW. Letter by Agbani et al Regarding Article, "Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface". Arterioscler Thromb Vasc Biol 2019; 39:e287-e289. [PMID: 31770030 DOI: 10.1161/atvbaha.119.313468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ejaife O Agbani
- From the Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada (E.O.A.)
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, England, United Kingdom (I.H., A.W.P.)
| | - Alastair W Poole
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, England, United Kingdom (I.H., A.W.P.)
| |
Collapse
|
39
|
Rivaroxaban Effects Illustrate the Underestimated Importance of Activated Platelets in Thrombin Generation Assessed by Calibrated Automated Thrombography. J Clin Med 2019; 8:jcm8111990. [PMID: 31731710 PMCID: PMC6912513 DOI: 10.3390/jcm8111990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022] Open
Abstract
Background: The direct oral anticoagulant rivaroxaban inhibiting specifically activated factor X (FXa) causes delayed thrombin generation (TG) as measured by calibrated automated thrombography (CAT). The implications of these changes for assessing bleeding or residual prothrombotic risks of patients are unclear in the absence of a better understanding of the underlying mechanism. Methods: We compared platelet rich plasma (PRP) without or with prior collagen-induced platelet aggregation (agPRP) in the CAT assay to better characterize TG in the presence of rivaroxaban. Results: In the presence of rivaroxaban, TG curves in agPRP showed a distinct profile with a rapidly ascending phase followed with a protracted phase. Inhibition of tissue factor pathway inhibitor amplified the first phase of the curve which was also modulated by procoagulant phospholipids. Inhibition of FXIIa-dependent FXI activation revealed that aggregated platelets influenced the first phase by a combination of extrinsic and intrinsic coagulation pathway initiations. Thrombin-dependent amplification of TG (even prior collagen activation) was responsible for the second phase of the TG curve. Conclusions: AgPRP fully includes platelet ability to support TG and reveal distinct TG phases in the presence of direct FXa inhibitors highlighting its potential use in an anticoagulated setting.
Collapse
|
40
|
Grigorieva DV, Gorudko IV, Shamova EV, Terekhova MS, Maliushkova EV, Semak IV, Cherenkevich SN, Sokolov AV, Timoshenko AV. Effects of recombinant human lactoferrin on calcium signaling and functional responses of human neutrophils. Arch Biochem Biophys 2019; 675:108122. [DOI: 10.1016/j.abb.2019.108122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/13/2019] [Accepted: 09/28/2019] [Indexed: 10/25/2022]
|
41
|
Histone H4 induces platelet ballooning and microparticle release during trauma hemorrhage. Proc Natl Acad Sci U S A 2019; 116:17444-17449. [PMID: 31405966 PMCID: PMC6717295 DOI: 10.1073/pnas.1904978116] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Membrane ballooning is a fundamental mechanism by which platelets contribute to thrombin generation. However, this process has not previously been described in human disease. In this study, we demonstrated the presence of ballooning procoagulant platelets free in the circulation of critically injured humans, a phenomenon which results in systemic generation of thrombin and contributes to an acute coagulopathy. The surfaces of ballooning platelets were decorated with the damage-associated molecular pattern histone H4, and exposure of healthy platelets to histone caused membrane disruption and recapitulated the phenotypic changes in injured patients. These findings provide a description of platelet ballooning contributing to human disease and identify histone release from injured tissues as a driver of the procoagulant ballooning process. Trauma hemorrhage is a leading cause of death and disability worldwide. Platelets are fundamental to primary hemostasis, but become profoundly dysfunctional in critically injured patients by an unknown mechanism, contributing to an acute coagulopathy which exacerbates bleeding and increases mortality. The objective of this study was to elucidate the mechanism of platelet dysfunction in critically injured patients. We found that circulating platelets are transformed into procoagulant balloons within minutes of injury, accompanied by the release of large numbers of activated microparticles which coat leukocytes. Ballooning platelets were decorated with histone H4, a damage-associated molecular pattern released in massive quantities after severe injury, and exposure of healthy platelets to histone H4 recapitulated the changes in platelet structure and function observed in trauma patients. This is a report of platelet ballooning in human disease and of a previously unrecognized mechanism by which platelets contribute to the innate response to tissue damage.
