1
|
Cyrta J, Brillet R, Laas E, Just PA, Andrianteranagna M, Leary A, Vincent-Salomon A, Bourdeaut F, Masliah-Planchon J. Additional Considerations on Aberrant BRG1 (SMARCA4) Expression in Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT). Am J Surg Pathol 2024; 48:1335-1338. [PMID: 39092991 PMCID: PMC11404751 DOI: 10.1097/pas.0000000000002296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Affiliation(s)
- Joanna Cyrta
- Department of Diagnostic and Theranostic Medicine, Institut Curie, PSL Research University, Paris, France
| | - Riwan Brillet
- Department of Diagnostic and Theranostic Medicine, Institut Curie, PSL Research University, Paris, France
| | - Enora Laas
- Department of Breast and Gynecological Surgery, Institut Curie, Université Paris Cité, Paris, France
| | - Pierre-Alexandre Just
- Department of Pathology, Assistance Publique - Hôpitaux de Marseille Marseille, Provence-Alpes-Côte d'Azur France
| | - Mamy Andrianteranagna
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Université Paris Cité, Paris France
| | - Alexandra Leary
- Oncology Department, Institut Gustave Roussy, Villejuif, France
| | - Anne Vincent-Salomon
- Department of Diagnostic and Theranostic Medicine, Institut Curie, PSL Research University, Paris, France
| | - Franck Bourdeaut
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Université Paris Cité, Paris France
| | - Julien Masliah-Planchon
- Department of Diagnostic and Theranostic Medicine, Institut Curie, PSL Research University, Paris, France
| |
Collapse
|
2
|
Yang SR, Jayakumaran G, Benhamida J, Febres-Aldana CA, Fanaroff R, Chang J, Gedvilaite E, Villafania LB, Sauter JL, Offin M, Zauderer MG, Ladanyi M. Diffuse Pleural Mesotheliomas with Genomic Near-Haploidization: A Newly Recognized Subset with Distinct Clinical, Histologic, and Molecular Features. Clin Cancer Res 2024; 30:2780-2789. [PMID: 38630790 PMCID: PMC11216861 DOI: 10.1158/1078-0432.ccr-24-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE Diffuse pleural mesotheliomas (DPM) with genomic near-haploidization (GNH) represent a novel subtype first recognized by The Cancer Genome Atlas project; however, its clinicopathologic and molecular features remain poorly defined. EXPERIMENTAL DESIGN We analyzed clinical genomic profiling data from 290 patients with DPM using the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) assay. Allele-specific copy number analysis was performed using the Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing (FACETS) algorithm. RESULTS A total of 210 patients were evaluable for loss of heterozygosity (LOH) analysis using FACETS from MSK-IMPACT tumor:normal sequencing data. In this cohort, GNH, defined as LOH across >80% of the genome, was detected in 10 cases (4.8%). Compared with non-GNH tumors, GNH DPMs were associated with younger age and less frequent self-reported history of occupational asbestos exposure. Histologically, GNH DPMs were enriched in biphasic subtype (80% vs. 14.5%) and showed abundant tumor-infiltrating lymphocytes (TILs). Genomic analysis revealed a higher frequency of TP53 alterations, whereas SETDB1 mutations were present in nearly all and only in this subset. The clinicopathologic and molecular findings were further validated in a separate cohort. Despite the younger age, patients with GNH DPMs had a shorter overall survival (10.9 vs. 25.4 months, P = 0.004); the poor prognostic impact of GNH remained significant after controlling for biphasic histology. Of three patients with GNH DPMs who received immune checkpoint blockade, two achieved a clinician-assessed partial response. CONCLUSIONS GNH defines an aggressive subtype of mainly biphasic DPMs in younger patients with recurrent alterations in SETDB1 and TP53. The enrichment in biphasic histology and TILs, together with our preliminary immune checkpoint blockade response data and anecdotal clinical trial data, suggests that further evaluation of immunotherapy may be warranted in this subset.
Collapse
Affiliation(s)
- Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gowtham Jayakumaran
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jamal Benhamida
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Rachel Fanaroff
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Erika Gedvilaite
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Liliana B. Villafania
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer L. Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Offin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Marjorie G. Zauderer
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Garcia C, Miller-Awe MD, Witkowski MT. Concepts in B cell acute lymphoblastic leukemia pathogenesis. J Leukoc Biol 2024; 116:18-32. [PMID: 38243586 DOI: 10.1093/jleuko/qiae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) arises from genetic alterations impacting B cell progenitors, ultimately leading to clinically overt disease. Extensive collaborative efforts in basic and clinical research have significantly improved patient prognoses. Nevertheless, a subset of patients demonstrate resistance to conventional chemotherapeutic approaches and emerging immunotherapeutic interventions. This review highlights the mechanistic underpinnings governing B-ALL transformation. Beginning with exploring normative B cell lymphopoiesis, we delineate the influence of recurrent germline and somatic genetic aberrations on the perturbation of B cell progenitor differentiation and protumorigenic signaling, thereby facilitating the neoplastic transformation underlying B-ALL progression. Additionally, we highlight recent advances in the multifaceted landscape of B-ALL, encompassing metabolic reprogramming, microbiome influences, inflammation, and the discernible impact of socioeconomic and racial disparities on B-ALL transformation and patient survival.
Collapse
Affiliation(s)
- Clarissa Garcia
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Megan D Miller-Awe
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Matthew T Witkowski
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States
| |
Collapse
|
4
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
5
|
Wong VA, Dinh KN, Chen G, Wrenshall LE. IL-2Rα KO mice exhibit maternal microchimerism and reveal nuclear localization of IL-2Rα in lymphoid and non-lymphoid cells. Front Immunol 2024; 15:1369818. [PMID: 38812502 PMCID: PMC11133634 DOI: 10.3389/fimmu.2024.1369818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction IL-2Rα knock out (KO) mice have been instrumental to discovering the immunoregulatory properties of IL-2Rα. While initially thought of only as a stimulatory cytokine, IL-2 and IL-2Rα KO mice revealed that this cytokine-receptor system controls immune responses through restimulation-induced cell death and by promoting the survival of T regulatory cells. Although described mostly in the context of lymphocytes, recent studies by our laboratory showed that IL-2R is expressed in smooth muscle cells. Given this finding, we sought to use IL-2Rα KO to determine the function of this receptor in vascular smooth muscle cells. Surprisingly, we found that IL-2Rα KO vascular smooth muscle cells had detectable IL-2Rα. Methods We used multiple gene and protein-based methods to determine why IL-2Rα KO vascular smooth muscle cells exhibited IL-2Rα protein. These methods included: genomic sequencing, assessing cells and tissues for evidence of maternal microchimerism, and determining the half-life of IL-2Rα protein. Results Our studies demonstrated the following: (1) in addition to the cell surface, IL-2Rα is localized to the nucleus; (2) the genetic deletion of IL-2Rα is intact in IL-2Rα KO mice; (3) both IL-2Rα KO and WT tissues show evidence of maternal microchimerism, the likely source of IL-2Rα (4) IL-2Rα is transmitted between cells; (5) IL-2Rα has a long half-life; and (6) nuclear IL-2Rα contributes to the regulation of cell proliferation and size. Conclusion Our findings suggest that the phenotype of complete IL-2Rα loss is more severe than demonstrated by IL-2Rα KO mice, and that IL-2Rα plays a here-to-fore unrecognized role in regulating cell proliferation in non-lymphoid cells.
Collapse
Affiliation(s)
- Victoria A. Wong
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Kristie N. Dinh
- Fertility Wellness Institute of Ohio West Chester Township, OH, United States
| | - Guangchun Chen
- Genomics and Microarray Core Facility, University of Texas Southwestern Medical Center Dallas, TX, United States
| | - Lucile E. Wrenshall
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Medical Education, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
6
|
Strullu M, Cousin E, de Montgolfier S, Fenwarth L, Gachard N, Arnoux I, Duployez N, Girard S, Guilmatre A, Lafage M, Loosveld M, Petit A, Perrin L, Vial Y, Saultier P. [Suspicion of constitutional abnormality at diagnosis of childhood leukemia: Update of the leukemia committee of the French Society of Childhood Cancers]. Bull Cancer 2024; 111:291-309. [PMID: 38267311 DOI: 10.1016/j.bulcan.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/17/2023] [Indexed: 01/26/2024]
Abstract
The spectrum of childhood leukemia predisposition syndromes has grown significantly over last decades. These predisposition syndromes mainly involve CEBPA, ETV6, GATA2, IKZF1, PAX5, RUNX1, SAMD9/SAMD9L, TP53, RAS-MAPK pathway, DNA mismatch repair system genes, genes associated with Fanconi anemia, and trisomy 21. The clinico-biological features leading to the suspicion of a leukemia predisposition are highly heterogeneous and require varied exploration strategies. The study of the initial characteristics of childhood leukemias includes high-throughput sequencing techniques, which have increased the frequency of situations where a leukemia predisposing syndrome is suspected. Identification of a leukemia predisposition syndrome can have a major impact on the choice of chemotherapy, the indication for hematopoietic stem cell transplantation, and screening for associated malformations and pathologies. The diagnosis of a predisposition syndrome can also lead to the exploration of family members and genetic counseling. Diagnosis and management should be based on dedicated and multidisciplinary care networks.
Collapse
Affiliation(s)
- Marion Strullu
- Hématologie et immunologie pédiatrique, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris Cité, Paris, France; Inserm UMR_S1131, Institut universitaire d'hématologie, université Paris Cité, Paris cité, Paris, France.
| | - Elie Cousin
- Service d'onco-hématologie pédiatrique, CHU de Rennes, Rennes, France
| | - Sandrine de Montgolfier
- Aix Marseille université, Inserm, IRD, SESSTIM, sciences économiques & sociales de la santé & traitement de l'information médicale, ISSPAM, Marseille, France
| | - Laurene Fenwarth
- Département de génétique clinique, laboratoire d'hématologie, unité de génétique moléculaire des hémopathies malignes, CHU de Lille, université de Lille, Lille, France
| | | | | | - Nicolas Duployez
- Laboratoire d'hématologie, unité de génétique moléculaire des hémopathies malignes, CHU de Lille, université de Lille, Lille, France
| | - Sandrine Girard
- Service d'hématologie biologique, centre de biologie et pathologie Est, LBMMS, hospices civils de Lyon, Lyon, France
| | - Audrey Guilmatre
- Service d'hématologie et oncologie pédiatrique, hôpital Armand-Trousseau, AP-HP.Sorbonne Université, Paris, France
| | - Marina Lafage
- CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille université U105, laboratoire d'hématologie, CHU Timone, Marseille, France
| | - Marie Loosveld
- CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille université U105, laboratoire d'hématologie, CHU Timone, Marseille, France
| | - Arnaud Petit
- Service d'hématologie et oncologie pédiatrique, hôpital Armand-Trousseau, AP-HP.Sorbonne Université, Paris, France
| | - Laurence Perrin
- Génétique clinique, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris cité, Paris, France
| | - Yoan Vial
- Inserm UMR_S1131, Institut universitaire d'hématologie, université Paris Cité, Paris cité, Paris, France; Laboratoire de génétique moléculaire, hôpital Robert-Debré, GHU AP-HP Nord-Université Paris cité, Paris, France
| | - Paul Saultier
- Service d'hématologie immunologie oncologie pédiatrique, Inserm, INRAe, C2VN, hôpital d'Enfants de la Timone, Aix Marseille université, AP-HM, Marseille, France
| |
Collapse
|
7
|
Lee BJ, Griffin SP, Doh J, Chan A, Ciurea SO, Jeyakumar D, Fleischman AG, Naqvi K, Pannunzio NR, O'Brien S, Kongtim P. HyperCVAD versus pegaspargase-containing regimens for Hispanic adults with newly diagnosed B-cell acute lymphoblastic leukemia. Eur J Haematol 2024; 112:392-401. [PMID: 37933194 DOI: 10.1111/ejh.14125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE There are significant disparities in outcomes among Hispanic patients with acute lymphoblastic leukemia (ALL). Recent studies have demonstrated favorable outcomes of pegaspargase-containing ALL regimens (PEG-CAR) in young adults however, outcomes in Hispanic ethnicity continue to be underreported. METHODS We evaluated outcomes of newly diagnosed, adult B-cell ALL Hispanic and non-Hispanic patients consecutively treated with a PEG-CAR or HyperCVAD between January 2011 and November 2022. The primary endpoint was event-free survival (EFS) while secondary endpoints included cumulative incidence of relapse and overall survival (OS). RESULTS Among 105 included patients, 48 (45.7%) were treated with a PEG-CAR and 57 (54.3%) with HyperCVAD. Median age was 38 years (range, 18-75 years), 61% were Hispanic, and 35.2% had poor-genetic risk. Hispanic patients demonstrated significantly worse 5-year EFS with a PEG-CAR compared to that seen with HyperCVAD (HR, 2.58; 95% CI, 1.32-5.04; p = .006) whereas non-Hispanic patients had better outcomes with PIR (52.4% vs. 42.0%). Hispanic ethnicity (p = .015) and male sex (p = .019) were independent predictors for poor OS. CONCLUSIONS Hispanic patients with B-cell ALL had worse EFS with a PEG-CAR as compared with HyperCVAD. Future studies will aim to confirm these findings and establish a tailored treatment approach for this high-risk population.
