1
|
Huang L, Shao B. New insights of glycoprotein Ib-IX-V complex organization and glycoprotein Ibα in platelet biogenesis. Curr Opin Hematol 2024; 31:294-301. [PMID: 39046849 DOI: 10.1097/moh.0000000000000832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
PURPOSE OF REVIEW Glycoprotein (GP) Ib-IX-V, a platelet surface receptor that plays a critical role in platelet adhesion and platelet-mediated immune responses, consists of GPIbα, GPIbβ, GPIX, and GPV in a stoichiometry of 2 : 4 : 2 : 1. Forming a complex is essential for GPIb-IX-V to function. GPIb-IX-V also plays an important role in platelet biogenesis by regulating the number and size of platelets. Yet how GPIb-IX-V regulates platelet biogenesis remains elusive. This review will summarize recent findings in the complex organization of GPIb-IX-V and its role in platelet biogenesis. RECENT FINDINGS Proteomics studies suggest that GPIbα, GPIbβ, GPIX, and GPV form the complex in a ratio of 1 : 2 : 1 : 1, which is supported by analysis of molecular weight of GPIb-IX-V and GPIb-IX and the structure of entire GPIb-IX-V. To activate platelets, GPIbα requires binding of CLEC-2 to trigger signals. Furthermore, disrupting the GPIbα anchorage to filamin A causes defects in platelet budding away from proplatelets leading to giant platelets and a low platelet count. SUMMARY New studies challenge the traditional model for the organization of GPIb-IX-V as a complex and indicate the role of GPIb-IX-V in platelet production. Those studies provide insights for GPIb-IX-V in the regulation of platelet activation and platelet biogenesis.
Collapse
Affiliation(s)
- Lulu Huang
- Laboratory of Vascular Inflammation and Thrombosis Research, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | | |
Collapse
|
2
|
Suzuki-Inoue K, Tsukiji N. A role of platelet C-type lectin-like receptor-2 and its ligand podoplanin in vascular biology. Curr Opin Hematol 2024; 31:130-139. [PMID: 38359177 DOI: 10.1097/moh.0000000000000805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW Platelets are essential for hemostasis and are also vital in lymphatic and lung development and the maintenance of vascular integrity. Platelet activation receptor C-type lectin-like receptor 2 (CLEC-2) and its endogenous ligand podoplanin (PDPN) in lymphatic endothelial cells (LECs) and other cells regulate these processes. This review aims to comprehensively summarize the roles of platelet CLEC-2 and PDPN. This review also focuses on discussing the underlying mechanisms by which platelet CLEC-2 and PDPN mediate blood/lymphatic separation. FINDINGS CLEC-2/PDPN-induced platelet activation in the primary lymph sacs, developmental lymphovenous junctions, neonatal mesentery, and the site of tumor lymphangiogenesis prevents blood/lymphatic vessel misconnection. Further, CLEC-2/PDPN-induced platelet activation is essential for lung development. Mice deficient in CLEC-2 or PDPN show blood-filled lymphatics, lung malformations, and cerebrovascular abnormalities. CLEC-2 deletion in steady-state adult mice did not result in blood/lymphatic vessel mixing. In adulthood, CLEC-2 maintains vascular integrity and that of high endothelial venules in lymph nodes. CLEC-2 deletion in adulthood results in hemorrhage under inflammatory conditions, and hemolymph nodes. SUMMARY The platelet CLEC-2/LEC PDPN interaction prevents blood/lymphatic vessel mixing at active remodeling sites of the blood/lymphatic system, but not in steady-state adult mice. This interaction also regulates vascular integrity when vascular permeability increases before and after birth.
Collapse
Affiliation(s)
- Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | | |
Collapse
|
3
|
Sun L, Wang Z, Liu Z, Mu G, Cui Y, Xiang Q. C-type lectin-like receptor 2: roles and drug target. Thromb J 2024; 22:27. [PMID: 38504248 PMCID: PMC10949654 DOI: 10.1186/s12959-024-00594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
C-type lectin-like receptor-2 (CLEC-2) is a member of the C-type lectin superfamily of cell surface receptors. The first confirmed endogenous and exogenous ligands of CLEC-2 are podoplanin and rhodocytin, respectively. CLEC-2 is expressed on the surface of platelets, which participates in platelet activation and aggregation by binding with its ligands. CLEC-2 and its ligands are involved in pathophysiological processes, such as atherosclerosis, cancer, inflammatory thrombus status, maintenance of vascular wall integrity, and cancer-related thrombosis. In the last 5 years, different anti- podoplanin antibody types have been developed for the treatment of cancers, such as glioblastoma and lung cancer. New tests and new diagnostics targeting CLEC-2 are also discussed. CLEC-2 mediates thrombosis in various pathological states, but CLEC-2-specific deletion does not affect normal hemostasis, which would provide a new therapeutic tool for many thromboembolic diseases. The CLEC-2-podoplanin interaction is a target for cancer treatment. CLEC-2 may be applied in clinical practice and play a therapeutic role.
Collapse
Affiliation(s)
- Lan Sun
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Guangyan Mu
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, No. 6, Da Hong Luo Chang Street, Xicheng District, Beijing, 100034, China.
- Institute of Clinical Pharmacology, Peking University, Beijing, China.
| |
Collapse
|
4
|
Tsukiji N, Suzuki-Inoue K. Impact of Hemostasis on the Lymphatic System in Development and Disease. Arterioscler Thromb Vasc Biol 2023; 43:1747-1754. [PMID: 37534465 DOI: 10.1161/atvbaha.123.318824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Lymphatic vessels form a systemic network that maintains interstitial fluid homeostasis and regulates immune responses and is strictly separated from the circulatory system. During embryonic development, lymphatic endothelial cells originate from blood vascular endothelial cells in the cardinal veins and form lymph sacs. Platelets are critical for separating lymph sacs from the cardinal veins through interactions between CLEC-2 (C-type lectin-like receptor-2) and PDPN (podoplanin) in lymphatic endothelial cells. Therefore, deficiencies of these genes cause blood-filled lymphatic vessels, leading to abnormal lymphatic vessel maturation. The junction between the thoracic duct and the subclavian vein has valves and forms physiological thrombi dependent on CLEC-2/PDPN signaling to prevent blood backflow into the thoracic duct. In addition, platelets regulate lymphangiogenesis and maintain blood/lymphatic separation in pathological conditions, such as wound healing and inflammatory diseases. More recently, it was reported that the entire hemostatic system is involved in lymphangiogenesis. Thus, the hemostatic system plays a crucial role in the establishment, maintenance, and rearrangement of lymphatic networks and contributes to body fluid homeostasis, which suggests that the hemostatic system is a potential target for treating lymphatic disorders. This review comprehensively summarizes the role of the hemostatic system in lymphangiogenesis and lymphatic vessel function and discusses challenges and future perspectives.