Collapse
|
42
|
Obydennyi SI, Artemenko EO, Sveshnikova AN, Ignatova AA, Varlamova TV, Gambaryan S, Lomakina GY, Ugarova NN, Kireev II, Ataullakhanov FI, Novichkova GA, Maschan AA, Shcherbina A, Panteleev M. Mechanisms of increased mitochondria-dependent necrosis in Wiskott-Aldrich syndrome platelets. Haematologica 2019; 105:1095-1106. [PMID: 31278208 PMCID: PMC7109739 DOI: 10.3324/haematol.2018.214460] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/04/2019] [Indexed: 11/23/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is associated with thrombocytopenia of unclear origin. We investigated real-time cytosolic calcium dynamics, mitochondrial membrane potential and phoszphatidylserine (PS) exposure in single fibrinogen-bound platelets using confocal microscopy. The WAS platelets had higher resting calcium levels, more frequent spikes, and their mitochondria more frequently lost membrane potential followed by PS exposure (in 22.9% of platelets vs. 3.9% in controls; P<0.001) after the collapse of the last mitochondria. This phenomenon was inhibited by the mitochondrial permeability transition pore inhibitor cyclosporine A, as well by xestospongin C and lack of extracellular calcium. Thapsigargin by itself caused accelerated cell death in the WAS platelets. The number of mitochondria was predictive of PS exposure: 33% of platelets from WAS patients with fewer than five mitochondria exposed PS, while only 12% did among those that had five or more mitochondria. Interestingly, healthy donor platelets with fewer mitochondria also more readily became procoagulant upon PAR1/PAR4 stimulation. Collapse of single mitochondria led to greater cytosolic calcium increase in WAS platelets if they had one to three mitochondria compared with platelets containing higher numbers. A computer systems biology model of platelet calcium homeostasis showed that smaller platelets with fewer mitochondria could have impaired calcium homeostasis because of higher surface-to-volume ratio and greater metabolic load, respectively. There was a correlation (C=0.81, P<0.02) between the mean platelet size and platelet count in the WAS patients. We conclude that WAS platelets readily expose PS via a mitochondria-dependent necrotic mechanism caused by their smaller size, which could contribute to the development of thrombocytopenia.
Collapse
Affiliation(s)
- Sergey I Obydennyi
- National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow.,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow
| | - Elena O Artemenko
- National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow.,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow
| | - Anastasia N Sveshnikova
- National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow.,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow.,Faculty of Physics, Lomonosov Moscow State University, Moscow.,I.M. Sechenov First Moscow State Medical University, Moscow
| | - Anastasia A Ignatova
- National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow.,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow
| | - Tatiana V Varlamova
- National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow
| | - Stepan Gambaryan
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg
| | - Galina Y Lomakina
- Department of Chemistry, Lomonosov Moscow State University, Moscow.,Bauman Moscow State Technical University, Moscow
| | | | - Igor I Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow
| | - Fazoil I Ataullakhanov
- National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow.,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow.,Faculty of Physics, Lomonosov Moscow State University, Moscow.,Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Galina A Novichkova
- National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow
| | - Aleksey A Maschan
- National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow
| | - Anna Shcherbina
- National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow
| | - Mikhail Panteleev
- National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow .,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow.,Faculty of Physics, Lomonosov Moscow State University, Moscow.,Faculty of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
43
|