Collapse
Affiliation(s)
- Benjamin J Lee
- Department of Pharmacy, Chao Family Comprehensive Cancer Center, University of California Irvine Health, Orange, California, USA
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, California, USA
| | - Shawn P Griffin
- Department of Pharmacy, Chao Family Comprehensive Cancer Center, University of California Irvine Health, Orange, California, USA
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, California, USA
| | - Jean Doh
- Department of Pharmacy, Chao Family Comprehensive Cancer Center, University of California Irvine Health, Orange, California, USA
| | - Alexandre Chan
- Department of Pharmacy, Chao Family Comprehensive Cancer Center, University of California Irvine Health, Orange, California, USA
- Department of Clinical Pharmacy Practice, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, California, USA
- Department of Medicine, Division of Hematology Oncology, Chao Family Comprehensive Cancer Center, University of California Irvine Health, Orange, California, USA
| | - Stefan O Ciurea
- Department of Medicine, Division of Hematology Oncology, Chao Family Comprehensive Cancer Center, University of California Irvine Health, Orange, California, USA
| | - Deepa Jeyakumar
- Department of Medicine, Division of Hematology Oncology, Chao Family Comprehensive Cancer Center, University of California Irvine Health, Orange, California, USA
| | - Angela G Fleischman
- Department of Medicine, Division of Hematology Oncology, Chao Family Comprehensive Cancer Center, University of California Irvine Health, Orange, California, USA
| | - Kiran Naqvi
- Department of Medicine, Division of Hematology Oncology, Chao Family Comprehensive Cancer Center, University of California Irvine Health, Orange, California, USA
| | - Nicholas R Pannunzio
- Department of Medicine, Division of Hematology Oncology, Chao Family Comprehensive Cancer Center, University of California Irvine Health, Orange, California, USA
| | - Susan O'Brien
- Department of Medicine, Division of Hematology Oncology, Chao Family Comprehensive Cancer Center, University of California Irvine Health, Orange, California, USA
| | - Piyanuch Kongtim
- Department of Medicine, Division of Hematology Oncology, Chao Family Comprehensive Cancer Center, University of California Irvine Health, Orange, California, USA
| |
Collapse
|
8
|
Behrens YL, Pietzsch S, Antić Ž, Zhang Y, Bergmann AK. The landscape of cytogenetic and molecular genetic methods in diagnostics for hematologic neoplasia. Best Pract Res Clin Haematol 2024; 37:101539. [PMID: 38490767 DOI: 10.1016/j.beha.2024.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/28/2024] [Indexed: 03/17/2024]
Abstract
Improvements made during the last decades in the management of patients with hematologic neoplasia have resulted in increase of overall survival. These advancements have become possible through progress in our understanding of genetic basis of different hematologic malignancies and their role in the current risk-adapted treatment protocols. In this review, we provide an overview of current cytogenetic and molecular genetic methods, commonly used in the genetic characterization of hematologic malignancies, describe the current developments in the cytogenetic and molecular diagnostics, and give an outlook into their future development. Furthermore, we give a brief overview of the most important public databases and guidelines for sequence variant interpretation.
Collapse
Affiliation(s)
- Yvonne Lisa Behrens
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Stefan Pietzsch
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Željko Antić
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany
| | - Yanming Zhang
- Cytogenetics Laboratory, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
9
|
Brown A, Batra S. Rare Hematologic Malignancies and Pre-Leukemic Entities in Children and Adolescents Young Adults. Cancers (Basel) 2024; 16:997. [PMID: 38473358 DOI: 10.3390/cancers16050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
There are a variety of rare hematologic malignancies and germline predispositions syndromes that occur in children and adolescent young adults (AYAs). These entities are important to recognize, as an accurate diagnosis is essential for risk assessment, prognostication, and treatment. This descriptive review summarizes rare hematologic malignancies, myelodysplastic neoplasms, and germline predispositions syndromes that occur in children and AYAs. We discuss the unique biology, characteristic genomic aberrations, rare presentations, diagnostic challenges, novel treatments, and outcomes associated with these rare entities.
Collapse
Affiliation(s)
- Amber Brown
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - Sandeep Batra
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
He J, Munir F, Catueno S, Connors JS, Gibson A, Robusto L, McCall D, Nunez C, Roth M, Tewari P, Garces S, Cuglievan B, Garcia MB. Biological Markers of High-Risk Childhood Acute Lymphoblastic Leukemia. Cancers (Basel) 2024; 16:858. [PMID: 38473221 PMCID: PMC10930495 DOI: 10.3390/cancers16050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
Childhood acute lymphoblastic leukemia (ALL) has witnessed substantial improvements in prognosis; however, a subset of patients classified as high-risk continues to face higher rates of relapse and increased mortality. While the National Cancer Institute (NCI) criteria have traditionally guided risk stratification based on initial clinical information, recent advances highlight the pivotal role of biological markers in shaping the prognosis of childhood ALL. This review delves into the emerging understanding of high-risk childhood ALL, focusing on molecular, cytogenetic, and immunophenotypic markers. These markers not only contribute to unraveling the underlying mechanisms of the disease, but also shed light on specific clinical patterns that dictate prognosis. The paradigm shift in treatment strategies, exemplified by the success of tyrosine kinase inhibitors in Philadelphia chromosome-positive leukemia, underscores the importance of recognizing and targeting precise risk factors. Through a comprehensive exploration of high-risk childhood ALL characteristics, this review aims to enhance our comprehension of the disease, offering insights into its molecular landscape and clinical intricacies in the hope of contributing to future targeted and tailored therapies.
Collapse
Affiliation(s)
- Jiasen He
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Faryal Munir
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Jeremy S. Connors
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Lindsay Robusto
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Priti Tewari
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Sofia Garces
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| | - Miriam B. Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA (D.M.)
| |
Collapse
|
11
|
Hayashi H, Makimoto A, Yuza Y. Treatment of Pediatric Acute Lymphoblastic Leukemia: A Historical Perspective. Cancers (Basel) 2024; 16:723. [PMID: 38398113 PMCID: PMC10887299 DOI: 10.3390/cancers16040723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common disease in pediatric oncology. The history of developmental therapeutics for ALL began in the 1960s with the repetition of "unreliable" medical interventions against this lethal disease. By the 1990s, the development of multi-agent chemotherapy and various types of supportive care rendered ALL treatable. Highly sophisticated, molecular, diagnostic techniques have enabled highly accurate prediction of the relapse risk, and the application of risk-adapted treatments has increased the survival rate in the standard-risk group to nearly 100% in most European nations and North America. Incorporation of state-of-the-art, molecularly targeted agents and novel treatments, including cell and immunotherapy, is further improving outcomes even in the high-risk group. On the other hand, the financial burden of treating children with ALL has increased, imperiling the availability of these diagnostic and treatment strategies to patients in low- and middle-income countries (LMICs). The fundamental treatment strategy, consisting of corticosteroid and classical cytotoxic therapy, has achieved fairly good outcomes and should be feasible in LMICs as well. The present review will discuss the history of developmental therapeutics for childhood ALL in various countries through an extensive literature review with the aim of proposing a model for a treatment backbone for pediatric ALL. The discussion will hopefully benefit LMICs and be useful as a base for future clinical trials of novel treatments.
Collapse
Affiliation(s)
- Hiroshi Hayashi
- Department of Hematology/Oncology, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu 183-8561, Tokyo, Japan; (A.M.); (Y.Y.)
| | - Atsushi Makimoto
- Department of Hematology/Oncology, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu 183-8561, Tokyo, Japan; (A.M.); (Y.Y.)
- Department of Laboratory Medicine, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu 183-8561, Tokyo, Japan
| | - Yuki Yuza
- Department of Hematology/Oncology, Tokyo Metropolitan Children’s Medical Center, 2-8-29 Musashidai, Fuchu 183-8561, Tokyo, Japan; (A.M.); (Y.Y.)
| |
Collapse
|
12
|
Antić Ž, Lentes J, Bergmann AK. Cytogenetics and genomics in pediatric acute lymphoblastic leukaemia. Best Pract Res Clin Haematol 2023; 36:101511. [PMID: 38092485 DOI: 10.1016/j.beha.2023.101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 12/18/2023]
Abstract
The last five decades have witnessed significant improvement in diagnostics, treatment and management of children with acute lymphoblastic leukaemia (ALL). These advancements have become possible through progress in our understanding of the genetic and biological background of ALL, resulting in the introduction of risk-adapted treatment and novel therapeutic targets, e.g., tyrosine kinase inhibitors for BCR::ABL1-positive ALL. Further advances in the taxonomy of ALL and the discovery of new genetic biomarkers and therapeutic targets, as well as the introduction of targeted and immunotherapies into the frontline treatment protocols, may improve management and outcome of children with ALL. In this review we describe the current developments in the (cyto)genetic diagnostics and management of children with ALL, and provide an overview of the most important advances in the genetic classification of ALL. Furthermore, we discuss perspectives resulting from the development of new techniques, including artificial intelligence (AI).
Collapse
Affiliation(s)
- Željko Antić
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Jana Lentes
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany
| | - Anke K Bergmann
- Department of Human Genetics, Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
13
|
Wong VA, Dinh KN, Chen G, Wrenshall LE. IL-2RαKO mice exhibit maternal microchimerism and reveal nuclear localization of IL-2Rα in lymphoid and non-lymphoid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565571. [PMID: 37961725 PMCID: PMC10635137 DOI: 10.1101/2023.11.03.565571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
IL-2Rα KO mice have been instrumental to discovering the immunoregulatory properties of IL-2Rα. While initially thought of only as a stimulatory cytokine, IL-2 and IL-2Rα knock out (KO) mice revealed that this cytokine-receptor system controls immune responses through restimulation-induced cell death and by promoting the survival of T regulatory cells. Although described mostly in the context of lymphocytes, recent studies by our laboratory showed that IL-2R is expressed in smooth muscle cells. Given this finding, we sought to use IL-2Rα knock mice to determine the function of this receptor in vascular smooth muscle cells. Surprisingly, we found that IL-2Rα knock out vascular smooth muscle cells had detectable IL-2Rα. Further studies suggested that the source of IL-2Rα protein was likely maternal heterozygous cells present in KO offspring due to maternal microchimerism. Because the KO was generated by using a neomycin resistance gene insert, we treated cells with G418 and were able to eliminate the majority of IL-2Rα expressing cells. This elimination revealed that IL-2Rα KO vascular smooth muscle cells exhibited increased proliferation, decreased size, and hypodiploid DNA content when compared to wildtype cells. Our findings suggest that the phenotype of complete IL-2Rα loss is more severe than demonstrated by IL-2Rα KO mice, and that IL-2Rα plays a here-to-fore unrecognized role in regulating cell proliferation in non-lymphoid cells.
