1
|
Demirci S, Zeng J, Palchaudhuri R, Wu C, Abraham DM, Hayal TB, Essawi K, Nguyen MA, Stasula U, Chu R, Leonard A, Porter SN, Khan MBN, Hinojosa G, Uchida N, Hong S, Lazzarotto CR, Neri NR, da Silva LF, Pellin D, Verma A, Lanieri L, Bhat A, Hammond K, Tate T, Maitland SA, Sheikhsaran F, Bonifacino AC, Krouse AE, Linde NS, Engels T, Golomb J, Tsai SQ, Pruett-Miller SM, Scadden DT, Dunbar CE, Wolfe SA, Donahue RE, Olson LM, Bauer DE, Tisdale JF. BCL11A +58/+55 enhancer-editing facilitates HSPC engraftment and HbF induction in rhesus macaques conditioned with a CD45 antibody-drug conjugate. Cell Stem Cell 2025; 32:209-226.e8. [PMID: 39642886 DOI: 10.1016/j.stem.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/03/2024] [Accepted: 10/28/2024] [Indexed: 12/09/2024]
Abstract
Editing the +58 region of the BCL11A erythroid enhancer has shown promise in treating β-globin disorders. To address variations in fetal hemoglobin (HbF) response, we investigated editing both +58 and +55 enhancers. Rhesus macaques transplanted with edited hematopoietic stem/progenitor cells (HSPCs) following busulfan conditioning exhibited durable, high-level (∼90%) editing frequencies post transplantation with sustained HbF reactivation over 4 years, without hematological perturbations. HbF levels were further boosted by stress erythropoiesis or hydroxyurea. Bone marrow analysis revealed that gene edits were predominantly programmed deletions, programmed inversions, and short indels, each disrupting the enhancer core TGN7-9WGATAR half E-box/GATA binding motifs. Nonprogrammed long deletions were disfavored in engrafting cells. CD45 antibody-drug conjugate (ADC) conditioning achieved comparable engraftment and HbF reactivation, whereas lentiviral vector tracking showed polyclonal reconstitution with dynamics similar to animals conditioned with total body irradiation (TBI) or busulfan. Joining CD45-ADC conditioning with combined enhancer editing presents an effective strategy for β-hemoglobinopathies, enabling durable HbF reactivation without chemotherapy.
Collapse
Affiliation(s)
- Selami Demirci
- National Heart, Lung, and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Diana M Abraham
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Taha B Hayal
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Khaled Essawi
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Gizan 45142, Saudi Arabia
| | - My Anh Nguyen
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ulana Stasula
- National Heart, Lung, and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Rebecca Chu
- National Heart, Lung, and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Alexis Leonard
- National Heart, Lung, and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Shaina N Porter
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Muhammad Behroz Naeem Khan
- National Heart, Lung, and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Gabriela Hinojosa
- National Heart, Lung, and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Naoya Uchida
- National Heart, Lung, and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Sogun Hong
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Cicera R Lazzarotto
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nola R Neri
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lucas Ferreira da Silva
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Danilo Pellin
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Archana Verma
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anjali Bhat
- Magenta Therapeutics, Cambridge, MA 02139, USA
| | | | | | - Stacy A Maitland
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Fatemeh Sheikhsaran
- National Heart, Lung, and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | - Aylin C Bonifacino
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Allen E Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Nathaniel S Linde
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Theresa Engels
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Justin Golomb
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David T Scadden
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20814, USA
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Robert E Donahue
- National Heart, Lung, and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20814, USA
| | | | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - John F Tisdale
- National Heart, Lung, and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD 20814, USA.
| |
Collapse
|
2
|
Shaban D, Najm N, Droin L, Nijnik A. Hematopoietic Stem Cell Fates and the Cellular Hierarchy of Mammalian Hematopoiesis: from Transplantation Models to New Insights from in Situ Analyses. Stem Cell Rev Rep 2025; 21:28-44. [PMID: 39222178 DOI: 10.1007/s12015-024-10782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Hematopoiesis is the process that generates the cells of the blood and immune system from hematopoietic stem and progenitor cells (HSPCs) and represents the system with the most rapid cell turnover in a mammalian organism. HSPC differentiation trajectories, their underlying molecular mechanisms, and their dysfunctions in hematologic disorders are the focal research questions of experimental hematology. While HSPC transplantations in murine models are the traditional tool in this research field, recent advances in genome editing and next generation sequencing resulted in the development of many fundamentally new approaches for the analyses of mammalian hematopoiesis in situ and at single cell resolution. The current review will cover many recent developments in this field in murine models, from the bulk lineage tracing studies of HSPC differentiation to the barcoding of individual HSPCs with Cre-recombinase, Sleeping Beauty transposase, or CRISPR/Cas9 tools, to map hematopoietic cell fates, together with their transcriptional and epigenetic states. We also address studies of the clonal dynamics of human hematopoiesis, from the tracing of HSPC clonal behaviours based on viral integration sites in gene therapy patients to the recent analyses of unperturbed human hematopoiesis based on naturally accrued mutations in either nuclear or mitochondrial genomes. Such studies are revolutionizing our understanding of HSPC biology and hematopoiesis both under homeostatic conditions and in the response to various forms of physiological stress, reveal the mechanisms responsible for the decline of hematopoietic function with age, and in the future may advance the understanding and management of the diverse disorders of hematopoiesis.
Collapse
Affiliation(s)
- Dania Shaban
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Nay Najm
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Lucie Droin
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, 368 Bellini Life Sciences Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Hosuru RV, Yang J, Zhou Y, Gin A, Hayal TB, Hong SG, Dunbar CE, Wu C. Long-term tracking of haematopoietic clonal dynamics and mutations in non-human primate undergoing transplantation of lentivirally barcoded haematopoietic stem and progenitor cells. Br J Haematol 2024; 205:2487-2497. [PMID: 39523608 PMCID: PMC11637732 DOI: 10.1111/bjh.19889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Haematopoietic stem and progenitor cell (HSPC) autologous gene therapies are promising treatment for a variety of blood disorders. Investigation of the long-term HSPC clonal dynamics and other measures of safety and durability following lentiviral-mediated gene therapies in predictive models are crucial for assessing risks and benefits in order to inform decisions regarding wider utilization. We established an autologous lentivirally barcoded HSPC transplantation model in rhesus macaque (RM), a model offering insights into haematopoiesis and gene therapies with direct relevance to human. Healthy young adult RMs underwent total body irradiation, followed by transplantation of autologous HSPCs transduced with a lentiviral vector containing a diverse genetic barcode library, uniquely labelling individual HSPCs and their progeny. With up to 131 months of follow-up, we now report quantitative clonal dynamics, characterizing the number, diversity, stability and lineage bias of hundreds of thousands of HSPC clones tracked in five RMs. We documented long-term stable and multi-lineage output from a highly polyclonal pool of HSPCs. Clonal succession after stable haematopoietic reconstitution was minimal. There was no evidence for accelerated acquisition of acquired somatic mutations following autologous lentivirally transduced HSPC transplantation. Our results provide relevant insights into long-term HSPC behaviours in vivo following transplantation and gene therapies.
Collapse
Affiliation(s)
- Rohan V. Hosuru
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jack Yang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Yifan Zhou
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
- Haematological Cancer GeneticsWellcome Trust Sanger InstituteCambridgeUK
| | - Ashley Gin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Taha B. Hayal
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
4
|
Kapadia CD, Williams N, Dawson KJ, Watson C, Yousefzadeh MJ, Le D, Nyamondo K, Cagan A, Waldvogel S, De La Fuente J, Leongamornlert D, Mitchell E, Florez MA, Aguilar R, Martell A, Guzman A, Harrison D, Niedernhofer LJ, King KY, Campbell PJ, Blundell J, Goodell MA, Nangalia J. Clonal dynamics and somatic evolution of haematopoiesis in mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613129. [PMID: 39345649 PMCID: PMC11429886 DOI: 10.1101/2024.09.17.613129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Haematopoietic stem cells maintain blood production throughout life. While extensively characterised using the laboratory mouse, little is known about how the population is sustained and evolves with age. We isolated stem cells and progenitors from young and old mice, identifying 221,890 somatic mutations genome-wide in 1845 single cell-derived colonies, and used phylogenetic analysis to infer the ontogeny and population dynamics of the stem cell pool. Mouse stem cells and progenitors accrue ~45 somatic mutations per year, a rate only about 2-fold greater than human progenitors despite the vastly different organismal sizes and lifespans. Phylogenetic patterns reveal that stem and multipotent progenitor cell pools are both established during embryogenesis, after which they independently self-renew in parallel over life. The stem cell pool grows steadily over the mouse lifespan to approximately 70,000 cells, self-renewing about every six weeks. Aged mice did not display the profound loss of stem cell clonal diversity characteristic of human haematopoietic ageing. However, targeted sequencing revealed small, expanded clones in the context of murine ageing, which were larger and more numerous following haematological perturbations and exhibited a selection landscape similar to humans. Our data illustrate both conserved features of population dynamics of blood and distinct patterns of age-associated somatic evolution in the short-lived mouse.