Phospholipid membranes drive abdominal aortic aneurysm development through stimulating coagulation factor activity. Proc Natl Acad Sci U S A 2019; 116:8038-8047. [PMID: 30944221 PMCID: PMC6475397 DOI: 10.1073/pnas.1814409116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a disease of the abdominal aorta where inflammation causes damage and can ultimately lead to rupture. When this happens, uncontrolled internal bleeding can lead to death within minutes. Many aneurysms are not detected until they rupture, and for those that are, treatments to stop them progressing are limited. Here we used biophysics and genetically modified mice to show that a new family of lipids (fats) made by circulating blood cells promote AAA formation in the vessel wall because they directly regulate blood clotting. An approach that prevents AAA development was identified, based on intravenous administration of lipids. The studies provide insights into how AAA develops and may lead to novel therapies for this disease. Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high mortality and limited treatment options. How blood lipids regulate AAA development is unknown. Here lipidomics and genetic models demonstrate a central role for procoagulant enzymatically oxidized phospholipids (eoxPL) in regulating AAA. Specifically, through activating coagulation, eoxPL either promoted or inhibited AAA depending on tissue localization. Ang II administration to ApoE−/− mice increased intravascular coagulation during AAA development. Lipidomics revealed large numbers of eoxPL formed within mouse and human AAA lesions. Deletion of eoxPL-generating enzymes (Alox12 or Alox15) or administration of the factor Xa inhibitor rivaroxaban significantly reduced AAA. Alox-deficient mice displayed constitutively dysregulated hemostasis, including a consumptive coagulopathy, characterized by compensatory increase in prothrombotic aminophospholipids (aPL) in circulating cell membranes. Intravenously administered procoagulant PL caused clotting factor activation and depletion, induced a bleeding defect, and significantly reduced AAA development. These data suggest that Alox deletion reduces AAA through diverting coagulation away from the vessel wall due to eoxPL deficiency, instead activating clotting factor consumption and depletion in the circulation. In mouse whole blood, ∼44 eoxPL molecular species formed within minutes of clot initiation. These were significantly elevated with ApoE−/− deletion, and many were absent in Alox−/− mice, identifying specific eoxPL that modulate AAA. Correlation networks demonstrated eoxPL belonged to subfamilies defined by oxylipin composition. Thus, procoagulant PL regulate AAA development through complex interactions with clotting factors. Modulation of the delicate balance between bleeding and thrombosis within either the vessel wall or circulation was revealed that can either drive or prevent disease development.
Collapse
|
44
|
Kaneva VN, Martyanov AA, Morozova DS, Panteleev MA, Sveshnikova AN. Platelet Integrin αIIbβ3: Mechanisms of Activation and Clustering; Involvement into the Formation of the Thrombus Heterogeneous Structure. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747819010033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Wang H, Ding C, Wang J, Zhao X, Jin S, Liang J, Luo H, Li D, Li R, Li Y, Xiao T. Molecular cloning and expression analysis of coagulation factor VIII and plasminogen involved in immune response to GCRV, and immunity activity comparison of grass carp Ctenopharyngodon idella with different viral resistance. FISH & SHELLFISH IMMUNOLOGY 2019; 86:794-804. [PMID: 30557607 DOI: 10.1016/j.fsi.2018.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
The grass carp reovirus (GCRV) has been shown to cause lethal infections in the grass carp Ctenopharyngodon idella (C. idella). In order to investigate the immune response to GCRV infection, the full-length cDNA sequences of coagulation factor VIII (CiFVIII) and plasminogen (CiPLG) from C. idella were cloned and their involvement in the immune response was studied. The immunity factor levels in C. idella with different GCRV resistances were also analyzed. The full-length 2478 bp cDNA of CiFVIII contained an open reading frame of 1965 bp and encoded a putative polypeptide of 654 amino acid residues. The full-length 2907 bp cDNA of CiPLG contained an open reading frame of 2133 bp and encoded a putative polypeptide of 710 amino acid residues. CiFVIII was closely clustered with that of Clupea harengus. CiPLG was first clustered with those of Cyprinus carpio and Danio rerio. CiFVIII transcripts were most abundant in the liver and least in the skin. The highest expression level of CiPLG was observed in liver and the lowest in muscle. Expression levels of CiFVIII in gill, head kidney and spleen, and expression levels of CiPLG in gill, intestine and liver all reached the maximum at 72 h post GCRV infection. In spleen, expression levels of CiFVIII and CiPLG were significantly positively correlated. The activities of T-AOC, LSZ and IgM in R♂ were significantly higher than those in O♂. Likewise, T-AOC and LSZ activities in F1 were significantly higher than f1 individuals (P < 0.01). These results indicated that CiFVIII and CiPLG may play important roles in the immune response to GCRV infection. In addition, antioxidant ability and serum immune factor activity may confer a different viral resistance to C. idella.