Collapse
|
14
|
Tueur G, Quessada J, De Bie J, Cuccuini W, Toujani S, Lefebvre C, Luquet I, Michaux L, Lafage-Pochitaloff M. Cytogenetics in the management of B-cell acute lymphoblastic leukemia: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103434. [PMID: 38064905 DOI: 10.1016/j.retram.2023.103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
Cytogenetic analysis is mandatory at initial assessment of B-cell acute lymphoblastic leukemia (B-ALL) due to its diagnostic and prognostic value. Results from chromosome banding analysis and complementary FISH are taken into account in therapeutic protocols and further completed by other techniques (RT-PCR, SNP-array, MLPA, NGS, OGM). Indeed, new genomic entities have been identified by NGS, mostly RNA sequencing, such as Ph-like ALL that can benefit from targeted therapy. Here, we have attempted to establish cytogenetic guidelines by reviewing the most recent published data including the novel 5th World Health Organization and International Consensus Classifications. We also focused on newly described cytogenomic entities and indicate alternative diagnostic tools such as NGS technology, as its importance is vastly increasing in the diagnostic setting.
Collapse
Affiliation(s)
- Giulia Tueur
- Laboratoire d'hématologie, Hôpital Avicenne, AP-HP, Bobigny 93000, France
| | - Julie Quessada
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France; CRCM, Inserm UMR1068, CNRS UMR7258, Aix Marseille Université U105, Institut Paoli Calmettes, Marseille 13009, France
| | - Jolien De Bie
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, AP-HP, Paris 75010, France
| | - Saloua Toujani
- Service de cytogénétique et biologie cellulaire, CHU de Rennes, Rennes 35033, France
| | - Christine Lefebvre
- Unité de Génétique des Hémopathies, Service d'Hématologie Biologique, CHU Grenoble Alpes, Grenoble 38000, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, CHU Toulouse (IUCT-O), Toulouse 31000, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium; Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, Département d'Hématologie, CHU Timone, APHM, Aix Marseille Université, Marseille 13005, France.
| |
Collapse
|
15
|
Coccaro N, Anelli L, Zagaria A, Tarantini F, Cumbo C, Tota G, Minervini CF, Minervini A, Conserva MR, Redavid I, Parciante E, Macchia MG, Specchia G, Musto P, Albano F. Feasibility of Optical Genome Mapping in Cytogenetic Diagnostics of Hematological Neoplasms: A New Way to Look at DNA. Diagnostics (Basel) 2023; 13:diagnostics13111841. [PMID: 37296693 DOI: 10.3390/diagnostics13111841] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Optical genome mapping (OGM) is a new genome-wide technology that can reveal both structural genomic variations (SVs) and copy number variations (CNVs) in a single assay. OGM was initially employed to perform genome assembly and genome research, but it is now more widely used to study chromosome aberrations in genetic disorders and in human cancer. One of the most useful OGM applications is in hematological malignancies, where chromosomal rearrangements are frequent and conventional cytogenetic analysis alone is insufficient, necessitating further confirmation using ancillary techniques such as fluorescence in situ hybridization, chromosomal microarrays, or multiple ligation-dependent probe amplification. The first studies tested OGM efficiency and sensitivity for SV and CNV detection, comparing heterogeneous groups of lymphoid and myeloid hematological sample data with those obtained using standard cytogenetic diagnostic tests. Most of the work based on this innovative technology was focused on myelodysplastic syndromes (MDSs), acute myeloid leukemia (AML), and acute lymphoblastic leukemia (ALL), whereas little attention was paid to chronic lymphocytic leukemia (CLL) or multiple myeloma (MM), and none was paid to lymphomas. The studies showed that OGM can now be considered as a highly reliable method, concordant with standard cytogenetic techniques but able to detect novel clinically significant SVs, thus allowing better patient classification, prognostic stratification, and therapeutic choices in hematological malignancies.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Luisa Anelli
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Antonella Zagaria
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Tarantini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Cosimo Cumbo
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppina Tota
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Crescenzio Francesco Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Angela Minervini
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Rosa Conserva
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Immacolata Redavid
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Elisa Parciante
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Maria Giovanna Macchia
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giorgina Specchia
- School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Albano
- Hematology and Stem Cell Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
16
|
Panuciak K, Nowicka E, Mastalerczyk A, Zawitkowska J, Niedźwiecki M, Lejman M. Overview on Aneuploidy in Childhood B-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:ijms24108764. [PMID: 37240110 DOI: 10.3390/ijms24108764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Recent years have brought significant progress in the treatment of B-cell acute lymphoblastic leukemia (ALL). This was influenced by both the improved schemes of conventionally used therapy, as well as the development of new forms of treatment. As a consequence, 5-year survival rates have increased and now exceed 90% in pediatric patients. For this reason, it would seem that everything has already been explored in the context of ALL. However, delving into its pathogenesis at the molecular level shows that there are many variations that still need to be analyzed in more detail. One of them is aneuploidy, which is among the most common genetic changes in B-cell ALL. It includes both hyperdiploidy and hypodiploidy. Knowledge of the genetic background is important already at the time of diagnosis, because the first of these forms of aneuploidy is characterized by a good prognosis, in contrast to the second, which is in favor of an unfavorable course. In our work, we will focus on summarizing the current state of knowledge on aneuploidy, along with an indication of all the consequences that may be correlated with it in the context of the treatment of patients with B-cell ALL.
Collapse
Affiliation(s)
- Kinga Panuciak
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Emilia Nowicka
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Angelika Mastalerczyk
- Student Scientific Society, Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland
| | - Maciej Niedźwiecki
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
17
|
Haas OA, Borkhardt A. Hyperdiploidy: the longest known, most prevalent, and most enigmatic form of acute lymphoblastic leukemia in children. Leukemia 2022; 36:2769-2783. [PMID: 36266323 PMCID: PMC9712104 DOI: 10.1038/s41375-022-01720-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Hyperdiploidy is the largest genetic entity B-cell precursor acute lymphoblastic leukemia in children. The diagnostic hallmark of its two variants that will be discussed in detail herein is a chromosome count between 52 and 67, respectively. The classical HD form consists of heterozygous di-, tri-, and tetrasomies, whereas the nonclassical one (usually viewed as "duplicated hyperhaploid") contains only disomies and tetrasomies. Despite their apparently different clinical behavior, we show that these two sub-forms can in principle be produced by the same chromosomal maldistribution mechanism. Moreover, their respective array, gene expression, and mutation patterns also indicate that they are biologically more similar than hitherto appreciated. Even though in-depth analyses of the genomic intricacies of classical HD leukemias are indispensable for the elucidation of the disease process, the ensuing results play at present surprisingly little role in treatment stratification, a fact that can be attributed to the overall good prognoses and low relapse rates of the concerned patients and, consequently, their excellent treatment outcome. Irrespective of this underutilization, however, the detailed genetic characterization of HD leukemias may, especially in planned treatment reduction trials, eventually become important for further treatment stratification, patient management, and the clinical elucidation of outcome data. It should therefore become an integral part of all upcoming treatment studies.
Collapse
Affiliation(s)
- Oskar A Haas
- St. Anna Children's Hospital, Pediatric Clinic, Medical University, Vienna, Austria.
- Labdia Labordiagnostik, Vienna, Austria.
| | - Arndt Borkhardt
- Department for Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
- German Cancer Consortium (DKTK), partnering site Essen/Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
18
|
Kurtz KJ, Tallis E, Marcogliese AN, Pulivarthi RH, Potocki L, Stevens AM. Near-Haploid B-Cell Acute Lymphoblastic Leukemia in a Patient with Rubinstein-Taybi Syndrome. Pediatr Hematol Oncol 2022; 39:747-754. [PMID: 35275800 DOI: 10.1080/08880018.2022.2049938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rubinstein-Taybi syndrome (RSTS) is a rare disorder characterized by developmental delay, short stature, dysmorphic facies and skeletal abnormalities. RSTS has been linked to a variety of malignant and benign tumors, but the frequency and characteristics of RSTS-related neoplasms remain unclear. We describe a unique case of near haploid B-cell lymphoblastic leukemia (B-ALL) in a 6-year-old girl with RSTS who harbors a likely pathogenic variant in CREBBP. Somatic CREBBP variants are enriched in some subsets of ALL; however, germline variants have not been previously described in childhood leukemia and may represent an underrecognized predisposition to malignancy. Our patient's disease responded poorly to conventional chemotherapy and relapsed following a complete remission achieved with CD19 CAR T cell therapy. We propose that the constitutional CREBBP variant may have played a significant role in the leukemia's resistance to chemotherapy and this patient's poor response to therapy.
Collapse
Affiliation(s)
- Kristen J Kurtz
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Eran Tallis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Andrea N Marcogliese
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Rao H Pulivarthi
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alexandra M Stevens
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
19
|
Yu CH, Wu G, Chang CC, Jou ST, Lu MY, Lin KH, Chen SH, Wu KH, Huang FL, Cheng CN, Chang HH, Hedges D, Wang JL, Yen HJ, Li MJ, Chou SW, Hung CT, Lin ZS, Lin CY, Chen HY, Ni YL, Hsu YC, Lin DT, Lin SW, Yang JJ, Pui CH, Yu SL, Yang YL. Sequential Approach to Improve the Molecular Classification of Childhood Acute Lymphoblastic Leukemia. J Mol Diagn 2022; 24:1195-1206. [PMID: 35963521 PMCID: PMC9667711 DOI: 10.1016/j.jmoldx.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022] Open
Abstract
Identification of specific leukemia subtypes is a key to successful risk-directed therapy in childhood acute lymphoblastic leukemia (ALL). Although RNA sequencing (RNA-seq) is the best approach to identify virtually all specific leukemia subtypes, the routine use of this method is too costly for patients in resource-limited countries. This study enrolled 295 patients with pediatric ALL from 2010 to 2020. Routine screening could identify major cytogenetic alterations in approximately 69% of B-cell ALL (B-ALL) cases by RT-PCR, DNA index, and multiplex ligation-dependent probe amplification. STIL-TAL1 was present in 33% of T-cell ALL (T-ALL) cases. The remaining samples were submitted for RNA-seq. More than 96% of B-ALL cases and 74% of T-ALL cases could be identified based on the current molecular classification using this sequential approach. Patients with Philadelphia chromosome-like ALL constituted only 2.4% of the entire cohort, a rate even lower than those with ZNF384-rearranged (4.8%), DUX4-rearranged (6%), and Philadelphia chromosome-positive (4.4%) ALL. Patients with ETV6-RUNX1, high hyperdiploidy, PAX5 alteration, and DUX4 rearrangement had favorable prognosis, whereas those with hypodiploid and KMT2A and MEF2D rearrangement ALL had unfavorable outcomes. With the use of multiplex ligation-dependent probe amplification, DNA index, and RT-PCR in B-ALL and RT-PCR in T-ALL followed by RNA-seq, childhood ALL can be better classified to improve clinical assessments.
Collapse
Affiliation(s)
- Chih-Hsiang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gang Wu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Chia-Ching Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiann-Tarng Jou
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Yao Lu
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kai-Hsin Lin
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Shu-Huey Chen
- Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital and School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Fang-Liang Huang
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chao-Neng Cheng
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dale Hedges
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jinn-Li Wang
- Division of Hematology Oncology, Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Ju Yen
- Department of Pediatrics, Taipei Veterans General Hospital and National Yang-Ming Chiao-Tung University School of Medicine, Taipei, Taiwan
| | - Meng-Ju Li
- Department of Pediatrics, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Shu-Wei Chou
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Chen-Ting Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ze-Shiang Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science Academia Sinica, Taipei, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science Academia Sinica, Taipei, Taiwan
| | - Yu-Ling Ni
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yin-Chen Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Dong-Tsamn Lin
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jun J Yang
- Department of Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yung-Li Yang
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
20
|
Creasey T, Barretta E, Ryan SL, Butler E, Kirkwood AA, Leongamornlert D, Papaemmanuil E, Patrick P, Clifton-Hadley L, Patel B, Menne T, McMillan AK, Harrison CJ, Rowntree CJ, Morley N, Marks DI, Fielding AK, Moorman AV. Genetic and genomic analysis of acute lymphoblastic leukemia in older adults reveals a distinct profile of abnormalities: analysis of 210 patients from the UKALL14 and UKALL60+ clinical trials. Haematologica 2022; 107:2051-2063. [PMID: 34788984 PMCID: PMC9425332 DOI: 10.3324/haematol.2021.279177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/09/2021] [Indexed: 11/09/2022] Open
Abstract
Despite being predominantly a childhood disease, the incidence of acute lymphoblastic leukemia (ALL) has a second peak in adults aged 60 years and over. These older adults fare extremely poorly with existing treatment strategies and very few studies have undertaken a comprehensive genetic and genomic characterization to improve prognosis in this age group. We performed cytogenetic, single nucleotide polymorphism (SNP) array and next-generation sequencing (NGS) analyses on samples from 210 patients aged ≥60 years from the UKALL14 and UKALL60+ clinical trials. BCR-ABL1-positive disease was present in 26% (55/210) of patients, followed by low hypodiploidy/near triploidy in 13% (28/210). Cytogenetically cryptic rearrangements in CRLF2, ZNF384 and MEF2D were detected in 5%, 1% and <1% of patients, respectively. Copy number abnormalities were common and deletions in ALL driver genes were seen in 77% of cases. IKZF1 deletion was present in 51% (40/78) of samples tested and the IKZF1plus profile was identified in over a third (28/77) of cases of B-cell precursor ALL. The genetic good-risk abnormalities high hyperdiploidy (n=2), ETV6-RUNX1 (no cases) and ERG deletion (no cases) were exceptionally rare in this cohort. RAS pathway mutations were seen in 17% (4/23) of screened samples. KDM6A abnormalities, including biallelic deletions, were discovered in 5% (4/78) of SNP arrays and 9% (2/23) of NGS samples, and represent novel, potentially therapeutically actionable lesions using EZH2 inhibitors. Outcome remained poor with 5-year event-free and overall survival rates of 17% and 24%, respectively, across the cohort, indicating a need for novel therapeutic strategies.
