1
|
Owens MC, Yanas A, Liu KF. Sex chromosome-encoded protein homologs: current progress and open questions. Nat Struct Mol Biol 2024; 31:1156-1166. [PMID: 39123067 DOI: 10.1038/s41594-024-01362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Abstract
The complexity of biological sex differences is markedly evident in human physiology and pathology. Although many of these differences can be ascribed to the expression of sex hormones, another contributor to sex differences lies in the sex chromosomes beyond their role in sex determination. Although largely nonhomologous, the human sex chromosomes express seventeen pairs of homologous genes, referred to as the 'X-Y pairs.' The X chromosome-encoded homologs of these Y-encoded proteins are crucial players in several cellular processes, and their dysregulation frequently results in disease development. Many diseases related to these X-encoded homologs present with sex-biased incidence or severity. By contrast, comparatively little is known about the differential functions of the Y-linked homologs. Here, we summarize and discuss the current understanding of five of these X-Y paired proteins, with recent evidence of differential functions and of having a potential link to sex biases in disease, highlighting how amino acid-level sequence differences may differentiate their functions and contribute to sex biases in human disease.
Collapse
Affiliation(s)
- Michael C Owens
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Amber Yanas
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Wang JN, Zheng G, Wu W, Huang H. Follicular helper T cells: emerging roles in lymphomagenesis. J Leukoc Biol 2024; 116:54-63. [PMID: 37939814 DOI: 10.1093/jleuko/qiad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
Follicular helper T cells are a subset of CD4+ T cells that are fundamental to forming germinal centers, which are the primary sites of antibody affinity maturation and the proliferation of activated B cells. Follicular helper T cells have been extensively studied over the past 10 years, especially regarding their roles in cancer genesis. This review describes the characteristics of normal follicular helper T cells and focuses on the emerging link between follicular helper T cells and lymphomagenesis. Advances in lymphoma genetics have substantially expanded our understanding of the role of follicular helper T cells in lymphomagenesis. Moreover, we detail a range of agents and new therapies, with a major focus on chimeric antigen receptor T-cell therapy; these novel approaches may offer new treatment opportunities for patients with lymphomas.
Collapse
Affiliation(s)
- Ji-Nuo Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| |
Collapse
|
3
|
Rodriguez-Pinilla SM, Dojcinov S, Dotlic S, Gibson SE, Hartmann S, Klimkowska M, Sabattini E, Tousseyn TA, de Jong D, Hsi ED. Aggressive B-cell non-Hodgkin lymphomas: a report of the lymphoma workshop of the 20th meeting of the European Association for Haematopathology. Virchows Arch 2024; 484:15-29. [PMID: 37530792 PMCID: PMC10791773 DOI: 10.1007/s00428-023-03579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 08/03/2023]
Abstract
Aggressive B-cell non-Hodgkin lymphomas are a heterogeneous group of diseases and our concepts are evolving as we learn more about their clinical, pathologic, molecular genetic features. Session IV of the 2020 EAHP Workshop covered aggressive, predominantly high-grade B-cell lymphomas, many that were difficult to classify. In this manuscript, we summarize the features of the submitted cases and highlight differential diagnostic difficulties. We specifically review issues related to high-grade B-cell lymphomas (HGBCLs) with MYC and BCL2 and/or BCL6 rearrangements including TdT expression in these cases, HGBCL, not otherwise specified, large B-cell lymphomas with IRF4 rearrangement, high-grade/large B-cell lymphomas with 11q aberration, Burkitt lymphoma, and pleomorphic mantle cell lymphoma. Since the workshop, the 5th edition of the WHO Classification for Haematolymphoid Tumours (WHO-HAEM5) and International Consensus Classification (ICC) 2022 were published. We endeavor to use the updated terminology.
Collapse
Affiliation(s)
| | - Stefan Dojcinov
- Department of Pathology, Morriston Hospital, Swansea Bay University Health Board, Swansea, UK
| | - Snjezana Dotlic
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Sarah E Gibson
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, USA
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt Am Main, Frankfurt Am Main, Germany
| | - Monika Klimkowska
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Thomas A Tousseyn
- Department of Imaging and Pathology, Translational Cell and Tissue Research Lab, KU Leuven, Leuven, Belgium
| | - Daphne de Jong
- Department of Pathology, Amsterdam UMC, Location VUMC, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - Eric D Hsi
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
4
|
Radford EJ, Tan HK, Andersson MHL, Stephenson JD, Gardner EJ, Ironfield H, Waters AJ, Gitterman D, Lindsay S, Abascal F, Martincorena I, Kolesnik-Taylor A, Ng-Cordell E, Firth HV, Baker K, Perry JRB, Adams DJ, Gerety SS, Hurles ME. Saturation genome editing of DDX3X clarifies pathogenicity of germline and somatic variation. Nat Commun 2023; 14:7702. [PMID: 38057330 PMCID: PMC10700591 DOI: 10.1038/s41467-023-43041-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/30/2023] [Indexed: 12/08/2023] Open
Abstract
Loss-of-function of DDX3X is a leading cause of neurodevelopmental disorders (NDD) in females. DDX3X is also a somatically mutated cancer driver gene proposed to have tumour promoting and suppressing effects. We perform saturation genome editing of DDX3X, testing in vitro the functional impact of 12,776 nucleotide variants. We identify 3432 functionally abnormal variants, in three distinct classes. We train a machine learning classifier to identify functionally abnormal variants of NDD-relevance. This classifier has at least 97% sensitivity and 99% specificity to detect variants pathogenic for NDD, substantially out-performing in silico predictors, and resolving up to 93% of variants of uncertain significance. Moreover, functionally-abnormal variants can account for almost all of the excess nonsynonymous DDX3X somatic mutations seen in DDX3X-driven cancers. Systematic maps of variant effects generated in experimentally tractable cell types have the potential to transform clinical interpretation of both germline and somatic disease-associated variation.
Collapse
Affiliation(s)
- Elizabeth J Radford
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Level 8, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Hong-Kee Tan
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | | | | | - Eugene J Gardner
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | | | | | | | | | | | | | | | - Elise Ng-Cordell
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | - Helen V Firth
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Kate Baker
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | | | | | | |
Collapse
|
5
|
Gadek M, Sherr EH, Floor SN. The variant landscape and function of DDX3X in cancer and neurodevelopmental disorders. Trends Mol Med 2023; 29:726-739. [PMID: 37422363 DOI: 10.1016/j.molmed.2023.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
RNA molecules rely on proteins across their life cycle. DDX3X encodes an X-linked DEAD-box RNA helicase with a Y-linked paralog, DDX3Y. DDX3X is central to the RNA life cycle and is implicated in many conditions, including cancer and the neurodevelopmental disorder DDX3X syndrome. DDX3X-linked conditions often exhibit sex differences, possibly due to differences between expression or function of the X- and Y-linked paralogs DDX3X and DDX3Y. DDX3X-related diseases have different mutational landscapes, indicating different roles of DDX3X. Understanding the role of DDX3X in normal and disease states will inform the understanding of DDX3X in disease. We review the function of DDX3X and DDX3Y, discuss how mutation type and sex bias contribute to human diseases involving DDX3X, and review possible DDX3X-targeting treatments.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
6
|
Bomken S, Enshaei A, Schwalbe EC, Mikulasova A, Dai Y, Zaka M, Fung KTM, Bashton M, Lim H, Jones L, Karataraki N, Winterman E, Ashby C, Attarbaschi A, Bertrand Y, Bradtke J, Buldini B, Burke GAA, Cazzaniga G, Gohring G, De Groot-Kruseman HA, Haferlach C, Nigro LL, Parihar M, Plesa A, Seaford E, Sonneveld E, Strehl S, Van der Velden VHJ, Rand V, Hunger SP, Harrison CJ, Bacon CM, Van Delft FW, Loh ML, Moppett J, Vormoor J, Walker BA, Moorman AV, Russell LJ. Molecular characterization and clinical outcome of B-cell precursor acute lymphoblastic leukemia with IG-MYC rearrangement. Haematologica 2023; 108:717-731. [PMID: 35484682 PMCID: PMC9973471 DOI: 10.3324/haematol.2021.280557] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
Rarely, immunophenotypically immature B-cell precursor acute lymphoblastic leukemia (BCP-ALL) carries an immunoglobulin- MYC rearrangement (IG-MYC-r). This can result in diagnostic confusion with Burkitt lymphoma/leukemia and use of individualized treatment schedules of unproven efficacy. Here we compare the molecular characteristics of these conditions and investigate historic clinical outcome data. We identified 90 cases registered in a national BCP-ALL clinical trial/registry. When present, diagnostic material underwent cytogenetic, exome, methylome and transcriptome analyses. The outcomes analyzed were 3-year event-free survival and overall survival. IG-MYC-r was identified in diverse cytogenetic backgrounds, co-existing with either established BCP-ALL-specific abnormalities (high hyperdiploidy, n=3; KMT2A-rearrangement, n=6; iAMP21, n=1; BCR-ABL1, n=1); BCL2/BCL6-rearrangements (n=15); or, most commonly, as the only defining feature (n=64). Within this final group, precursor-like V(D)J breakpoints predominated (8/9) and KRAS mutations were common (5/11). DNA methylation identified a cluster of V(D)J-rearranged cases, clearly distinct from Burkitt leukemia/lymphoma. Children with IG-MYC-r within that subgroup had a 3-year event-free survival of 47% and overall survival of 60%, representing a high-risk BCP-ALL. To develop effective management strategies this group of patients must be allowed access to contemporary, minimal residual disease-adapted, prospective clinical trial protocols.
Collapse
Affiliation(s)
- Simon Bomken
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne.
| | - Amir Enshaei
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Edward C Schwalbe
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne
| | - Aneta Mikulasova
- Biosciences Institute, Newcastle University, Newcastle upon Tyne
| | - Yunfeng Dai
- Department of Biostatistics, Colleges of Medicine, Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Masood Zaka
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington
| | - Kent T M Fung
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Matthew Bashton
- The Hub for Biotechnology in the Built Environment, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne
| | - Huezin Lim
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Lisa Jones
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Nefeli Karataraki
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Emily Winterman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Cody Ashby
- Department of Biomedical Informatics / Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Yves Bertrand
- Department of Institute of Hematology Oncology Pediatric (IHOP), Hospices Civils de Lyon, Lyon
| | - Jutta Bradtke
- Institute of Pathology, Department Cytogenetics, University Hospital Giessen and Marburg
| | | | - G A Amos Burke
- Department of Paediatric Haematology, Oncology, and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge
| | - Giovanni Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Centro Ricerca Tettamanti, University of Milano-Bicocca, Monza
| | - Gudrun Gohring
- Department of Human Genetics, Hannover Medical School, Hannover
| | - Hesta A De Groot-Kruseman
- Dutch Childhood Oncology Group (DCOG), Utrecht, The Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht
| | | | - Luca Lo Nigro
- Head of Cytogenetic-Cytofluorimetric-Molecular Biology Laboratory, Center of Pediatric Hematology Oncology, Azienda Policlinico "G. Rodolico - San Marco", Catania
| | - Mayur Parihar
- Department of Cytogenetics and Laboratory Haematology, Tata Medical Centre, Kolkata, India
| | - Adriana Plesa
- Hematology and Flow cytometry Laboratory, Lyon Sud University Hospital, Hospices Civils de Lyon, Lyon
| | - Emma Seaford
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol
| | | | - Sabine Strehl
- St. Anna Children's Cancer Research Institute, Vienna
| | | | - Vikki Rand
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK; National Horizons Centre, Teesside University, Darlington
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christine J Harrison
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Chris M Bacon
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Frederik W Van Delft
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and the Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| | - John Moppett
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol
| | - Josef Vormoor
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Princess Maxima Center for Pediatric Oncology, Utrecht
| | - Brian A Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University, Indianapolis, IN
| | - Anthony V Moorman
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne
| | - Lisa J Russell
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne.
| |
Collapse
|
7
|
Lacroix M, Beauchemin H, Khandanpour C, Möröy T. The RNA helicase DDX3 and its role in c-MYC driven germinal center-derived B-cell lymphoma. Front Oncol 2023; 13:1148936. [PMID: 37035206 PMCID: PMC10081492 DOI: 10.3389/fonc.2023.1148936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
DDX3X is an RNA helicase with many functions in RNA metabolism such as mRNA translation, alternative pre-mRNA splicing and mRNA stability, but also plays a role as a regulator of transcription as well as in the Wnt/beta-catenin- and Nf-κB signaling pathways. The gene encoding DDX3X is located on the X-chromosome, but escapes X-inactivation. Hence females have two active copies and males only one. However, the Y chromosome contains the gene for the male DDX3 homologue, called DDX3Y, which has a very high sequence similarity and functional redundancy with DDX3X, but shows a more restricted protein expression pattern than DDX3X. High throughput sequencing of germinal center (GC)-derived B-cell malignancies such as Burkitt Lymphoma (BL) and Diffuse large B-cell lymphoma (DLBCL) samples showed a high frequency of loss-of-function (LOF) mutations in the DDX3X gene revealing several features that distinguish this gene from others. First, DDX3X mutations occur with high frequency particularly in those GC-derived B-cell lymphomas that also show translocations of the c-MYC proto-oncogene, which occurs in almost all BL and a subset of DLBCL. Second, DDX3X LOF mutations occur almost exclusively in males and is very rarely found in females. Third, mutations in the male homologue DDX3Y have never been found in any type of malignancy. Studies with human primary GC B cells from male donors showed that a loss of DDX3X function helps the initial process of B-cell lymphomagenesis by buffering the proteotoxic stress induced by c-MYC activation. However, full lymphomagenesis requires DDX3 activity since an upregulation of DDX3Y expression is invariably found in GC derived B-cell lymphoma with DDX3X LOF mutation. Other studies with male transgenic mice that lack Ddx3x, but constitutively express activated c-Myc transgenes in B cells and are therefore prone to develop B-cell malignancies, also showed upregulation of the DDX3Y protein expression during the process of lymphomagenesis. Since DDX3Y is not expressed in normal human cells, these data suggest that DDX3Y may represent a new cancer cell specific target to develop adjuvant therapies for male patients with BL and DLBCL and LOF mutations in the DDX3X gene.