Collapse
Affiliation(s)
- Hongquan Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China
| | - Chunhua Ding
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jing'an Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Xin Zhao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Shengzhen Jin
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jian Liang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Hong Luo
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Dongfang Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Rui Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China.
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, Hunan, 415000, China.
| |
Collapse
|
46
|
Nechipurenko DY, Receveur N, Yakimenko AO, Shepelyuk TO, Yakusheva AA, Kerimov RR, Obydennyy SI, Eckly A, Léon C, Gachet C, Grishchuk EL, Ataullakhanov FI, Mangin PH, Panteleev MA. Clot Contraction Drives the Translocation of Procoagulant Platelets to Thrombus Surface. Arterioscler Thromb Vasc Biol 2019; 39:37-47. [DOI: 10.1161/atvbaha.118.311390] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
After activation at the site of vascular injury, platelets differentiate into 2 subpopulations, exhibiting either proaggregatory or procoagulant phenotype. Although the functional role of proaggregatory platelets is well established, the physiological significance of procoagulant platelets, the dynamics of their formation, and spatial distribution in thrombus remain elusive.
Approach and Results—
Using transmission electron microscopy and fluorescence microscopy of arterial thrombi formed in vivo after ferric chloride–induced injury of carotid artery or mechanical injury of abdominal aorta in mice, we demonstrate that procoagulant platelets are located at the periphery of the formed thrombi. Real-time cell tracking during thrombus formation ex vivo revealed that procoagulant platelets originate from different locations within the thrombus and subsequently translocate towards its periphery. Such redistribution of procoagulant platelets was followed by generation of fibrin at thrombus surface. Using in silico model, we show that the outward translocation of procoagulant platelets can be driven by the contraction of the forming thrombi, which mechanically expels these nonaggregating cells to thrombus periphery. In line with the suggested mechanism, procoagulant platelets failed to translocate and remained inside the thrombi formed ex vivo in blood derived from nonmuscle myosin (
MYH9
)-deficient mice. Ring-like distribution of procoagulant platelets and fibrin around the thrombus observed with blood of humans and wild-type mice was not present in thrombi of
MYH9
-knockout mice, confirming a major role of thrombus contraction in this phenomenon.
Conclusions—
Contraction of arterial thrombus is responsible for the mechanical extrusion of procoagulant platelets to its periphery, leading to heterogeneous structure of thrombus exterior.
Collapse
Affiliation(s)
- Dmitry Y. Nechipurenko
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., R.R.K., F.I.A., M.A.P.)
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Nicolas Receveur
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Alena O. Yakimenko
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Taisiya O. Shepelyuk
- Faculty of Basic Medicine, Lomonosov Moscow State University, Russia (T.O.S.)
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Alexandra A. Yakusheva
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Roman R. Kerimov
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., R.R.K., F.I.A., M.A.P.)
| | - Sergei I. Obydennyy
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
| | - Anita Eckly
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Catherine Léon
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Christian Gachet
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Ekaterina L. Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia (E.L.G.)
| | - Fazoil I. Ataullakhanov
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., R.R.K., F.I.A., M.A.P.)