Collapse
Affiliation(s)
- Nagaharu Tsukiji
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Japan
| |
Collapse
|
5
|
Brown HC, Beck S, Navarro S, Di Y, Soriano Jerez EM, Kaczmarzyk J, Thomas SG, Mirakaj V, Watson SP, Nieswandt B, Stegner D. Antibody-mediated depletion of human CLEC-2 in a novel humanized mouse model. Blood Adv 2023; 7:997-1000. [PMID: 36044387 PMCID: PMC10027499 DOI: 10.1182/bloodadvances.2021006463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 03/09/2023] Open
Affiliation(s)
- Helena C. Brown
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Beck
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Stefano Navarro
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Eva M. Soriano Jerez
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Jana Kaczmarzyk
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Steven G. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Valbona Mirakaj
- Division of Molecular Intensive Care Medicine, Department of Anesthesiology and Intensive Care Medicine, Eberhard - Karls University of Tübingen, Tübingen, Germany
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - David Stegner
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
6
|
Bourne JH, Smith CW, Jooss NJ, Di Y, Brown HC, Montague SJ, Thomas MR, Poulter NS, Rayes J, Watson SP. CLEC-2 Supports Platelet Aggregation in Mouse but not Human Blood at Arterial Shear. Thromb Haemost 2022; 122:1988-2000. [PMID: 35817083 PMCID: PMC9718592 DOI: 10.1055/a-1896-6992] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/01/2022] [Indexed: 10/17/2022]
Abstract
C-type lectin-like receptor 2 (CLEC-2) is highly expressed on platelets and a subpopulation of myeloid cells, and is critical in lymphatic development. CLEC-2 has been shown to support thrombus formation at sites of inflammation, but to have a minor/negligible role in hemostasis. This identifies CLEC-2 as a promising therapeutic target in thromboinflammatory disorders, without hemostatic detriment. We utilized a GPIbα-Cre recombinase mouse for more restricted deletion of platelet-CLEC-2 than the previously used PF4-Cre mouse. clec1bfl/flGPIbα-Cre+ mice are born at a Mendelian ratio, with a mild reduction in platelet count, and present with reduced thrombus size post-FeCl3-induced thrombosis, compared to littermates. Antibody-mediated depletion of platelet count in C57BL/6 mice, to match clec1bfl/flGPIbα-Cre+ mice, revealed that the reduced thrombus size post-FeCl3-injury was due to the loss of CLEC-2, and not mild thrombocytopenia. Similarly, clec1bfl/flGPIbα-Cre+ mouse blood replenished with CLEC-2-deficient platelets ex vivo to match littermates had reduced aggregate formation when perfused over collagen at arterial flow rates. In contrast, platelet-rich thrombi formed following perfusion of human blood under flow conditions over collagen types I or III, atherosclerotic plaque, or inflammatory endothelial cells were unaltered in the presence of CLEC-2-blocking antibody, AYP1, or recombinant CLEC-2-Fc. The reduction in platelet aggregation observed in clec1bfl/flGPIbα-Cre+ mice during arterial thrombosis is mediated by the loss of CLEC-2 on mouse platelets. In contrast, CLEC-2 does not support thrombus generation on collagen, atherosclerotic plaque, or inflamed endothelial cells in human at arterial shear.
Collapse
Affiliation(s)
- Joshua H. Bourne
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalie J. Jooss
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Helena C. Brown
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Experimental Biomedicine I, University Hospital and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany.
| | - Samantha J. Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- UHB and SWBH NHS Trusts, Birmingham, United Kingdom
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| |
Collapse
|
7
|
Novel approaches to antiplatelet therapy. Biochem Pharmacol 2022; 206:115297. [DOI: 10.1016/j.bcp.2022.115297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/20/2022]
|
8
|
McFadyen JD, Mangin PH, Peter K. Of Mice and Man: The Unwinding of CLEC-2 as an Antithrombotic Target? Thromb Haemost 2022; 122:1963-1965. [PMID: 36070783 DOI: 10.1055/a-1938-1380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- James D McFadyen
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Haematology, Alfred Hospital, Melbourne, Victoria, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Pierre H Mangin
- INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Université de Strasbourg, Strasbourg, France
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia.,Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Harbi MH, Smith CW, Alenazy FO, Nicolson PLR, Tiwari A, Watson SP, Thomas MR. Antithrombotic Effects of Fostamatinib in Combination with Conventional Antiplatelet Drugs. Int J Mol Sci 2022; 23:6982. [PMID: 35805988 PMCID: PMC9266367 DOI: 10.3390/ijms23136982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/03/2023] Open
Abstract
New antithrombotic medications with less effect on haemostasis are needed for the long-term treatment of acute coronary syndromes (ACS). The platelet receptor glycoprotein VI (GPVI) is critical in atherothrombosis, mediating platelet activation at atherosclerotic plaque. The inhibition of spleen tyrosine kinase (Syk) has been shown to block GPVI-mediated platelet function. The aim of our study was to investigate if the Syk inhibitor fostamatinib could be repurposed as an antiplatelet drug, either alone or in combination with conventional antiplatelet therapy. The effect of the active metabolite of fostamatinib (R406) was assessed on platelet activation and function induced by atherosclerotic plaque and a range of agonists in the presence and absence of the commonly used antiplatelet agents aspirin and ticagrelor. The effects were determined ex vivo using blood from healthy volunteers and aspirin- and ticagrelor-treated patients with ACS. Fostamatinib was also assessed in murine models of thrombosis. R406 mildly inhibited platelet responses induced by atherosclerotic plaque homogenate, likely due to GPVI inhibition. The anti-GPVI effects of R406 were amplified by the commonly-used antiplatelet medications aspirin and ticagrelor; however, the effects of R406 were concentration-dependent and diminished in the presence of plasma proteins, which may explain why fostamatinib did not significantly inhibit thrombosis in murine models. For the first time, we demonstrate that the Syk inhibitor R406 provides mild inhibition of platelet responses induced by atherosclerotic plaque and that this is mildly amplified by aspirin and ticagrelor.
Collapse
Affiliation(s)
- Maan H. Harbi
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.H.H.); (C.W.S.); (F.O.A.); (P.L.R.N.); (S.P.W.)
- Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.H.H.); (C.W.S.); (F.O.A.); (P.L.R.N.); (S.P.W.)
| | - Fawaz O. Alenazy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.H.H.); (C.W.S.); (F.O.A.); (P.L.R.N.); (S.P.W.)
| | - Phillip L. R. Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.H.H.); (C.W.S.); (F.O.A.); (P.L.R.N.); (S.P.W.)
| | - Alok Tiwari
- Department of Vascular Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK;
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.H.H.); (C.W.S.); (F.O.A.); (P.L.R.N.); (S.P.W.)
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (M.H.H.); (C.W.S.); (F.O.A.); (P.L.R.N.); (S.P.W.)
- Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
| |
Collapse
|
10
|
Shao B, Hoover C, Shi H, Kondo Y, Lee RH, Chen J, Shan X, Song J, McDaniel JM, Zhou M, McGee S, Vanhoorelbeke K, Bergmeier W, López JA, George JN, Xia L. Deletion of platelet CLEC-2 decreases GPIbα-mediated integrin αIIbβ3 activation and decreases thrombosis in TTP. Blood 2022; 139:2523-2533. [PMID: 35157766 PMCID: PMC9029097 DOI: 10.1182/blood.2021012896] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Microvascular thrombosis in patients with thrombotic thrombocytopenic purpura (TTP) is initiated by GPIbα-mediated platelet binding to von Willebrand factor (VWF). Binding of VWF to GPIbα causes activation of the platelet surface integrin αIIbβ3. However, the mechanism of GPIbα-initiated activation of αIIbβ3 and its clinical importance for microvascular thrombosis remain elusive. Deletion of platelet C-type lectin-like receptor 2 (CLEC-2) did not prevent VWF binding to platelets but specifically inhibited platelet aggregation induced by VWF binding in mice. Deletion of platelet CLEC-2 also inhibited αIIbβ3 activation induced by the binding of VWF to GPIbα. Using a mouse model of TTP, which was created by infusion of anti-mouse ADAMTS13 monoclonal antibodies followed by infusion of VWF, we found that deletion of platelet CLEC-2 decreased pulmonary arterial thrombosis and the severity of thrombocytopenia. Importantly, prophylactic oral administration of aspirin, an inhibitor of platelet activation, and therapeutic treatment of the TTP mice with eptifibatide, an integrin αIIbβ3 antagonist, reduced pulmonary arterial thrombosis in the TTP mouse model. Our observations demonstrate that GPIbα-mediated activation of integrin αIIbβ3 plays an important role in the formation of thrombosis in TTP. These observations suggest that prevention of platelet activation with aspirin may reduce the risk for thrombosis in patients with TTP.
Collapse
Affiliation(s)
- Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Christopher Hoover
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yuji Kondo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Robert H Lee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jianhua Song
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - J Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Meixiang Zhou
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium; and
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - James N George
- Hematology-Oncology Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
11
|
Kumode T, Tanaka H, Esipinoza JL, Rai S, Taniguchi Y, Fujiwara R, Sano K, Serizawa K, Iwata Y, Morita Y, Matsumura I. C-type lectin-like receptor 2 specifies a functionally distinct subpopulation within phenotypically defined hematopoietic stem cell population that contribute to emergent megakaryopoiesis. Int J Hematol 2022; 115:310-321. [PMID: 35106701 DOI: 10.1007/s12185-021-03220-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 10/19/2022]
Abstract
C-type lectin-like receptor 2 (CLEC-2) expressed on megakaryocytes plays important roles in megakaryopoiesis. We found that CLEC-2 was expressed in about 20% of phenotypical long-term hematopoietic stem cells (LT-HSCs), which expressed lower levels of HSC-specific genes and produced larger amounts of megakaryocyte-related molecules than CLEC-2low LT-HSCs. Although CLEC-2high LT-HSCs had immature clonogenic activity, cultured CLEC-2high LT-HSCs preferentially differentiated into megakaryocytes. CLEC-2high HSCs yielded 6.8 times more megakaryocyte progenitors (MkPs) and 6.0 times more platelets 2 weeks and 1 week after transplantation compared with CLEC-2low LT-HSCs. However, platelet yield from CLEC-2high HSCs gradually declined with the loss of MkPs, while CLEC-2low HSCs self-renewed long-term, indicating that CLEC-2high LT-HSCs mainly contribute to early megakaryopoiesis. Treatment with pI:C and LPS increased the proportion of CLEC-2high LT-HSCs within LT-HSCs. Almost all CLEC-2low LT-HSCs were in the G0 phase and barely responded to pI:C. In contrast, 54% of CLEC-2high LT-HSCs were in G0, and pI:C treatment obliged CLEC-2high LT-HSCs to enter the cell cycle and differentiate into megakaryocytes, indicating that CLEC-2high LT-HSCs are primed for cell cycle entry and rapidly yield platelets in response to inflammatory stress. In conclusion, CLEC-2high LT-HSCs appear to act as a reserve for emergent platelet production under stress conditions.
Collapse
Affiliation(s)
- Takahiro Kumode
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan.
| | - Jorge Luis Esipinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Shinya Rai
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Yasuhiro Taniguchi
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Ryosuke Fujiwara
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Keigo Sano
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Kentaro Serizawa
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Yoshio Iwata
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Yasuyoshi Morita
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| |
Collapse
|
12
|
Wunderlich F, Delic D, Gerovska D, Araúzo-Bravo MJ. Vaccination Accelerates Liver-Intrinsic Expression of Megakaryocyte-Related Genes in Response to Blood-Stage Malaria. Vaccines (Basel) 2022; 10:vaccines10020287. [PMID: 35214745 PMCID: PMC8880532 DOI: 10.3390/vaccines10020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Erythropoiesis and megakaryo-/thrombopoiesis occur in the bone marrow proceeding from common, even bipotent, progenitor cells. Recently, we have shown that protective vaccination accelerates extramedullary hepatic erythroblastosis in response to blood-stage malaria of Plasmodium chabaudi. Here, we investigated whether protective vaccination also accelerates extramedullary hepatic megakaryo-/thrombopoiesis. Female Balb/c mice were twice vaccinated with a non-infectious vaccine before infecting with 106 P. chabaudi-parasitized erythrocytes. Using gene expression microarrays and quantitative real-time PCR, transcripts of genes known to be expressed in the bone marrow by cells of the megakaryo-/thrombocytic lineage were compared in livers of vaccination-protected and unprotected mice on days 0, 1, 4, 8, and 11 p.i. Livers of vaccination-protected mice responded with expression of megakaryo-/thrombocytic genes faster to P. chabaudi than those of unvaccinated mice, evidenced at early patency on day 4 p.i., when livers exhibited significantly higher levels of malaria-induced transcripts of the genes Selp and Pdgfb (p-values < 0.0001), Gp5 (p-value < 0.001), and Fli1, Runx1, Myb, Mpl, Gp1ba, Gp1bb, Gp6, Gp9, Pf4, and Clec1b (p-values < 0.01). Together with additionally analyzed genes known to be related to megakaryopoiesis, our data suggest that protective vaccination accelerates liver-intrinsic megakaryo-/thrombopoiesis in response to blood-stage malaria that presumably contributes to vaccination-induced survival of otherwise lethal blood-stage malaria.
Collapse
Affiliation(s)
- Frank Wunderlich
- Department of Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, 68167 Heidelberg, Germany
- Correspondence: (D.D.); (M.J.A.-B.)