Collapse
Affiliation(s)
- Thomas Creasey
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne.
| | - Emilio Barretta
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Sarra L Ryan
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Ellie Butler
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Amy A Kirkwood
- Cancer Research UK and UCL Cancer Trials Centre, UCL Cancer Institute University College London
| | | | | | - Pip Patrick
- Cancer Research UK and UCL Cancer Trials Centre, UCL Cancer Institute University College London
| | - Laura Clifton-Hadley
- Cancer Research UK and UCL Cancer Trials Centre, UCL Cancer Institute University College London
| | - Bela Patel
- Department of Haematology, Queen Mary University of London, London
| | - Tobias Menne
- Department of Haematology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Andrew K McMillan
- Department of Haematology, Nottingham University Hospital NHS Trust, Nottingham
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Clare J Rowntree
- Department of Haematology, Cardiff And Vale University Health Board, Cardiff
| | - Nick Morley
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield
| | - David I Marks
- Department of Haematology, University Hospitals Bristol NHS Foundation Trust, Bristol
| | | | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne.
| |
Collapse
|
21
|
Yurttaş NÖ, Eşkazan AE. Clinical Application of Biomarkers for Hematologic Malignancies. Biomark Med 2022. [DOI: 10.2174/9789815040463122010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Over the last decade, significant advancements have been made in the
molecular mechanisms, diagnostic methods, prognostication, and treatment options in
hematologic malignancies. As the treatment landscape continues to expand,
personalized treatment is much more important.
With the development of new technologies, more sensitive evaluation of residual
disease using flow cytometry and next generation sequencing is possible nowadays.
Although some conventional biomarkers preserve their significance, novel potential
biomarkers accurately detect the mutational landscape of different cancers, and also,
serve as prognostic and predictive biomarkers, which can be used in evaluating therapy
responses and relapses. It is likely that we will be able to offer a more targeted and
risk-adapted therapeutic approach to patients with hematologic malignancies guided by
these potential biomarkers. This chapter summarizes the biomarkers used (or proposed
to be used) in the diagnosis and/or monitoring of hematologic neoplasms.;
Collapse
Affiliation(s)
- Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine,
Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
22
|
Puliafito B, Oveisi D, Fanous C, El-Masry M. Secondary B-cell acute lymphoblastic leukaemia in a patient with multiple myeloma. BMJ Case Rep 2022; 15:e249637. [PMID: 35732365 PMCID: PMC9226925 DOI: 10.1136/bcr-2022-249637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/28/2022] Open
Abstract
Although patients with multiple myeloma (MM) have improved survival with current therapies, there remains a long-term risk of treatment-associated second primary malignancies. We present a case of a patient with IgG kappa MM undergoing treatment for relapsed disease who was noted to have progressive pancytopenia. For his MM, he had previously undergone autologous stem cell transplant with high-dose melphalan and had received immunomodulatory (IMiD) agents in induction, maintenance and relapse regimens. A peripheral blood smear showed abnormal lymphoid cells, and a bone marrow biopsy revealed B-cell acute lymphoblastic leukaemia (B-ALL). He underwent intensive induction chemotherapy with plans for possible allogeneic stem cell transplant. Secondary B-ALL is a rare occurrence in patients with MM, with exposure to alkylating and IMiD agents being potential risk factors.
Collapse
Affiliation(s)
- Benjamin Puliafito
- Hematology and Oncology, VA West Los Angeles Medical Center, Los Angeles, California, USA
- Hematology and Oncology, University of California Los Angeles, Los Angeles, California, USA
| | - David Oveisi
- Hematology and Oncology, UCLA Medical Center Olive View, Sylmar, California, USA
| | - Christina Fanous
- Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Monica El-Masry
- Hematology and Oncology, VA West Los Angeles Medical Center, Los Angeles, California, USA
- Hematology and Oncology, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
23
|
Sadowska-Klasa A, Abba M, Gajkowska-Kulik J, Zaucha JM. Therapy-related acute lymphoblastic leukemia following treatment for multiple myeloma - diagnostic and therapeutic dilemma. Acta Oncol 2022; 61:1126-1131. [PMID: 35668607 DOI: 10.1080/0284186x.2022.2083921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Alicja Sadowska-Klasa
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdansk, Poland
| | - Mary Abba
- Medical University of Gdańsk, Gdansk, Poland
| | - Justyna Gajkowska-Kulik
- Department of Hematology and Bone Marrow Transplantation, SSM Nicolaus Copernicus, Toruń, Poland
| | - Jan Maciej Zaucha
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdansk, Poland
| |
Collapse
|
24
|
Rack K, Bie J, Ameye G, Gielen O, Demeyer S, Cools J, Keersmaecker K, Vermeesch JR, Maertens J, Segers H, Michaux L, Dewaele B. Optimizing the diagnostic workflow for acute lymphoblastic leukemia by optical genome mapping. Am J Hematol 2022; 97:548-561. [PMID: 35119131 PMCID: PMC9314940 DOI: 10.1002/ajh.26487] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a malignancy that can be subdivided into distinct entities based on clinical, immunophenotypic and genomic features, including mutations, structural variants (SVs), and copy number alterations (CNA). Chromosome banding analysis (CBA) and Fluorescent In‐Situ Hybridization (FISH) together with Multiple Ligation‐dependent Probe Amplification (MLPA), array and PCR‐based methods form the backbone of routine diagnostics. This approach is labor‐intensive, time‐consuming and costly. New molecular technologies now exist that can detect SVs and CNAs in one test. Here we apply one such technology, optical genome mapping (OGM), to the diagnostic work‐up of 41 ALL cases. Compared to our standard testing pathway, OGM identified all recurrent CNAs and SVs as well as additional recurrent SVs and the resulting fusion genes. Based on the genomic profile obtained by OGM, 32 patients could be assigned to one of the major cytogenetic risk groups compared to 23 with the standard approach. The latter identified 24/34 recurrent chromosomal abnormalities, while OGM identified 33/34, misinterpreting only 1 case with low hypodiploidy. The results of MLPA were concordant in 100% of cases. Overall, there was excellent concordance between the results. OGM increased the detection rate and cytogenetic resolution, and abrogated the need for cascade testing, resulting in reduced turnaround times. OGM also provided opportunities for better patient stratification and accurate treatment options. However, for comprehensive cytogenomic testing, OGM still needs to be complemented with CBA or SNP‐array to detect ploidy changes and with BCR::ABL1 FISH to assign patients as soon as possible to targeted therapy.
Collapse
Affiliation(s)
- Katrina Rack
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Jolien Bie
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
| | - Geneviève Ameye
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Olga Gielen
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
- Centre for Cancer Biology Flemish Institute for Biotechnology (VIB) Leuven Belgium
| | - Sofie Demeyer
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
- Centre for Cancer Biology Flemish Institute for Biotechnology (VIB) Leuven Belgium
| | - Jan Cools
- Laboratory for the Molecular Biology of Leukemia KU Leuven Leuven Belgium
- Centre for Cancer Biology Flemish Institute for Biotechnology (VIB) Leuven Belgium
- Leuvens Kanker Instituut (LKI) KU Leuven – University Hospitals Leuven Leuven Belgium
| | - Kim Keersmaecker
- Leuvens Kanker Instituut (LKI) KU Leuven – University Hospitals Leuven Leuven Belgium
- Department of Oncology KU Leuven Leuven Belgium
| | - Joris R. Vermeesch
- Department of Human Genetics KU Leuven Leuven Belgium
- Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Johan Maertens
- Department of Hematology University Hospitals Leuven Leuven Belgium
| | - Heidi Segers
- Leuvens Kanker Instituut (LKI) KU Leuven – University Hospitals Leuven Leuven Belgium
- Department of Pediatric Oncology‐Hematology University Hospitals Leuven Leuven Belgium
| | - Lucienne Michaux
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| | - Barbara Dewaele
- Laboratory for the Cytogenetic and Molecular Diagnosis of Hematological Malignancies, Centre for Human Genetics University Hospitals Leuven Leuven Belgium
| |
Collapse
|
25
|
Chaturvedi A, Shetty D, Ghogale SG, Deshpande N, Badrinath Y, Chatterjee G, Girase K, Sriram H, Khanka T, Mishra C, Dasgupta N, Gujarathi SA, Rajpal S, Patkar N, Amare-Kadam P, Gujral S, Subramanian PG, Tembhare PR. Detecting hypodiploidy with endoreduplication and masked hypodiploidy in B-cell acute lymphoblastic leukemia using multicolor flow cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2022; 102:199-208. [PMID: 35212133 DOI: 10.1002/cyto.b.22063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 02/06/2022] [Accepted: 02/16/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Multicolor flow cytometry-based DNA-ploidy (MFC-ploidy) analysis is a simple, sensitive, and popular method for ploidy analysis in B-cell acute lymphoblastic leukemia (B-ALL). However, the utility of MFC-ploidy in the detection of B-ALL with endoreduplication or masked hypodiploidy has not been reported. Herein, we studied the patterns of MFC-ploidy assessment and its utility to detect B-ALL with hypodiploidy and endoreduplication. METHODS MFC-ploidy analysis was performed using FxCycle Violet-dye-based method, and cytogenetic ploidy was evaluated using chromosomal-counting and FISH analysis. A total of 20 B-ALL cases with endoreduplication were studied for the patterns of MFC-ploidy analysis and compared with 250 patients with hyperdiploidy and 11 cases with pure hypodiploidy. RESULTS All B-ALL with endoreduplication revealed two distinct peaks (populations) on MFC-ploidy analysis: the first (hypodiploid) peak (median-DNA-index [DI], 0.82; range, 0.6-0.95) and the second (hyperdiploid) peak with almost twice DI (median-DI, 1.53; range, 1.14-1.75). Cytogenetic findings were available in 19 cases and confirmed hypodiploidy with endoreduplication in 13/19 (68.4%) and only hypodiploidy in 3/19 cases. The remaining three cases showed hyperdiploid blasts in cytogenetic studies. Of these three, two cases had <10% blasts population with hypodiploidy. Thus, masked-hypodiploidy could be diagnosed correctly in 3/19 cases on MFC-ploidy analysis. CONCLUSION MFC-ploidy analysis shows a characteristic pattern of DNA-ploidy in samples with endoreduplication. It allows the distinction between samples with masked hypodiploidy from true hyperdiploidy. An integrated approach involving cytogenetic and MFC-ploidy detection is very helpful in the risk stratification of B-ALL in routine clinical practice.