Collapse
Affiliation(s)
- Marion Lacroix
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Hugues Beauchemin
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
| | - Cyrus Khandanpour
- Klinik für Hämatologie und Onkologie, University Hospital Schleswig Holstein, University Lübeck, Lübeck, Germany
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| |
Collapse
|
8
|
López C, Burkhardt B, Chan JKC, Leoncini L, Mbulaiteye SM, Ogwang MD, Orem J, Rochford R, Roschewski M, Siebert R. Burkitt lymphoma. Nat Rev Dis Primers 2022; 8:78. [PMID: 36522349 DOI: 10.1038/s41572-022-00404-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/16/2022]
Abstract
Burkitt lymphoma (BL) is an aggressive form of B cell lymphoma that can affect children and adults. The study of BL led to the identification of the first recurrent chromosomal aberration in lymphoma, t(8;14)(q24;q32), and subsequent discovery of the central role of MYC and Epstein-Barr virus (EBV) in tumorigenesis. Most patients with BL are cured with chemotherapy but those with relapsed or refractory disease usually die of lymphoma. Historically, endemic BL, non-endemic sporadic BL and the immunodeficiency-associated BL have been recognized, but differentiation of these epidemiological variants is confounded by the frequency of EBV positivity. Subtyping into EBV+ and EBV- BL might better describe the biological heterogeneity of the disease. Phenotypically resembling germinal centre B cells, all types of BL are characterized by dysregulation of MYC due to enhancer activation via juxtaposition with one of the three immunoglobulin loci. Additional molecular changes commonly affect B cell receptor and sphingosine-1-phosphate signalling, proliferation, survival and SWI-SNF chromatin remodelling. BL is diagnosed on the basis of morphology and high expression of MYC. BL can be effectively treated in children and adolescents with short durations of high dose-intensity multiagent chemotherapy regimens. Adults are more susceptible to toxic effects but are effectively treated with chemotherapy, including modified versions of paediatric regimens. The outcomes in patients with BL are good in high-income countries with low mortality and few late effects, but in low-income and middle-income countries, BL is diagnosed late and is usually treated with less-effective regimens affecting the overall good outcomes in patients with this lymphoma.
Collapse
Affiliation(s)
- Cristina López
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Birgit Burkhardt
- Non-Hodgkin's Lymphoma Berlin-Frankfurt-Münster (NHL-BFM) Study Center and Paediatric Hematology, Oncology and BMT, University Hospital Muenster, Muenster, Germany
| | - John K C Chan
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Lorenzo Leoncini
- Section of Pathology, Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | | | | | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
9
|
Miyaoka M, Kikuti YY, Carreras J, Ito A, Ikoma H, Tomita S, Kawada H, Roncador G, Bea S, Campo E, Nakamura N. Copy Number Alteration and Mutational Profile of High-Grade B-Cell Lymphoma with MYC and BCL2 and/or BCL6 Rearrangements, Diffuse Large B-Cell Lymphoma with MYC-Rearrangement, and Diffuse Large B-Cell Lymphoma with MYC-Cluster Amplification. Cancers (Basel) 2022; 14:cancers14235849. [PMID: 36497332 PMCID: PMC9736204 DOI: 10.3390/cancers14235849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) with MYC alteration is classified as high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements (double/triple-hit lymphoma; DHL/THL), DLBCL with MYC rearrangement (single-hit lymphoma; SHL) and DLBCL with MYC-cluster amplification (MCAD). To elucidate the genetic features of DHL/THL, SHL, and MCAD, 23 lymphoma cases from Tokai University Hospital were analyzed. The series included 10 cases of DHL/THL, 10 cases of SHL and 3 cases of MCAD. The analysis used whole-genome copy number microarray analysis (OncoScan) and a custom-made next-generation sequencing (NGS) panel of 115 genes associated with aggressive B-cell lymphomas. The copy number alteration (CNA) profiles were similar between DHL/THL and SHL. MCAD had fewer CNAs than those of DHL/THL and SHL, except for +8q24. The NGS profile characterized DHL/THL with a higher "mutation burden" than SHL (17 vs. 10, p = 0.010), and the most relevant genes for DHL/THL were BCL2 and SOCS1, and for SHL was DTX1. MCAD was characterized by mutations of DDX3X, TCF3, HLA-A, and TP53, whereas MYC was unmutated. In conclusion, DHL/THL, SHL, and MCAD have different profiles.
Collapse
Affiliation(s)
- Masashi Miyaoka
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Yara Yukie Kikuti
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Joaquim Carreras
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
- Correspondence: ; Tel.: +81-046-393-1121
| | - Atsushi Ito
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Haruka Ikoma
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Sakura Tomita
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Hiroshi Kawada
- Department of Hematology/Oncology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Giovanna Roncador
- Monoclonal Antibodies Unit, Spanish National Cancer Research Center (Centro Nacional de Investigaciones Oncologicas, CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Silvia Bea
- Hematopathology Section, Molecular Pathology Laboratory, Department of Pathology, Hospital Clinic Barcelona, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), University of Barcelona, C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Elias Campo
- Hematopathology Section, Molecular Pathology Laboratory, Department of Pathology, Hospital Clinic Barcelona, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), University of Barcelona, C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Naoya Nakamura
- Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| |
Collapse
|
10
|
Mraz M. Genetic mechanism for the loss of PRAME in B cell lymphomas. J Clin Invest 2022; 132:160983. [PMID: 35838053 PMCID: PMC9282919 DOI: 10.1172/jci160983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Marek Mraz
- Molecular Medicine, CEITEC Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
11
|
Lacroix M, Beauchemin H, Fraszczak J, Ross J, Shooshtarizadeh P, Chen R, Moroy T. The X-linked helicase DDX3X is required for lymphoid differentiation and MYC-driven lymphomagenesis. Cancer Res 2022; 82:3172-3186. [PMID: 35815807 DOI: 10.1158/0008-5472.can-21-2454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
The X-linked gene DDX3X encodes an RNA helicase that is mutated at high frequencies in several types of human B-cell lymphoma. Females have two active DDX3X alleles and males carry a DDX3Y homolog on the Y chromosome. We show here that pan-hematopoietic, homozygous deletion of Ddx3x in female mice perturbs erythropoiesis, causing early developmental arrest. However, both hemizygous male and heterozygous female embryos develop normally, suggesting that one Ddx3x allele is sufficient for fetal hematopoietic development in females and that the Ddx3y allele can compensate for the loss of Ddx3x in males. In adult mice, DDX3X deficiency altered hematopoietic progenitors, early lymphoid development, marginal zone and germinal center B-cells, and lymphomagenesis in a sex-dependent manner. Loss of both Ddx3x alleles abrogated MYC-driven lymphomagenesis in females, while Ddx3x-deletion in males did not affect the formation of B-cell lymphoma in both mouse models. Moreover, tumors that appeared in male mice lacking DDX3X showed upregulated expression of DDX3Y, indicating a critical requirement for DDX3 activity for lymphomagenesis. These data reveal sex-specific roles of DDX3X in erythro- and lymphopoiesis as well as in MYC-driven lymphomagenesis.
Collapse
Affiliation(s)
- Marion Lacroix
- IRCM (Institut de Recherches Cliniques de Montr�al), Montreal, Quebec, Canada
| | | | | | - Julie Ross
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | | | | | - Tarik Moroy
- Institut de recherches cliniques de Montr�al, Montreal, Canada
| |
Collapse
|
12
|
Burkhardt B, Michgehl U, Rohde J, Erdmann T, Berning P, Reutter K, Rohde M, Borkhardt A, Burmeister T, Dave S, Tzankov A, Dugas M, Sandmann S, Fend F, Finger J, Mueller S, Gökbuget N, Haferlach T, Kern W, Hartmann W, Klapper W, Oschlies I, Richter J, Kontny U, Lutz M, Maecker-Kolhoff B, Ott G, Rosenwald A, Siebert R, von Stackelberg A, Strahm B, Woessmann W, Zimmermann M, Zapukhlyak M, Grau M, Lenz G. Clinical relevance of molecular characteristics in Burkitt lymphoma differs according to age. Nat Commun 2022; 13:3881. [PMID: 35794096 PMCID: PMC9259584 DOI: 10.1038/s41467-022-31355-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
While survival has improved for Burkitt lymphoma patients, potential differences in outcome between pediatric and adult patients remain unclear. In both age groups, survival remains poor at relapse. Therefore, we conducted a comparative study in a large pediatric cohort, including 191 cases and 97 samples from adults. While TP53 and CCND3 mutation frequencies are not age related, samples from pediatric patients showed a higher frequency of mutations in ID3, DDX3X, ARID1A and SMARCA4, while several genes such as BCL2 and YY1AP1 are almost exclusively mutated in adult patients. An unbiased analysis reveals a transition of the mutational profile between 25 and 40 years of age. Survival analysis in the pediatric cohort confirms that TP53 mutations are significantly associated with higher incidence of relapse (25 ± 4% versus 6 ± 2%, p-value 0.0002). This identifies a promising molecular marker for relapse incidence in pediatric BL which will be used in future clinical trials.
Collapse
Affiliation(s)
- Birgit Burkhardt
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany.
| | - Ulf Michgehl
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Jonas Rohde
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Tabea Erdmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Philipp Berning
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Katrin Reutter
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Marius Rohde
- Pediatric Hematology and Oncology, University Hospital Giessen, Giessen, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Burmeister
- Department of Hematology, Oncology and Tumor Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandeep Dave
- Center for Genomic and Computational Biology and Department of Medicine, Duke University, Durham, NC, USA
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Martin Dugas
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology and Comprehensive Cancer Centre Tübingen, University Hospital Tübingen, Eberhard-Karls-University, Tübingen, Germany
| | - Jasmin Finger
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Stephanie Mueller
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Münster, Germany
| | - Nicola Gökbuget
- Department of Medicine II, Goethe University, Frankfurt, Germany
| | | | | | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital of Münster, Münster, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ilske Oschlies
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Julia Richter
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Udo Kontny
- Section of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatric and Adolescent Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Mathias Lutz
- Hematology and Oncology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Britta Maecker-Kolhoff
- Hannover Medical School, Department of Pediatric Hematology and Oncology, Hannover, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Arend von Stackelberg
- Department of Pediatric Oncology Hematology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Brigitte Strahm
- Department of Pediatrics and Adolescent Medicine Division of Pediatric Hematology and Oncology, Medical Center Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wilhelm Woessmann
- Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Zimmermann
- Hannover Medical School, Department of Pediatric Hematology and Oncology, Hannover, Germany
| | - Myroslav Zapukhlyak
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Michael Grau
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
13
|
Latent Membrane Proteins from EBV Differentially Target Cellular Pathways to Accelerate MYC-induced Lymphomagenesis. Blood Adv 2022; 6:4283-4296. [PMID: 35605249 PMCID: PMC9327557 DOI: 10.1182/bloodadvances.2022007695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022] Open
Abstract
EBV LMP1 enhances MYC-mediated degradation of the p27kip1 tumor suppressor and accelerates MYC-induced lymphomagenesis. EBV LMP1 and LMP2A differentially use G1-specific cell cycle and BCR-mediated signaling to accelerate MYC-induced lymphomagenesis.