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- TransBioNet Thematic Network of Excellence for Transitional Bioinformatics, Barcelona Supercomputing Center, 08034 Barcelona, Spain
- Correspondence: (D.D.); (M.J.A.-B.)
| |
Collapse
|
13
|
Stegner D, Göb V, Krenzlin V, Beck S, Hemmen K, Schuhmann MK, Schörg BF, Hackenbroch C, May F, Burkard P, Pinnecker J, Zernecke A, Rosenberger P, Greinacher A, Pichler BJ, Heinze KG, Stoll G, Nieswandt B. Foudroyant cerebral venous (sinus) thrombosis triggered through CLEC-2 and GPIIb/IIIa dependent platelet activation. NATURE CARDIOVASCULAR RESEARCH 2022; 1:132-141. [PMID: 39195988 PMCID: PMC11358028 DOI: 10.1038/s44161-021-00017-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/22/2021] [Indexed: 08/29/2024]
Abstract
Cerebral venous (sinus) thrombosis (CVT) is an unusual manifestation of venous thrombosis causing severe neurological impairment and seizures1,2. Molecular mechanisms underlying CVT, potentially involving pathological platelet activation, are unknown. Here we show that antibody-(INU1-fab)-induced cooperative signaling of two platelet receptors, C-type lectin-like receptor-2 (CLEC-2) and GPIIb/IIIa, triggers within minutes a CVT-like thrombotic syndrome in mice, characterized by tonic-myoclonic seizures, platelet consumption and death. Brain autopsy showed thrombi mainly in the cortical venules, but no intracranial hemorrhages or edema formation. Transcranial intravital microscopy revealed rapidly progressing thrombosis in the superior sagittal sinus, a main site of CVT in humans. Interfering with CLEC-2 signaling or inhibition of GPIIb/IIIa completely blocked platelet activation and CVT. Blocking GPIIb/IIIa after onset of neurological symptoms protected mice from platelet consumption, CVT and death, which was not seen after treatment with heparin. These results point to aberrant platelet activation as a major trigger of CVT and potential target for treatment.
Collapse
Affiliation(s)
- David Stegner
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Vanessa Göb
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Viola Krenzlin
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sarah Beck
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | | | - Barbara F Schörg
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Christian Hackenbroch
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Frauke May
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
- CSL Behring Innovation GmbH, Marburg, Germany
| | - Philipp Burkard
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Jürgen Pinnecker
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Andreas Greinacher
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Guido Stoll
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany.
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
14
|
Jourdi G, Lordkipanidzé M, Philippe A, Bachelot-Loza C, Gaussem P. Current and Novel Antiplatelet Therapies for the Treatment of Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms222313079. [PMID: 34884884 PMCID: PMC8658271 DOI: 10.3390/ijms222313079] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Over the last decades, antiplatelet agents, mainly aspirin and P2Y12 receptor antagonists, have significantly reduced morbidity and mortality associated with arterial thrombosis. Their pharmacological characteristics, including pharmacokinetic/pharmacodynamics profiles, have been extensively studied, and a significant number of clinical trials assessing their efficacy and safety in various clinical settings have established antithrombotic efficacy. Notwithstanding, antiplatelet agents carry an inherent risk of bleeding. Given that bleeding is associated with adverse cardiovascular outcomes and mortality, there is an unmet clinical need to develop novel antiplatelet therapies that inhibit thrombosis while maintaining hemostasis. In this review, we present the currently available antiplatelet agents, with a particular focus on their targets, pharmacological characteristics, and patterns of use. We will further discuss the novel antiplatelet therapies in the pipeline, with the goal of improved clinical outcomes among patients with atherothrombotic diseases.
Collapse
Affiliation(s)
- Georges Jourdi
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Correspondence: (G.J.); (P.G.)
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada;
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Aurélien Philippe
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
- Service d’Hématologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | - Christilla Bachelot-Loza
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
| | - Pascale Gaussem
- INSERM, Innovations Thérapeutiques en Hémostase, Université de Paris, F-75006 Paris, France; (A.P.); (C.B.-L.)
- Service d’Hématologie Biologique, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
- Correspondence: (G.J.); (P.G.)
| |
Collapse
|
15
|
Martin EM, Zuidscherwoude M, Morán LA, Di Y, García A, Watson SP. The structure of CLEC-2: mechanisms of dimerization and higher-order clustering. Platelets 2021; 32:733-743. [PMID: 33819136 DOI: 10.1080/09537104.2021.1906407] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
The platelet C-type lectin-like receptor CLEC-2 drives inflammation-driven venous thrombosis in mouse models of thrombo-inflammatory disease with a minimal effect on hemostasis identifying it as a target for a new class of antiplatelet agent. Here, we discuss how the protein structure and dynamic arrangement of CLEC-2 on the platelet membrane helps the receptor, which has a single YxxL motif (known as a hemITAM), to trigger intracellular signaling. CLEC-2 exists as a monomer and homo-dimer within resting platelets and forms higher-order oligomers following ligand activation, a process that is mediated by the multivalent nature of its ligands and the binding of the tandem SH2 domains of Syk to the phosphorylated hemITAM and concomitantly to PIP2 or PIP3 to localize it to the membrane. We propose that a low level of active Syk is present at the membrane in resting platelets due to phosphorylation by Src family kinases and that clustering of receptors disturbs the equilibrium between kinases and phosphatases, triggering phosphorylation of the CLEC-2 hemITAM and recruitment of Syk. Knowledge of the structure of CLEC-2 and the mechanism of platelet activation has important implications for development of therapeutics.
Collapse
Affiliation(s)
- Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
| | - Malou Zuidscherwoude
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
| | - Luis A Morán
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade De Santiago De Compostela, Spain
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
| | - Angel García
- Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade De Santiago De Compostela, Spain
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands
| |
Collapse
|
16
|
Glioblastoma cell populations with distinct oncogenic programs release podoplanin as procoagulant extracellular vesicles. Blood Adv 2021; 5:1682-1694. [PMID: 33720339 DOI: 10.1182/bloodadvances.2020002998] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/02/2021] [Indexed: 12/22/2022] Open
Abstract
Vascular anomalies, including local and peripheral thrombosis, are a hallmark of glioblastoma (GBM) and an aftermath of deregulation of the cancer cell genome and epigenome. Although the molecular effectors of these changes are poorly understood, the upregulation of podoplanin (PDPN) by cancer cells has recently been linked to an increased risk for venous thromboembolism (VTE) in GBM patients. Therefore, regulation of this platelet-activating protein by transforming events in cancer cells is of considerable interest. We used single-cell and bulk transcriptome data mining, as well as cellular and xenograft models in mice, to analyze the nature of cells expressing PDPN, as well as their impact on the activation of the coagulation system and platelets. We report that PDPN is expressed by distinct (mesenchymal) GBM cell subpopulations and downregulated by oncogenic mutations of EGFR and IDH1 genes, along with changes in chromatin modifications (enhancer of zeste homolog 2) and DNA methylation. Glioma cells exteriorize their PDPN and/or tissue factor (TF) as cargo of exosome-like extracellular vesicles (EVs) shed from cells in vitro and in vivo. Injection of glioma-derived podoplanin carrying extracelluar vesicles (PDPN-EVs) activates platelets, whereas tissue factor carrying extracellular vesicles (TF-EVs) activate the clotting cascade. Similarly, an increase in platelet activation (platelet factor 4) or coagulation (D-dimer) markers occurs in mice harboring the corresponding glioma xenografts expressing PDPN or TF, respectively. Coexpression of PDPN and TF by GBM cells cooperatively affects tumor microthrombosis. Thus, in GBM, distinct cellular subsets drive multiple facets of cancer-associated thrombosis and may represent targets for phenotype- and cell type-based diagnosis and antithrombotic intervention.