Collapse
Affiliation(s)
- Anumeha Chaturvedi
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Dhanalaxmi Shetty
- Cancer Cytogenetics Department, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Sitaram Gundu Ghogale
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Nilesh Deshpande
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Yajamanam Badrinath
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Gaurav Chatterjee
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Karishma Girase
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Harshini Sriram
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Twinkle Khanka
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Chetna Mishra
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Niharika Dasgupta
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Sejal Anil Gujarathi
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Sweta Rajpal
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Nikhil Patkar
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Prathibha Amare-Kadam
- Cancer Cytogenetics Department, ACTREC, Tata Memorial Center, HBNI University, Navi Mumbai, Maharashtra, India
| | - Sumeet Gujral
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Papagudi Ganesan Subramanian
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| | - Prashant Ramesh Tembhare
- Hematopathology Laboratory, ACTREC, Tata Memorial Center, Homi Bhabha National Institute (HBNI) University, Navi Mumbai, Maharashtra, India
| |
Collapse
|
26
|
Bartsch L, Schroeder MP, Hänzelmann S, Bastian L, Lázaro-Navarro J, Schlee C, Tanchez JO, Schulze V, Isaakidis K, Rieger MA, Gökbuget N, Eckert C, Serve H, Horstmann M, Schrappe M, Brüggemann M, Baldus CD, Neumann M. An alternative CYB5A transcript is expressed in aneuploid ALL and enriched in relapse. BMC Genom Data 2022; 23:30. [PMID: 35436854 PMCID: PMC9014596 DOI: 10.1186/s12863-022-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 01/25/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a genetically heterogenous malignancy with poor prognosis in relapsed adult patients. The genetic basis for relapse in aneuploid subtypes such as near haploid (NH) and high hyperdiploid (HeH) BCP-ALL is only poorly understood. Pathogenic genetic alterations remain to be identified. To this end, we investigated the dynamics of genetic alterations in a matched initial diagnosis-relapse (ID-REL) BCP-ALL cohort. Here, we firstly report the identification of the novel genetic alteration CYB5Aalt, an alternative transcript of CYB5A, in two independent cohorts. METHODS We identified CYB5alt in the RNAseq-analysis of a matched ID-REL BCP-ALL cohort with 50 patients and quantified its expression in various molecular BCP-ALL subtypes. Findings were validated in an independent cohort of 140 first diagnosis samples from adult BCP-ALL patients. Derived from patient material, the alternative open reading frame of CYB5Aalt was cloned (pCYB5Aalt) and pCYB5Aalt or the empty vector were stably overexpressed in NALM-6 cells. RNA sequencing was performed of pCYB5Aalt clones and empty vector controls followed by differential expression analysis, gene set enrichment analysis and complementing cell death and viability assays to determine functional implications of CYB5Aalt. RESULTS RNAseq data analysis revealed non-canonical exon usage of CYB5Aalt starting from a previously undescribed transcription start site. CYB5Aalt expression was increased in relapsed BCP-ALL and its occurrence was specific towards the shared gene expression cluster of NH and HeH BCP-ALL in independent cohorts. Overexpression of pCYB5Aalt in NALM-6 cells induced a distinct transcriptional program compared to empty vector controls with downregulation of pathways related to reported functions of CYB5A wildtype. Interestingly, CYB5A wildtype expression was decreased in CYB5Aalt samples in silico and in vitro. Additionally, pCYB5Aalt NALM-6 elicited a more resistant drug response. CONCLUSIONS Across all age groups, CYB5Aalt was the most frequent secondary genetic event in relapsed NH and HeH BCP-ALL. In addition to its high subgroup specificity, CYB5Aalt is a novel candidate to be potentially implicated in therapy resistance in NH and HeH BCP-ALL. This is underlined by overexpressing CYB5Aalt providing first evidence for a functional role in BCL2-mediated apoptosis.
Collapse
Affiliation(s)
- Lorenz Bartsch
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, 12203, Berlin, Germany.
| | - Michael P Schroeder
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, 12203, Berlin, Germany
| | - Sonja Hänzelmann
- Research Institute Children's Cancer Center, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, 20251, Hamburg, Germany
| | - Lorenz Bastian
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Juan Lázaro-Navarro
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatric Hematology/Oncology, Charité, University Hospital Berlin, Campus Rudolf Virchow, 13353, Berlin, Germany
| | - Cornelia Schlee
- Core Unit Genomics, Berlin Institute of Health, 13353, Berlin, Germany
| | - Jutta Ortiz Tanchez
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, 12203, Berlin, Germany
| | - Veronika Schulze
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, 12203, Berlin, Germany
| | - Konstandina Isaakidis
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Campus Benjamin Franklin, 12203, Berlin, Germany
| | - Michael A Rieger
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Medicine, Department of Hematology/Oncology, Goethe University Hospital, 60590, Frankfurt/M, Germany
- Frankfurt Cancer Institute, 60590, Frankfurt/M, Germany
| | - Nicola Gökbuget
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Medicine, Department of Hematology/Oncology, Goethe University Hospital, 60590, Frankfurt/M, Germany
| | - Cornelia Eckert
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatric Hematology/Oncology, Charité, University Hospital Berlin, Campus Rudolf Virchow, 13353, Berlin, Germany
| | - Hubert Serve
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Medicine, Department of Hematology/Oncology, Goethe University Hospital, 60590, Frankfurt/M, Germany
| | - Martin Horstmann
- Research Institute Children's Cancer Center, Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, 20251, Hamburg, Germany
| | - Martin Schrappe
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Monika Brüggemann
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Claudia D Baldus
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Martin Neumann
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| |
Collapse
|
27
|
Lejman M, Chałupnik A, Chilimoniuk Z, Dobosz M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. Int J Mol Sci 2022; 23:2755. [PMID: 35269896 PMCID: PMC8911213 DOI: 10.3390/ijms23052755] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a heterogeneous group of hematologic malignancies characterized by abnormal proliferation of immature lymphoid cells. It is the most commonly diagnosed childhood cancer with an almost 80% cure rate. Despite favorable survival rates in the pediatric population, a significant number of patients develop resistance to therapy, resulting in poor prognosis. ALL is a heterogeneous disease at the genetic level, but the intensive development of sequencing in the last decade has made it possible to broaden the study of genomic changes. New technologies allow us to detect molecular changes such as point mutations or to characterize epigenetic or proteomic profiles. This process made it possible to identify new subtypes of this disease characterized by constellations of genetic alterations, including chromosome changes, sequence mutations, and DNA copy number alterations. These genetic abnormalities are used as diagnostic, prognostic and predictive biomarkers that play an important role in earlier disease detection, more accurate risk stratification, and treatment. Identification of new ALL biomarkers, and thus a greater understanding of their molecular basis, will lead to better monitoring of the course of the disease. In this article, we provide an overview of the latest information on genomic alterations found in childhood ALL and discuss their impact on patients' clinical outcomes.
Collapse
Affiliation(s)
- Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Aleksandra Chałupnik
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Zuzanna Chilimoniuk
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| | - Maciej Dobosz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; (A.C.); (Z.C.); (M.D.)
| |
Collapse
|
28
|
Arpas T, Jelinkova H, Hrabovsky S, Orsulova M, Vrzalova Z, Navrkalova V, Brhelova E, Bryjova L, Bulikova A, Ondrouskova E, Sejnohova M, Folber F, Sedová P, Mayer J, Pospisilova S, Jarosova M, Doubek M. Very rare near-haploid acute lymphoblastic leukemia resistant to immunotherapy and CAR-T therapy in 19-year-old male patient. Clin Case Rep 2022; 10:e05545. [PMID: 35280086 PMCID: PMC8894580 DOI: 10.1002/ccr3.5545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/17/2022] [Accepted: 02/06/2022] [Indexed: 02/02/2023] Open
Abstract
Near-haploid acute lymphoblastic leukemia is rare subgroup of the disease, which is very important due to very poor prognosis and resistance to treatment including novel monoclonal antibodies and CAR-T therapy.
Collapse
Affiliation(s)
- Tomas Arpas
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Hana Jelinkova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Stepan Hrabovsky
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Martina Orsulova
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Zuzana Vrzalova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzechia
| | - Veronika Navrkalova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Eva Brhelova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Lenka Bryjova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Alena Bulikova
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
- Department of Clinical HematologyUniversity HospitalBrnoCzechia
| | - Eva Ondrouskova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Marketa Sejnohova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Frantisek Folber
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Petra Sedová
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Sarka Pospisilova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzechia
- Department of Medical Genetics and GenomicsUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Marie Jarosova
- Center of Molecular Biology and GeneticsDepartment of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
- Department of Medical Genetics and GenomicsUniversity Hospital and Faculty of MedicineBrnoCzechia
| | - Michael Doubek
- Department of Internal Medicine, Hematology and OncologyUniversity Hospital and Faculty of MedicineBrnoCzechia
- Central European Institute of Technology (CEITEC)Masaryk UniversityBrnoCzechia
- Department of Medical Genetics and GenomicsUniversity Hospital and Faculty of MedicineBrnoCzechia
| |
Collapse
|
29
|
Insights into Modern Therapeutic Approaches in Pediatric Acute Leukemias. Cells 2022; 11:cells11010139. [PMID: 35011701 PMCID: PMC8749975 DOI: 10.3390/cells11010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 02/01/2023] Open
Abstract
Pediatric cancers predominantly constitute lymphomas and leukemias. Recently, our knowledge and awareness about genetic diversities, and their consequences in these diseases, have greatly expanded. Modern solutions are focused on mobilizing and impacting a patient’s immune system. Strategies to stimulate the immune system, to prime an antitumor response, are of intense interest. Amid those types of therapies are chimeric antigen receptor T (CAR-T) cells, bispecific antibodies, and antibody–drug conjugates (ADC), which have already been approved in the treatment of acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML). In addition, immune checkpoint inhibitors (ICIs), the pattern recognition receptors (PRRs), i.e., NOD-like receptors (NLRs), Toll-like receptors (TLRs), and several kinds of therapy antibodies are well on their way to showing significant benefits for patients with these diseases. This review summarizes the current knowledge of modern methods used in selected pediatric malignancies and presents therapies that may hold promise for the future.
Collapse
|
30
|
Near-Haploidy and Low-Hypodiploidy in B-Cell Acute Lymphoblastic Leukemia: When Less Is Too Much. Cancers (Basel) 2021; 14:cancers14010032. [PMID: 35008193 PMCID: PMC8750410 DOI: 10.3390/cancers14010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 11/17/2022] Open
Abstract
Hypodiploidy with less than 40 chromosomes is a rare genetic abnormality in B-cell acute lymphoblastic leukemia (B-ALL). This condition can be classified based on modal chromosome number as low-hypodiploidy (30–39 chromosomes) and near-haploidy (24–29 chromosomes), with unique cytogenetic and mutational landscapes. Hypodiploid B-ALL with <40 chromosomes has an extremely poor outcome, with 5-year overall survival rates below 50% and 20% in childhood and adult B-ALL, respectively. Accordingly, this genetic feature represents an adverse prognostic factor in B-ALL and is associated with early relapse and therapy refractoriness. Notably, half of all patients with hypodiploid B-ALL with <40 chromosomes cases ultimately exhibit chromosome doubling of the hypodiploid clone, resulting in clones with 50–78 chromosomes. Doubled clones are often the major clones at diagnosis, leading to “masked hypodiploidy”, which is clinically challenging as patients can be erroneously classified as hyperdiploid B-ALL. Here, we summarize the main cytogenetic and molecular features of hypodiploid B-ALL subtypes, and provide a brief overview of the diagnostic methods, standard-of-care treatments and overall clinical outcome. Finally, we discuss molecular mechanisms that may underlie the origin and leukemogenic impact of hypodiploidy and may open new therapeutic avenues to improve survival rates in these patients.