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia (F.I.A., M.A.P.)
| | - Pierre H. Mangin
- INSERM, Etablissement Français du Sang-Grand Est, UMR_S1255, Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, France (N.R., A.E., C.L., C.G., P.H.M.)
| | - Mikhail A. Panteleev
- From the Department of Physics, Lomonosov Moscow State University, Russia (D.Y.N., R.R.K., F.I.A., M.A.P.)
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia (D.Y.N., A.O.Y., T.O.S., A.A.Y., S.I.O., F.I.A., M.A.P.)
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia (F.I.A., M.A.P.)
| |
Collapse
|
47
|
Kholmukhamedov A, Janecke R, Choo HJ, Jobe SM. The mitochondrial calcium uniporter regulates procoagulant platelet formation. J Thromb Haemost 2018; 16:2315-2321. [PMID: 30179298 DOI: 10.1111/jth.14284] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 12/01/2022]
Abstract
Essentials Mitochondrial hyperpolarization enhances the conversion of platelets to a procoagulant phenotype. Mitochondrial calcium uniporter (MCU) function is essential in procoagulant platelet formation. Mitochondrial calcium uniporter deletion does not impact other aspects of platelet activation. Ablation of MCU results in the emergence of a permeability transition pore-independent pathway. SUMMARY: Background Procoagulant platelets comprise a phenotypically distinct subpopulation of activated platelets with high-level phosphatidylserine externalization. When initiated by co-stimulation with thrombin and a glycoprotein VI (GPVI) agonist, the transition to the procoagulant phenotype is mediated by extracellular calcium entry and mitochondrial permeability transition pore (mPTP) formation. Objectives The intracellular mechanisms coordinating these distinct cytoplasmic and mitochondrial processes remain unclear. The mitochondrial calcium uniporter (MCU) protein is a central component of the transmembrane ion channel that allows the passage of Ca2+ from the cytosol into the mitochondrial matrix. Here we investigate the role of the MCU in the regulation of procoagulant platelet formation. Results Procoagulant platelet formation was directly correlated with pre-stimulatory mitochondrial transmembrane potential, a key determinant of calcium flux from the cytoplasm to the mitochondria. The role of MCU in the regulation of procoagulant platelet formation was investigated using MCU null platelets. Procoagulant platelet formation in MCU null platelets was significantly decreased coincident with decreased mPTP formation. In contrast, neither granule release nor initial integrin activation was altered in response to stimulation. In the genomic absence of MCU, developmental induction of an alternative intracellular pathway partially rescued procoagulant platelet formation. Conclusion These results identify a key role for the mitochondrial calcium uptake channel in the regulation of mPTP-mediated procoagulant platelet formation and suggest a novel pharmacologic target for procoagulant-platelet-related pathologies.
Collapse
Affiliation(s)
| | - R Janecke
- Blood Center of Wisconsin, Milwaukee, WI, USA
| | - H-J Choo
- Emory University, Atlanta, GA, USA
| | - S M Jobe
- Blood Center of Wisconsin, Milwaukee, WI, USA
- Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
48
|
Lai PX, Mao JY, Unnikrishnan B, Chu HW, Wu CW, Chang HT, Huang CC. Self-assembled, bivalent aptamers on graphene oxide as an efficient anticoagulant. Biomater Sci 2018; 6:1882-1891. [PMID: 29808843 DOI: 10.1039/c8bm00288f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Graphene oxide (GO) has unique structural properties, can effectively adsorb single-strand DNA through π-π stacking, hydrogen bonding and hydrophobic interactions, and is useful in many biotechnology applications. In this study, we developed a thrombin-binding-aptamers (15- and 29-mer) conjugated graphene oxide (TBA15/TBA29-GO) composite for the efficient inhibition of thrombin activity towards the formation of fibrin from fibrinogen. The TBA15/TBA29-GO composite was simply obtained by the self-assembly of TBA15/TBA29 hybrids on GO. The high density and appropriate orientation of TBA15/TBA29 on the GO surface enabled TBA15/TBA29-GO to acquire an ultrastrong binding affinity for thrombin (dissociation constant = 2.9 × 10-12 M). Compared to bivalent TBA15h20A20/TBA29h20A20 hybrids, the TBA15/TBA29-GO composite exhibited a superior anticoagulant potency (ca. 10-fold) against thrombin-mediated coagulation as a result of steric blocking effects and a higher binding affinity for thrombin. In addition, the prolonged thrombin clotting time, prothrombin time (PT), and activated partial thromboplastin time (aPTT) of TBA15/TBA29-GO were at least 2 times longer than those of commercially available drugs (heparin, argatroban, hirudin, and warfarin). The in vitro cytotoxicity and hemolysis analyses revealed the high biocompatibility of TBA15/TBA29-GO. The rat-tail bleeding assay of the hemostasis time and ex vivo PT and aPTT further revealed that TBA15/TBA29-GO is superior (>2-fold) to heparin, which is commonly used in the treatment and prevention of thrombotic diseases. Our multivalent, oligonucleotide-modified GO nanocomposites are easy to prepare, cost-effective, and highly biocompatible and they show great potential as effective anticoagulants for the treatment of thrombotic disorders.