Collapse
|
17
|
Harbi MH, Smith CW, Nicolson PLR, Watson SP, Thomas MR. Novel antiplatelet strategies targeting GPVI, CLEC-2 and tyrosine kinases. Platelets 2020; 32:29-41. [PMID: 33307909 DOI: 10.1080/09537104.2020.1849600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antiplatelet medications comprise the cornerstone of treatment for diseases that involve arterial thrombosis, including acute coronary syndromes (ACS), stroke and peripheral arterial disease. However, antiplatelet medications may cause bleeding and, furthermore, thrombotic events may still recur despite treatment. The interaction of collagen with GPVI receptors on the surface of platelets has been identified as one of the major players in the pathophysiology of arterial thrombosis that occurs following atherosclerotic plaque rupture. Promisingly, GPVI deficiency in humans appears to have a minimal impact on bleeding. These findings together suggest that targeting platelet GPVI may provide a novel treatment strategy that provides additional antithrombotic efficacy with minimal disruption of normal hemostasis compared to conventional antiplatelet medications. CLEC-2 is gaining interest as a therapeutic target for a variety of thrombo-inflammatory disorders including deep vein thrombosis (DVT) with treatment also predicted to cause minimal disruption to hemostasis. GPVI and CLEC-2 signal through Src, Syk and Tec family tyrosine kinases, providing additional strategies for inhibiting both receptors. In this review, we summarize the evidence regarding GPVI and CLEC-2 and strategies for inhibiting these receptors to inhibit platelet recruitment and activation in thrombotic diseases.
Collapse
Affiliation(s)
- Maan H Harbi
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Christopher W Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust , Birmingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust , Birmingham, UK.,Sandwell and West Birmingham NHS Trust , Birmingham, UK
| |
Collapse
|
18
|
Ojeda N, Salazar C, Cárdenas C, Marshall SH. Expression of DC-SIGN-like C-Type Lectin Receptors in Salmo salar. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103806. [PMID: 32739503 PMCID: PMC7392198 DOI: 10.1016/j.dci.2020.103806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 05/05/2023]
Abstract
C-Type Lectin Receptors (CTLR) are involved in the activation of innate and adaptative immune responses. Among these receptors, the Dendritic Cell-Specific ICAM-3-Grabbing nonintegrin (DC-SIGN/CD209) has become a hot topic due to its ability to bind and facilitate the infections processes of several pathogens. Although well characterized in mammals, little documentation exists about the receptor in salmonid fishes. Here, we report the sequence and expression analysis of eight DC-SIGN-like genes in Salmo salar. Each receptor displays structural similarities to DC-SIGN molecules described in mammals, including internalization motifs, a neck region with heptad repeats, and a Ca+2-dependent carbohydrate recognition domain. The receptors are expressed in multiple tissues of fish, and fish cell lines, with differential expression upon infection with viral and bacterial pathogens. The identification of DC-SIGN-like receptors in Salmo salar provides new information regarding the structure of the immune system of salmon, potential markers for cell subsets, as well as insights into DC-SIGN conservation across species.
Collapse
Affiliation(s)
- Nicolás Ojeda
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Carolina Salazar
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Constanza Cárdenas
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Sergio H Marshall
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile.
| |
Collapse
|
19
|
Suzuki‐Inoue K, Tsukiji N. Platelet CLEC-2 and lung development. Res Pract Thromb Haemost 2020; 4:481-490. [PMID: 32548549 PMCID: PMC7292670 DOI: 10.1002/rth2.12338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 01/23/2023] Open
Abstract
In this article, the State of the Art lecture "Platelet CLEC-2 and Lung Development" presented at the ISTH congress 2019 is reviewed. During embryonic development, blood cells are often considered as porters of nutrition and oxygen but not as active influencers of cell differentiation. However, recent studies revealed that platelets actively facilitate cell differentiation by releasing biological substances during development. C-type lectin-like receptor 2 (CLEC-2) has been identified as a receptor for the platelet-activating snake venom rhodocytin. An endogenous ligand of CLEC-2 is the membrane protein podoplanin (PDPN), which is expressed on the surface of certain types of tumor cells and lymphatic endothelial cells (LECs). Deletion of CLEC-2 from platelets in mice results in death just after birth due to lung malformation and blood/lymphatic vessel separation. During development, lymphatic vessels are derived from cardinal veins. At this stage, platelets are activated by binding of CLEC-2 to LEC PDPN and release trandforming growth factor-β (TGF-β). This cytokine inhibits LEC migration and proliferation, facilitating blood/lymphatic vessel separation. TGF-β released upon platelet-expressed CLEC-2/LEC PDPN also facilitates differentiation of lung mesothelial cells into alveolar duct myofibroblasts (adMYFs) in the developing lung. AdMYFs generate elastic fibers inside the lung, so that the lung can be properly inflated. Thus, platelets act as an ultimate natural drug delivery system that enables biological substances to be specifically delivered to the target at high concentrations by receptor/ligand interactions during development.
Collapse
Affiliation(s)
- Katsue Suzuki‐Inoue
- Department of Clinical and Laboratory MedicineFaculty of MedicineUniversity of YamanashiChuoJapan
| | - Nagaharu Tsukiji
- Department of Clinical and Laboratory MedicineFaculty of MedicineUniversity of YamanashiChuoJapan
| |
Collapse
|
20
|
Haining EJ, Lowe KL, Wichaiyo S, Kataru RP, Nagy Z, Kavanagh DP, Lax S, Di Y, Nieswandt B, Ho-Tin-Noé B, Mehrara BJ, Senis YA, Rayes J, Watson SP. Lymphatic blood filling in CLEC-2-deficient mouse models. Platelets 2020; 32:352-367. [PMID: 32129691 PMCID: PMC8443399 DOI: 10.1080/09537104.2020.1734784] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-type lectin-like receptor 2 (CLEC-2) is considered as a potential drug target in settings of wound healing, inflammation, and infection. A potential barrier to this is evidence that CLEC-2 and its ligand podoplanin play a critical role in preventing lymphatic vessel blood filling in mice throughout life. In this study, this aspect of CLEC-2/podoplanin function is investigated in more detail using new and established mouse models of CLEC-2 and podoplanin deficiency, and models of acute and chronic vascular remodeling. We report that CLEC-2 expression on platelets is not required to maintain a barrier between the blood and lymphatic systems in unchallenged mice, post-development. However, under certain conditions of chronic vascular remodeling, such as during tumorigenesis, deficiency in CLEC-2 can lead to lymphatic vessel blood filling. These data provide a new understanding of the function of CLEC-2 in adult mice and confirm the essential nature of CLEC-2-driven platelet activation in vascular developmental programs. This work expands our understanding of how lymphatic blood filling is prevented by CLEC-2-dependent platelet function and provides a context for the development of safe targeting strategies for CLEC-2 and podoplanin.