Collapse
|
31
|
Cytogenetic Characteristics of Childhood Acute Lymphoblastic Leukemia: A Study of 1541 Chinese Patients Newly Diagnosed between 2001 and 2014. Curr Med Sci 2021; 42:201-209. [PMID: 34874488 DOI: 10.1007/s11596-021-2477-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/06/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Cytogenetic abnormalities have been proven to be the most valuable parameter for risk stratification of childhood acute lymphoblastic leukemia (ALL). However, studies on the prevalence of cytogenetic abnormalities and their correlation to clinical features in Chinese pediatric patients are limited, especially large-scale studies. METHODS We collected the cytogenetics and clinical data of 1541 children newly diagnosed with ALL between 2001 and 2014 in four Chinese hospitals, and retrospectively analyzed their clinical features, prognosis and risk factors associated with pediatric ALL. RESULTS All of these patients had karyotyping results, and some of them were tested for fusion genes by fluorescence in situ hybridization or reverse-transcription polymerase chain reaction. Overall, 930 cases (60.4%) had abnormal cytogenetics in this study, mainly including high hyperdiploidy (HHD, n=276, 17.9%), hypodiploidy (n=74, 4.8%), t(12;21)/TEL-AML1 (n=260, 16.9%), t(1;19)/E2A-PBX1 (n=72, 4.7%), t(9;22)/BCR-ABL (n=64, 4.2%), and t(v;11q23)/MLL rearrangements (n=40, 2.6%). The distribution of each cytogenetic abnormality was correlated with gender, age, white blood cell count at diagnosis, and immunophenotype. In addition, multivariate analysis suggested that t(v;11q23)/MLL rearrangements (OR: 2.317, 95%CI: 1.219-3.748, P=0.008) and t(9;22)/BCR-ABL (OR: 2.519, 95%CI: 1.59-3.992, P<0.001) were independent risk factors for a lower event-free survival (EFS) rate in children with ALL, while HHD (OR: 0.638, 95%CI: 0.455-0.894, P=0.009) and t(12;21)/TEL-AML1 (OR: 0.486, 95%CI: 0.333-0.707, P<0.001) were independent factors of a favorable EFS. CONCLUSION The cytogenetic characteristics presented in our study resembled other research groups, emphasizing the important role of cytogenetic and molecular genetic classification in ALL, especially in B-ALL.
Collapse
|
32
|
Yeung DTO, Osborn MP, White DL. B-cell acute lymphoblastic leukaemia: recent discoveries in molecular pathology, their prognostic significance, and a review of the current classification. Br J Haematol 2021; 197:13-27. [PMID: 34747016 DOI: 10.1111/bjh.17879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acute lymphoblastic leukaemia (ALL) remains a leading cause of non-traumatic death in children, and the majority of adults diagnosed will succumb to the disease. Recent advances in molecular biology and bioinformatics have enabled more detailed genomic analysis and a better understanding of the molecular biology of ALL. A number of recurrent genomic drivers have recently been described, which not only aid in diagnosis and prognostication, but also may offer opportunities for specific therapeutic targeting. The present review summarises B-ALL genomic pathology at diagnosis, including lesions detectable using traditional cytogenetic methods as well as those detected only through advanced molecular techniques.
Collapse
Affiliation(s)
- David T O Yeung
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia.,Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Michael P Osborn
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia.,Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Deborah L White
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.,Faculty of Health and Medical Science, University of Adelaide, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Lafage-Pochitaloff M. Redefining high hyperdiploid B-cell acute lymphoblastic leukaemia. LANCET HAEMATOLOGY 2021; 8:e783-e784. [PMID: 34715041 DOI: 10.1016/s2352-3026(21)00312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Marina Lafage-Pochitaloff
- Hematological Cytogenetics Laboratory, Timone Children's Hospital, Aix-Marseille University, Marseille 13005, France.
| |
Collapse
|
34
|
A Systematic Cytogenetic Strategy to Identify Masked Hypodiploidy in Precursor B Acute Lymphoblastic Leukemia in Low Resource Settings. Indian J Hematol Blood Transfus 2021; 37:576-585. [PMID: 34690454 DOI: 10.1007/s12288-021-01409-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/09/2021] [Indexed: 10/22/2022] Open
Abstract
Hypodiploidy with < 40 chromosomes is associated with poor prognosis in B cell precursor acute lymphoblastic leukemia. In some patients, the hypodiploid clone undergoes endoreduplication, resulting in doubling of the number of chromosomes and masquerades as a high hyperdiploid BCP-ALL. Karyotyping reveals metaphases with 50-79 chromosomes masking the hypodiploid clone. Identifying hypodiploidy in such cases requires awareness of non random alterations of chromosomal copy numbers found in hypodiploid BCP-ALL. We used a systematic strategy to identify masked hypodiploidy integrating targeted fluorescence in situ hybridization (FISH) analysis directed towards identifying monosomies of chromosomes 7, 15 and 17 and flow cytometry-based ploidy analysis (FCPA). Of 445 patients diagnosed as BCP ALL, 2.9% (13/445) were classified as hypodiploid including patients with masked hypodiploidy. Karyotype analysis showed hypodiploidy in 3 patients, near triploidy in 4 patients and normal karyotype in 6 patients. Four patients with near triploid clone on karyotype showed either bimodal peak (2 patients) or single low hypodiploid peak (1 patient) or only near triploid peak (1 patient) on FCPA. All 6 patients with normal karyotype revealed either bimodal peak (4 patients) or hypodiploid peak (2 patients) on FCPA. Targeted FISH analysis unmasked hypodiploid clone showing monosomies of chromosomes 7, 15 and 17 in all ten patients. Our algorithm successfully identified masked hypodiploidy in patients, including those with endoreduplication (4 patients) and normal karyotype (6 patients). Integrating FCPA with targeted FISH analysis provides a practical, sensitive and specific approach to identify masked hypodiploidy in low resource settings.
Collapse
|
35
|
Paietta E, Roberts KG, Wang V, Gu Z, Buck GAN, Pei D, Cheng C, Levine RL, Abdel-Wahab O, Cheng Z, Wu G, Qu C, Shi L, Pounds S, Willman CL, Harvey R, Racevskis J, Barinka J, Zhang Y, Dewald GW, Ketterling RP, Alejos D, Lazarus HM, Luger SM, Foroni L, Patel B, Fielding AK, Melnick A, Marks DI, Moorman AV, Wiernik PH, Rowe JM, Tallman MS, Goldstone AH, Mullighan CG, Litzow MR. Molecular classification improves risk assessment in adult BCR-ABL1-negative B-ALL. Blood 2021; 138:948-958. [PMID: 33895809 PMCID: PMC9069478 DOI: 10.1182/blood.2020010144] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/25/2021] [Indexed: 11/20/2022] Open
Abstract
Genomic classification has improved risk assignment of pediatric, but not adult B-lineage acute lymphoblastic leukemia (B-ALL). The international UKALLXII/ECOG-ACRIN E2993 (#NCT00002514) trial accrued 1229 adolescent/adult patients with BCR-ABL1- B-ALL (aged 14 to 65 years). Although 93% of patients achieved remission, 41% relapsed at a median of 13 months (range, 28 days to 12 years). Five-year overall survival (OS) was 42% (95% confidence interval, 39, 44). Transcriptome sequencing, gene expression profiling, cytogenetics, and fusion polymerase chain reaction enabled genomic subtyping of 282 patient samples, of which 264 were eligible for trial, accounting for 64.5% of E2993 patients. Among patients with outcome data, 29.5% with favorable outcomes (5-year OS 65% to 80%) were deemed standard risk (DUX4-rearranged [9.2%], ETV6-RUNX1/-like [2.3%], TCF3-PBX1 [6.9%], PAX5 P80R [4.1%], high-hyperdiploid [6.9%]); 50.2% had high-risk genotypes with 5-year OS of 0% to 27% (Ph-like [21.2%], KMT2A-AFF1 [12%], low-hypodiploid/near-haploid [14.3%], BCL2/MYC-rearranged [2.8%]); 20.3% had intermediate-risk genotypes with 5-year OS of 33% to 45% (PAX5alt [12.4%], ZNF384/-like [5.1%], MEF2D-rearranged [2.8%]). IKZF1 alterations occurred in 86% of Ph-like, and TP53 mutations in patients who were low-hypodiploid (54%) and BCL2/MYC-rearranged (33%) but were not independently associated with outcome. Of patients considered high risk based on presenting age and white blood cell count, 40% harbored subtype-defining genetic alterations associated with standard- or intermediate-risk outcomes. We identified distinct immunophenotypic features for DUX4-rearranged, PAX5 P80R, ZNF384-R/-like, and Ph-like genotypes. These data in a large adult B-ALL cohort treated with a non-risk-adapted approach on a single trial show the prognostic importance of genomic analyses, which may translate into future therapeutic benefits.
Collapse
Affiliation(s)
| | - Kathryn G Roberts
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Victoria Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Zhaohui Gu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Georgina A N Buck
- Clinical Trial Service Unit, Nuttfield Department of Population Health, Oxford, United Kingdom
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Ross L Levine
- Human Oncology and Pathogenesis Program-Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program-Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zhongshan Cheng
- Centre for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Gang Wu
- Centre for Applied Bioinformatics, St Jude Children's Research Hospital, Memphis, TN
| | - Chunxu Qu
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN
| | - Cheryl L Willman
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - Richard Harvey
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM
| | - Janis Racevskis
- Department of Oncology, Montefiore Medical Center, Bronx, NY
| | - Jan Barinka
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gordon W Dewald
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Rhett P Ketterling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - David Alejos
- Department of Oncology, Montefiore Medical Center, Bronx, NY
| | - Hillard M Lazarus
- Department of Medicine, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | - Selina M Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Letizia Foroni
- Centre for Haematology, Department of Medicine, Imperial College London Hammersmith Hospital, London, United Kingdom
| | - Bela Patel
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | | - Ari Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY
| | - David I Marks
- Bristol Haematology and Oncology Centre, Bristol, United Kingdom
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Newcastle University Translational and Clinical Research Institute, Newcastle-upon-Tyne, United Kingdom
| | | | - Jacob M Rowe
- Department of Hematology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY
| | | | | | - Mark R Litzow
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
36
|
Copy Number Changes and Allele Distribution Patterns of Chromosome 21 in B Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2021; 13:cancers13184597. [PMID: 34572826 PMCID: PMC8465600 DOI: 10.3390/cancers13184597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023] Open
Abstract
Chromosome 21 is the most affected chromosome in childhood acute lymphoblastic leukemia. Many of its numerical and structural abnormalities define diagnostically and clinically important subgroups. To obtain an overview about their types and their approximate genetic subgroup-specific incidence and distribution, we performed cytogenetic, FISH and array analyses in a total of 578 ALL patients (including 26 with a constitutional trisomy 21). The latter is the preferred method to assess genome-wide large and fine-scale copy number abnormalities (CNA) together with their corresponding allele distribution patterns. We identified a total of 258 cases (49%) with chromosome 21-associated CNA, a number that is perhaps lower-than-expected because ETV6-RUNX1-positive cases (11%) were significantly underrepresented in this array-analyzed cohort. Our most interesting observations relate to hyperdiploid leukemias with tetra- and pentasomies of chromosome 21 that develop in constitutionally trisomic patients. Utilizing comparative short tandem repeat analyses, we were able to prove that switches in the array-derived allele patterns are in fact meiotic recombination sites, which only become evident in patients with inborn trisomies that result from a meiosis 1 error. The detailed analysis of such cases may eventually provide important clues about the respective maldistribution mechanisms and the operative relevance of chromosome 21-specific regions in hyperdiploid leukemias.
Collapse
|
37
|
Creasey T, Enshaei A, Nebral K, Schwab C, Watts K, Cuthbert G, Vora A, Moppett J, Harrison CJ, Fielding AK, Haas OA, Moorman AV. Single nucleotide polymorphism array-based signature of low hypodiploidy in acute lymphoblastic leukemia. Genes Chromosomes Cancer 2021; 60:604-615. [PMID: 33938069 PMCID: PMC8600946 DOI: 10.1002/gcc.22956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/24/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Low hypodiploidy (30-39 chromosomes) is one of the most prevalent genetic subtypes among adults with ALL and is associated with a very poor outcome. Low hypodiploid clones can often undergo a chromosomal doubling generating a near-triploid clone (60-78 chromosomes). When cytogenetic techniques detect a near triploid clone, a diagnostic challenge may ensue in differentiating presumed duplicated low hypodiploidy from good risk high hyperdiploid ALL (51-67 chromosomes). We used single-nucleotide polymorphism (SNP) arrays to analyze low hypodiploid/near triploid (HoTr) (n = 48) and high hyperdiploid (HeH) (n = 40) cases. In addition to standard analysis, we derived log2 ratios for entire chromosomes enabling us to analyze the cohort using machine-learning techniques. Low hypodiploid and near triploid cases clustered together and separately from high hyperdiploid samples. Using these approaches, we also identified three cases with 50-60 chromosomes, originally called as HeH, which were, in fact, HoTr and two cases incorrectly called as HoTr. TP53 mutation analysis supported the new classification of all cases tested. Next, we constructed a classification and regression tree model for predicting ploidy status with chromosomes 1, 7, and 14 being the key discriminators. The classifier correctly identified 47/50 (94%) HoTr cases. We validated the classifier using an independent cohort of 44 cases where it correctly called 7/7 (100%) low hypodiploid cases. The results of this study suggest that HoTr is more frequent among older adults with ALL than previously estimated and that SNP array analysis should accompany cytogenetics where possible. The classifier can assist where SNP array patterns are challenging to interpret.