MYC translocations in association with Epstein-Barr virus (EBV) infection are often observed in B-cell lymphomas. A subset of Burkitt lymphoma (BL) expresses EBV latent membrane proteins 1 and 2A (LMP1 and LMP2A) in addition to the typical restricted EBV latent gene expression. EBV-associated diffuse large B-cell lymphoma (DLBCL) typically exhibits latency type II or III and expresses LMP1. Here, we investigate the role of LMP1 in MYC-driven lymphomagenesis in our murine model. λ-MYC mice develop tumors having a “starry sky” appearance and have abnormal p53 expression that is also observed in human BL. LMP2A/λ-MYC double-transgenic mice develop tumors significantly faster than mice only expressing MYC. Similar to LMP2A/λ-MYC mice, LMP1/λ-MYC mice also have accelerated MYC-driven lymphomagenesis. As observed in LMP2A/λ-MYC mice, p27kip1 was degraded in LMP1/λ-MYC pretumor and tumor B cells. Coexpression of LMP1 and LMP2A resulted in the enhancement of B cell proliferation. In contrast to LMP2A, the inhibition of Syk or cyclin-dependant kinase (CDK)4/6 activity did not effectively inhibit LMP1-mediated MYC lymphomagenesis. Also, in contrast to LMP2A, LMP1 did not lessen abnormal p53 expression in λ-MYC tumors. To investigate the significance of LMP1 expression in human BL development, we reanalyzed RNA sequencing (RNA-Seq) data of primary human BL from previous studies. Interestingly, p53 mutations were less observed in LMP1-expressing BL, although they were not significantly changed by EBV infection, indicating LMP1 may lessen p53 mutations in human primary BL. This suggests that LMP1 effects in EBV-associated human BL vary from what we observe in our murine model. Finally, our studies suggest a novel pathogenic role of LMP1 in lymphomagenesis.
Collapse
|
14
|
SHMT2 inhibition disrupts the TCF3 transcriptional survival program in Burkitt lymphoma. Blood 2022; 139:538-553. [PMID: 34624079 PMCID: PMC8938936 DOI: 10.1182/blood.2021012081] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/11/2021] [Indexed: 01/29/2023] Open
Abstract
Burkitt lymphoma (BL) is an aggressive lymphoma type that is currently treated by intensive chemoimmunotherapy. Despite the favorable clinical outcome for most patients with BL, chemotherapy-related toxicity and disease relapse remain major clinical challenges, emphasizing the need for innovative therapies. Using genome-scale CRISPR-Cas9 screens, we identified B-cell receptor (BCR) signaling, specific transcriptional regulators, and one-carbon metabolism as vulnerabilities in BL. We focused on serine hydroxymethyltransferase 2 (SHMT2), a key enzyme in one-carbon metabolism. Inhibition of SHMT2 by either knockdown or pharmacological compounds induced anti-BL effects in vitro and in vivo. Mechanistically, SHMT2 inhibition led to a significant reduction of intracellular glycine and formate levels, which inhibited the mTOR pathway and thereby triggered autophagic degradation of the oncogenic transcription factor TCF3. Consequently, this led to a collapse of tonic BCR signaling, which is controlled by TCF3 and is essential for BL cell survival. In terms of clinical translation, we also identified drugs such as methotrexate that synergized with SHMT inhibitors. Overall, our study has uncovered the dependency landscape in BL, identified and validated SHMT2 as a drug target, and revealed a mechanistic link between SHMT2 and the transcriptional master regulator TCF3, opening up new perspectives for innovative therapies.
Collapse
|
15
|
Kambhampati S, Song JY, Herrera AF, Chan WC. Barriers to achieving a cure in lymphoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:965-983. [PMID: 35582375 PMCID: PMC8992454 DOI: 10.20517/cdr.2021.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/08/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022]
Abstract
Lymphoma is a diverse disease with a variety of different subtypes, each characterized by unique pathophysiology, tumor microenvironment, and underlying signaling pathways leading to oncogenesis. With our increasing understanding of the molecular biology of lymphoma, there have been a number of novel targeted therapies and immunotherapy approaches that have been developed for the treatment of this complex disease. Despite rapid progress in the field, however, many patients still relapse largely due to the development of drug resistance to these therapies. A better understanding of the mechanisms underlying resistance is needed to develop more novel treatment strategies that circumvent these mechanisms and design better treatment algorithms that personalize therapies to patients and sequence these therapies in the most optimal manner. This review focuses on the recent advances in therapies in lymphoma, including targeted therapies, monoclonal antibodies, antibody-drug conjugates, cellular therapy, bispecific antibodies, and checkpoint inhibitors. We discuss the genetic and cellular principles of drug resistance that span across all the therapies, as well as some of the unique mechanisms of resistance that are specific to these individual classes of therapies and the strategies that have been developed to address these modes of resistance.
Collapse
Affiliation(s)
- Swetha Kambhampati
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Joo Y. Song
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Alex F. Herrera
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
16
|
Gong C, Krupka JA, Gao J, Grigoropoulos NF, Giotopoulos G, Asby R, Screen M, Usheva Z, Cucco F, Barrans S, Painter D, Zaini NBM, Haupl B, Bornelöv S, Ruiz De Los Mozos I, Meng W, Zhou P, Blain AE, Forde S, Matthews J, Khim Tan MG, Burke GAA, Sze SK, Beer P, Burton C, Campbell P, Rand V, Turner SD, Ule J, Roman E, Tooze R, Oellerich T, Huntly BJ, Turner M, Du MQ, Samarajiwa SA, Hodson DJ. Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis. Mol Cell 2021; 81:4059-4075.e11. [PMID: 34437837 DOI: 10.1016/j.molcel.2021.07.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/17/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression.
Collapse
Affiliation(s)
- Chun Gong
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Joanna A Krupka
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK; MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge CB2 0XZ, UK
| | - Jie Gao
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | | | - George Giotopoulos
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Ryan Asby
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Michael Screen
- Immunology Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Zelvera Usheva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Francesco Cucco
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Sharon Barrans
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK
| | - Daniel Painter
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK
| | | | - Björn Haupl
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Susanne Bornelöv
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Igor Ruiz De Los Mozos
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Wei Meng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, Singapore
| | - Peixun Zhou
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Alex E Blain
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Sorcha Forde
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Jamie Matthews
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Michelle Guet Khim Tan
- Department of Clinical Translational Research, Singapore General Hospital, Outram Road, Singapore 169856, Singapore
| | - G A Amos Burke
- Department of Paediatric Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, Singapore
| | - Philip Beer
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Cathy Burton
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK
| | - Peter Campbell
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Vikki Rand
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK; School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK; CEITEC, Masaryk University, Brno, Czech Republic
| | - Jernej Ule
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Eve Roman
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York YO10 5DD, UK
| | - Reuben Tooze
- Haematological Malignancy Diagnostic Service, St. James's Institute of Oncology, Leeds LS9 7TF, UK; Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Oellerich
- Department of Medicine II, Hematology/Oncology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Brian J Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Ming-Qing Du
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge CB20QQ, UK
| | - Shamith A Samarajiwa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge CB2 0XZ, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
17
|
Richter J, John K, Staiger AM, Rosenwald A, Kurz K, Michgehl U, Ott G, Franzenburg S, Kohler C, Finger J, Oschlies I, Paul U, Siebert R, Spang R, Burkhardt B, Klapper W. Epstein-Barr virus status of sporadic Burkitt lymphoma is associated with patient age and mutational features. Br J Haematol 2021; 196:681-689. [PMID: 34617271 DOI: 10.1111/bjh.17874] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022]
Abstract
Sporadic Burkitt lymphoma (BL) is the most frequent tumour of children and adolescents but a rare subtype of lymphomas in adults. To date most molecular data have been obtained from lymphomas arising in the young. Recently, Epstein-Barr virus (EBV) positive and negative BL in young patients was shown to differ in molecular features. In the present study, we present a large age-overarching cohort of sporadic BL (n = 162) analysed by immunohistochemistry, translocations of MYC proto-oncogene, basic helix-loop-helix transcription factor (MYC), B-cell leukaemia/lymphoma 2 (BCL2) and B-cell leukaemia/lymphoma 6 (BCL6) and by targeted sequencing. We illustrate an age-associated inter-tumoral molecular heterogeneity in this disease. Mutations affecting inhibitor of DNA binding 3, HLH protein (ID3), transcription factor 3 (TCF3) and cyclin D3 (CCND3), which are highly recurrent in paediatric BL, and expression of sex determining region Y-box transcription factor 11 (SOX11) declined with patient age at diagnosis (P = 0·0204 and P = 0·0197 respectively). In contrast, EBV was more frequently detected in adult patients (P = 0·0262). Irrespective of age, EBV-positive sporadic BL showed significantly less frequent mutations in ID3/TCF3/CCND3 (P = 0·0088) but more often mutations of G protein subunit alpha 13 (GNA13; P = 0·0368) and forkhead box O1 (FOXO1; P = 0·0044) compared to EBV-negative tumours. Our findings suggest that among sporadic BL an EBV-positive subgroup of lymphomas increases with patient age that shows distinct pathogenic features reminiscent of EBV-positive endemic BL.
Collapse
Affiliation(s)
- Julia Richter
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Katharina John
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany.,Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tuebingen, Tuebingen, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University Würzburg and Comprehensive Cancer Mainfranken, Würzburg, Germany
| | - Katrin Kurz
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Ulf Michgehl
- Pediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Sören Franzenburg
- Institute for Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Christian Kohler
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Jasmin Finger
- Pediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - Ilske Oschlies
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Ulrike Paul
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Rainer Spang
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Hospital Muenster, Muenster, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
18
|
Eraslan Z, Papatzikas G, Cazier JB, Khanim FL, Günther UL. Targeting Asparagine and Serine Metabolism in Germinal Centre-Derived B Cells Non-Hodgkin Lymphomas (B-NHL). Cells 2021; 10:cells10102589. [PMID: 34685569 PMCID: PMC8533740 DOI: 10.3390/cells10102589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
BL and DLBCL are subtypes of B-cell lymphomas that arise from germinal centre B lymphocytes. Differentiation between BL and DLBCL is critical and can be challenging, as these two types of cancer share the same morphological, immunophenotypic, and genetic characteristics. In this study, we have examined metabolism in BL and DLBCL lymphomas and found distinctive differences in serine metabolism. We show that BL cells consume significantly more extracellular asparagine than DLBCL cells. Using a tracer-based approach, we find that asparagine regulates the serine uptake and serine synthesis in BL and DLBCL cells. Calculation of Differentially Expressed Genes (DEGs) from RNAseq datasets of BL and DLBCL patients show that BL cancers express the genes involved in serine synthesis at a higher level than DLBCL. Remarkably, combined use of an inhibitor of serine biosynthesis pathway and an anticancer drug asparaginase increases the sensitivity of BL cells to extracellular asparagine deprivation without inducing a change in the sensitivity of DLBCL cells to asparaginase. In summary, our study unravels metabolic differences between BL and DLBCL with diagnostic potential which may also open new avenues for treatment.
Collapse
Affiliation(s)
- Zuhal Eraslan
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (Z.E.); (F.L.K.)
| | - Grigorios Papatzikas
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (G.P.); (J.-B.C.)
- Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Jean-Baptiste Cazier
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK; (G.P.); (J.-B.C.)
- Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, UK
| | - Farhat L. Khanim
- Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (Z.E.); (F.L.K.)
| | - Ulrich L. Günther
- Institute for Chemistry and Metabolomics, University of Lübeck, 23562 Lübeck, Germany
- Correspondence:
| |
Collapse
|
19
|
Defining and Treating High-grade B-cell lymphoma, NOS. Blood 2021; 140:943-954. [PMID: 34525177 DOI: 10.1182/blood.2020008374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
High-grade B-cell lymphoma, not otherwise specified (HGBL, NOS) is a recently introduced diagnostic category for aggressive B-cell lymphomas. It includes tumors with Burkitt-like or blastoid morphology that do not have double-hit cytogenetics and that cannot be classified as other well-defined lymphoma subtypes. HBCL, NOS are rare and heterogeneous; most have germinal center B-cell phenotype, and up to 45% carry a single-hit MYC rearrangement, but otherwise they have no unifying immunophenotypic or cytogenetic characteristics. Recent analyses utilizing gene expression profiling (GEP) revealed that up to 15% of tumors currently classified as diffuse large B-cell lymphoma display a HGBL-like GEP signature, indicating a potential to significantly expand the HGBL category using more objective molecular criteria. Optimal treatment of HGBL, NOS is poorly defined due to its rarity and inconsistent diagnostic patterns. A minority of patients have early-stage disease which can be managed with standard RCHOP-based approaches with or without radiation. For advanced-stage HGBL, NOS, which often presents with aggressive, disseminated disease, high lactate dehydrogenase, and involvement of extranodal organs (including the central nervous system [CNS]), intensified Burkitt lymphoma-like regimens with CNS prophylaxis may be appropriate. However, many patients diagnosed at age > 60 years are not eligible for intensive immunochemotherapy. An improved, GEP and/or genomic-based pathologic classification that could facilitate HGBL-specific trials is needed to improve outcomes for all patients. In this review, we discuss the current clinicopathologic concept of HGBL, NOS, existing data on its prognosis and treatment, and delineate potential future taxonomy enrichments based on emerging molecular diagnostics.
Collapse
|
20
|
Molecular Genetics in Epstein-Barr Virus-Associated Malignancies. Life (Basel) 2021; 11:life11070593. [PMID: 34206255 PMCID: PMC8306230 DOI: 10.3390/life11070593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/21/2022] Open
Abstract
Global genomic studies have detected the role of genomic alterations in the pathogenesis of Epstein–Barr virus (EBV)-associated tumors. EBV oncoproteins cause a vital shift of EBV from an infectious virus to an oncogenic form during the latent and lytic phase within the lymphoid B cells and epithelial cells. This epigenetic alteration modulates the virus and host genomes and inactivates and disrupts numerous tumor suppressors and signaling pathways. Genomic profiling has played the main role in identifying EBV cancer pathogenesis and its related targeted therapies. This article reviews the role of genetic changes in EBV-associated lymphomas and carcinomas. This includes the prolific molecular genesis, key diagnostic tools, and target-specific drugs that have been in recent clinical use.
Collapse
|
21
|
Wang Z, Chen M, Fang X, Hong H, Yao Y, Huang H. KIF15 is involved in development and progression of Burkitt lymphoma. Cancer Cell Int 2021; 21:261. [PMID: 33985517 PMCID: PMC8117549 DOI: 10.1186/s12935-021-01967-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/30/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Burkitt lymphoma (BL) is a highly aggressive, fast-growing B-cell non-Hodgkin's lymphoma, manifested in several subtypes, including sporadic, endemic, and immunodeficiency-related forms, the mechanism of which is still not clear. Abundant evidence reported that KIF15 was involved in the progression of human cancer. The emphasis of this study is to explore the functions of KIF15 in the development of BL. METHODS Firstly, tumor and normal tissues were collected for detecting expression of KIF15 in BL. Lentivirus-mediated shRNA knockdown of KIF15 was used to construct BL cell model, which was verified by qRT-PCR and Western Blot. The cell proliferation was detected by CCK8 assay, cell apoptosis and cell cycle were measured through flow cytometry. Transwell assay was conducted to detect the migration. RESULTS We first found that KIF15 is highly expressed in BL. Knockdown of KIF15 can inhibit proliferation and migration, promote apoptosis and arrest the cell cycle. Moreover, KIF15 is involved in BL cell activity through regulating expression of apoptosis-related proteins (Caspase3, Caspase8, HTRA, IGFBP-6, p53, SMAC, sTNF-R1, TNF-β and Bcl-2) and downstream pathways, such as p-Akt, CCND1, CDK6 and PIK3CA. CONCLUSIONS These findings justify the search for small molecule inhibitors targeting KIF15 as a novel therapeutic strategy in BL.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, 651 Dong feng East Road, Guangzhou, 510060, Guangdong, China
| | - Meiting Chen
- Department of Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, 651 Dong feng East Road, Guangzhou, 510060, Guangdong, China
| | - Xiaojie Fang
- Department of Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, 651 Dong feng East Road, Guangzhou, 510060, Guangdong, China
| | - Huangming Hong
- Department of Medical Oncology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, 107 Yanjiang West Road, Guangzhou, 510120, Guangdong, China
| | - Yuyi Yao
- Department of Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, 651 Dong feng East Road, Guangzhou, 510060, Guangdong, China
| | - He Huang
- Department of Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, and Collaborative Innovation Center of Cancer Medicine, 651 Dong feng East Road, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
22
|
Yamashita T, Vollbrecht C, Hirsch B, Kleo K, Anagnostopoulos I, Hummel M. Integrative genomic analysis focused on cell cycle genes for MYC-driven aggressive mature B-cell lymphoma. J Clin Exp Hematop 2021; 60:87-96. [PMID: 32981916 PMCID: PMC7596913 DOI: 10.3960/jslrt.20021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MYC is a transcriptional factor that regulates growth and proliferation through cell
cycle pathways. MYC alterations, in particular MYC rearrangements, are
important in assessing the prognosis of aggressive B-cell lymphoma. In this study, we
focused on the impact of nine major cell cycle genes for MYC-driven aggressive mature
B-cell lymphoma and analyzed the mutational status using targeted next generation
sequencing. Our 40 cases of aggressive mature B-cell lymphomas included 5 Burkitt
lymphomas, 17 high-grade B-cell lymphomas and 18 diffuse large B-cell lymphomas with MYC
breaks in 100%, 88% and 11%, respectively. Our data allowed a molecular classification
into four categories partially independent from the histopathological diagnosis but
correlating with the Ki-67 labelling index: (I) harboring TP53 and
CDKN2A mutations, being highly proliferative, (II) with
MYC rearrangement associated with MYC and/or
ID3 mutations, being highly proliferative, (III) with
MYC rearrangement combined with additional molecular changes, being
highly proliferative, and (IV) with a diverse pattern of molecular alterations, being less
proliferative. Taken together, we found that mutations of TP53,
CDKN2A, MYC and ID3 are associated
with highly proliferative B-cell lymphomas that could profit from novel therapeutic
strategies.
Collapse
Affiliation(s)
- Takahisa Yamashita
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany.,Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Claudia Vollbrecht
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Burkhard Hirsch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Karsten Kleo
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Ioannis Anagnostopoulos
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Michael Hummel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| |
Collapse
|
23
|
Wu J, He Z, Zhu Y, Jiang C, Deng Y, Wei B. ASPM Predicts Poor Clinical Outcome and Promotes Tumorigenesis for Diffuse Large B-cell Lymphoma. Curr Cancer Drug Targets 2021; 21:80-89. [PMID: 32933462 DOI: 10.2174/1568009620666200915090703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Abnormal spindle-like microcephaly-associated protein (ASPM) has been implicated in the aggressive behavior of several malignant tumors. However, its potential effects on diffuse large B-cell lymphoma (DLBCL) still remain unknown. METHODS ASPM levels were determined by immunohistochemically in DLBCL tissues from 54 patients and 15 reactive lymphoid hyperplasia (RLH) tissues as control, and its association with clinical features and overall survival were evaluated. The effects of ASPM on cell growth, cell apoptosis and cell cycle of DLBCL cells were assessed. Bioinformatics, quantitative RT-PCR and western blotting were conducted for mechanic investigation. RESULTS ASPM expression was upregulated in DLBCL tissues compared with RLH tissues. Its high expression was correlated with inferior clinicopathological characteristics and poor outcomes of DLBCL patients. Multivariate analysis revealed that high ASPM expression emerged as an independent factor for poor prognosis. In DLBCL cell lines, silencing of ASPM suppressed cell growth, induced cell apoptosis and arrested the cell cycle. Mechanically, effects of ASPM knockdown on DLBCL cells were partially dependent on its block of the Wnt/β-catenin pathway. CONCLUSION Collectively, our results suggested that ASPM potentially served as a predictive biomarker of DLCBL tumorigenesis and prognosis, representing a potential therapeutic target for DLCBL.
Collapse
Affiliation(s)
- Jingjing Wu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Zhengmei He
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Yaning Zhu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Chao Jiang
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Yuan Deng
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| | - Bin Wei
- Department of Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an 223300, China
| |
Collapse
|
24
|
Zhang J, Meng L, Jiang W, Zhang H, Zhou A, Zeng N. Identification of clinical molecular targets for childhood Burkitt lymphoma. Transl Oncol 2020; 13:100855. [PMID: 32947237 PMCID: PMC7502376 DOI: 10.1016/j.tranon.2020.100855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Burkitt lymphoma (BL) is a malignant tumor in children. Although BL is generally curable, early relapse and refractoriness may occur. Some molecular indicators have been recently suggested for BL diagnosis, but large heterogeneity still exists. This study aimed at providing clinical molecular targets and methods that may help improve diagnosis and treatment of childhood BL. Only children patients were included in the study, and targeted gene sequencing was conducted to identify tumor specific mutations. The mRNA and protein level expression of potential target genes were measured by real-time PCR and immunohistochemistry. The relationship between BL specific gene mutation and differential expression with clinical features was analyzed. The results showed that i) detailed analysis of c-MYC/BCL2/BCL6 gene loci alteration and gene expression would help in accurate diagnosis and treatment determination of childhood BL; ii) loss-of-function mutations in SOCS1 or CIITA gene might be used as malignant markers for BL diagnosis and prognosis; iii) specific mutations of CD79A, MYD88, KLF2, DNMT3A and NFKBIE genes often concurrently existed in BL and showed association with benign clinical outcomes; iv) the high expression of MYC, TCF3 and loss-of-function ID3 genes in tumor may be potential therapeutic targets and could be used for treatment monitoring; and v) four MYC-translocation negative cases were re-defined as high-grade B-cell lymphoma-not otherwise specified (HGBL-NOS) but showed similar clinical outcomes and molecular features to other BL cases in the study, suggesting more studies needed to explore the molecular mechanisms and clinical significance of this provisional tumor entity. Detailed analysis of c-MYC/BCL2/BCL6 gene alteration and expression may help in accurate diagnosis and treatment; The MYC-translocation negative cases (HGBL-NOS) showed similar clinical outcomes and molecular features to other cases; Loss-of-function mutations of SOCS1 or CIITA gene could be used as malignant markers for diagnosis and prognosis; Concurrent mutations in CD79A, MYD88, KLF2, DNMT3A and NFKBIE genes associated with benign clinical outcomes; High expression of MYC, TCF3 and loss-of-function ID3 gene in tumor may be potential therapeutic targets.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Leijun Meng
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai 200040, China
| | - Weiyun Jiang
- Yu Kang Biotechnology Co., Ltd, Jiaxing 314100, Zhejiang, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai 200040, China
| | - Aiwu Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Naiyan Zeng
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
25
|
Zhang W, Yang L, Guan YQ, Shen KF, Zhang ML, Cai HD, Wang JC, Wang Y, Huang L, Cao Y, Wang N, Tan XH, Young KH, Xiao M, Zhou JF. Novel bioinformatic classification system for genetic signatures identification in diffuse large B-cell lymphoma. BMC Cancer 2020; 20:714. [PMID: 32736575 PMCID: PMC7393908 DOI: 10.1186/s12885-020-07198-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is a spectrum of disease comprising more than 30% of non-Hodgkin lymphomas. Although studies have identified several molecular subgroups, the heterogeneous genetic background of DLBCL remains ambiguous. In this study we aimed to develop a novel approach and to provide a distinctive classification system to unravel its molecular features. Method A cohort of 342 patient samples diagnosed with DLBCL in our hospital were retrospectively enrolled in this study. A total of 46 genes were included in next-generation sequencing panel. Non-mutually exclusive genetic signatures for the factorization of complex genomic patterns were generated by random forest algorithm. Results A total of four non-mutually exclusive signatures were generated, including those with MYC-translocation (MYC-trans) (n = 62), with BCL2-translocation (BCL2-trans) (n = 69), with BCL6-translocation (BCL6-trans) (n = 108), and those with MYD88 and/or CD79B mutations (MC) signatures (n = 115). Comparison analysis between our model and traditional mutually exclusive Schmitz’s model demonstrated consistent classification pattern. And prognostic heterogeneity existed within EZB subgroup of de novo DLBCL patients. As for prognostic impact, MYC-trans signature was an independent unfavorable prognostic factor. Furthermore, tumors carrying three different signature markers exhibited significantly inferior prognoses compared with their counterparts with no genetic signature. Conclusion Compared with traditional mutually exclusive molecular sub-classification, non-mutually exclusive genetic fingerprint model generated from our study provided novel insight into not only the complex genetic features, but also the prognostic heterogeneity of DLBCL patients.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Li Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Yu' Qi Guan
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Ke' Feng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Mei' Lan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Hao' Dong Cai
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Jia' Chen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Ying Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Xiao' Hong Tan
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, Guangxi, 530021, P.R. China
| | - Ken He Young
- Department of Pathology, The University of Duke, Durham, North Carolina, USA
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China.