Collapse
Affiliation(s)
- Chiraag D. Kapadia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Kevin J. Dawson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Caroline Watson
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Matthew J. Yousefzadeh
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Columbia Center for Translational Immunology, Columbia Center for Human Longevity, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Duy Le
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Kudzai Nyamondo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Alex Cagan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Departments of Genetics, Pathology & Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah Waldvogel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Josephine De La Fuente
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Marcus A. Florez
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Rogelio Aguilar
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Alejandra Martell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Anna Guzman
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Katherine Y. King
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | | | - Jamie Blundell
- Early Cancer Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Margaret A. Goodell
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z, Liu T, Wang D. CRISPR technology in human diseases. MedComm (Beijing) 2024; 5:e672. [PMID: 39081515 PMCID: PMC11286548 DOI: 10.1002/mco2.672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Gene editing is a growing gene engineering technique that allows accurate editing of a broad spectrum of gene-regulated diseases to achieve curative treatment and also has the potential to be used as an adjunct to the conventional treatment of diseases. Gene editing technology, mainly based on clustered regularly interspaced palindromic repeats (CRISPR)-CRISPR-associated protein systems, which is capable of generating genetic modifications in somatic cells, provides a promising new strategy for gene therapy for a wide range of human diseases. Currently, gene editing technology shows great application prospects in a variety of human diseases, not only in therapeutic potential but also in the construction of animal models of human diseases. This paper describes the application of gene editing technology in hematological diseases, solid tumors, immune disorders, ophthalmological diseases, and metabolic diseases; focuses on the therapeutic strategies of gene editing technology in sickle cell disease; provides an overview of the role of gene editing technology in the construction of animal models of human diseases; and discusses the limitations of gene editing technology in the treatment of diseases, which is intended to provide an important reference for the applications of gene editing technology in the human disease.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Qirong Li
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Hengzong Zhou
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Zhan Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
| | - Chao Lin
- School of Grain Science and TechnologyJilin Business and Technology CollegeChangchunChina
| | - Ziping Jiang
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| | - Tianjia Liu
- Research and Development CentreBaicheng Medical CollegeBaichengChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin UniversityChangchunChina
- Department of Hand and Foot SurgeryThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
6
|
Lee BC, Gin A, Wu C, Singh K, Grice M, Mortlock R, Abraham D, Fan X, Zhou Y, AlJanahi A, Choi U, DeRavin SS, Shin T, Hong S, Dunbar CE. Impact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques. Cell Stem Cell 2024; 31:455-466.e4. [PMID: 38508195 PMCID: PMC10997443 DOI: 10.1016/j.stem.2024.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) is required. The impact of HDR on true LT-HSC clonal dynamics in a relevant large animal model has not been studied. To track the output and clonality of HDR-edited cells and to provide a comparison to lentivirally transduced HSCs in vivo, we developed a competitive rhesus macaque (RM) autologous transplantation model, co-infusing HSCs transduced with a barcoded GFP-expressing lentiviral vector (LV) and HDR edited at the CD33 locus. CRISPR/HDR-edited cells showed a two-log decrease by 2 months following transplantation, with little improvement via p53 inhibition, in comparison to minimal loss of LV-transduced cells long term. HDR long-term clonality was oligoclonal in contrast to highly polyclonal LV-transduced HSCs. These results suggest marked clinically relevant differences in the impact of current genetic modification approaches on HSCs.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Biological Sciences, Sookmyung Women's University, Seoul, Korea; Research Institute of Women's Health, Sookmyung Women's University, Seoul, Korea.
| | - Ashley Gin
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Max Grice
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryland Mortlock
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Diana Abraham
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yifan Zhou
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Aisha AlJanahi
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Suk See DeRavin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Taehoon Shin
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeju National University, Jeju, Korea
| | - Sogun Hong
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Rahmberg AR, Wu C, Shin T, Hong SG, Pei L, Markowitz TE, Hickman HD, Dunbar CE, Brenchley JM. Ongoing production of tissue-resident macrophages from hematopoietic stem cells in healthy adult macaques. Blood Adv 2024; 8:523-537. [PMID: 38048388 PMCID: PMC10835270 DOI: 10.1182/bloodadvances.2023011499] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
ABSTRACT Macrophages orchestrate tissue immunity from the initiation and resolution of antimicrobial immune responses to the repair of damaged tissue. Murine studies demonstrate that tissue-resident macrophages are a heterogenous mixture of yolk sac-derived cells that populate the tissue before birth, and bone marrow-derived replacements recruited in adult tissues at steady-state and in increased numbers in response to tissue damage or infection. How this translates to species that are constantly under immunologic challenge, such as humans, is unknown. To understand the ontogeny and longevity of tissue-resident macrophages in nonhuman primates (NHPs), we use a model of autologous hematopoietic stem progenitor cell (HSPC) transplantation with HSPCs genetically modified to be marked with clonal barcodes, allowing for subsequent analysis of clonal ontogeny. We study the contribution of HSPCs to tissue macrophages, their clonotypic profiles relative to leukocyte subsets in the peripheral blood, and their transcriptomic and epigenetic landscapes. We find that HSPCs contribute to tissue-resident macrophage populations in all anatomic sites studied. Macrophage clonotypic profiles are dynamic and overlap significantly with the clonal hierarchy of contemporaneous peripheral blood monocytes. Epigenetic and transcriptomic landscapes of HSPC-derived macrophages are similar to tissue macrophages isolated from NHPs that did not undergo transplantation. We also use in vivo bromodeoxyuridine infusions to monitor tissue macrophage turnover in NHPs that did not undergo transplantation and find evidence for macrophage turnover at steady state. These data demonstrate that the life span of most tissue-resident macrophages is limited and can be replenished continuously from HSPCs.
Collapse
Affiliation(s)
- Andrew R. Rahmberg
- Division of Intramural Research, Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Taehoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Luxin Pei
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Tovah E. Markowitz
- Integrated Data Sciences Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jason M. Brenchley
- Division of Intramural Research, Barrier Immunity Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
8
|
Zhang M, Liu D, Lan Y, Liu B, Li Z, Ni Y. Hematopoietic stem cell heterogeneity in non-human primates revealed by five-lineage output bias analysis. BLOOD SCIENCE 2024; 6:e00176. [PMID: 38213824 PMCID: PMC10781131 DOI: 10.1097/bs9.0000000000000176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 01/13/2024] Open
Abstract
Understanding hematopoietic stem cell (HSC) heterogeneity is crucial for treating malignant blood disorders. Compared with mice, we have limited knowledge of the heterogeneity of human HSCs. Fortunately, non-human primates (NHPs) have become the best animal models for studying human HSCs. Here, we employed a public dataset derived from NHP autologous bone marrow transplantation, and focused on a total of 820 HSC clones with reconstitution capacity of all available five lineages (granulocyte, monocyte, B cell, T cell, and natural killer cell) at two time points (11/12 and/or 42/43 months). Intriguingly, unsupervised clustering on these clones revealed six HSC subtypes, including a lymphoid/myeloid balanced (LM-balanced) subtype and five single-lineage-biased subtypes. We also observed that the subtypes of these HSC clones might change over time, and a given subtype could transition into any one of the other five subtypes, albeit with a certain degree of selectivity. Particularly, each of the six subtypes was more likely to turn into lymphoid-biased rather than myeloid-biased ones. Additionally, our five-lineage classification method exhibited strong correlation with traditional lymphoid/myeloid bias classification method. Specifically, our granulocyte- and monocyte-biased subtypes were predominantly attributed to α-HSCs, while LM-balanced, B cell-biased, and T cell-biased subtypes were primarily associated with β-HSCs. The γ-HSCs were composed of a small subset of B cell-biased and T cell-biased subtypes. In summary, our five-lineage classification identifies more finely tuned HSC subtypes based on lineage output bias. These findings enrich our understanding of HSC heterogeneity in NHPs and provide important insights for human research.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing, China
| | - Di Liu
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yu Lan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing, China
| | - Zongcheng Li
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, Senior Department of Hematology, Fifth Medical Center, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Lee BC, Gin A, Wu C, Singh K, Grice M, Mortlock R, Abraham D, Fan X, Zhou Y, AlJanahi A, Choi U, de Ravin SS, Shin T, Hong S, Dunbar CE. Impact of CRISPR/HDR-editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571396. [PMID: 38168153 PMCID: PMC10760194 DOI: 10.1101/2023.12.13.571396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
For precise genome editing via CRISPR/homology-directed repair (HDR), effective and safe editing of long-term engrafting hematopoietic stem cells (LT-HSCs) requires both sufficient HDR efficiency and protection of LT-HSC function and number. The impact of HDR on true LT-HSCs clonal dynamics in a relevant large animal model has not previously been studied. To track the HDR-edited cells, autologous rhesus macaque (RM) CD34 + cells were electroporated with the gRNA/Cas9 ribonucleoprotein (RNP) and HDR cassette barcode library structure and reinfused into RMs following myeloablation. For competitive model animals, fractionated CD34 + cells were transduced with a barcoded GFP-expressing lentiviral vector (LV) and electroporated via HDR machinery, respectively. CD33 knockout (KO) neutrophils were prevalent early following engraftment and then rapidly decreased, resulting in less than 1% total editing efficiency. Interestingly, in competitive animals, a higher concentration of i53 mRNA result in a less steep reduction in CD33 KO cells, presented a modest decrease in HDR rate (0.1-0.2%) and total indels (1.5-6.5%). In contrast, the drop off of LV-transduced GFP + cells stabilized at 20% after 2 months. We next retrieved embedded barcodes and revealed that various clones contributed to early hematopoietic reconstitution, then after dominant clones appeared at steady state throughout the animals. In conclusion, CRISPR/HDR edited cells disappeared rapidly after the autologous transplantation in RM despite substantial gene editing outcome, whereas LV-transduced cells were relatively well maintained. Clonality of HDR-edited cells drastically shrank at early stage and then relied on several dominant clones, which can be mildly mitigated by the introduction of i53 mRNA.