Collapse
Affiliation(s)
- Pei-Xin Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Ignatova AA, Ponomarenko EA, Polokhov DM, Suntsova EV, Zharkov PA, Fedorova DV, Balashova EN, Rudneva AE, Ptushkin VV, Nikitin EA, Shcherbina A, Maschan AA, Novichkova GA, Panteleev MA. Flow cytometry for pediatric platelets. Platelets 2018; 30:428-437. [PMID: 30285517 DOI: 10.1080/09537104.2018.1513473] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability of platelets to carry out their hemostatic function can be impaired in a wide range of inherited and acquired conditions: trauma, surgery, inflammation, pre-term birth, sepsis, hematological malignancies, solid tumors, chemotherapy, autoimmune disorders, and many others. Evaluation of this impairment is vitally important for research and clinical purposes. This problem is particularly pronounced in pediatric patients, where these conditions occur frequently, while blood volume and the choice of blood collection methods could be limited. Here we describe a simple flow cytometry-based screening method of comprehensive whole blood platelet function testing that was validated for a range of pediatric and adult samples (n = 31) in the hematology hospital setting including but not limited to: classic inherited platelet function disorders (Glanzmann's thrombasthenia; Bernard-Soulier, Wiscott-Aldrich, and Hermasky-Pudlak syndromes, MYH9-dependent thrombocytopenia), healthy and pre-term newborns, acute and chronic immune thrombocytopenia, chronic lympholeukemia, effects of therapy on platelet function, etc. The method output includes levels of forward and side scatter, levels of major adhesion and aggregation glycoproteins Ib and IIb-IIIa, active integrins' level based on PAC-1 binding, major alpha-granule component P-selectin, dense granule function based on mepacrine uptake and release, and procoagulant activity quantified as a percentage of annexin V-positive platelets. This analysis is performed for both resting and dual-agonist-stimulated platelets. Preanalytical and analytical variables are provided and discussed. Parameter distribution within the healthy donor population for adults (n = 72) and children (n = 17) is analyzed.