| | - Jian' Feng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| |
Collapse
|
26
|
Xie Y, Wang T, Wang L. Hydroa vacciniforme-like lymphoproliferative disorder: A study of clinicopathology and whole-exome sequencing in Chinese patients. J Dermatol Sci 2020; 99:128-134. [PMID: 32682634 DOI: 10.1016/j.jdermsci.2020.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Hydroa vacciniforme-like lymphoproliferative disorder (HVLPD) encompasses a rare group of Epstein-Barr virus (EBV)-associated lymphoproliferative diseases. OBJECTIVE To define the clinical and pathologic characteristics of HVLPD and to identify mutant genes that may be related to the development of HVLPD. METHODS Clinical data and archived formalin-fixed, paraffin-embedded tissue were obtained from 19 patients. Specimens were analyzed by immunohistochemistry and in situ hybridization to detect EBV-encoded RNA (EBER1/2) and for T cell receptor (TCR) gene rearrangements. Whole-exome sequencing (WES) analysis was also performed in this study. RESULTS Thirteen patients survived between 3-58 months (median, 21 months) during the follow-up. Six patients who were almost adults (>15 years old) and died of the disease presented with facial edema. Lactate dehydrogenase (LDH) levels were elevated, and the TCR gene rearrangement test was positive more frequently in the patients who died. Compared with Chinese patients in a similar previous report, our patients had significantly higher proliferation (in all cases, the Ki-67 index was greater than 10 %) and a more aggressive clinical course. Moreover, after WES and Sanger verification, STAT3, IKBKB, ELF3, CHD7, KMT2D, ELK1, RARB and HPGDS were screened out in our patients. CONCLUSIONS HVLPD refers to a heterogeneous group of cutaneous lymphoproliferative diseases with different clinical and pathological features that affect patient outcomes. Gene mutations may be correlated with the development of HVLPD, and our study may provide new therapeutic targets for HVLPD.
Collapse
Affiliation(s)
- Yao Xie
- Department of Dermatovenerology, West China Hospital, Sichuan University Chengdu, China
| | - Tingting Wang
- Department of Dermatovenerology, West China Hospital, Sichuan University Chengdu, China
| | - Lin Wang
- Department of Dermatovenerology, West China Hospital, Sichuan University Chengdu, China.
| |
Collapse
|
27
|
Mintz MA, Cyster JG. T follicular helper cells in germinal center B cell selection and lymphomagenesis. Immunol Rev 2020; 296:48-61. [PMID: 32412663 PMCID: PMC7817257 DOI: 10.1111/imr.12860] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
Germinal centers (GCs) are confined anatomic regions where rapidly proliferating B cells undergo somatic mutation and selection and eventual differentiation into memory B cells or long-lived plasma cells. GCs are also the origin of malignancy, namely follicular lymphoma (FL), GC B cell-diffuse large B cell lymphoma (GCB-DLBCL), and Burkitt lymphoma (BL). GC B cell lymphomas maintain their GC transcriptional signatures and sustain many features of the GC microenvironment, including CD4+ T follicular helper (Tfh) cells. Tfh cells are essential for the formation and maintenance of GCs, providing critical helper signals such as CD40L. Large-scale sequencing efforts have led to new insights about the tightly regulated selection mechanisms that are commonly targeted during GC B cell lymphomagenesis. For instance, HVEM, a frequently mutated surface molecule in GC-derived lymphomas, engages the inhibitory receptor BTLA on Tfh cells and loss of HVEM leads to exaggerated T cell help. Here, we review current understanding of how Tfh cells contribute to the selection of GC B cells, with a particular emphasis on how Tfh cell signals may contribute to lymphomagenesis. The possibility of targeting Tfh cells for the treatment of GC-derived lymphomas is discussed.
Collapse
Affiliation(s)
- Michelle A Mintz
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Jason G Cyster
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| |
Collapse
|
28
|
Jain N, Hartert K, Tadros S, Fiskus W, Havranek O, Ma MCJ, Bouska A, Heavican T, Kumar D, Deng Q, Moore D, Pak C, Liu CL, Gentles AJ, Hartmann E, Kridel R, Smedby KE, Juliusson G, Rosenquist R, Gascoyne RD, Rosenwald A, Giancotti F, Neelapu SS, Westin J, Vose JM, Lunning MA, Greiner T, Rodig S, Iqbal J, Alizadeh AA, Davis RE, Bhalla K, Green MR. Targetable genetic alterations of TCF4 ( E2-2) drive immunoglobulin expression in diffuse large B cell lymphoma. Sci Transl Med 2020; 11:11/497/eaav5599. [PMID: 31217338 DOI: 10.1126/scitranslmed.aav5599] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/31/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
The activated B cell (ABC-like) subtype of diffuse large B cell lymphoma (DLBCL) is characterized by chronic activation of signaling initiated by immunoglobulin μ (IgM). By analyzing the DNA copy number profiles of 1000 DLBCL tumors, we identified gains of 18q21.2 as the most frequent genetic alteration in ABC-like DLBCL. Using integrative analysis of matched gene expression profiling data, we found that the TCF4 (E2-2) transcription factor gene was the target of these alterations. Overexpression of TCF4 in ABC-like DLBCL cell lines led to its occupancy on immunoglobulin (IGHM) and MYC gene enhancers and increased expression of these genes at the transcript and protein levels. Inhibition of TCF4 activity with dominant-negative constructs was synthetically lethal to ABC-like DLBCL cell lines harboring TCF4 DNA copy gains, highlighting these gains as an attractive potential therapeutic target. Furthermore, the TCF4 gene was one of the top BRD4-regulated genes in DLBCL cell lines. BET proteolysis-targeting chimera (PROTAC) ARV771 extinguished TCF4, MYC, and IgM expression and killed ABC-like DLBCL cells in vitro. In DLBCL xenograft models, ARV771 treatment reduced tumor growth and prolonged survival. This work highlights a genetic mechanism for promoting immunoglobulin signaling in ABC-like DLBCL and provides a functional rationale for the use of BET inhibitors in this disease.
Collapse
Affiliation(s)
- Neeraj Jain
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Keenan Hartert
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Saber Tadros
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Warren Fiskus
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ondrej Havranek
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Man Chun John Ma
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alyssa Bouska
- Department of Pathology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tayla Heavican
- Department of Pathology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dhiraj Kumar
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qing Deng
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dalia Moore
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christine Pak
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chih Long Liu
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Andrew J Gentles
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Elena Hartmann
- Institute of Pathology, University of Würzburg, Würzburg 97080, Germany.,Comprehensive Cancer Center Mainfranken, Wurzburg 97080, Germany
| | - Robert Kridel
- Princess Margaret Cancer Center, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Karin Ekstrom Smedby
- Department of Medicine, Solna, Clinical Epidemiology Unit, Karolinska Institutet, and Hematology Center, Karolinska University Hospital, Stockholm SE-171 76, Sweden
| | - Gunnar Juliusson
- Department of Laboratory Medicine, Stem Cell Center, Lund University, Lund SE-221 00, Sweden
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Universitetssjukhuset, Stockholm SE-171 76, Sweden
| | - Randy D Gascoyne
- Center for Lymphoid Cancer, British Columbia Cancer Agency, Vancouver, BC V5Z 4E6, Canada
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, Würzburg 97080, Germany.,Comprehensive Cancer Center Mainfranken, Wurzburg 97080, Germany
| | - Filippo Giancotti
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sattva S Neelapu
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jason Westin
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Julie M Vose
- Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Matthew A Lunning
- Division of Hematology and Oncology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Timothy Greiner
- Department of Pathology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Scott Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Javeed Iqbal
- Department of Pathology and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ash A Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - R Eric Davis
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kapil Bhalla
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael R Green
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. .,Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
29
|
Reconstructing clonal evolution in relapsed and non-relapsed Burkitt lymphoma. Leukemia 2020; 35:639-643. [PMID: 32404974 PMCID: PMC8318876 DOI: 10.1038/s41375-020-0862-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/29/2023]
|
30
|
Indolent In Situ B-Cell Neoplasms With MYC Rearrangements Show Somatic Mutations in MYC and TNFRSF14 by Next-generation Sequencing. Am J Surg Pathol 2020; 43:1720-1725. [PMID: 31368914 DOI: 10.1097/pas.0000000000001338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Systemic high-grade B-cell lymphomas (HGBCLs) with MYC gene rearrangements are clinically aggressive. In situ lesions with indolent behavior have not been described to date. We have identified 2 cases of in situ B-cell neoplasms with MYC rearrangements (IS-BCN, MYC) occurring, and focally confined to ≤4 lymphoid follicles in otherwise healthy individuals and without clinical progression despite minimal intervention (surgical only). Morphologically similar to systemic HGBCLs, the low power view of these lesions showed a starry sky pattern with numerous mitotic figures. High power imaging demonstrated these cells to be medium-large in size with irregular nuclear contours, immature chromatin, and prominent nucleoli. Immunophenotypically these cells were light chain restricted, positive for CD20, CD10, c-Myc, and dim or negative for BCL2 with a Ki67 proliferative index of >95%. By fluorescence in situ hybridization studies, we detected MYC translocations in these cells but no rearrangements in BCL2 or BCL6. Microdissection of neoplastic cells in these patients followed by targeted next-generation sequencing identified a mutation in MYC, D2N, and an indel in TNFRSF14. Mutations in ID3 or TCF3 were not identified. Although rare, these lesions should be separated from HGBCLs involving follicles but with systemic spread which has been previously described. Unlike systemic lymphomas with MYC gene rearrangements, these in situ B-cell neoplasms with MYC rearrangements did not require systemic therapy and no progression has been seen in either patient beyond 1 year (29 and 16 mo). Our work offers pathologic and biologic insight into the early process of B-cell neoplasia.
Collapse
|
31
|
Wright GW, Huang DW, Phelan JD, Coulibaly ZA, Roulland S, Young RM, Wang JQ, Schmitz R, Morin RD, Tang J, Jiang A, Bagaev A, Plotnikova O, Kotlov N, Johnson CA, Wilson WH, Scott DW, Staudt LM. A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications. Cancer Cell 2020; 37:551-568.e14. [PMID: 32289277 PMCID: PMC8459709 DOI: 10.1016/j.ccell.2020.03.015] [Citation(s) in RCA: 601] [Impact Index Per Article: 150.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/03/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022]
Abstract
The development of precision medicine approaches for diffuse large B cell lymphoma (DLBCL) is confounded by its pronounced genetic, phenotypic, and clinical heterogeneity. Recent multiplatform genomic studies revealed the existence of genetic subtypes of DLBCL using clustering methodologies. Here, we describe an algorithm that determines the probability that a patient's lymphoma belongs to one of seven genetic subtypes based on its genetic features. This classification reveals genetic similarities between these DLBCL subtypes and various indolent and extranodal lymphoma types, suggesting a shared pathogenesis. These genetic subtypes also have distinct gene expression profiles, immune microenvironments, and outcomes following immunochemotherapy. Functional analysis of genetic subtype models highlights distinct vulnerabilities to targeted therapy, supporting the use of this classification in precision medicine trials.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Cell Proliferation
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Genetic Heterogeneity
- Humans
- Lymphoma, Large B-Cell, Diffuse/classification
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Molecular Targeted Therapy
- Precision Medicine
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandrine Roulland
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Q Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Roland Schmitz
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Jeffrey Tang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Aixiang Jiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | | | | | - Calvin A Johnson
- Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David W Scott
- British Columbia Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Zayac AS, Olszewski AJ. Burkitt lymphoma: bridging the gap between advances in molecular biology and therapy. Leuk Lymphoma 2020; 61:1784-1796. [PMID: 32255708 DOI: 10.1080/10428194.2020.1747068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genomic studies have revealed molecular mechanisms involved in the pathogenesis of Burkitt's lymphoma, including the ID3/TCF3-dependent centroblast gene expression program, tonic PI3K-AKT-mTOR signaling, and deregulation of cell cycle and apoptosis through mutations in cyclin D3, CDKN2A, or TP53. Unfortunately, these advances have not been translated into treatment, which relies on dose-intense cytotoxic chemotherapy. While most patients achieve long-term survival, options for relapsed/refractory disease are lacking, as Burkitt lymphoma is often excluded from clinical trials of novel approaches. The lower-intensity, dose-adjusted EPOCH plus rituximab (DA-EPOCH-R) regimen constitutes a major advance allowing for treatment of older and HIV-positive patients but needs augmentation to better address the central nervous system involvement. Furthermore, DA-EPOCH-R provides a platform for the study of targeted or immunotherapeutic approaches while de-escalating cytotoxic agents and their associated adverse effects. In this review we discuss the epidemiology and molecular genetics of BL, first-line treatment considerations, and potential novel treatment strategies.