Collapse
|
10
|
Scala S, Ferrua F, Basso-Ricci L, Dionisio F, Omrani M, Quaranta P, Jofra Hernandez R, Del Core L, Benedicenti F, Monti I, Giannelli S, Fraschetta F, Darin S, Albertazzi E, Galimberti S, Montini E, Calabria A, Cicalese MP, Aiuti A. Hematopoietic reconstitution dynamics of mobilized- and bone marrow-derived human hematopoietic stem cells after gene therapy. Nat Commun 2023; 14:3068. [PMID: 37244942 DOI: 10.1038/s41467-023-38448-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/28/2023] [Indexed: 05/29/2023] Open
Abstract
Mobilized peripheral blood is increasingly used instead of bone marrow as a source of autologous hematopoietic stem/progenitor cells for ex vivo gene therapy. Here, we present an unplanned exploratory analysis evaluating the hematopoietic reconstitution kinetics, engraftment and clonality in 13 pediatric Wiskott-Aldrich syndrome patients treated with autologous lentiviral-vector transduced hematopoietic stem/progenitor cells derived from mobilized peripheral blood (n = 7), bone marrow (n = 5) or the combination of the two sources (n = 1). 8 out of 13 gene therapy patients were enrolled in an open-label, non-randomized, phase 1/2 clinical study (NCT01515462) and the remaining 5 patients were treated under expanded access programs. Although mobilized peripheral blood- and bone marrow- hematopoietic stem/progenitor cells display similar capability of being gene-corrected, maintaining the engineered grafts up to 3 years after gene therapy, mobilized peripheral blood-gene therapy group shows faster neutrophil and platelet recovery, higher number of engrafted clones and increased gene correction in the myeloid lineage which correlate with higher amount of primitive and myeloid progenitors contained in hematopoietic stem/progenitor cells derived from mobilized peripheral blood. In vitro differentiation and transplantation studies in mice confirm that primitive hematopoietic stem/progenitor cells from both sources have comparable engraftment and multilineage differentiation potential. Altogether, our analyses reveal that the differential behavior after gene therapy of hematopoietic stem/progenitor cells derived from either bone marrow or mobilized peripheral blood is mainly due to the distinct cell composition rather than functional differences of the infused cell products, providing new frames of references for clinical interpretation of hematopoietic stem/progenitor cell transplantation outcome.
Collapse
Affiliation(s)
- Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maryam Omrani
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Department of Computer Science, Systems and Communication, University of Milano Bicocca, Milan, 20126, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Milan, 20132, Italy
| | - Raisa Jofra Hernandez
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Luca Del Core
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- University of Groningen - Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, Groningen, 9747, Netherlands
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Ilaria Monti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Federico Fraschetta
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Silvia Darin
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Elena Albertazzi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Stefania Galimberti
- Center of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, Monza, 20900, Italy
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Milan, 20132, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.
| |
Collapse
|
11
|
Abraham DM, Lozano RJ, Guitart X, Liang JA, Mortlock RD, Espinoza DA, Fan X, Krouse A, Bonifacino A, Hong SG, Singh K, Tisdale JF, Wu C, Dunbar CE. Comparison of busulfan and total body irradiation conditioning on hematopoietic clonal dynamics following lentiviral gene transfer in rhesus macaques. Mol Ther Methods Clin Dev 2023; 28:62-75. [PMID: 36620072 PMCID: PMC9798201 DOI: 10.1016/j.omtm.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The clonal dynamics following hematopoietic stem progenitor cell (HSPC) transplantation with busulfan conditioning are of great interest to the development of HSPC gene therapies. Compared with total body irradiation (TBI), busulfan is less toxic and more clinically relevant. We used a genetic barcoded HSPC autologous transplantation model to investigate the impact of busulfan conditioning on hematopoietic reconstitution in rhesus macaques. Two animals received lower busulfan dose and demonstrated lower vector marking levels compared with the third animal given a higher busulfan dose, despite similar busulfan pharmacokinetic analysis. We observed uni-lineage clonal engraftment at 1 month post-transplant, replaced by multilineage clones by 2 to 3 months in all animals. The initial multilineage clones in the first two animals were replaced by a second multilineage wave at 9 months; this clonal pattern disappeared at 13 months in the first animal, though was maintained in the second animal. The third animal maintained stable multilineage clones from 3 months to the most recent time point. In addition, busulfan animals exhibit more rapid HSPC clonal mixing across bone marrow sites and less CD16+ NK-biased clonal expansion compared with TBI animals. Therefore, busulfan conditioning regimens can variably impact the marrow niche, resulting in differences in clonal patterns with implications for HSPC gene therapies.
Collapse
Affiliation(s)
- Diana M. Abraham
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J. Lozano
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xavi Guitart
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jialiu A. Liang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryland D. Mortlock
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diego A. Espinoza
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allen Krouse
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aylin Bonifacino
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Komudi Singh
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Wu C, Hong SG, Bonifacino A, Dunbar CE. Lentiviral Transduction of Nonhuman Primate Hematopoietic Stem and Progenitor Cells. Methods Mol Biol 2023; 2567:63-84. [PMID: 36255695 DOI: 10.1007/978-1-0716-2679-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The nonhuman primate (NHP) animal model is an important predictive preclinical model for developing gene and cell therapies. It is also an experimental animal model used to study hematopoietic stem and progenitor cell (HSPC) biology, with the capability of serving as a step for the translation of the basic research concepts from small animals to humans. Lentiviral vectors are currently the standard gene delivery vehicles for transduction of HSPCs in the clinical setting. They have proven to be less genotoxic and more efficient than the previously used murine γ-retroviruses. Transplantation of lentiviral vector-transduced HSPCs into autologous macaques has been well developed over the past two decades. In this chapter, we provide detailed methodologies for lentiviral vector transduction of rhesus macaque HSPCs, including production and titration of lentiviral vector, purification of CD34+ HSPCs, and lentiviral vector transduction and assessment.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aylin Bonifacino
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
13
|
Wu C, Liang JA, Brenchley JM, Shin T, Fan X, Mortlock RD, Abraham D, Allan DS, Thomas ML, Hong S, Dunbar CE. Barcode clonal tracking of tissue-resident immune cells in rhesus macaque highlights distinct clonal distribution pattern of tissue NK cells. Front Immunol 2022; 13:994498. [PMID: 36605190 PMCID: PMC9808525 DOI: 10.3389/fimmu.2022.994498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022] Open
Abstract
Tissue resident (TR) immune cells play important roles in facilitating tissue homeostasis, coordinating immune responses against infections and tumors, and maintaining immunological memory. While studies have shown these cells are distinct phenotypically and functionally from cells found in the peripheral blood (PB), the clonal relationship between these populations across tissues has not been comprehensively studied in primates or humans. We utilized autologous transplantation of rhesus macaque hematopoietic stem and progenitor cells containing high diversity barcodes to track the clonal distribution of T, B, myeloid and natural killer (NK) cell populations across tissues, including liver, spleen, lung, and gastrointestinal (GI) tract, in comparison with PB longitudinally post-transplantation, in particular we focused on NK cells which do not contain endogenous clonal markers and have not been previously studied in this context. T cells demonstrated tissue-specific clonal expansions as expected, both overlapping and distinct from blood T cells. In contrast, B and myeloid cells showed a much more homogeneous clonal pattern across various tissues and the blood. The clonal distribution of TR NK was more heterogenous between individual animals. In some animals, as we have previously reported, we observed large PB clonal expansions in mature CD56-CD16+ NK cells. Notably, we found a separate set of highly expanded PB clones in CD16-CD56- (DN) NK subset that were also contributing to TR NK cells in all tissues examined, both in TR CD56-CD16+ and DN populations but absent in CD56+16- TR NK across all tissues analyzed. Additionally, we observed sets of TR NK clones specific to individual tissues such as lung or GI tract and sets of TR NK clones shared across liver and spleen, distinct from other tissues. Combined with prior functional data that suggests NK memory is restricted to liver or other TR NK cells, these clonally expanded TR NK cells may be of interest for future investigation into NK cell tissue immunological memory, with implications for development of NK based immunotherapies and an understanding of NK memory.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jialiu A. Liang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jason M. Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Taehoon Shin
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ryland D. Mortlock
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Diana M. Abraham
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - David S.J. Allan
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Marvin L. Thomas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, United States
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
14
|
Plasschaert RN, DeAndrade MP, Hull F, Nguyen Q, Peterson T, Yan A, Loperfido M, Baricordi C, Barbarossa L, Yoon JK, Dogan Y, Unnisa Z, Schindler JW, van Til NP, Biasco L, Mason C. High-throughput analysis of hematopoietic stem cell engraftment after intravenous and intracerebroventricular dosing. Mol Ther 2022; 30:3209-3225. [PMID: 35614857 PMCID: PMC9552809 DOI: 10.1016/j.ymthe.2022.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/15/2022] [Accepted: 05/21/2022] [Indexed: 11/27/2022] Open
Abstract
Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) has shown clear neurological benefit in rare diseases, which is achieved through the engraftment of genetically modified microglia-like cells (MLCs) in the brain. Still, the engraftment dynamics and the nature of engineered MLCs, as well as their potential use in common neurogenerative diseases, have remained largely unexplored. Here, we comprehensively characterized how different routes of administration affect the biodistribution of genetically engineered MLCs and other HSPC derivatives in mice. We generated a high-resolution single-cell transcriptional map of MLCs and discovered that they could clearly be distinguished from macrophages as well as from resident microglia by the expression of a specific gene signature that is reflective of their HSPC ontogeny and irrespective of their long-term engraftment history. Lastly, using murine models of Parkinson's disease and frontotemporal dementia, we demonstrated that MLCs can deliver therapeutically relevant levels of transgenic protein to the brain, thereby opening avenues for the clinical translation of HSPC-GT to the treatment of major neurological diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Aimin Yan
- AVROBIO, Inc, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | - Niek P van Til
- AVROBIO, Inc, Cambridge, MA 02139, USA; Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, VU University, and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Luca Biasco
- AVROBIO, Inc, Cambridge, MA 02139, USA; Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Chris Mason
- AVROBIO, Inc, Cambridge, MA 02139, USA; Advanced Centre for Biochemical Engineering, University College London, London, UK.