Collapse
Affiliation(s)
- Elizabeth J Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kate L Lowe
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Surasak Wichaiyo
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Raghu P Kataru
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zoltan Nagy
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dean Pj Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sian Lax
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Experimental Biomedicine and Institute of Experimental Biomedicine, University of Würzburg and University Hospital of Würzburg, Würzburg, Germany
| | - Benoît Ho-Tin-Noé
- Institut National de la Santé et de la Recherche Médicale, UMR_S1148, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Bichat, Paris, France
| | - Babak J Mehrara
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yotis A Senis
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
21
|
Tone K, Stappers MHT, Willment JA, Brown GD. C-type lectin receptors of the Dectin-1 cluster: Physiological roles and involvement in disease. Eur J Immunol 2019; 49:2127-2133. [PMID: 31580478 PMCID: PMC6916577 DOI: 10.1002/eji.201847536] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/12/2019] [Accepted: 09/27/2019] [Indexed: 12/27/2022]
Abstract
C-type lectin receptors (CLRs) are essential for multicellular existence, having diverse functions ranging from embryonic development to immune function. One subgroup of CLRs is the Dectin-1 cluster, comprising of seven receptors including MICL, CLEC-2, CLEC-12B, CLEC-9A, MelLec, Dectin-1, and LOX-1. Reflecting the larger CLR family, the Dectin-1 cluster of receptors has a broad range of ligands and functions, but importantly, is involved in numerous pathophysiological processes that regulate health and disease. Indeed, these receptors have been implicated in development, infection, regulation of inflammation, allergy, transplantation tolerance, cancer, cardiovascular disease, arthritis, and other autoimmune diseases. In this mini-review, we discuss the latest advancements in elucidating the function(s) of each of the Dectin-1 cluster CLRs, focussing on their physiological roles and involvement in disease.
Collapse
Affiliation(s)
- Kazuya Tone
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland
| | - Mark H T Stappers
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, Devon, England
| | - Janet A Willment
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland.,Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, Devon, England
| | - Gordon D Brown
- Aberdeen Fungal Group, University of Aberdeen, Institute of Medical Sciences, Aberdeen, Scotland.,Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, Devon, England
| |
Collapse
|
22
|
Snake venom rhodocytin induces plasma extravasation via toxin-mediated interactions between platelets and mast cells. Sci Rep 2019; 9:15958. [PMID: 31685912 PMCID: PMC6828706 DOI: 10.1038/s41598-019-52449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
Venomous snakebites can induce local tissue damage, including necrosis of soft tissues, haemorrhage, blistering and local swelling associated with plasma extravasation, which can lead to lethal complications such as hypovolemic shock. However, the details of the underlying mechanisms remain unknown. In this study, we showed that intradermal treatment of mice with venom rhodocytin from the Malayan viper Calloselasma rhodostoma induced plasma extravasation, dependent on C-type lectin-like receptor 2 (CLEC-2) on platelets. Rhodocytin-induced plasma extravasation also relied on mast cells and histamine. In vitro co-culture of rhodocytin-activated platelets with mast cells induced histamine release from mast cells in an ATP/P2X7-dependent manner. Consistent with this, blockade or deficiency of P2X7 in mast cells suppressed rhodocytin-induced plasma extravasation in the skin. Together, these findings indicate that rhodocytin induces plasma extravasation by triggering platelet activation via CLEC-2, followed by activation of mast cells and histamine release via the ATP/P2X7 pathway. These results reveal a previously unrecognized mechanism by which snake venom increases vascular permeability via complex venom toxin–mediated interactions between platelets and mast cells.
Collapse
|
23
|
Cobalt hematoporphyrin inhibits CLEC-2-podoplanin interaction, tumor metastasis, and arterial/venous thrombosis in mice. Blood Adv 2019; 2:2214-2225. [PMID: 30190281 DOI: 10.1182/bloodadvances.2018016261] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/13/2018] [Indexed: 01/26/2023] Open
Abstract
The platelet activation receptor C-type lectin-like receptor 2 (CLEC-2) interacts with podoplanin on the surface of certain types of tumor cells, and this interaction facilitates tumor metastasis. CLEC-2 is also involved in thrombus formation and its stabilization. Because CLEC-2-depleted mice are protected from experimental lung metastasis and thrombus formation and do not show increased bleeding time, CLEC-2 may serve as a good target for antimetastatic or antithrombotic drugs. We screened 6770 compounds for their capability to inhibit CLEC-2-podoplanin binding using an enzyme-linked immunosorbent assay. In the first screening round, 63 compounds were identified and further evaluated by flow cytometry using CLEC-2-expressing cells. We identified protoporphyrin IX (H2-PP) as the most potent inhibitor and modified its hematoporphyrin moiety to be complexed with cobalt (cobalt hematoporphyrin [Co-HP]), which resulted in an inhibitory potency much stronger than that of H2-PP. Surface plasmon resonance analysis and molecular docking study showed that Co-HP binds directly to CLEC-2 at N120, N210, and K211, previously unknown podoplanin-binding sites; this binding was confirmed by analysis of CLEC-2 mutants with alterations in N120 and/or K211. Co-HP at a concentration of 1.53 μM inhibited platelet aggregation mediated through CLEC-2, but not that mediated through other receptors. IV administration of Co-HP to mice significantly inhibited hematogenous metastasis of podoplanin-expressing B16F10 cells to the lung as well as in vivo arterial and venous thrombosis, without a significant increase in tail-bleeding time. Thus, Co-HP may be a promising molecule for antimetastatic and antiplatelet treatment that does not cause bleeding tendency.
Collapse
|
24
|
Abstract
The C-type lectins are a superfamily of proteins that recognize a broad repertoire of ligands and that regulate a diverse range of physiological functions. Most research attention has focused on the ability of C-type lectins to function in innate and adaptive antimicrobial immune responses, but these proteins are increasingly being recognized to have a major role in autoimmune diseases and to contribute to many other aspects of multicellular existence. Defects in these molecules lead to developmental and physiological abnormalities, as well as altered susceptibility to infectious and non-infectious diseases. In this Review, we present an overview of the roles of C-type lectins in immunity and homeostasis, with an emphasis on the most exciting recent discoveries.
Collapse
|
25
|
Kerrigan SW, Devine T, Fitzpatrick G, Thachil J, Cox D. Early Host Interactions That Drive the Dysregulated Response in Sepsis. Front Immunol 2019; 10:1748. [PMID: 31447831 PMCID: PMC6691039 DOI: 10.3389/fimmu.2019.01748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/10/2019] [Indexed: 01/18/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. While many individual cells and systems in the body are involved in driving the excessive and sometimes sustained host response, pathogen engagement with endothelial cells and platelets early in sepsis progression, are believed to be key. Significant progress has been made in establishing key molecular interactions between platelets and pathogens and endothelial cells and pathogens. This review will explore the growing number of compensatory connections between bacteria and viruses with platelets and endothelial cells and how a better understanding of these interactions are informing the field of potential novel ways to treat the dysregulated host response during sepsis.
Collapse
Affiliation(s)
- Steven W Kerrigan
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tatyana Devine
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Glenn Fitzpatrick
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jecko Thachil
- Department of Haematology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Dermot Cox
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
26
|
Martyanov AA, Kaneva VN, Panteleev MA, Sveshnikova AN. [CLEC-2 induced signalling in blood platelets]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:387-396. [PMID: 30378555 DOI: 10.18097/pbmc20186405387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Platelet activating receptor CLEC-2 has been identified on platelet surface a decade ago. The only confirmed endogenous CLEC-2 agonist is podoplanin. Podoplanin is a transmembrane protein expressed by lymphatic endothelial cells, reticular fibroblastic cells in lymph nodes, kidney podocytes and by cells of certain tumors. CLEC-2 and podoplanin are involved in the processes of embryonic development (blood-lymph vessel separation and angiogenesis), maintaining of vascular integrity of small vessels during inflammation and prevention of blood-lymphatic mixing in high endothelial venules. However, CLEC-2 and podoplanin are contributing to tumor methastasis progression, Salmonella sepsis, deep-vein thrombosis. CLEC-2 signalling cascade includes tyrosine-kinases (Syk, SFK, Btk) as well as adapter LAT and phospholipase Cg2, which induces calcium signalling. CLEC-2, podoplanin and proteins, participating in CLEC-2 signalling cascade, are perspective targets for antithrombotic therapy.