Collapse
Affiliation(s)
- Adam S Zayac
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Division of Hematology-Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Adam J Olszewski
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.,Division of Hematology-Oncology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
33
|
|
34
|
Zhang L, Brown LE, Bowen LM, McCarthy LC, Cooley LD, Repnikova E, Gener MA, Garola R, August KJ, Hays JA, Zwick DL, Li W. Application of 2016 WHO classification in the diagnosis of paediatric high-grade MYC-negative mature B-cell lymphoma with Burkitt-like morphological features. J Clin Pathol 2020; 73:563-570. [PMID: 31964683 DOI: 10.1136/jclinpath-2019-206267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/27/2019] [Accepted: 01/03/2020] [Indexed: 12/29/2022]
Abstract
AIMS Historically, there has been no consensus on the diagnostic classification of high-grade B-cell lymphoma (HGBCL) with morphological features of Burkitt lymphoma (BL) but no MYC gene rearrangement (MYC-negative). The 2016 WHO classification of tumours of haematopoietic and lymphoid tissues has shed some light on this field with the modification of the grey-zone lymphoma with features intermediate between BL and diffuse large B-cell lymphoma, and the creation of several new entities. The aim of this study was to investigate how the revised WHO classification affects our practice in diagnosing these lymphomas in children. METHODS We retrospectively reviewed cases of mature HGBCL diagnosed at our hospital between 2015 and 2018. RESULTS Among 14 mature HGBCL cases with BL morphological features, 11 showed MYC rearrangement consistent with BL and 3 were MYC-negative. Two MYC-negative cases showed regions of 11q gain and loss by microarray consistent with Burkitt-like lymphoma with 11q aberration (BLL-11q). The third MYC-negative case showed diffuse and strong MUM1 expression, translocation involving 6p25 by chromosome analysis and IRF4 rearrangement by fluorescence in situ hybridisation analysis consistent with large B-cell lymphoma with IRF4 rearrangement (LBL-IRF4). All patients were treated according to applicable chemotherapeutic protocols and achieved remission. CONCLUSIONS BLL-11q and LBL-IRF4, two newly defined entities, should be considered in paediatric MYC-negative mature HGBCL cases. Accurate diagnosis needs careful histopathological examination and proper cytogenetic testing. Since they have unique cytogenetic features, specific treatments for them may emerge in the future. Therefore, accurate diagnosis based on the 2016 WHO classification is clinically significant.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Laura E Brown
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA.,Department of Pathology and Laboratory Medicine, University of Kansas, Kansas City, Kansas, USA
| | - Laurel M Bowen
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Laura C McCarthy
- Division of Hematology/Oncology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Linda D Cooley
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Elena Repnikova
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Melissa A Gener
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Robert Garola
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - Keith J August
- Division of Hematology/Oncology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - J Allyson Hays
- Division of Hematology/Oncology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| | - David L Zwick
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Weijie Li
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals and Clinics, Kansas City, Missouri, USA
| |
Collapse
|
35
|
Tanaka Y, Momose S, Tabayashi T, Sawada K, Yamashita T, Higashi M, Sagawa M, Tokuhira M, Rosenwald A, Kizaki M, Tamaru JI. Abemaciclib, a CDK4/6 inhibitor, exerts preclinical activity against aggressive germinal center-derived B-cell lymphomas. Cancer Sci 2020; 111:749-759. [PMID: 31849147 PMCID: PMC7004541 DOI: 10.1111/cas.14286] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
The revised WHO classification newly defined the entities “High‐grade B‐cell lymphoma with MYC and BCL2, and/or BCL6 rearrangements (HGBL‐DH/TH)” and “HGBL, NOS.” Standard immunochemotherapy for diffuse large B‐cell lymphoma (DLBCL), R‐CHOP, is insufficient for HGBL patients, and there are currently no optimized therapeutic regimens for HGBL. We previously reported that CCND3, which encodes cyclin D3, harbored high mutation rates in Burkitt lymphoma (BL), HGBL and a subset of DLBCL. Furthermore, the knockdown of cyclin D3 expression was toxic to germinal center (GC)‐derived B‐cell lymphomas. Thus, the fundamental function of cyclin D3 is important for the pathogenesis of GC‐derived B‐cell lymphoma. We herein used two structurally different CDK4/6 inhibitors, palbociclib and abemaciclib, and examined their suppressive effects on cell proliferation and their ability to induce apoptosis in various aggressive B‐cell lymphoma cell lines. The results obtained demonstrated that abemaciclib more strongly suppressed cell proliferation and induced apoptosis in GC‐derived B‐cell lymphoma cell lines than the control, but only slightly inhibited those features in activated B‐cell (ABC)‐like DLBCL cell lines. Palbociclib exerted partial or incomplete effects compared with the control and the effect was intermediate between abemaciclib and the control. Moreover, the effects of abemaciclib appeared to depend on cyclin D3 expression levels based on the results of the expression analysis of primary aggressive B‐cell lymphoma samples. Therefore, abemaciclib has potential as a therapeutic agent for aggressive GC‐derived B‐cell lymphomas.
Collapse
Affiliation(s)
- Yuka Tanaka
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan.,Institute of Pathology, Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Takayuki Tabayashi
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Keisuke Sawada
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Takahisa Yamashita
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Morihiro Higashi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Morihiko Sagawa
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Michihide Tokuhira
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Andreas Rosenwald
- Institute of Pathology, Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - Masahiro Kizaki
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
36
|
Li C, Xu Y, Xin P, Zheng Y, Zhu X. Role and mechanism of PTEN in Burkitt's lymphoma. Oncol Rep 2020; 43:481-490. [PMID: 31922234 PMCID: PMC6967105 DOI: 10.3892/or.2020.7457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/22/2019] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to explore the possible mechanisms of phosphatase and tensin homolog (PTEN) in the pathogenesis of Burkitt's lymphoma, and provide novel information that can be used in the targeted treatment of this disease. PTEN lentiviral overexpression vector and short-hairpin PTEN silencing vectors were constructed. The effect of PTEN on the growth and proliferation of CA46 and RAJI cells was analyzed using a Cell Counting Kit-8 assay. Apoptosis was detected by Hoechst 33342 and propidium iodide double staining. Flow cytometry was used to analyze the cell cycle. A Transwell chamber was used to detect cell migration and invasion abilities. Western blot analysis was used to detect related protein changes. The mechanism of the effect of PTEN on the biological characteristics of Burkitt's lymphoma cells was subsequently analyzed. The results revealed that PTEN inhibited the proliferation of CA46 and RAJI cells by downregulating the expression of p-AKT, It was indicated that the upregulation of proapoptotic proteins (including Bad and Bax) induced apoptosis, regulated cyclin (including P53, P21, CDK4, CDK6, cyclin D3 and cyclin H) to inhibit cell cycle progression, and mediated epithelial-mesenchymal transition-like cell markers (including E-cadherin, N-cadherin, β-catenin, TCF-8, vimentin, Slug and Snail) to inhibit cell migration and invasion. In conclusion, the tumor-suppressor gene PTEN inhibited the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway and inhibited the proliferation and migration of Burkitt's lymphoma cells, induced apoptosis and cell cycle arrest, thus playing a crucial role in the pathogenesis of Burkitt's lymphoma.
Collapse
Affiliation(s)
- Chuntuan Li
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yahong Xu
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Pengliang Xin
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Yan Zheng
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Xiongpeng Zhu
- Department of Haematology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
37
|
Yoon J, Yun JW, Jung CW, Ju HY, Koo HH, Kim SH, Kim HJ. Molecular characteristics of terminal deoxynucleotidyl transferase negative precursor B-cell phenotype Burkitt leukemia with IGH-MYC rearrangement. Genes Chromosomes Cancer 2019; 59:255-260. [PMID: 31705772 DOI: 10.1002/gcc.22825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
Precursor B cell phenotype Burkitt lymphoma/leukemia with IGH-MYC is a rare subtype of Burkitt lymphoma (BL). BL and B lymphoblastic leukemia/lymphoma (B-ALL/LBL) differ as regards treatment and the distinction between these two entities is crucial. Patients demonstrating a terminal deoxynucleotidyl transferase (TdT)-positive precursor B cell phenotype with IGH-MYC rearrangement have been reported to be molecularly distinct from BL and closer to B-ALL/LBL. We investigated the molecular characteristics of two cases of a rare but distinct TdT-negative precursor B cell phenotype BL. Both patients showed FAB L3 morphology with IGH-MYC translocation, but had precursor B cell immunophenotypes including dim to moderate expression of CD45 and absence of BCL6, CD20, monoclonal kappa, and lambda light chain expression. To characterize the molecular features, we performed exome sequencing and analyzed the breakpoint junction of the IGH-MYC rearrangement. We detected KMT2D mutations in both cases, a rarely acquired chromatin modifying gene mutation in BL. The breakpoint analysis revealed that the IGH-MYC rearrangement occurred due to an aberrant VDJ recombination in one case. The treatment protocols differed, including high-grade lymphoma treatment and standard B-ALL treatment. Complete remission was achieved in the patient who received B-ALL treatment. The degree of resemblance of BL and B-ALL differed between two cases, but the molecular pathogenesis and manifesting features of both TdT-negative precursor B cell phenotype BL case were distinct from classic BL, which indicates the need for a better understanding of this uncommon entity that does not fit in current diagnostic and classification categories.
Collapse
Affiliation(s)
- Jung Yoon
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jae Won Yun
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chul Won Jung
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Young Ju
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
38
|
Physiological levels of the PTEN-PI3K-AKT axis activity are required for maintenance of Burkitt lymphoma. Leukemia 2019; 34:857-871. [PMID: 31719683 PMCID: PMC7214272 DOI: 10.1038/s41375-019-0628-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/01/2019] [Accepted: 11/03/2019] [Indexed: 12/14/2022]
Abstract
In addition to oncogenic MYC translocations, Burkitt lymphoma (BL) depends on the germinal centre (GC) dark zone (DZ) B cell survival and proliferation programme, which is characterized by relatively low PI3K-AKT activity. Paradoxically, PI3K-AKT activation facilitates MYC-driven lymphomagenesis in mice, and it has been proposed that PI3K-AKT activation is essential for BL. Here we show that the PI3K-AKT activity in primary BLs and BL cell lines does not exceed that of human non-neoplastic tonsillar GC DZ B cells. BLs were not sensitive to AKT1 knockdown, which induced massive cell death in pAKThigh DLBCL cell lines. Likewise, BL cell lines show low sensitivity to pan-AKT inhibitors. Moreover, hyper-activation of the PI3K-AKT pathway by overexpression of a constitutively active version of AKT (myrAKT) or knockdown of PTEN repressed the growth of BL cell lines. This was associated with increased AKT phosphorylation, NF-κB activation, and downregulation of DZ genes including the proto-oncogene MYB and the DZ marker CXCR4. In contrast to GCB-DLBCL, PTEN overexpression was tolerated by BL cell lines. We conclude that the molecular mechanisms instrumental to guarantee the survival of normal DZ B cells, including the tight regulation of the PTEN-PI3K-AKT axis, also operate in the survival/proliferation of BL.