| |
Collapse
|
15
|
Testa U, Castelli G, Pelosi E. Clonal Hematopoiesis: Role in Hematologic and Non-Hematologic Malignancies. Mediterr J Hematol Infect Dis 2022; 14:e2022069. [PMID: 36119457 PMCID: PMC9448266 DOI: 10.4084/mjhid.2022.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cells (HSCs) ensure the coordinated and balanced production of all hematopoietic cell types throughout life. Aging is associated with a gradual decline of the self-renewal and regenerative potential of HSCs and with the development of clonal hematopoiesis. Clonal hematopoiesis of indeterminate potential (CHIP) defines the clonal expansion of genetically variant hematopoietic cells bearing one or more gene mutations and/or structural variants (such as copy number alterations). CHIP increases exponentially with age and is associated with cancers, including hematologic neoplasia, cardiovascular and other diseases. The presence of CHIP consistently increases the risk of hematologic malignancy, particularly in individuals who have CHIP in association with peripheral blood cytopenia.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
16
|
Clonal reconstruction from co-occurrence of vector integration sites accurately quantifies expanding clones in vivo. Nat Commun 2022; 13:3712. [PMID: 35764632 PMCID: PMC9240075 DOI: 10.1038/s41467-022-31292-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022] Open
Abstract
High transduction rates of viral vectors in gene therapies (GT) and experimental hematopoiesis ensure a high frequency of gene delivery, although multiple integration events can occur in the same cell. Therefore, tracing of integration sites (IS) leads to mis-quantification of the true clonal spectrum and limits safety considerations in GT. Hence, we use correlations between repeated measurements of IS abundances to estimate their mutual similarity and identify clusters of co-occurring IS, for which we assume a clonal origin. We evaluate the performance, robustness and specificity of our methodology using clonal simulations. The reconstruction methods, implemented and provided as an R-package, are further applied to experimental clonal mixes and preclinical models of hematopoietic GT. Our results demonstrate that clonal reconstruction from IS data allows to overcome systematic biases in the clonal quantification as an essential prerequisite for the assessment of safety and long-term efficacy of GT involving integrative vectors. High transduction rates of viral vectors ensure good gene delivery; however multiple integration events can occur in the same cell. Here the authors use correlations between repeated measurements of integration site abundances to estimate their mutual similarity and identify clusters of co-occurring sites.
Collapse
|
17
|
Konturek-Ciesla A, Bryder D. Stem Cells, Hematopoiesis and Lineage Tracing: Transplantation-Centric Views and Beyond. Front Cell Dev Biol 2022; 10:903528. [PMID: 35573680 PMCID: PMC9091331 DOI: 10.3389/fcell.2022.903528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 12/26/2022] Open
Abstract
An appropriate production of mature blood cells, or hematopoiesis, is essential for organismal health and homeostasis. In this developmental cascade, hematopoietic stem cells (HSCs) differentiate into intermediate progenitor types, that subsequently give rise to the many distinct blood cell lineages. Here, we describe tools and methods that permit for temporal and native clonal-level HSC lineage tracing in the mouse, and that can now be combined with emerging single-cell molecular analyses. We integrate new insights derived from such experimental paradigms with past knowledge, which has predominantly been derived from transplantation-based approaches. Finally, we outline current knowledge and novel strategies derived from studies aimed to trace human HSC-derived hematopoiesis.
Collapse
|
18
|
Gotzhein F, Aranyossy T, Thielecke L, Sonntag T, Thaden V, Fehse B, Müller I, Glauche I, Cornils K. The Reconstitution Dynamics of Cultivated Hematopoietic Stem Cells and Progenitors Is Independent of Age. Int J Mol Sci 2022; 23:ijms23063160. [PMID: 35328579 PMCID: PMC8948791 DOI: 10.3390/ijms23063160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/10/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) represents the only curative treatment option for numerous hematologic malignancies. While the influence of donor age and the composition of the graft have already been examined in clinical and preclinical studies, little information is available on the extent to which different hematological subpopulations contribute to the dynamics of the reconstitution process and on whether and how these contributions are altered with age. In a murine model of HSCT, we therefore simultaneously tracked different cultivated and transduced hematopoietic stem and progenitor cell (HSPC) populations using a multicolor-coded barcode system (BC32). We studied a series of age-matched and age-mismatched transplantations and compared the influence of age on the reconstitution dynamics. We show that reconstitution from these cultured and assembled grafts was substantially driven by hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) independent of age. The reconstitution patterns were polyclonal and stable in all age groups independently of the variability between individual animals, with higher output rates from MPPs than from HSCs. Our experiments suggest that the dynamics of reconstitution and the contribution of cultured and individually transduced HSPC subpopulations are largely independent of age. Our findings support ongoing efforts to expand the application of HSCT in older individuals as a promising strategy to combat hematological diseases, including gene therapy applications.
Collapse
Affiliation(s)
- Frauke Gotzhein
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.G.); (V.T.); (I.M.)
- Research Institute Children’s Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Tim Aranyossy
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (T.A.); (T.S.); (B.F.)
| | - Lars Thielecke
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (L.T.); (I.G.)
| | - Tanja Sonntag
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (T.A.); (T.S.); (B.F.)
| | - Vanessa Thaden
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.G.); (V.T.); (I.M.)
- Research Institute Children’s Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (T.A.); (T.S.); (B.F.)
| | - Ingo Müller
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.G.); (V.T.); (I.M.)
- Research Institute Children’s Cancer Center Hamburg, 20251 Hamburg, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (L.T.); (I.G.)
| | - Kerstin Cornils
- Clinic of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (F.G.); (V.T.); (I.M.)
- Research Institute Children’s Cancer Center Hamburg, 20251 Hamburg, Germany
- Correspondence: ; Tel.: +49-40-7410-52721
| |
Collapse
|
19
|
Genetic barcoding systematically comparing genes in del(5q) MDS reveals a central role for CSNK1A1 in clonal expansion. Blood Adv 2022; 6:1780-1796. [PMID: 35016204 PMCID: PMC8941465 DOI: 10.1182/bloodadvances.2021006061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
Csnk1a1 haploinsufficient hematopoietic stem cells outcompete other key genes in del(5q) MDS in direct competitive transplantation. Chronic inflammatory stress increases the competitive advantage of Csnk1a1 haploinsufficient hematopoietic stem cells.
How genetic haploinsufficiency contributes to the clonal dominance of hematopoietic stem cells (HSCs) in del(5q) myelodysplastic syndrome (MDS) remains unresolved. Using a genetic barcoding strategy, we performed a systematic comparison on genes implicated in the pathogenesis of del(5q) MDS in direct competition with each other and wild-type (WT) cells with single-clone resolution. Csnk1a1 haploinsufficient HSCs expanded (oligo)clonally and outcompeted all other tested genes and combinations. Csnk1a1−/+ multipotent progenitors showed a proproliferative gene signature and HSCs showed a downregulation of inflammatory signaling/immune response. In validation experiments, Csnk1a1−/+ HSCs outperformed their WT counterparts under a chronic inflammation stimulus, also known to be caused by neighboring genes on chromosome 5. We therefore propose a crucial role for Csnk1a1 haploinsufficiency in the selective advantage of 5q-HSCs, implemented by creation of a unique competitive advantage through increased HSC self-renewal and proliferation capacity, as well as increased fitness under inflammatory stress.
Collapse
|
20
|
Lee BC, Lozano RJ, Dunbar CE. Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Mol Ther 2021; 29:3205-3218. [PMID: 34509667 DOI: 10.1016/j.ymthe.2021.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) gene therapies have recently moved beyond gene-addition approaches to encompass targeted genome modification or correction, based on the development of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR-Cas technologies. Advances in ex vivo HSPC manipulation techniques have greatly improved HSPC susceptibility to genetic modification. Targeted gene-editing techniques enable precise modifications at desired genomic sites. Numerous preclinical studies have already demonstrated the therapeutic potential of gene therapies based on targeted editing. However, several significant hurdles related to adverse consequences of gene editing on HSPC function and genomic integrity remain before broad clinical potential can be realized. This review summarizes the status of HSPC gene editing, focusing on efficiency, genomic integrity, and long-term engraftment ability related to available genetic editing platforms and HSPC delivery methods. The response of long-term engrafting HSPCs to nuclease-mediated DNA breaks, with activation of p53, is a significant challenge, as are activation of innate and adaptive immune responses to editing components. Lastly, we propose alternative strategies that can overcome current hurdles to HSPC editing at various stages from cell collection to transplantation to facilitate successful clinical applications.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Lozano
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
21
|
Hughes AD, Kurre P. The impact of clonal diversity and mosaicism on haematopoietic function in Fanconi anaemia. Br J Haematol 2021; 196:274-287. [PMID: 34258754 DOI: 10.1111/bjh.17653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Recent advances have facilitated studies of the clonal architecture of the aging haematopoietic system, and provided clues to the mechanisms underlying the origins of hematopoietic malignancy. Much less is known about the clonal composition of haematopoiesis and its impact in bone marrow failure (BMF) disorders, including Fanconi anaemia (FA). Understanding clonality in FA is likely to inform both the marked predisposition to cancer and the rapid erosion of regenerative reserve seen with this disease. This may also hold broader lessons for haematopoietic stem cell biology in other diseases with a clonal restriction. In this review, we focus on the conceptual basis and available tools to study clonality, and highlight insights in somatic mosaicism and malignant evolution in FA in the context of haematopoietic failure and gene therapy.