Collapse
Affiliation(s)
- A A Martyanov
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - V N Kaneva
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Rogachev National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - M A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia; Rogachev National Scientific and Practical Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - A N Sveshnikova
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| |
Collapse
|
27
|
Rayes J, Watson SP, Nieswandt B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest 2019; 129:12-23. [PMID: 30601137 DOI: 10.1172/jci122955] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although platelets are best known for their role in hemostasis, they are also crucial in development, host defense, inflammation, and tissue repair. Many of these roles are regulated by the immune-like receptors glycoprotein VI (GPVI) and C-type lectin receptor 2 (CLEC-2), which signal through an immunoreceptor tyrosine-based activation motif (ITAM). GPVI is activated by collagen in the subendothelial matrix, by fibrin and fibrinogen in the thrombus, and by a remarkable number of other ligands. CLEC-2 is activated by the transmembrane protein podoplanin, which is found outside of the vasculature and is upregulated in development, inflammation, and cancer, but there is also evidence for additional ligands. In this Review, we discuss the physiological and pathological roles of CLEC-2 and GPVI and their potential as targets in thrombosis and thrombo-inflammatory disorders (i.e., disorders in which inflammation plays a critical role in the ensuing thrombosis) relative to current antiplatelet drugs.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, United Kingdom
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
|
29
|
|
30
|
Ibrutinib-related bleeding: pathogenesis, clinical implications and management. Blood Coagul Fibrinolysis 2018; 29:481-487. [PMID: 29995658 DOI: 10.1097/mbc.0000000000000749] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
: Ibrutinib is the first drug of a new family of Bruton's tyrosine kinases (Btk)-inhibiting agents, which have proved to be useful for the treatment of several B-cell lymphoid malignancies. This drug is associated to an increased bleeding risk from initial clinical trials especially in association with warfarin. Although Btk plays an important role in platelet signalling, increased bleeding tendency in patients on ibrutinib is more complex than Btk inhibition alone and is because of several antiplatelet mechanisms, namely inhibition of Btk and Tec kinases, which play a key role in platelet activation downstream of the collagen GPVI and Glycoprotein Ib. This risk is increased by concomitant antiplatelet and anticoagulant therapy; both dual antiplatelet therapy and vitamin K antagonists are contraindicated in these patients. Potential ibrutinib users often have age-associated cardiovascular risk factors or conditions and the drug itself may trigger atrial fibrillation requiring antithrombotic therapy. Aspirin and direct oral anticoagulants can be regarded as the antithrombotic therapies of choice if required. Heparin and fondaparinux have also been used in clinical trials. Therefore, the need and duration of antithrombotic therapy must be carefully evaluated and treatment individualized according to clinical circumstances. Ibrutinib withdrawal and platelet transfusion are key for the management of major bleeding not involving the central nervous system.
Collapse
|
31
|
Eisinger F, Patzelt J, Langer HF. The Platelet Response to Tissue Injury. Front Med (Lausanne) 2018; 5:317. [PMID: 30483508 PMCID: PMC6242949 DOI: 10.3389/fmed.2018.00317] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, various studies have increasingly explained platelet functions not only in their central role as a regulator in cellular hemostasis and coagulation. In fact, there is growing evidence that under specific conditions, platelets act as a mediator between the vascular system, hemostasis, and the immune system. Therefore, they are essential in many processes involved in tissue remodeling and tissue reorganization after injury or inflammatory responses. These processes include the promotion of inflammatory processes, the contribution to innate and adaptive immune responses during bacterial and viral infections, the modulation of angiogenesis, and the regulation of cell apoptosis in steady-state tissue homeostasis or after tissue breakdown. All in all platelets may contribute to the control of tissue homeostasis much more than generally assumed. This review summarizes the current knowledge of platelets as part of the tissue remodeling network and seeks to provide possible translational implications for clinical therapy.
Collapse
Affiliation(s)
- Felix Eisinger
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Johannes Patzelt
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| | - Harald F. Langer
- Section for Cardioimmunology, Department of Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
- University Clinic for Cardiovascular Medicine, University of Tuebingen, Tübingen, Germany
| |
Collapse
|
32
|
Martyanov AA, Kaneva VN, Panteleev MA, Sveshnikova AN. Physiological and pathophysiological aspects of blood platelet activation through CLEC-2 receptor. ONCOHEMATOLOGY 2018. [DOI: 10.17650/1818-8346-2018-13-3-83-90] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Platelet activating receptor CLEC-2 has been identified on platelet surface a decade ago. The only confirmed endogenous CLEC-2 agonist is podoplanin. Podoplanin is a transmembrane protein expressed by lymphatic endothelial cells, reticular fibroblastic cells in lymph nodes, kidney podocytes and by cells of certain tumors. Association of CLEC-2 with podoplanin is involved in processes of embryonic development (blood-lymph vessel separation and angiogenesis), maintaining of vascular integrity of small vessels during inflammation and prevention of blood-lymphatic mixing in high endothelial venules. However, CLEC-2 and podoplanin are contributing to tumor metastasis progression, Salmonella sepsis and deep-vein thrombosis. This makes CLEC-2 and podoplanin a perspective target for pharmacological treatment. Aspirin and Ibrutinib are considered to be perspective for abrogation of podoplanin-induced platelet activation via CLEC-2. The present review discusses already known pathological and physiological roles of CLEC-2 and possibilities of a targeted therapy for CLEC-2 associated diseases.
Collapse
Affiliation(s)
- A. A. Martyanov
- Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology; Lomonosov Moscow State University, Faculty of Physics; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences
| | - V. N. Kaneva
- Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology; Lomonosov Moscow State University, Faculty of Physics
| | - M. A. Panteleev
- Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology; Lomonosov Moscow State University, Faculty of Physics; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University), Faculty of Biological and Medical Physics
| | - A. N. Sveshnikova
- Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology; Lomonosov Moscow State University, Faculty of Physics; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences
| |
Collapse
|
33
|
Platelets play an essential role in murine lung development through Clec-2/podoplanin interaction. Blood 2018; 132:1167-1179. [PMID: 29853539 DOI: 10.1182/blood-2017-12-823369] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
Platelets participate in not only thrombosis and hemostasis but also other pathophysiological processes, including tumor metastasis and inflammation. However, the putative role of platelets in the development of solid organs has not yet been described. Here, we report that platelets regulate lung development through the interaction between the platelet-activation receptor, C-type lectin-like receptor-2 (Clec-2; encoded by Clec1b), and its ligand, podoplanin, a membrane protein. Clec-2 deletion in mouse platelets led to lung malformation, which caused respiratory failure and neonatal lethality. In these embryos, α-smooth muscle actin-positive alveolar duct myofibroblasts (adMYFs) were almost absent in the primary alveolar septa, which resulted in loss of alveolar elastic fibers and lung malformation. Our data suggest that the lack of adMYFs is caused by abnormal differentiation of lung mesothelial cells (luMCs), the major progenitor of adMYFs. In the developing lung, podoplanin expression is detected in alveolar epithelial cells (AECs), luMCs, and lymphatic endothelial cells (LECs). LEC-specific podoplanin knockout mice showed neonatal lethality and Clec1b-/--like lung developmental abnormalities. Notably, these Clec1b-/--like lung abnormalities were also observed after thrombocytopenia or transforming growth factor-β depletion in fetuses. We propose that the interaction between Clec-2 on platelets and podoplanin on LECs stimulates adMYF differentiation of luMCs through transforming growth factor-β signaling, thus regulating normal lung development.