Collapse
|
39
|
Mraz M, Pospisilova S. Detection of a deletion at 22q11 locus involving ZNF280A/ZNF280B/PRAME/GGTLC2 in B-cell malignancies: simply a consequence of an immunoglobulin lambda light chain rearrangement. Br J Haematol 2019; 186:e91-e94. [PMID: 30989644 DOI: 10.1111/bjh.15922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Marek Mraz
- Molecular Medicine, CEITEC Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine MU, Brno, Czech Republic
| | - Sarka Pospisilova
- Department of Internal Medicine, Haematology and Oncology, University Hospital Brno and Faculty of Medicine MU, Brno, Czech Republic
| |
Collapse
|
40
|
Grande BM, Gerhard DS, Jiang A, Griner NB, Abramson JS, Alexander TB, Allen H, Ayers LW, Bethony JM, Bhatia K, Bowen J, Casper C, Choi JK, Culibrk L, Davidsen TM, Dyer MA, Gastier-Foster JM, Gesuwan P, Greiner TC, Gross TG, Hanf B, Harris NL, He Y, Irvin JD, Jaffe ES, Jones SJM, Kerchan P, Knoetze N, Leal FE, Lichtenberg TM, Ma Y, Martin JP, Martin MR, Mbulaiteye SM, Mullighan CG, Mungall AJ, Namirembe C, Novik K, Noy A, Ogwang MD, Omoding A, Orem J, Reynolds SJ, Rushton CK, Sandlund JT, Schmitz R, Taylor C, Wilson WH, Wright GW, Zhao EY, Marra MA, Morin RD, Staudt LM. Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma. Blood 2019; 133:1313-1324. [PMID: 30617194 PMCID: PMC6428665 DOI: 10.1182/blood-2018-09-871418] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
Although generally curable with intensive chemotherapy in resource-rich settings, Burkitt lymphoma (BL) remains a deadly disease in older patients and in sub-Saharan Africa. Epstein-Barr virus (EBV) positivity is a feature in more than 90% of cases in malaria-endemic regions, and up to 30% elsewhere. However, the molecular features of BL have not been comprehensively evaluated when taking into account tumor EBV status or geographic origin. Through an integrative analysis of whole-genome and transcriptome data, we show a striking genome-wide increase in aberrant somatic hypermutation in EBV-positive tumors, supporting a link between EBV and activation-induced cytidine deaminase (AICDA) activity. In addition to identifying novel candidate BL genes such as SIN3A, USP7, and CHD8, we demonstrate that EBV-positive tumors had significantly fewer driver mutations, especially among genes with roles in apoptosis. We also found immunoglobulin variable region genes that were disproportionally used to encode clonal B-cell receptors (BCRs) in the tumors. These include IGHV4-34, known to produce autoreactive antibodies, and IGKV3-20, a feature described in other B-cell malignancies but not yet in BL. Our results suggest that tumor EBV status defines a specific BL phenotype irrespective of geographic origin, with particular molecular properties and distinct pathogenic mechanisms. The novel mutation patterns identified here imply rational use of DNA-damaging chemotherapy in some patients with BL and targeted agents such as the CDK4/6 inhibitor palbociclib in others, whereas the importance of BCR signaling in BL strengthens the potential benefit of inhibitors for PI3K, Syk, and Src family kinases among these patients.
Collapse
Affiliation(s)
- Bruno M Grande
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Aixiang Jiang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Nicholas B Griner
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jeremy S Abramson
- Center for Lymphoma, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Thomas B Alexander
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH
| | | | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Jay Bowen
- Nationwide Children's Hospital, Columbus, OH
| | - Corey Casper
- Infectious Disease Research Institute, Seattle, WA
| | - John Kim Choi
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Tanja M Davidsen
- Cancer Informatics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Maureen A Dyer
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD
| | - Julie M Gastier-Foster
- Nationwide Children's Hospital, Columbus, OH
- Departments of Pathology and Pediatrics, The Ohio State University, Columbus, OH
| | - Patee Gesuwan
- Cancer Informatics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Thomas G Gross
- Center for Global Health, National Cancer Institute, National Institutes of Health, Rockville, MD
| | | | - Nancy Lee Harris
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yiwen He
- Cancer Informatics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - John D Irvin
- Foundation for Burkitt Lymphoma Research, Geneva, Switzerland
| | - Elaine S Jaffe
- Laboratory of Pathology, Clinical Center, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven J M Jones
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Nicole Knoetze
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Fabio E Leal
- Programa de Oncovirologia, Instituto Nacional de Câncer José de Alencar, Rio de Janeiro, Brazil
| | | | - Yussanne Ma
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD
| | | | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | - Karen Novik
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Ariela Noy
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| | | | | | | | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD; and
| | - Christopher K Rushton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - John T Sandlund
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN
| | - Roland Schmitz
- Lymphoid Malignancies Branch, Center for Cancer Research and
| | | | | | - George W Wright
- Biometric Research Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Rockville, MD
| | - Eric Y Zhao
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Ryan D Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research and
| |
Collapse
|
41
|
Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood 2019; 133:1664-1676. [PMID: 30782609 DOI: 10.1182/blood-2018-09-872549] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/10/2019] [Indexed: 02/07/2023] Open
Abstract
Peripheral T-cell lymphoma (PTCL) is a group of complex clinicopathological entities, often associated with an aggressive clinical course. Angioimmunoblastic T-cell lymphoma (AITL) and PTCL-not otherwise specified (PTCL-NOS) are the 2 most frequent categories, accounting for >50% of PTCLs. Gene expression profiling (GEP) defined molecular signatures for AITL and delineated biological and prognostic subgroups within PTCL-NOS (PTCL-GATA3 and PTCL-TBX21). Genomic copy number (CN) analysis and targeted sequencing of these molecular subgroups revealed unique CN abnormalities (CNAs) and oncogenic pathways, indicating distinct oncogenic evolution. PTCL-GATA3 exhibited greater genomic complexity that was characterized by frequent loss or mutation of tumor suppressor genes targeting the CDKN2A /B-TP53 axis and PTEN-PI3K pathways. Co-occurring gains/amplifications of STAT3 and MYC occurred in PTCL-GATA3. Several CNAs, in particular loss of CDKN2A, exhibited prognostic significance in PTCL-NOS as a single entity and in the PTCL-GATA3 subgroup. The PTCL-TBX21 subgroup had fewer CNAs, primarily targeting cytotoxic effector genes, and was enriched in mutations of genes regulating DNA methylation. CNAs affecting metabolic processes regulating RNA/protein degradation and T-cell receptor signaling were common in both subgroups. AITL showed lower genomic complexity compared with other PTCL entities, with frequent co-occurring gains of chromosome 5 (chr5) and chr21 that were significantly associated with IDH2 R172 mutation. CN losses were enriched in genes regulating PI3K-AKT-mTOR signaling in cases without IDH2 mutation. Overall, we demonstrated that novel GEP-defined PTCL subgroups likely evolve by distinct genetic pathways and provided biological rationale for therapies that may be investigated in future clinical trials.
Collapse
|
42
|
Pearson ADJ, Scobie N, Norga K, Ligas F, Chiodin D, Burke A, Minard-Colin V, Adamson P, Marshall LV, Balakumaran A, Benettaib B, Bhargava P, Bollard CM, Bolotin E, Bomken S, Buechner J, Burkhardt B, Caron H, Copland C, Demolis P, Egorov A, Farhan M, Zugmaier G, Gross T, Horton-Taylor D, Klapper W, Lesa G, Marcus R, Miles RR, Nottage K, Pacaud L, Ricafort R, Schrappe M, Sterba J, Vezan R, Weiner S, Kim SY, Reaman G, Vassal G. ACCELERATE and European Medicine Agency Paediatric Strategy Forum for medicinal product development for mature B-cell malignancies in children. Eur J Cancer 2019; 110:74-85. [PMID: 30772656 DOI: 10.1016/j.ejca.2019.01.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 01/18/2019] [Indexed: 11/17/2022]
Abstract
Paediatric Strategy Forums have been created by the multistakeholder organisation, ACCELERATE, and the European Medicines Agency to facilitate dialogue between all relevant stakeholders and suggest strategies in critical areas of paediatric oncology drug development. As there are many medicines being developed for B-cell malignancies in adults but comparatively few in children with these malignancies, a Paediatric Strategy Forum was held to discuss the best approach to develop these products for children. It was concluded that as current frontline therapy is highly successful, despite associated acute toxicity, de-escalation of this or substitution of presently used drugs with new medicines can only be undertaken when there is an effective salvage regimen, which is currently not available. Therefore priority should be given to developing treatment for patients with relapsed and refractory mature B-cell lymphomas. The consensus of the clinicians attending the meeting was that CAR T-cells, T-cell engagers and antibody drug conjugates (excluding those with a vinca alkaloid-like drug) presently have the greatest probability of providing benefit in relapse in view of their mechanism of action. However, as producing autologous CAR T-cells currently takes at least 4 weeks, they are not products which could be quickly employed initially at relapse in rapidly progressing mature B-cell malignancies but only for the consolidation phase of the treatment. Global, industry-supported, academic-sponsored studies testing compounds from different pharmaceutical companies simultaneously should be considered in rare populations, and it was proposed that an international working group be formed to develop an overarching clinical trials strategy for these disease groups. Future Forums are planned for other relevant paediatric oncologic diseases with a high unmet medical need and relevant molecular targets.
Collapse
Affiliation(s)
| | | | | | - Franca Ligas
- Paediatric Medicines Office, Product Development Scientific Support Department, European Medicines Agency, London, UK
| | | | - Amos Burke
- Department of Paediatric Haematology and Oncology, Addenbrooke's Hospital Cambridge, UK
| | | | | | - Lynley V Marshall
- Paediatric Drug Development, Children and Young People's Unit, The Royal Marsden NHS Foundation Trust, London, UK; Divisions of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | | | | | | | - Catherine M Bollard
- Centre for Cancer and Immunology Research, Children's National Health System, The George Washington University, Washington DC, USA
| | | | - Simon Bomken
- Wolfson Childhood Cancer Research Centre, Northern Institute for Cancer Research, Newcastle University, UK
| | - Jochen Buechner
- Department of Paediatric Hematology and Oncology, Oslo University Hospital, Norway
| | - Birgit Burkhardt
- Pediatric Hematology, Oncology and BMT, University Hospital Münster, Germany
| | | | | | | | - Anton Egorov
- Centre for Therapeutic Innovation in Oncology, Servier, France
| | - Mahdi Farhan
- Debiopharm International SA, Lausanne, Switzerland
| | | | | | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Product Development Scientific Support Department, European Medicines Agency, London, UK
| | | | - Rodney R Miles
- University of Utah, Department of Pathology, Salt Lake City, UT, USA
| | | | | | - Rosanna Ricafort
- Oncology Clinical Development, Bristol-Myers Squibb Pharma EEIG, NJ, USA
| | | | - Jaroslav Sterba
- Pediatric Oncology Department, University Hospital Brno, School of Medicine Masaryk University, Brno, Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, ICRC Brno, St. Anna University Hospital Brno, Czech Republic
| | | | - Susan Weiner
- Children's Cause for Cancer Advocacy, Washington DC, USA
| | | | - Gregory Reaman
- Office of Hematology and Oncology Products, U.S. Food and Drug Administration, MD, USA
| | - Gilles Vassal
- Department of Clinical Research, Gustave Roussy, Paris-Sud University, Paris, France
| |
Collapse
|
43
|
Umakanthan JM, Iqbal J, Batlevi CL, Bouska A, Smith LM, Shostrom V, Nutsch H, William BM, Gregory Bociek R, Lunning M, Bierman P, Younes A, Armitage JO, Vose JM. Phase I/II study of dasatinib and exploratory genomic analysis in relapsed or refractory non-Hodgkin lymphoma. Br J Haematol 2018; 184:744-752. [PMID: 30520026 DOI: 10.1111/bjh.15702] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022]
Abstract
Relapsed or refractory non-Hodgkin lymphomas (NHLs) often carry poor prognosis and pose management challenges. We evaluated the safety and efficacy of dasatinib, a broad-spectrum multi-kinase inhibitor in relapsed/refractory NHL with correlative genomic analysis in a Phase I/II trial. The study included 33 patients with various sub-types of NHL who had received at least one prior therapy. The most common sub-types were diffuse large B-cell lymphoma (24%), follicular lymphoma, grade 1/2 (21%) and peripheral T-cell lymphoma not otherwise specified (PTCL-NOS; 21%). Most patients were heavily pre-treated, including 42% with more than four prior therapies, 67% with rituximab exposure and 24% with prior autologous transplant. In this cohort, dasatinib showed modest activity in evaluable patients with an objective response rate of 29% (7/24) and clinical benefit rate of 71% (17/24). In 32 patients with outcome data, median progression-free survival was 3 months and median overall survival was 22·4 months. There were two patients with sustained complete responses, both with PTCL-NOS histology. The side effect profile was consistent with prior studies, with pleural effusion being the most common non-haematological toxicity. Exploratory genomic analysis showed two cases of PTCL-NOS with sustained response had a common mutation in LRRK2 and high prevalence of FOXO1 mutation in relapsed/refractory follicular lymphoma.