Collapse
Affiliation(s)
- Andrew D Hughes
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
22
|
Espinoza DA, Mortlock RD, Koelle SJ, Wu C, Dunbar CE. Interrogation of clonal tracking data using barcodetrackR. NATURE COMPUTATIONAL SCIENCE 2021; 1:280-289. [PMID: 37621673 PMCID: PMC10449013 DOI: 10.1038/s43588-021-00057-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/17/2021] [Indexed: 08/26/2023]
Abstract
Clonal tracking methods provide quantitative insights into the cellular output of genetically labelled progenitor cells across time and cellular compartments. In the context of gene and cell therapies, clonal tracking methods have enabled the tracking of progenitor cell output both in humans receiving therapies and in corresponding animal models, providing valuable insight into lineage reconstitution, clonal dynamics, and vector genotoxicity. However, the absence of a toolbox for analysis of clonal tracking data has precluded the development of standardized analytical frameworks within the field. Thus, we developed barcodetrackR, an R package and accompanying Shiny app containing diverse tools for the analysis and visualization of clonal tracking data. We demonstrate the utility of barcodetrackR in exploring longitudinal clonal patterns and lineage relationships in a number of clonal tracking studies of hematopoietic stem and progenitor cells (HSPCs) in humans receiving HSPC gene therapy and in animals receiving lentivirally transduced HSPC transplants or tumor cells.
Collapse
Affiliation(s)
- Diego A. Espinoza
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryland D. Mortlock
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samson J. Koelle
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E. Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Cordes S, Wu C, Dunbar CE. Clonal tracking of haematopoietic cells: insights and clinical implications. Br J Haematol 2021; 192:819-831. [PMID: 33216985 PMCID: PMC9927566 DOI: 10.1111/bjh.17175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/16/2020] [Indexed: 01/03/2023]
Abstract
Recent advances in high-throughput genomics have enabled the direct tracking of outputs from many cell types, greatly accelerating the study of developmental processes and tissue regeneration. The capacity for long-term self-renewal with multilineage differentiation potential characterises the cellular dynamics of a special set of developmental states that are critical for maintaining homeostasis. In haematopoiesis, the archetypal model for development, lineage-tracing experiments have elucidated the roles of haematopoietic stem cells to ongoing blood production and the importance of long-lived immune cells to immunological memory. An understanding of the biology and clonal dynamics of these cellular fates and states can provide clues to the response of haematopoiesis to ageing, the process of malignant transformation, and are key to designing more efficacious and durable clinical gene and cellular therapies.
Collapse
Affiliation(s)
- Stefan Cordes
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
24
|
Comparative engraftment and clonality of macaque HSPCs expanded on human umbilical vein endothelial cells versus non-expanded cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:703-715. [PMID: 33738325 PMCID: PMC7937567 DOI: 10.1016/j.omtm.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/07/2021] [Indexed: 12/29/2022]
Abstract
Ex vivo hematopoietic stem and progenitor cell (HSPC) expansion platforms are under active development, designed to increase HSPC numbers and thus engraftment ability of allogeneic cord blood grafts or autologous HSPCs for gene therapies. Murine and in vitro models have not correlated well with clinical outcomes of HSPC expansion, emphasizing the need for relevant pre-clinical models. Our rhesus macaque HSPC competitive autologous transplantation model utilizing genetically barcoded HSPC allows direct analysis of the relative short and long-term engraftment ability of lentivirally transduced HSPCs, along with additional critical characteristics such as HSPC clonal diversity and lineage bias. We investigated the impact of ex vivo expansion of macaque HSPCs on the engineered endothelial cell line (E-HUVECs) platform regarding safety, engraftment of transduced and E-HUVEC-expanded HSPC over time compared to non-expanded HSPC for up to 51 months post-transplantation, and both clonal diversity and lineage distribution of output from each engrafted cell source. Short and long-term engraftment were comparable for E-HUVEC expanded and the non-expanded HSPCs in both animals, despite extensive proliferation of CD34+ cells during 8 days of ex vivo culture for the E-HUVEC HSPCs, and optimization of harvesting and infusion of HSPCs co-cultured on E-HUVEC in the second animal. Long-term hematopoietic output from both E-HUVEC expanded and unexpanded HSPCs was highly polyclonal and multilineage. Overall, the comparable HSPC kinetics of macaques to humans, the ability to study post-transplant clonal patterns, and simultaneous multi-arm comparisons of grafts without the complication of interpreting allogeneic effects makes our model ideal to test ex vivo HSPC expansion platforms, particularly for gene therapy applications.
Collapse
|
25
|
Demirci S, Zeng J, Wu Y, Uchida N, Shen AH, Pellin D, Gamer J, Yapundich M, Drysdale C, Bonanno J, Bonifacino AC, Krouse AE, Linde NS, Engels T, Donahue RE, Haro-Mora JJ, Leonard A, Nassehi T, Luk K, Porter SN, Lazzarotto CR, Tsai SQ, Weiss MJ, Pruett-Miller SM, Wolfe SA, Bauer DE, Tisdale JF. BCL11A enhancer-edited hematopoietic stem cells persist in rhesus monkeys without toxicity. J Clin Invest 2020; 130:6677-6687. [PMID: 32897878 PMCID: PMC7685754 DOI: 10.1172/jci140189] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Gene editing of the erythroid-specific BCL11A enhancer in hematopoietic stem and progenitor cells (HSPCs) from patients with sickle cell disease (SCD) induces fetal hemoglobin (HbF) without detectable toxicity, as assessed by mouse xenotransplant. Here, we evaluated autologous engraftment and HbF induction potential of erythroid-specific BCL11A enhancer-edited HSPCs in 4 nonhuman primates. We used a single guide RNA (sgRNA) with identical human and rhesus target sequences to disrupt a GATA1 binding site at the BCL11A +58 erythroid enhancer. Cas9 protein and sgRNA ribonucleoprotein complex (RNP) was electroporated into rhesus HSPCs, followed by autologous infusion after myeloablation. We found that gene edits persisted in peripheral blood (PB) and bone marrow (BM) for up to 101 weeks similarly for BCL11A enhancer- or control locus-targeted (AAVS1-targeted) cells. Biallelic BCL11A enhancer editing resulted in robust γ-globin induction, with the highest levels observed during stress erythropoiesis. Indels were evenly distributed across PB and BM lineages. Off-target edits were not observed. Nonhomologous end-joining repair alleles were enriched in engrafting HSCs. In summary, we found that edited HSCs can persist for at least 101 weeks after transplant and biallelic-edited HSCs provide substantial HbF levels in PB red blood cells, together supporting further clinical translation of this approach.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Yuxuan Wu
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, Massachusetts, USA
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Anne H. Shen
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Danilo Pellin
- Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jackson Gamer
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Morgan Yapundich
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Claire Drysdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Jasmine Bonanno
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Allen E. Krouse
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Nathaniel S. Linde
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Theresa Engels
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Robert E. Donahue
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Juan J. Haro-Mora
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Tina Nassehi
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shaina N. Porter
- Department of Cell and Molecular Biology, Center for Advanced Genome Engineering, and
| | - Cicera R. Lazzarotto
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Shengdar Q. Tsai
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Scot A. Wolfe
- Department of Molecular, Cell and Cancer Biology, Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Daniel E. Bauer
- Division of Hematology/Oncology, Boston Children’s Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Stem Cell Institute, Broad Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - John F. Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institute (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Clonal tracking in gene therapy patients reveals a diversity of human hematopoietic differentiation programs. Blood 2020; 135:1219-1231. [PMID: 32040546 DOI: 10.1182/blood.2019002350] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
In gene therapy with human hematopoietic stem and progenitor cells (HSPCs), each gene-corrected cell and its progeny are marked in a unique way by the integrating vector. This feature enables lineages to be tracked by sampling blood cells and using DNA sequencing to identify the vector integration sites. Here, we studied 5 cell lineages (granulocytes, monocytes, T cells, B cells, and natural killer cells) in patients having undergone HSPC gene therapy for Wiskott-Aldrich syndrome or β hemoglobinopathies. We found that the estimated minimum number of active, repopulating HSPCs (which ranged from 2000 to 50 000) was correlated with the number of HSPCs per kilogram infused. We sought to quantify the lineage output and dynamics of gene-modified clones; this is usually challenging because of sparse sampling of the various cell types during the analytical procedure, contamination during cell isolation, and different levels of vector marking in the various lineages. We therefore measured the residual contamination and corrected our statistical models accordingly to provide a rigorous analysis of the HSPC lineage output. A cluster analysis of the HSPC lineage output highlighted the existence of several stable, distinct differentiation programs, including myeloid-dominant, lymphoid-dominant, and balanced cell subsets. Our study evidenced the heterogeneous nature of the cell lineage output from HSPCs and provided methods for analyzing these complex data.