Collapse
|
34
|
Del Fresno C, Iborra S, Saz-Leal P, Martínez-López M, Sancho D. Flexible Signaling of Myeloid C-Type Lectin Receptors in Immunity and Inflammation. Front Immunol 2018; 9:804. [PMID: 29755458 PMCID: PMC5932189 DOI: 10.3389/fimmu.2018.00804] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Myeloid C-type lectin receptors (CLRs) are important sensors of self and non-self that work in concert with other pattern recognition receptors (PRRs). CLRs have been previously classified based on their signaling motifs as activating or inhibitory receptors. However, specific features of the ligand binding process may result in distinct signaling through a single motif, resulting in the triggering of non-canonical pathways. In addition, CLR ligands are frequently exposed in complex structures that simultaneously bind different CLRs and other PRRs, which lead to integration of heterologous signaling among diverse receptors. Herein, we will review how sensing by myeloid CLRs and crosstalk with heterologous receptors is modulated by many factors affecting their signaling and resulting in differential outcomes for immunity and inflammation. Finding common features among those flexible responses initiated by diverse CLR-ligand partners will help to harness CLR function in immunity and inflammation.
Collapse
Affiliation(s)
- Carlos Del Fresno
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Salvador Iborra
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Department of Immunology, School of Medicine, Universidad Complutense de Madrid, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Paula Saz-Leal
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Martínez-López
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
35
|
Zivot A, Lipton JM, Narla A, Blanc L. Erythropoiesis: insights into pathophysiology and treatments in 2017. Mol Med 2018; 24:11. [PMID: 30134792 PMCID: PMC6016880 DOI: 10.1186/s10020-018-0011-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/02/2018] [Indexed: 12/20/2022] Open
Abstract
Erythropoiesis is a tightly-regulated and complex process originating in the bone marrow from a multipotent stem cell and terminating in a mature, enucleated erythrocyte.Altered red cell production can result from the direct impairment of medullary erythropoiesis, as seen in the thalassemia syndromes, inherited bone marrow failure as well as in the anemia of chronic disease. Alternatively, in disorders such as sickle cell disease (SCD) as well as enzymopathies and membrane defects, medullary erythropoiesis is not, or only minimally, directly impaired. Despite these differences in pathophysiology, therapies have traditionally been non-specific, limited to symptomatic control of anemia via packed red blood cell (pRBC) transfusion, resulting in iron overload and the eventual need for iron chelation or splenectomy to reduce defective red cell destruction. Likewise, in polycythemia vera overproduction of red cells has historically been dealt with by non-specific myelosuppression or phlebotomy. With a deeper understanding of the molecular mechanisms underlying disease pathophysiology, new therapeutic targets have been identified including induction of fetal hemoglobin, interference with aberrant signaling pathways and gene therapy for definitive cure. This review, utilizing some representative disorders of erythropoiesis, will highlight novel therapeutic modalities currently in development for treatment of red cell disorders.
Collapse
Affiliation(s)
- Andrea Zivot
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Division of Pediatrics Hematology/Oncology and Stem Cell Transplantation, Cohen Children's Medical Center, New Hyde Park, NY, 11040, USA
| | - Jeffrey M Lipton
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
- Division of Pediatrics Hematology/Oncology and Stem Cell Transplantation, Cohen Children's Medical Center, New Hyde Park, NY, 11040, USA
- Stanford University School of Medicine, Stanford, CA, USA
| | - Anupama Narla
- Department of Molecular Medicine and Pediatrics, Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, NY, 11549, USA
| | - Lionel Blanc
- Laboratory of Developmental Erythropoiesis, Center for Autoimmune, Musculoskeletal, and Hematopoietic Diseases, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
- Division of Pediatrics Hematology/Oncology and Stem Cell Transplantation, Cohen Children's Medical Center, New Hyde Park, NY, 11040, USA.
- Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
36
|
|
37
|
Bergmeier W, Stefanini L. Platelets at the Vascular Interface. Res Pract Thromb Haemost 2018; 2:27-33. [PMID: 29457148 PMCID: PMC5810953 DOI: 10.1002/rth2.12061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/19/2017] [Indexed: 02/01/2023] Open
Abstract
In this brief review paper, we will summarize the State-of-the-Art on how platelet reactivity is regulated in circulation and at sites of vascular injury. Our review discusses recent and ongoing work, presented at this year's International Society on Thrombosis and Haemostasis (ISTH) meeting, on the role of platelets in (1) classical hemostasis at sites of mechanical injury, and (2) the maintenance of vascular integrity at sites of inflammation.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
- McAllister Heart InstituteUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Lucia Stefanini
- Department of Internal Medicine and Medical SpecialtiesSapienza University of RomeRomeItaly
| |
Collapse
|
38
|
Platelets and vascular integrity: how platelets prevent bleeding in inflammation. Blood 2017; 131:277-288. [PMID: 29191915 DOI: 10.1182/blood-2017-06-742676] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Platelets play a central role in primary hemostasis by forming aggregates that plug holes in injured vessels. Half a century ago, detailed studies of the microvasculature by electron microscopy revealed that under inflammatory conditions that do not induce major disruption to vascular structure, individual platelets are mobilized to the vessel wall, where they interact with leukocytes and appear to seal gaps that arise between endothelial cells. Recent developments in genetic engineering and intravital microscopy have allowed further molecular and temporal characterization of these events. Surprisingly, it turns out that platelets support the recruitment of leukocytes to sites of inflammation. In parallel, however, they exercise their hemostatic function by securing the integrity of inflamed blood vessels to prevent bleeding from sites of leukocyte infiltration. It thus appears that platelets not only serve in concert as building blocks of the hemostatic plug but also act individually as gatekeepers of the vascular wall to help preserve vascular integrity while coordinating host defense. Variants of this recently appreciated hemostatic function of platelets that we refer to as "inflammation-associated hemostasis" are engaged in different contexts in which the endothelium is challenged or dysfunctional. Although the distinguishing characteristics of these variants and the underlying mechanisms of inflammation-associated hemostasis remain to be fully elucidated, they can differ notably from those supporting thrombosis, thus presenting therapeutic opportunities.
Collapse
|