Collapse
Affiliation(s)
- Thomas Creasey
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Amir Enshaei
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Karin Nebral
- Department of Clinical GeneticsChildren's Cancer Research InstituteViennaAustria
| | - Claire Schwab
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Kathryn Watts
- Northern Genetics ServiceThe Newcastle‐upon‐Tyne Hospitals NHS Foundation Trust, Institute of Genetic Medicine, International Centre for LifeNewcastle upon TyneUK
| | - Gavin Cuthbert
- Northern Genetics ServiceThe Newcastle‐upon‐Tyne Hospitals NHS Foundation Trust, Institute of Genetic Medicine, International Centre for LifeNewcastle upon TyneUK
| | - Ajay Vora
- Haematology and Oncology DepartmentGreat Ormond Street HospitalLondonUK
| | - John Moppett
- Paediatric Haematology DepartmentBristol Royal Hospital for ChildrenBristolUK
| | - Christine J. Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | | | - Oskar A. Haas
- Department of Clinical GeneticsChildren's Cancer Research InstituteViennaAustria
| | - Anthony V. Moorman
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
38
|
Haas OA. Somatic Sex: On the Origin of Neoplasms With Chromosome Counts in Uneven Ploidy Ranges. Front Cell Dev Biol 2021; 9:631946. [PMID: 34422788 PMCID: PMC8373647 DOI: 10.3389/fcell.2021.631946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 06/22/2021] [Indexed: 01/09/2023] Open
Abstract
Stable aneuploid genomes with nonrandom numerical changes in uneven ploidy ranges define distinct subsets of hematologic malignancies and solid tumors. The idea put forward herein suggests that they emerge from interactions between diploid mitotic and G0/G1 cells, which can in a single step produce all combinations of mono-, di-, tri-, tetra- and pentasomic paternal/maternal homologue configurations that define such genomes. A nanotube-mediated influx of interphase cell cytoplasm into mitotic cells would thus be responsible for the critical nondisjunction and segregation errors by physically impeding the proper formation of the cell division machinery, whereas only a complete cell fusion can simultaneously generate pentasomies, uniparental trisomies as well as biclonal hypo- and hyperdiploid cell populations. The term "somatic sex" was devised to accentuate the similarities between germ cell and somatic cell fusions. A somatic cell fusion, in particular, recapitulates many processes that are also instrumental in the formation of an abnormal zygote that involves a diploid oocyte and a haploid sperm, which then may further develop into a digynic triploid embryo. Despite their somehow deceptive differences and consequences, the resemblance of these two routes may go far beyond of what has hitherto been appreciated. Based on the arguments put forward herein, I propose that embryonic malignancies of mesenchymal origin with these particular types of aneuploidies can thus be viewed as the kind of flawed somatic equivalent of a digynic triploid embryo.
Collapse
Affiliation(s)
- Oskar A Haas
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
39
|
Lee SHR, Li Z, Tai ST, Oh BLZ, Yeoh AEJ. Genetic Alterations in Childhood Acute Lymphoblastic Leukemia: Interactions with Clinical Features and Treatment Response. Cancers (Basel) 2021; 13:4068. [PMID: 34439222 PMCID: PMC8393341 DOI: 10.3390/cancers13164068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 12/28/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer among children. This aggressive cancer comprises multiple molecular subtypes, each harboring a distinct constellation of somatic, and to a lesser extent, inherited genetic alterations. With recent advances in genomic analyses such as next-generation sequencing techniques, we can now clearly identify >20 different genetic subtypes in ALL. Clinically, identifying these genetic subtypes will better refine risk stratification and determine the optimal intensity of therapy for each patient. Underpinning each genetic subtype are unique clinical and therapeutic characteristics, such as age and presenting white blood cell (WBC) count. More importantly, within each genetic subtype, there is much less variability in treatment response and survival outcomes compared with current risk factors such as National Cancer Institute (NCI) criteria. We review how this new taxonomy of genetic subtypes in childhood ALL interacts with clinical risk factors used widely, i.e., age, presenting WBC, IKZF1del, treatment response, and outcomes.
Collapse
Affiliation(s)
- Shawn H. R. Lee
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Zhenhua Li
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Si Ting Tai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Bernice L. Z. Oh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| | - Allen E. J. Yeoh
- VIVA-University Children’s Cancer Centre, Khoo-Teck Puat-National University Children’s Medical Institute, National University Hospital, Singapore 119074, Singapore; (S.H.R.L.); (B.L.Z.O.)
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; (Z.L.); (S.T.T.)
| |
Collapse
|
40
|
Stefaniak M, Ręka G, Zawitkowska J, Lejman M. Hypodiploidy in a pediatric patient of T-cell acute lymphoblastic leukemia: a case report. BMC Med Genomics 2021; 14:178. [PMID: 34217275 PMCID: PMC8254919 DOI: 10.1186/s12920-021-01023-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia is a subtype of acute lymphoblastic leukemia, one of the most common childhood neoplasms. Hypodiploidy is a chromosome abnormality with fewer than 45 chromosomes and is associated with unsatisfactory clinical outcomes in acute lymphoblastic leukemia. CASE PRESENTATION We report clinical and genetic findings of a 14-year-old male with T-cell acute lymphoblastic leukemia with low-hypodiploidy. The medical history included neck pain for a month, facial nerve palsy on the right side for 6 days, fever, drowsiness, and weakness for 3 days, vomiting, diarrhea for 1 day. The physical examination presented features of hypovolemia, palsy of the facial nerve on the right side, enlarged lymph nodes, hepatosplenomegaly, sore throat, and petechiae of the skin. Radiological images indicated lesions of different organs. Bone marrow biopsy confirmed precursor T-ALL. In the FISH tests, KMT2A and BCR/ABL1 rearrangements were not observed. GTG banding revealed 3 cell clones, which confirmed the hypodiploidy. Multiplex RT-qPCR was performed. STIL/TAL1 (del1p32) gene rearrangement was found in the blast cells. Additional tests were performed using the CytoScan HD microarray technique. Molecular karyotype did not reveal hypodiploidy, but identified other abnormalities such as duplication of chromosomal regions: 4q25q35.2, 6p23.3p11.1 and 8p23.3q24.21, and the loss of heterozygosity of short arm chromosome 9. In two regions of the chromosome biallelic deletions were found at 9p21.3, including the CDKN2A, CDKN2B, IFNA1, MTAP genes and at 10q23.31, containing PTEN. The child died 9 days after diagnosis. CONCLUSIONS Bone marrow biopsy, GTG banding, FISH techniques, and molecular karyotyping were used to make an accurate diagnosis. This case documents a rapid progression of the disease and unfavorable results of T-cell acute lymphoblastic leukemia with hypodiploidy.
Collapse
Affiliation(s)
- Martyna Stefaniak
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093, Lublin, Poland.
- Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093, Lublin, Poland.
| | - Gabriela Ręka
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093, Lublin, Poland
| | - Joanna Zawitkowska
- Department of Paediatric Haematology and Oncology and Transplantology, Medical University of Lublin, A. Gębali 6, 20-093, Lublin, Poland
| | - Monika Lejman
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093, Lublin, Poland
- Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Gębali 6, 20-093, Lublin, Poland
| |
Collapse
|
41
|
Chen Z, Yang F, Liu H, Fan F, Lin Y, Zhou J, Cai Y, Zhang X, Wu Y, Mao R, Zhang T. Identification of a nomogram based on an 8-lncRNA signature as a novel diagnostic biomarker for childhood acute lymphoblastic leukemia. Aging (Albany NY) 2021; 13:15548-15568. [PMID: 34106877 PMCID: PMC8221355 DOI: 10.18632/aging.203116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
Childhood acute lymphoblastic leukemia (cALL) still represents a major cause of disease-related death in children. This study aimed to explore the prognostic value of long non-coding RNAs (lncRNAs) in cALL. We downloaded lncRNA expression profiles from the TARGET and GEO databases. Univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses were applied to identify lncRNA-based signatures. We identified an eight-lncRNA signature (LINC00630, HDAC2-AS2, LINC01278, AL356599.1, AC114490.1, AL132639.3, FUT8.AS1, and TTC28.AS1), which separated the patients into two groups with significantly different overall survival rates. A nomogram based on the signature, BCR ABL1 status and white blood cell count at diagnosis was developed and showed good accuracy for predicting the 3-, 5- and 7-year survival probability of cALL patients. The C-index values of the nomogram in the training and internal validation set reached 0.8 (95% CI, 0.757 to 0.843) and 0.806 (95% CI, 0.728 to 0.884), respectively. The nomogram proposed in this study objectively and accurately predicted the prognosis of cALL. In vitro experiments suggested that LINC01278 promoted the proliferation of leukemic cells and inhibited leukemic cell apoptosis by targeting the inhibition of miR-500b-3p in cALL, and LINC01278 may be a biological target for the treatment of cALL in the future.
Collapse
Affiliation(s)
- Zhang Chen
- Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China
| | - Fan Yang
- Emergency Department, Peking University Third Hospital, Peking University School of Medicine, Beijing 100083, China
| | - Hui Liu
- Department of Neurology, General Hospital of Western Theater Command, Chengdu 610500, China
| | - Fan Fan
- Department of Neurology, General Hospital of Western Theater Command, Chengdu 610500, China
| | - Yanggang Lin
- Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China
| | - Jinhua Zhou
- Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China
| | - Yun Cai
- Department of Orthopedics, General Hospital of Western Theater Command, Chengdu 610083, China
| | - Xiaoxiao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yingxin Wu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China
| | - Rui Mao
- Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China.,Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| |
Collapse
|
42
|
Inaba H, Pui CH. Advances in the Diagnosis and Treatment of Pediatric Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:1926. [PMID: 33946897 PMCID: PMC8124693 DOI: 10.3390/jcm10091926] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
The outcomes of pediatric acute lymphoblastic leukemia (ALL) have improved remarkably during the last five decades. Such improvements were made possible by the incorporation of new diagnostic technologies, the effective administration of conventional chemotherapeutic agents, and the provision of better supportive care. With the 5-year survival rates now exceeding 90% in high-income countries, the goal for the next decade is to improve survival further toward 100% and to minimize treatment-related adverse effects. Based on genome-wide analyses, especially RNA-sequencing analyses, ALL can be classified into more than 20 B-lineage subtypes and more than 10 T-lineage subtypes with prognostic and therapeutic implications. Response to treatment is another critical prognostic factor, and detailed analysis of minimal residual disease can detect levels as low as one ALL cell among 1 million total cells. Such detailed analysis can facilitate the rational use of molecular targeted therapy and immunotherapy, which have emerged as new treatment strategies that can replace or reduce the use of conventional chemotherapy.
Collapse
Affiliation(s)
- Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
43
|
Clinical and genetic characteristics of children with acute lymphoblastic leukemia and Li-Fraumeni syndrome. Leukemia 2021; 35:1475-1479. [PMID: 33580201 PMCID: PMC8102191 DOI: 10.1038/s41375-021-01163-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 02/02/2023]
|
44
|
Agarwal M, Seth R, Chatterjee T. Recent Advances in Molecular Diagnosis and Prognosis of Childhood B Cell Lineage Acute Lymphoblastic Leukemia (B-ALL). Indian J Hematol Blood Transfus 2021; 37:10-20. [PMID: 33707831 PMCID: PMC7900311 DOI: 10.1007/s12288-020-01295-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/25/2020] [Indexed: 11/26/2022] Open
Abstract
B cell lineage acute lymphoblastic leukemia is the most common leukemia occurring in children and young adults and is the leading cause of cancer related deaths. The 5 year overall survival outcome in children with B-ALL has improved significantly in the last few decades. In the past, the discovery of various genetic alterations and targeted therapy have played a major role in decreasing disease-related deaths. In addition, numerous advances in the pathogenesis of B-ALL have been found which have provided better understanding of the genes involved in disease biology with respect to diagnostic and prognostic implications. Present review will summarize current understanding of risk stratification, genetic factors including cytogenetics in diagnosis and prognosis of B-ALL.