Collapse
|
27
|
Tamplin OJ. Making fish a little more human: a zebrafish hematopoietic xenotransplant model is improved by the expression of human cytokines. Haematologica 2020; 105:2346-2347. [PMID: 33054071 PMCID: PMC7556669 DOI: 10.3324/haematol.2020.256909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Owen J Tamplin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.
| |
Collapse
|
28
|
Sharma S, Bhonde R. Genetic and epigenetic stability of stem cells: Epigenetic modifiers modulate the fate of mesenchymal stem cells. Genomics 2020; 112:3615-3623. [DOI: 10.1016/j.ygeno.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
|
29
|
Adair JE, Enstrom MR, Haworth KG, Schefter LE, Shahbazi R, Humphrys DR, Porter S, Tam K, Porteus MH, Kiem HP. DNA Barcoding in Nonhuman Primates Reveals Important Limitations in Retrovirus Integration Site Analysis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:796-809. [PMID: 32355868 PMCID: PMC7184234 DOI: 10.1016/j.omtm.2020.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
Abstract
In vivo tracking of retrovirus-tagged blood stem and progenitor cells is used to study hematopoiesis. Two techniques are used most frequently: sequencing the locus of retrovirus insertion, termed integration site analysis, or retrovirus DNA barcode sequencing. Of these, integration site analysis is currently the only available technique for monitoring clonal pools in patients treated with retrovirus-modified blood cells. A key question is how these two techniques compare in their ability to detect and quantify clonal contributions. In this study, we assessed both methods simultaneously in a clinically relevant nonhuman primate model of autologous, myeloablative transplantation. Our data demonstrate that both methods track abundant clones; however, DNA barcode sequencing is at least 5-fold more efficient than integration site analysis. Using computational simulation to identify the sources of low efficiency, we identify sampling depth as the major factor. We show that the sampling required for integration site analysis to achieve minimal coverage of the true clonal pool is likely prohibitive, especially in cases of low gene-modified cell engraftment. We also show that early subsampling of different blood cell lineages adds value to clone tracking information in terms of safety and hematopoietic biology. Our analysis demonstrates DNA barcode sequencing as a useful guide to maximize integration site analysis interpretation in gene therapy patients.
Collapse
Affiliation(s)
- Jennifer E Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Mark R Enstrom
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kevin G Haworth
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Lauren E Schefter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Reza Shahbazi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel R Humphrys
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shaina Porter
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Kenric Tam
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,School of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
30
|
Abstract
Diversity indices are useful single-number metrics for characterizing a complex distribution of a set of attributes across a population of interest. The utility of these different metrics or sets of metrics depends on the context and application, and whether a predictive mechanistic model exists. In this topical review, we first summarize the relevant mathematical principles underlying heterogeneity in a large population, before outlining the various definitions of 'diversity' and providing examples of scientific topics in which its quantification plays an important role. We then review how diversity has been a ubiquitous concept across multiple fields, including ecology, immunology, cellular barcoding experiments, and socioeconomic studies. Since many of these applications involve sampling of populations, we also review how diversity in small samples is related to the diversity in the entire population. Features that arise in each of these applications are highlighted.
Collapse
Affiliation(s)
- Song Xu
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, United States of America
| | | | | |
Collapse
|
31
|
Lee-Six H, Kent DG. Tracking hematopoietic stem cells and their progeny using whole-genome sequencing. Exp Hematol 2020; 83:12-24. [PMID: 32007478 PMCID: PMC7118367 DOI: 10.1016/j.exphem.2020.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
Despite decades of progress in our understanding of hematopoiesis through the study of animal models and transplantation in humans, investigating physiological human hematopoiesis directly has remained challenging. Questions on the clonal structure of the human hematopoietic stem cell (HSC) pool, such as "how many HSCs are there?" and "do all HSC clones actively produce all blood cell types in equal proportions?" remain open. These questions have inherent value for understanding normal human physiology, but also directly inform our comprehension of the process by which the system is subverted to drive diseases of the blood, in particular blood cancers and bone marrow failure syndromes. The critical link between normal and abnormal hematopoiesis is perhaps best illustrated by the recent discovery of clonal hematopoiesis in healthy people with no abnormal blood parameters. In such individuals, large clones derived from single cells are present and are dominant relative to their normal counterparts, but their presence does not necessitate abnormal blood cell production. Intriguingly, however, these individuals are also at a significantly greater risk of developing leukemias and of cardiovascular events, underscoring the importance of understanding how blood stem cell clones compete against each other.
Collapse
Affiliation(s)
- Henry Lee-Six
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - David G Kent
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom; Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
32
|
Ganuza M, Hall T, Obeng EA, McKinney-Freeman S. Clones assemble! The clonal complexity of blood during ontogeny and disease. Exp Hematol 2020; 83:35-47. [PMID: 32006606 PMCID: PMC8343955 DOI: 10.1016/j.exphem.2020.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) govern the daily expansion and turnover of billions of specialized blood cells. Given their clinical utility, much effort has been made toward understanding the dynamics of hematopoietic production from this pool of stem cells. An understanding of hematopoietic stem cell clonal dynamics during blood ontogeny could yield important insights into hematopoietic regulation, especially during aging and repeated exposure to hematopoietic stress-insults that may predispose individuals to the development of hematopoietic disease. Here, we review the current state of research regarding the clonal complexity of the hematopoietic system during embryogenesis, adulthood, and hematologic disease.
Collapse
Affiliation(s)
- Miguel Ganuza
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Trent Hall
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Esther A Obeng
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | | |
Collapse
|
33
|
Xu J, Koelle S, Guttorp P, Wu C, Dunbar C, Abkowitz JL, Minin VN. Statistical inference for partially observed branching processes with application to cell lineage tracking of in vivo hematopoiesis. Ann Appl Stat 2019. [DOI: 10.1214/19-aoas1272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
McCarthy KF. Further assessment of stochastic proliferation and its potential application to hematopoietic scaling across species. Exp Hematol 2019; 80:27-35. [PMID: 31759073 DOI: 10.1016/j.exphem.2019.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 11/29/2022]
Abstract
Spleen colony-forming unit (CFU-s) growth in spleen colonies is a stochastic process in which CFU-s, with each cell division, can either self-renew or differentiate, but not both. The fundamental parameter governing this process is p, or the probability of CFU-s self-renewing. Previously, when CFU-s growth was modeled by Monte Carlo simulations, p was kept constant during the 20 cell cycles required for the modeling. However, it is known that CFU-s self-renewal undergoes decline with proliferation. In the present study, this was taken into consideration, such that p was forced to undergo a small decline with each cell division. These new Monte Carlo calculations give an improved fit to CFU-s cumulative growth curves as compared with those calculations using fixed p. This new model, referred to as the variable p model, offers an explanation as to how large mammals can amplify marrow output from stem cell compartments that are no larger than those found in small mammals. It is a model in which small changes in active stem cell aging generate disproportionally large increases in the size of active stem cell clones.
Collapse
|
35
|
Truitt LL, Yang D, Espinoza DA, Fan X, Ram DR, Moström MJ, Tran D, Sprehe LM, Reeves RK, Donahue RE, Kaur A, Dunbar CE, Wu C. Impact of CMV Infection on Natural Killer Cell Clonal Repertoire in CMV-Naïve Rhesus Macaques. Front Immunol 2019; 10:2381. [PMID: 31649681 PMCID: PMC6794559 DOI: 10.3389/fimmu.2019.02381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 02/01/2023] Open
Abstract
Recent functional, gene expression, and epigenetic studies have suggested the presence of a subset of mature natural killer (NK) cells responsible for maintaining NK cell memory. The lack of endogenous clonal markers in NK cells impedes understanding the genesis of these cell populations. In humans, primates, and mice, this phenotype and memory or adaptive functions have been strongly linked to cytomegalovirus or related herpes virus infections. We have used transplantation of lentivirally-barcoded autologous hematopoietic stem and progenitor cells (HSPC) to track clonal hematopoiesis in rhesus macaques and previously reported striking oligoclonal expansions of NK-biased barcoded clones within the CD56−CD16+ NK cell subpopulation, clonally distinct from ongoing output of myeloid, B cell, T cell, and CD56+16− NK cells from HSPC. These CD56−CD16+ NK cell clones segregate by expression of specific KIR surface receptors, suggesting clonal expansion in reaction to specific environmental stimuli. We have now used this model to investigate the impact of rhesus CMV(RhCMV) infection on NK clonal dynamics. Following transplantation, RhCMVneg rhesus macaques display less dominant and oligoclonal CD16+ NK cells biased clones compared to RhCMVpos animals, however these populations of cells are still clearly present. Upon RhCMV infection, CD16+ NK cells proliferate, followed by appearance of new groups of expanded NK clones and disappearance of clones present prior to RhCMV infection. A second superinfection with RhCMV resulted in rapid viral clearance without major change in the mature NK cell clonal landscape. Our findings suggest that RhCMV is not the sole driver of clonal expansion and peripheral maintenance of mature NK cells; however, infection of macaques with this herpesvirus does result in selective expansion and persistence of specific NK cell clones, providing further information relevant to adaptive NK cells and the development of NK cell therapies.