Collapse
Affiliation(s)
- Anastasia A Ignatova
- a Cellular Hemostasis and Thrombosis Lab , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Evgeniya A Ponomarenko
- a Cellular Hemostasis and Thrombosis Lab , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation.,b Faculty of Biology, Moscow State University named after M.V. Lomonosov , Moscow , Russian Federation
| | - Dmitry M Polokhov
- a Cellular Hemostasis and Thrombosis Lab , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Elena V Suntsova
- c Day Hospital , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Pavel A Zharkov
- c Day Hospital , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Daria V Fedorova
- c Day Hospital , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Ekaterina N Balashova
- d Neonatal Intensive Care and Resuscitation Unit , National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Anastasia E Rudneva
- c Day Hospital , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Vadim V Ptushkin
- e Hematological Center , City Clinical Hospital named after S.P. Botkin , Moscow , Russia
| | - Evgeniy A Nikitin
- e Hematological Center , City Clinical Hospital named after S.P. Botkin , Moscow , Russia
| | - Anna Shcherbina
- f Institute of Hematology, Immunology and Cell Technologies , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Alexei A Maschan
- f Institute of Hematology, Immunology and Cell Technologies , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Galina A Novichkova
- g Medical administration , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation
| | - Mikhail A Panteleev
- a Cellular Hemostasis and Thrombosis Lab , National Medical Research Center of Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Russian Ministry of Healthcare , Moscow , Russian Federation.,b Faculty of Biology, Moscow State University named after M.V. Lomonosov , Moscow , Russian Federation.,h Faculty of Biological and Medical Physics , Moscow Institute of Physics and Technology , Dolgoprudny , Russian Federation.,i Laboratory of Molecular Mechanisms of Hemostasis , Center for Theoretical Problems of Physicochemical Pharmacology , Moscow , Russian Federation
| |
Collapse
|
50
|
De Paoli SH, Tegegn TZ, Elhelu OK, Strader MB, Patel M, Diduch LL, Tarandovskiy ID, Wu Y, Zheng J, Ovanesov MV, Alayash A, Simak J. Dissecting the biochemical architecture and morphological release pathways of the human platelet extracellular vesiculome. Cell Mol Life Sci 2018; 75:3781-3801. [PMID: 29427073 PMCID: PMC11105464 DOI: 10.1007/s00018-018-2771-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/11/2018] [Accepted: 02/01/2018] [Indexed: 01/08/2023]
Abstract
Platelet extracellular vesicles (PEVs) have emerged as potential mediators in intercellular communication. PEVs exhibit several activities with pathophysiological importance and may serve as diagnostic biomarkers. Here, imaging and analytical techniques were employed to unveil morphological pathways of the release, structure, composition, and surface properties of PEVs derived from human platelets (PLTs) activated with the thrombin receptor activating peptide (TRAP). Based on extensive electron microscopy analysis, we propose four morphological pathways for PEVs release from TRAP-activated PLTs: (1) plasma membrane budding, (2) extrusion of multivesicular α-granules and cytoplasmic vacuoles, (3) plasma membrane blistering and (4) "pearling" of PLT pseudopodia. The PLT extracellular vesiculome encompasses ectosomes, exosomes, free mitochondria, mitochondria-containing vesicles, "podiasomes" and PLT "ghosts". Interestingly, a flow cytometry showed a population of TOM20+LC3+ PEVs, likely products of platelet mitophagy. We found that lipidomic and proteomic profiles were different between the small PEV (S-PEVs; mean diameter 103 nm) and the large vesicle (L-PEVs; mean diameter 350 nm) fractions separated by differential centrifugation. In addition, the majority of PEVs released by activated PLTs was composed of S-PEVs which have markedly higher thrombin generation activity per unit of PEV surface area compared to L-PEVs, and contribute approximately 60% of the PLT vesiculome procoagulant potency.
Collapse
Affiliation(s)
- Silvia H De Paoli
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Tseday Z Tegegn
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Oumsalama K Elhelu
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Michael B Strader
- Laboratory of Biochemistry and Vascular Biology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Silver Spring, MD, 20993-0002, USA
| | - Mehulkumar Patel
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Lukas L Diduch
- Dakota Consulting, Inc., 1110 Bonifant St., Silver Spring, MD, USA
| | - Ivan D Tarandovskiy
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA
| | - Yong Wu
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Jiwen Zheng
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mikhail V Ovanesov
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, USA
| | - Abdu Alayash
- Laboratory of Biochemistry and Vascular Biology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Silver Spring, MD, 20993-0002, USA
| | - Jan Simak
- Laboratory of Cellular Hematology, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, WO Bldg. 52/72, Room 4210, Silver Spring, MD, USA.
| |
Collapse
|