Collapse
Affiliation(s)
- Manisha Agarwal
- Department of Laboratory Sciences and Molecular Medicine, Army Hospital (R&R), New Delhi, India
| | - Rachna Seth
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Tathagata Chatterjee
- Department of Laboratory Sciences and Molecular Medicine, Army Hospital (R&R), New Delhi, India
| |
Collapse
|
45
|
Aneuploidy in Cancer: Lessons from Acute Lymphoblastic Leukemia. Trends Cancer 2021; 7:37-47. [PMID: 32952102 DOI: 10.1016/j.trecan.2020.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
Aneuploidy, the gain or loss of chromosomes in a cell, is a hallmark of cancer. Although our understanding of the contribution of aneuploidy to cancer initiation and progression is incomplete, significant progress has been made in uncovering the cellular consequences of aneuploidy and how aneuploid cancer cells self-adapt to promote tumorigenesis. Aneuploidy is physiologically associated with significant cellular stress but, paradoxically, it favors tumor progression. Although more common in solid tumors, different forms of aneuploidy represent the initiating oncogenic lesion in patients with B cell acute lymphoblastic leukemia (B-ALL), making B-ALL an excellent model for studying the role of aneuploidy in tumorigenesis. We review the molecular mechanisms underlying aneuploidy and discuss its contributions to B-ALL initiation and progression.
Collapse
|
46
|
Bárcenas-López DA, Mendiola-Soto DK, Núñez-Enríquez JC, Mejía-Aranguré JM, Hidalgo-Miranda A, Jiménez-Morales S. Promising genes and variants to reduce chemotherapy adverse effects in acute lymphoblastic leukemia. Transl Oncol 2021; 14:100978. [PMID: 33290991 PMCID: PMC7720095 DOI: 10.1016/j.tranon.2020.100978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Almost two decades ago, the sequencing of the human genome and high throughput technologies came to revolutionize the clinical and therapeutic approaches of patients with complex human diseases. In acute lymphoblastic leukemia (ALL), the most frequent childhood malignancy, these technologies have enabled to characterize the genomic landscape of the disease and have significantly improved the survival rates of ALL patients. Despite this, adverse reactions from treatment such as toxicity, drug resistance and secondary tumors formation are still serious consequences of chemotherapy, and the main obstacles to reduce ALL-related mortality. It is well known that germline variants and somatic mutations in genes involved in drug metabolism impact the efficacy of drugs used in oncohematological diseases therapy. So far, a broader spectrum of clinically actionable alterations that seems to be crucial for the progression and treatment response have been identified. Although these results are promising, it is necessary to put this knowledge into the clinics to help physician make medical decisions and generate an impact in patients' health. This review summarizes the gene variants and clinically actionable mutations that modify the efficacy of antileukemic drugs. Therefore, knowing their genetic status before treatment is critical to reduce severe adverse effects, toxicities and life-threatening consequences in ALL patients.
Collapse
Affiliation(s)
- Diego Alberto Bárcenas-López
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Del. Tlalpan, Mexico City 14610, Mexico; Programa de Doctorado, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Karen Mendiola-Soto
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Del. Tlalpan, Mexico City 14610, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Carlos Núñez-Enríquez
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, CMNSXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Epidemiología Clínica, Hospital de Pediatría, CMNSXXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico; Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Del. Tlalpan, Mexico City 14610, Mexico
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Periferico Sur 4809, Arenal Tepepan, Del. Tlalpan, Mexico City 14610, Mexico.
| |
Collapse
|
47
|
Wang L, Ashraf DC, Kinde B, Ohgami RS, Kumar J, Kersten RC. Hypodiploid B-Lymphoblastic Leukemia Presenting as an Isolated Orbital Mass Prior to Systemic Involvement: A Case Report and Review of the Literature. Diagnostics (Basel) 2020; 11:diagnostics11010025. [PMID: 33375646 PMCID: PMC7824143 DOI: 10.3390/diagnostics11010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 11/21/2022] Open
Abstract
We describe a 4-year-old boy who presented with progressive right periorbital edema and proptosis, with no systemic symptoms, who was found to have B-lymphoblastic leukemia (B-ALL). Magnetic resonance imaging (MRI) showed an enhancing mass centered in the right superolateral extraconal orbit. Orbital biopsy was consistent with B-ALL (CD99, TdT, LCA cocktail, CD34, CD79, CD10, PAX5, MIB1 positive; CD3, CD20 negative). A subsequent bone marrow aspirate confirmed a diagnosis of B-ALL with 80% blasts by flow cytometry and haploid cytogenetic findings. The patient improved clinically after chemotherapy. There are seven cases previously reported in the literature with hematogenous orbital masses at initial presentation of childhood ALL, but all with systemic symptoms or an abnormal complete blood count (CBC) at presentation. Our case is the first report in which an orbital mass preceded detectable systemic or laboratory evidence of ALL. This patient highlights the importance of differentiating benign causes of eyelid swelling from malignant ones.
Collapse
Affiliation(s)
- Linyan Wang
- Department of Ophthalmology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, China;
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA; (D.C.A.); (B.K.)
| | - Davin C. Ashraf
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA; (D.C.A.); (B.K.)
| | - Benyam Kinde
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA; (D.C.A.); (B.K.)
| | - Robert S. Ohgami
- Department of Pathology, University of California, San Francisco, CA 94143, USA;
| | - Jyoti Kumar
- Department of Pathology, Stanford University, Stanford, CA 94305, USA;
| | - Robert C. Kersten
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA 94143, USA; (D.C.A.); (B.K.)
- Correspondence: ; Tel.: +1-(415)-353-2142; Fax: +1-(415)-476-0336
| |
Collapse
|
48
|
Bommannan K, Arumugam JR, Koshy T, Radhakrishnan V, Sagar TG, Sundersingh S. Blast size-specific flowcytometric ploidy assessment using FxCycle TM Violet dye and its correlation with conventional cytogenetic ploidy in pediatric precursor B-lineage acute lymphoblastic leukemia patients. Int J Lab Hematol 2020; 43:760-770. [PMID: 33345449 DOI: 10.1111/ijlh.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/20/2020] [Accepted: 11/28/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Numerical chromosomal abnormalities (aneuploidies), present in approximately 30%-50% of pediatric precursor B-lineage acute lymphoblastic leukemia (B-ALL) patients, are commonly identified through a laborious conventional cytogenetic (CG) technique. Flow cytometry (FCM) can identify both physical and fluorescent properties of cells together, and by using fluorescent nucleic-acid-binding dyes, FCM can identify variations in total nucleic-acid content of cells. FxCycleTM Violet dye (FxCV) is a selective DNA-binding dye which permits simultaneous multiparametric immunophenotyping and cell-cycle/ploidy assessment in a single assay. To date, only two studies have demonstrated the feasibility of FxCV-aided FCM-ploidy analysis in B-ALL patients and only one of these studies have compared their results with CG-ploidy. METHODOLOGY Blast size-specific FCM-ploidy was prospectively analyzed using FxCV-dye in 109 pediatric B-ALL patients, and the results were compared with concurrent CG-ploidy status. RESULTS FCM-ploidy categorization was feasible in 98% of samples tested and the results were 82% concordant with CG-ploidy status. We observed significant correlation between DNA content and blast size (r = .823, P < .001) and could demonstrate size differences between diploid vs low-hyperdiploid (P = .025), diploid vs high-hyperdiploid (P < .001) and low- vs high-hyperdiploid blasts (P = .007). CONCLUSION FCM-ploidy assessment using FxCV dye is a reliable assay and the results closely concur with CG-based ploidy stratification and risk assessment. Using blast size-assisted DNA content analysis, the results of FCM-ploidy analysis can be further fine-tuned.
Collapse
Affiliation(s)
- Karthik Bommannan
- Department of Oncopathology, Cancer Institute (W.I.A.), Chennai, India
| | | | - Teena Koshy
- Department of Oncopathology, Cancer Institute (W.I.A.), Chennai, India
| | | | - Tenali Gnana Sagar
- Department of Medical Oncology, Cancer Institute (W.I.A.), Chennai, India
| | | |
Collapse
|
49
|
Germans SK, Kulak O, Koduru P, Oliver D, Gagan J, Patel P, Anderson LD, Fuda FS, Chen W, Jaso JM. Lenalidomide-Associated Secondary B-Lymphoblastic Leukemia/Lymphoma-A Unique Entity. Am J Clin Pathol 2020; 154:816-827. [PMID: 32880627 DOI: 10.1093/ajcp/aqaa109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES Autologous stem cell transplant with lenalidomide maintenance therapy has greatly improved the relapse-free and overall survival rates of patients with multiple myeloma but also has been associated with an increased risk of secondary B-lymphoblastic leukemia/lymphoma (B-ALL). METHODS We report a comprehensive review of the clinicopathologic features of 2 patients with multiple myeloma who developed secondary B-ALL during lenalidomide maintenance. RESULTS Our observations showed that the disease may initially present with subtle clinical, morphologic, and flow-cytometric findings. The flow cytometry findings in such cases may initially mimic an expansion of hematogones with minimal immunophenotypic variation. Both patients achieved complete remission of secondary B-ALL after standard chemotherapy; however, one patient continues to have minimal residual disease, and the other experienced relapse. Next-generation sequencing of the relapse specimen showed numerous, complex abnormalities, suggesting clonal evolution. CONCLUSIONS Our findings suggest the need for increased awareness and further study of this unique form of secondary B-ALL.
Collapse
Affiliation(s)
| | - Ozlem Kulak
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Prasad Koduru
- Department of Genomics and Molecular Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Dwight Oliver
- Department of Genomics and Molecular Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Jeffery Gagan
- Department of Genomics and Molecular Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Prapti Patel
- Department of Internal Medicine, Hematology and Oncology Division, University of Texas Southwestern Medical Center, Dallas
| | - Larry D Anderson
- Department of Internal Medicine, Hematology and Oncology Division, University of Texas Southwestern Medical Center, Dallas
| | - Franklin S Fuda
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Weina Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| | - Jesse Manuel Jaso
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
50
|
Mao R, Hu S, Zhang Y, Du F, Zhang Y, Liu Y, Zhang T. Prognostic Nomogram for Childhood Acute Lymphoblastic Leukemia: A Comprehensive Analysis of 673 Patients. Front Oncol 2020; 10:1673. [PMID: 33014835 PMCID: PMC7511595 DOI: 10.3389/fonc.2020.01673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Despite that the survival rate in childhood acute lymphoblastic leukemia (cALL) is excellent, subsets of high-risk patients with cALL still have high relapse rates, and the cure rate is well below that for which we should aim. The present study aims to construct a prognostic nomogram to better inform clinical practitioners and improve risk stratification for clinical trials. METHODS The developed nomogram was based on the therapeutically applicable research to generate effective treatment (TARGET) database. With this database, we obtained 673 cALL patients with complete clinical information. We identified and integrated significant prognostic factors to build the nomogram model by univariate and multivariate Cox analysis. The predictive accuracy and discriminative ability of the nomogram were determined by the concordance index (C-index), calibration curve, and area under the receiver operating characteristic (ROC) curve (AUC) of ROC analysis. Internal validations were assessed by the bootstrapping validation. RESULTS In the multivariate analysis of the primary cohort, the independent factors for survival were ETV6 RUNX1 fusion status, karyotype, minimal residual disease (MRD) at day 29, and DNA index, which were all integrated into the nomogram. The calibration curve for the probability of survival showed good agreement between the prediction by the nomogram and the actual observation. The C-index of the nomogram for predicting survival was 0.754 (95% CI, 0.715-0.793), and the AUCs for 3-, 5-, and 7-year survival were 0.775, 0.776, and 0.772, respectively. CONCLUSION We comprehensively evaluated the risk of clinical factors associated with prognosis and carried out risk stratification. The nomogram proposed in this study objectively and accurately predicted the prognosis of children with ALL.
Collapse
Affiliation(s)
- Rui Mao
- The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Shaoxuan Hu
- Department of Hematology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yuanchuan Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Feng Du
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Beijing, China
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People’s Hospital of Chengdu, Chengdu, China
| | - Tongtong Zhang
- Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|