Collapse
Affiliation(s)
- Lauren L Truitt
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Di Yang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States.,Institute of Hematology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Diego A Espinoza
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Daniel R Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Matilda J Moström
- Tulane National Primate Research Center, Covington, LA, United States
| | - Dollnovan Tran
- Tulane National Primate Research Center, Covington, LA, United States
| | - Lesli M Sprehe
- Tulane National Primate Research Center, Covington, LA, United States
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Cambridge, MA, United States
| | - Robert E Donahue
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Amitinder Kaur
- Tulane National Primate Research Center, Covington, LA, United States
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
36
|
Fan X, Wu C, Truitt LL, Espinoza DA, Sellers S, Bonifacino A, Zhou Y, Cordes SF, Krouse A, Metzger M, Donahue RE, Lu R, Dunbar CE. Clonal tracking of erythropoiesis in rhesus macaques. Haematologica 2019; 105:1813-1824. [PMID: 31582555 PMCID: PMC7327626 DOI: 10.3324/haematol.2019.231811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/03/2019] [Indexed: 12/25/2022] Open
Abstract
The classical model of hematopoietic hierarchies is being reconsidered on the basis of data from in vitro assays and single cell expression profiling. Recent experiments suggested that the erythroid lineage might differentiate directly from multipotent hematopoietic stem cells / progenitors or from a highly biased subpopulation of stem cells, rather than transiting through common myeloid progenitors or megakaryocyte-erythrocyte progenitors. We genetically barcoded autologous rhesus macaque stem and progenitor cells, allowing quantitative tracking of the in vivo clonal output of thousands of individual cells over time following transplantation. CD34+ cells were lentiviral-transduced with a high diversity barcode library, with the barcode in an expressed region of the provirus, allowing barcode retrieval from DNA or RNA, with each barcode representing an individual stem or progenitor cell clone. Barcode profiles from bone marrow CD45-CD71+ maturing nucleated red blood cells were compared with other lineages purified from the same bone marrow sample. There was very high correlation of barcode contributions between marrow nucleated red blood cells and other lineages, with the highest correlation between nucleated red blood cells and myeloid lineages, whether at earlier or later time points post transplantation, without obvious clonal contributions from highly erythroid-biased or restricted clones. A similar profile occurred even under stressors such as aging or erythropoietin stimulation. RNA barcode analysis on circulating mature red blood cells followed over long time periods demonstrated stable erythroid clonal contributions. Overall, in this nonhuman primate model with great relevance to human hematopoiesis, we documented continuous production of erythroid cells from multipotent, non-biased hematopoietic stem cell clones at steady-state or under stress.
Collapse
Affiliation(s)
- Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MA, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MA, USA
| | - Lauren L Truitt
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MA, USA
| | - Diego A Espinoza
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie Sellers
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MA, USA
| | - Aylin Bonifacino
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MA, USA
| | - Yifan Zhou
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MA, USA.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Stefan F Cordes
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MA, USA
| | - Allen Krouse
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MA, USA
| | - Mark Metzger
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MA, USA
| | - Robert E Donahue
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MA, USA
| | - Rong Lu
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, MA, USA
| |
Collapse
|
37
|
Wu C, Espinoza DA, Koelle SJ, Yang D, Truitt L, Schlums H, Lafont BA, Davidson-Moncada JK, Lu R, Kaur A, Hammer Q, Li B, Panch S, Allan DA, Donahue RE, Childs RW, Romagnani C, Bryceson YT, Dunbar CE. Clonal expansion and compartmentalized maintenance of rhesus macaque NK cell subsets. Sci Immunol 2019; 3:3/29/eaat9781. [PMID: 30389798 DOI: 10.1126/sciimmunol.aat9781] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells recognize and eliminate infected and malignant cells. Their life histories are poorly understood, particularly in humans, due to lack of informative models and endogenous clonal markers. Here, we apply transplantation of barcoded rhesus macaque hematopoietic cells to interrogate the landscape of NK cell production, expansion, and life histories at a clonal level long term and after proliferative challenge. We identify oligoclonal populations of rhesus CD56-CD16+ NK cells that are characterized by marked expansions and contractions over time yet remained long-term clonally uncoupled from other hematopoietic lineages, including CD56+CD16- NK cells. Individual or groups of CD56-CD16+ expanded clones segregated with surface expression of specific killer immunoglobulin-like receptors. These clonally distinct NK cell subpopulation patterns persisted for more than 4 years, including after transient in vivo anti-CD16-mediated depletion and subsequent regeneration. Profound and sustained interleukin-15-mediated depletion was required to generate new oligoclonal CD56-CD16+ NK cells. Together, our results indicate that linear NK cell production from multipotent hematopoietic progenitors or less mature CD56+CD16- cells is negligible during homeostasis and moderate proliferative stress. In such settings, peripheral compartmentalized self-renewal can maintain the composition of distinct, differentiated NK cell subpopulations.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Diego A Espinoza
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samson J Koelle
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Department of Statistics, University of Washington, Seattle, WA, USA
| | - Di Yang
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lauren Truitt
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Heinrich Schlums
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Bernard A Lafont
- Viral Immunology Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Jan K Davidson-Moncada
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Clinical Development and Translational Research, MacroGenics Inc. Rockville, MD, USA
| | - Rong Lu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Amitinder Kaur
- Tulane National Primate Research Center, Covington, LA, USA
| | - Quirin Hammer
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Deutsches Rheuma-Forschungszentrum-A Leibnitz Institute, Charite Medical University, Berlin, Germany
| | - Brian Li
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Department of Medicine, Beth Israel Hospital, Boston, MA, USA
| | - Sandhya Panch
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.,Department of Transfusion Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - David A Allan
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Robert E Donahue
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Richard W Childs
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Chiara Romagnani
- Deutsches Rheuma-Forschungszentrum-A Leibnitz Institute, Charite Medical University, Berlin, Germany
| | - Yenan T Bryceson
- Department of Medicine Huddinge, Karolinska Institutet, Huddinge, Stockholm, Sweden. .,Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Cynthia E Dunbar
- Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
38
|
Scala S, Aiuti A. In vivo dynamics of human hematopoietic stem cells: novel concepts and future directions. Blood Adv 2019; 3:1916-1924. [PMID: 31239246 PMCID: PMC6595260 DOI: 10.1182/bloodadvances.2019000039] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Unveiling the mechanisms and the cellular dynamics at the basis of human hematopoietic homeostasis has been a main focus for the scientific community since the discovery of a pool of multipotent hematopoietic stem cells (HSCs) capable of sustaining the hematopoietic output throughout life and after transplantation. Recently, new works shed light on the (1) differentiation paths, (2) size and replication rate of human HSC population at steady state, and (3) role of the distinct subpopulations comprising the hematopoietic stem and progenitor cell reservoir after transplantation. These papers exploited cutting-edge technologies, including vector integration site clonal tracking, spontaneous mutations, and deep transcriptome profiling. Here we discuss the latest updates in human hematopoietic system biology and in vivo dynamics, highlighting novel concepts and common findings deriving from different approaches and the future directions of these studies. Taken together, this information contributed to partially resolving the complexity of the in vivo HSC behavior and has major implications for HSC transplantation and gene therapy as well as for the development of future therapies.
Collapse
Affiliation(s)
- Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget) and
- Pediatric Immunohematology and Stem Cell Programme, IRCCS San Raffaele Scientific Institute, Milan, Italy; and
- Medical School, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
39
|
Cordes SF, Dunbar CE. Genotoxic Lemons Become Epigenomic Lemonade. Cell Stem Cell 2019; 23:9-10. [PMID: 29979994 DOI: 10.1016/j.stem.2018.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Active regulatory elements in hematopoietic stem cells (HSCs) are incompletely characterized, since extant approaches immunophenotypically define and isolate rare HSCs. In the current issue of Cell Stem Cell, Wünsche et al. (2018) use γ-retroviral insertion sites from a human gene therapy trial to identify the active enhancer landscape of functionally characterized HSCs.
Collapse
Affiliation(s)
- Stefan F Cordes
- Hematology Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Espinoza DA, Fan X, Yang D, Cordes SF, Truitt LL, Calvo KR, Yabe IM, Demirci S, Hope KJ, Hong SG, Krouse A, Metzger M, Bonifacino A, Lu R, Uchida N, Tisdale JF, Wu X, DeRavin SS, Malech HL, Donahue RE, Wu C, Dunbar CE. Aberrant Clonal Hematopoiesis following Lentiviral Vector Transduction of HSPCs in a Rhesus Macaque. Mol Ther 2019; 27:1074-1086. [PMID: 31023523 PMCID: PMC6554657 DOI: 10.1016/j.ymthe.2019.04.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 01/21/2023] Open
Abstract
Lentiviral vectors (LVs) are used for delivery of genes into hematopoietic stem and progenitor cells (HSPCs) in clinical trials worldwide. LVs, in contrast to retroviral vectors, are not associated with insertion site-associated malignant clonal expansions and, thus, are considered safer. Here, however, we present a case of markedly abnormal dysplastic clonal hematopoiesis affecting the erythroid, myeloid, and megakaryocytic lineages in a rhesus macaque transplanted with HSPCs that were transduced with a LV containing a strong retroviral murine stem cell virus (MSCV) constitutive promoter-enhancer in the LTR. Nine insertions were mapped in the abnormal clone, resulting in overexpression and aberrant splicing of several genes of interest, including the cytokine stem cell factor and the transcription factor PLAG1. This case represents the first clear link between lentiviral insertion-induced clonal expansion and a clinically abnormal transformed phenotype following transduction of normal primate or human HSPCs, which is concerning, and suggests that strong constitutive promoters should not be included in LVs.