Collapse
Affiliation(s)
- Jayadev M Umakanthan
- Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Connie L Batlevi
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Alyssa Bouska
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lynette M Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Valerie Shostrom
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Heather Nutsch
- Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Basem M William
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center (OSUCCC-James), The Ohio State University, Columbus, OH, USA
| | - R Gregory Bociek
- Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew Lunning
- Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Philip Bierman
- Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anas Younes
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - James O Armitage
- Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Julie M Vose
- Division of Oncology & Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
44
|
Kastritis E, Gavriatopoulou M, Roussou M, Bagratuni T, Migkou M, Fotiou D, Ziogas DC, Kanellias N, Eleutherakis-Papaiakovou E, Dialoupi I, Ntanasis-Stathopoulos I, Spyropoulou-Vlachou M, Psimenou E, Gakiopoulou H, Marinaki S, Papadopoulou E, Ntalianis A, Terpos E, Dimopoulos MA. Efficacy of lenalidomide as salvage therapy for patients with AL amyloidosis. Amyloid 2018; 25:234-241. [PMID: 30663408 DOI: 10.1080/13506129.2018.1540410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We retrospectively evaluated 55 consecutive patients who received at least one dose of lenalidomide for relapsed/refractory AL amyloidosis. Their median age was 63 years; 72% had heart and 75% kidney involvement and 13% were on dialysis; while 20%, 46% and 34% had Mayo stage -1, -2 and -3 disease, respectively. Median time from start of primary therapy to lenalidomide was 15 months (range 2-100) and median number of prior therapies was 1 (range 1-4); 73% of the patients had prior bortezomib and 42% were bortezomib-refractory. On intent to treat, haematologic response rate was 51% (5.5% CRs, 20% VGPRs) and was 56% versus 40% for patients with and without prior bortezomib and 47% versus 62.5% for bortezomib refractory versus non-refractory patients (p = .351). Organ response was achieved by 16% of evaluable patients (22% renal, 7% liver and 3% cardiac); however, 10 (21%) patients progressed to dialysis. Median survival post lenalidomide was 25 months. Bortezomib-refractory patients had worse outcome (median survival of 10.5 versus 25 months for bortezomib-sensitive patients versus not reached for bortezomib-naive patients, p = .011). Median lenalidomide dose was 10 mg and no patient received the 25 mg dose; however, in 60% a dose reduction was required. Median duration of lenalidomide therapy was 7.2 months and 46% discontinued lenalidomide before completion of planned therapy, mainly due to toxicity (26%) or disease progression/no response (13%). We conclude that although lenalidomide is a major salvage option for patients with relapsed/refractory AL amyloidosis, its toxicity in patients with AL amyloidosis is significant and doses should be adjusted for optimal tolerability.
Collapse
Affiliation(s)
- Efstathios Kastritis
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| | - Maria Gavriatopoulou
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| | - Maria Roussou
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| | - Tina Bagratuni
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| | - Magdalini Migkou
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| | - Despina Fotiou
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| | - Dimitrios C Ziogas
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| | - Nikolaos Kanellias
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| | | | - Ioanna Dialoupi
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| | | | | | - Erasmia Psimenou
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| | - Harikleia Gakiopoulou
- c 1st Department of Pathology , National and Kapodistrian University of Athens , Athens , Greece
| | - Smaragdi Marinaki
- d Nephrology Unit , " Laikon" Hospital, National and Kapodistrian University of Athens , Athens , Greece
| | - Elektra Papadopoulou
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| | - Argyrios Ntalianis
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| | - Evangelos Terpos
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| | - Meletios A Dimopoulos
- a Department of Clinical Therapeutics , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
45
|
Chu Y, Lee S, Shah T, Yin C, Barth M, Miles RR, Ayello J, Morris E, Harrison L, Van de Ven C, Galardy P, Goldman SC, Lim MS, Hermiston M, McAllister-Lucas LM, Giulino-Roth L, Perkins SL, Cairo MS. Ibrutinib significantly inhibited Bruton's tyrosine kinase (BTK) phosphorylation, in-vitro proliferation and enhanced overall survival in a preclinical Burkitt lymphoma (BL) model. Oncoimmunology 2018; 8:e1512455. [PMID: 30546948 DOI: 10.1080/2162402x.2018.1512455] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 08/12/2018] [Indexed: 12/15/2022] Open
Abstract
Pediatric and adult patients with recurrent/refractory Burkitt lymphoma (BL) continue to have poor outcomes, emphasizing the need for newer therapeutic agents. Bruton's tyrosine kinase (BTK) is activated following B-cell receptor stimulation and in part regulates normal B-cell development. Ibrutinib, a selective and irreversible BTK inhibitor, has been efficacious in chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), Waldenström's macroglobulinemia, and marginal zone lymphoma. In this study, we investigated the efficacy of ibrutinib alone and in selective adjuvant combinations against BL in-vitro and in a human BL xenografted immune-deficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mouse model. Our data demonstrated that phospho-BTK level was significantly reduced in BL cells treated with ibrutinib (p < 0.001). Moreover, we observed a significant decrease in cell proliferation as well as significant decrease in IC50 of ibrutinib in combination with dexamethasone, rituximab, obinutuzumab, carfilzomib, and doxorubicin (p < 0.001). In-vivo studies demonstrated ibrutinib treated mice had a significantly prolonged survival with median survival of mice following ibrutinib treatment (32 days) (24 days) (p < 0.02). In conclusion, our findings demonstrate the significant in-vitro and preclinical in-vivo effects of ibrutinib in BL. Based on our preclinical results in this investigation, there is an on-going clinical trial comparing overall survival in children and adolescents with relapsed/refractory BL treated with chemoimmunotherapy with or without ibrutinib (NCT02703272).
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Sanghoon Lee
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Tishi Shah
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Changhong Yin
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Matthew Barth
- Department of Pediatrics, University of Buffalo, Buffalo, NY, USA
| | - Rodney R Miles
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Erin Morris
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Lauren Harrison
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | | | - Paul Galardy
- Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
| | - Stanton C Goldman
- Division of Pediatric Hematology/Oncology, Medical City Children's Hospital, Dallas, TX, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, PA, USA
| | - Michelle Hermiston
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | | | - Lisa Giulino-Roth
- Departments of Pediatrics and Pathology and Laboratory Medicine, Weill Cornell Medical College, NY, NY, USA
| | - Sherrie L Perkins
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA.,Department of Microbiology & Immunology, New York Medical College, Valhalla, NY, USA.,Department of Medicine, New York Medical College, Valhalla, NY, USA.,Department of Pathology, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
46
|
Dheur MS, Poirel HA, Ameye G, Tilman G, Saussoy P, Defour JP, Camboni A, Van Den Neste E, Coulie PG, van Baren N. Characterization of two new high-grade B-cell lymphoma cell lines with MYC and BCL2 rearrangements that are suitable for in vitro drug sensitivity studies. Leuk Lymphoma 2018; 60:1043-1052. [PMID: 30277098 DOI: 10.1080/10428194.2018.1508663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High-grade B-cell lymphomas with MYC and BCL2 or BCL6 rearrangements are highly aggressive B-cell lymphomas called double-hit lymphomas (HGBL-DH). They are particularly refractory to standard treatments and carry a poor prognosis. Fragments of resected tumoral lymph nodes from two HGBL-DH patients were put in culture. Continuously proliferating cells were characterized and compared with the original tumors. In both cases, the proliferating cells and the tumor displayed MYC and BCL2 rearrangements. Both cell lines (called LB5848-LYMP and LB5871-LYMP) presented a high proliferation rate and were maintained in culture for more than one year. Upon injection in immunodeficient mice, LB5848-LYMP gave rise to lymphoid tumors. In vitro treatment of these cell lines with a BCL2-inhibitory drug (ABT-199) selectively stopped their proliferation. These new cell lines represent valuable tools for studying HGBL-DH and for the in vitro testing of candidate therapies targeting HGBL-DH. LB5848-LYMP is also suitable for similar experiments in vivo.
Collapse
Affiliation(s)
- Marie-Sophie Dheur
- a Cellular Genetics Unit , de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Hélène A Poirel
- b Centre de Génétique Humaine , Cliniques Universitaires Saint-Luc, Université Catholique de Louvain , Brussels , Belgium
| | - Geneviève Ameye
- b Centre de Génétique Humaine , Cliniques Universitaires Saint-Luc, Université Catholique de Louvain , Brussels , Belgium
| | - Gaëlle Tilman
- b Centre de Génétique Humaine , Cliniques Universitaires Saint-Luc, Université Catholique de Louvain , Brussels , Belgium
| | - Pascale Saussoy
- c Department of Clinical Biology , Cliniques Universitaires Saint-Luc, Université Catholique de Louvain , Brussels , Belgium
| | - Jean-Philippe Defour
- c Department of Clinical Biology , Cliniques Universitaires Saint-Luc, Université Catholique de Louvain , Brussels , Belgium
| | - Alessandra Camboni
- d Department of Pathology , Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Tour Franklin , Brussels , Belgium.,e Department of Hematology , Cliniques Universitaires Saint-Luc, Université Catholique de Louvain , Brussels , Belgium
| | - Eric Van Den Neste
- e Department of Hematology , Cliniques Universitaires Saint-Luc, Université Catholique de Louvain , Brussels , Belgium
| | - Pierre G Coulie
- a Cellular Genetics Unit , de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Nicolas van Baren
- a Cellular Genetics Unit , de Duve Institute, Université Catholique de Louvain , Brussels , Belgium
| |
Collapse
|
47
|
Management of aggressive B-cell NHLs in the AYA population: an adult vs pediatric perspective. Blood 2018; 132:369-375. [PMID: 29895666 DOI: 10.1182/blood-2018-02-778480] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
The adolescents and young adult (AYA) population represent a group wherein mature B-cell lymphomas constitute a significant proportion of the overall malignancies that occur. Among these are aggressive B-cell non-Hodgkin lymphomas (NHLs), which are predominantly diffuse large B-cell lymphoma, primary mediastinal B-cell lymphoma, and Burkitt lymphoma. For the most part, there is remarkable divide in how pediatric/adolescent patients (under the age of 18 years) with lymphoma are treated vs their young adult counterparts, and molecular data are lacking, especially in pediatric and AYA series. The outcome for AYA patients with cancers has historically been inferior to that of children or older adults, highlighting the necessity to focus on this population. This review discusses the pediatric vs adult perspective in terms of how these diseases are understood and approached and emphasizes the importance of collaborative efforts in both developing consensus for treatment of this population and planning future research endeavors.
Collapse
|
48
|
Felley-Bosco E, Rehrauer H. Non-Coding Transcript Heterogeneity in Mesothelioma: Insights from Asbestos-Exposed Mice. Int J Mol Sci 2018; 19:ijms19041163. [PMID: 29641489 PMCID: PMC5979355 DOI: 10.3390/ijms19041163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
Mesothelioma is an aggressive, rapidly fatal cancer and a better understanding of its molecular heterogeneity may help with making more efficient therapeutic strategies. Non-coding RNAs represent a larger part of the transcriptome but their contribution to diseases is not fully understood yet. We used recently obtained RNA-seq data from asbestos-exposed mice and performed data mining of publicly available datasets in order to evaluate how non-coding RNA contribute to mesothelioma heterogeneity. Nine non-coding RNAs are specifically elevated in mesothelioma tumors and contribute to human mesothelioma heterogeneity. Because some of them have known oncogenic properties, this study supports the concept of non-coding RNAs as cancer progenitor genes.
Collapse
Affiliation(s)
- Emanuela Felley-Bosco
- Laboratory of Molecular Oncology, Lungen- und Thoraxonkologie Zentrum, University Hospital Zurich, Sternwartstrasse 14, 8091 Zürich, Switzerland.
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
49
|
van Krieken JH. New developments in the pathology of malignant lymphoma. A review of the literature published from September-August 2017. J Hematop 2017; 10:117-127. [PMID: 29225711 PMCID: PMC5712325 DOI: 10.1007/s12308-017-0310-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- J H van Krieken
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, Netherlands
| |
Collapse
|
50
|
|