Collapse
Affiliation(s)
- Diego A Espinoza
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xing Fan
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Di Yang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Stefan F Cordes
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Lauren L Truitt
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Katherine R Calvo
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Idalia M Yabe
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Selami Demirci
- Sickle Cell and Vascular Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Kristin J Hope
- Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON, Canada
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Allen Krouse
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Mark Metzger
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Aylin Bonifacino
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Rong Lu
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Naoya Uchida
- Sickle Cell and Vascular Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - John F Tisdale
- Sickle Cell and Vascular Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Suk See DeRavin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Harry L Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Robert E Donahue
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
CRISPR/Cas9 PIG -A gene editing in nonhuman primate model demonstrates no intrinsic clonal expansion of PNH HSPCs. Blood 2019; 133:2542-2545. [PMID: 31003997 DOI: 10.1182/blood.2019000800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
42
|
Yabe IM, Truitt LL, Espinoza DA, Wu C, Koelle S, Panch S, Corat MA, Winkler T, Yu KR, Hong SG, Bonifacino A, Krouse A, Metzger M, Donahue RE, Dunbar CE. Barcoding of Macaque Hematopoietic Stem and Progenitor Cells: A Robust Platform to Assess Vector Genotoxicity. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 11:143-154. [PMID: 30547048 PMCID: PMC6258888 DOI: 10.1016/j.omtm.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Gene therapies using integrating retrovirus vectors to modify hematopoietic stem and progenitor cells have shown great promise for the treatment of immune system and hematologic diseases. However, activation of proto-oncogenes via insertional mutagenesis has resulted in the development of leukemia. We have utilized cellular bar coding to investigate the impact of different vector designs on the clonal behavior of hematopoietic stem and progenitor cells (HSPCs) during in vivo expansion, as a quantitative surrogate assay for genotoxicity in a non-human primate model with high relevance for human biology. We transplanted two rhesus macaques with autologous CD34+ HSPCs transduced with three lentiviral vectors containing different promoters and/or enhancers of a predicted range of genotoxicities, each containing a high-diversity barcode library that uniquely tags each individual transduced HSPC. Analysis of clonal output from thousands of individual HSPCs transduced with these barcoded vectors revealed sustained clonal diversity, with no progressive dominance of clones containing any of the three vectors for up to almost 3 years post-transplantation. Our data support a low genotoxic risk for lentivirus vectors in HSPCs, even those containing strong promoters and/or enhancers. Additionally, this flexible system can be used for the testing of future vector designs.
Collapse
Affiliation(s)
- Idalia M. Yabe
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Lauren L. Truitt
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Diego A. Espinoza
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Chuanfeng Wu
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Samson Koelle
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - Sandhya Panch
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Marcus A.F. Corat
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- Multidisciplinary Center for Biological Research, University of Campinas, Campinas, SP 13083-877, Brazil
| | - Thomas Winkler
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Kyung-Rok Yu
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - So Gun Hong
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Aylin Bonifacino
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Allen Krouse
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Mark Metzger
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Robert E. Donahue
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Cynthia E. Dunbar
- Hematology Branch, National Heart, Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
- Corresponding author: Cynthia E. Dunbar, National Heart, Lung and Blood Institute, NIH, Building 10 CRC Room 4E-5132, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
43
|
Lee-Six H, Øbro NF, Shepherd MS, Grossmann S, Dawson K, Belmonte M, Osborne RJ, Huntly BJP, Martincorena I, Anderson E, O'Neill L, Stratton MR, Laurenti E, Green AR, Kent DG, Campbell PJ. Population dynamics of normal human blood inferred from somatic mutations. Nature 2018; 561:473-478. [PMID: 30185910 PMCID: PMC6163040 DOI: 10.1038/s41586-018-0497-0] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/01/2018] [Indexed: 01/25/2023]
Abstract
Haematopoietic stem cells drive blood production, but their population size and lifetime dynamics have not been quantified directly in humans. Here we identified 129,582 spontaneous, genome-wide somatic mutations in 140 single-cell-derived haematopoietic stem and progenitor colonies from a healthy 59-year-old man and applied population-genetics approaches to reconstruct clonal dynamics. Cell divisions from early embryogenesis were evident in the phylogenetic tree; all blood cells were derived from a common ancestor that preceded gastrulation. The size of the stem cell population grew steadily in early life, reaching a stable plateau by adolescence. We estimate the numbers of haematopoietic stem cells that are actively making white blood cells at any one time to be in the range of 50,000-200,000. We observed adult haematopoietic stem cell clones that generate multilineage outputs, including granulocytes and B lymphocytes. Harnessing naturally occurring mutations to report the clonal architecture of an organ enables the high-resolution reconstruction of somatic cell dynamics in humans.
Collapse
Affiliation(s)
- Henry Lee-Six
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Nina Friesgaard Øbro
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Mairi S Shepherd
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Kevin Dawson
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Miriam Belmonte
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Robert J Osborne
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Brian J P Huntly
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | | | | | - Laura O'Neill
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Elisa Laurenti
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK.
| | - David G Kent
- Wellcome-MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK.
| |
Collapse
|
44
|
Lineage restriction analyses in CHIP indicate myeloid bias for TET2 and multipotent stem cell origin for DNMT3A. Blood 2018; 132:277-280. [DOI: 10.1182/blood-2018-01-829937] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
Key Points
TET2 mutations confer a myeloid proliferation bias. DNMT3A mutations occur in a multipotent stem cell.
Collapse
|
45
|
The impact of aging on primate hematopoiesis as interrogated by clonal tracking. Blood 2018; 131:1195-1205. [PMID: 29295845 DOI: 10.1182/blood-2017-08-802033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/21/2017] [Indexed: 01/04/2023] Open
Abstract
Age-associated changes in hematopoietic stem and progenitor cells (HSPCs) have been carefully documented in mouse models but poorly characterized in primates and humans. To investigate clinically relevant aspects of hematopoietic aging, we compared the clonal output of thousands of genetically barcoded HSPCs in aged vs young macaques after autologous transplantation. Aged macaques showed delayed emergence of output from multipotent (MP) clones, with persistence of lineage-biased clones for many months after engraftment. In contrast to murine aging models reporting persistence of myeloid-biased HSPCs, aged macaques demonstrated persistent output from both B-cell and myeloid-biased clones. Clonal expansions of MP, myeloid-biased, and B-biased clones occurred in aged macaques, providing a potential model for human clonal hematopoiesis of indeterminate prognosis. These results suggest that long-term MP HSPC output is impaired in aged macaques, resulting in differences in the kinetics and lineage reconstitution patterns between young and aged primates in an autologous transplantation setting.
Collapse
|
46
|
Cooper JN, Young NS. Clonality in context: hematopoietic clones in their marrow environment. Blood 2017; 130:2363-2372. [PMID: 29046282 PMCID: PMC5709788 DOI: 10.1182/blood-2017-07-794362] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/04/2017] [Indexed: 11/20/2022] Open
Abstract
Clonal hematopoiesis occurs normally, especially with aging, and in the setting of disease, not only in myeloid cancers but in bone marrow failure as well. In cancer, malignant clones are characterized by recurrent somatic mutations in specific sets of genes, but the direct relationship of such mutations to leukemogenesis, when they occur in cells of an apparently healthy older individual or after recovery from immune aplastic anemia, is uncertain. Here we emphasize a view of clonal evolution that stresses natural selection over deterministic ontogeny, and we stress the selective role of the environment of the marrow and organism. Clonal hematopoieses after chemotherapy, in marrow failure, and with aging serve as models. We caution against the overinterpretation of clinical results of genomic testing in the absence of a better understanding of clonal selection and evolution.
Collapse
Affiliation(s)
- James N Cooper
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
47
|
Wu C, Espinoza DA, Koelle SJ, Potter EL, Lu R, Li B, Yang D, Fan X, Donahue RE, Roederer M, Dunbar CE. Geographic clonal tracking in macaques provides insights into HSPC migration and differentiation. J Exp Med 2017; 215:217-232. [PMID: 29141868 PMCID: PMC5748860 DOI: 10.1084/jem.20171341] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/21/2017] [Accepted: 10/12/2017] [Indexed: 01/13/2023] Open
Abstract
Wu et al. use barcode tracking to uncover prolonged geographic bone marrow segregation of regenerating hematopoietic stem and progenitor cell clones after transplantation and provide evidence for local bone marrow production of T cells. The geographic distribution of hematopoiesis at a clonal level is of interest in understanding how hematopoietic stem and progenitor cells (HSPCs) and their progeny interact with bone marrow (BM) niches during regeneration. We tagged rhesus macaque autologous HSPCs with genetic barcodes, allowing clonal tracking over time and space after transplantation. We found marked geographic segregation of CD34+ HSPCs for at least 6 mo posttransplantation, followed by very gradual clonal mixing at different BM sites over subsequent months to years. Clonal mapping was used to document local production of granulocytes, monocytes, B cells, and CD56+ natural killer (NK) cells. In contrast, CD16+CD56− NK cells were not produced in the BM, and in fact were clonally distinct from multipotent progenitors producing all other lineages. Most surprisingly, we documented local BM production of CD3+ T cells early after transplantation, using both clonal mapping and intravascular versus tissue-resident T cell staining, suggesting a thymus-independent T cell developmental pathway operating during BM regeneration, perhaps before thymic recovery.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Diego A Espinoza
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Samson J Koelle
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - E Lake Potter
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Brian Li
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Di Yang
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.,Institute of hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Fan
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Robert E Donahue
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
48
|
Kohlscheen S, Bonig H, Modlich U. Promises and Challenges in Hematopoietic Stem Cell Gene Therapy. Hum Gene Ther 2017; 28:782-799. [DOI: 10.1089/hum.2017.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Saskia Kohlscheen
- Research Group for Gene Modification in Stem Cells, Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, Langen, Germany
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University, Frankfurt, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Germany
- Department of Medicine/Division of Hematology, University of Washington, Seattle, Washington
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
49
|
HSPCs are marathon and not sprint relay athletes. Blood 2017; 129:1406-1407. [PMID: 28302687 DOI: 10.1182/blood-2017-02-763516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|