1
|
Bauvois B, Nguyen-Khac F, Merle-Béral H, Susin SA. CD38/NAD + glycohydrolase and associated antigens in chronic lymphocytic leukaemia: From interconnected signalling pathways to therapeutic strategies. Biochimie 2024; 227:135-151. [PMID: 39009062 DOI: 10.1016/j.biochi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/immunology
- Signal Transduction
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/immunology
- Animals
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France.
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
2
|
Ke R, Kumar S, Singh SK, Rana A, Rana B. Molecular insights into the role of mixed lineage kinase 3 in cancer hallmarks. Biochim Biophys Acta Rev Cancer 2024; 1879:189157. [PMID: 39032538 DOI: 10.1016/j.bbcan.2024.189157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Mixed-lineage kinase 3 (MLK3) is a serine/threonine kinase of the MAPK Kinase kinase (MAP3K) family that plays critical roles in various biological processes, including cancer. Upon activation, MLK3 differentially activates downstream MAPKs, such as JNK, p38, and ERK. In addition, it regulates various non-canonical signaling pathways, such as β-catenin, AMPK, Pin1, and PAK1, to regulate cell proliferation, apoptosis, invasion, and metastasis. Recent studies have also uncovered other potentially diverse roles of MLK3 in malignancy, which include metabolic reprogramming, cancer-associated inflammation, and evasion of cancer-related immune surveillance. The role of MLK3 in cancer is complex and cancer-specific, and an understanding of its function at the molecular level aligned specifically with the cancer hallmarks will have profound therapeutic implications for diagnosing and treating MLK3-dependent cancers. This review summarizes the current knowledge about the effect of MLK3 on the hallmarks of cancer, providing insights into its potential as a promising anticancer drug target.
Collapse
Affiliation(s)
- Rong Ke
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Wu S, Tan Y, Li F, Han Y, Zhang S, Lin X. CD44: a cancer stem cell marker and therapeutic target in leukemia treatment. Front Immunol 2024; 15:1354992. [PMID: 38736891 PMCID: PMC11082360 DOI: 10.3389/fimmu.2024.1354992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
CD44 is a ubiquitous leukocyte adhesion molecule involved in cell-cell interaction, cell adhesion, migration, homing and differentiation. CD44 can mediate the interaction between leukemic stem cells and the surrounding extracellular matrix, thereby inducing a cascade of signaling pathways to regulate their various behaviors. In this review, we focus on the impact of CD44s/CD44v as biomarkers in leukemia development and discuss the current research and prospects for CD44-related interventions in clinical application.
Collapse
Affiliation(s)
- Shuang Wu
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yicheng Tan
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
| | - Fanfan Li
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yixiang Han
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shenghui Zhang
- Laboratory Animal Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hematology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key laboratory of Hematology, Wenzhou, Zhejiang, China
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaofei Lin
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Rey-Barroso J, Munaretto A, Rouquié N, Mougel A, Chassan M, Gadat S, Dewingle O, Poincloux R, Cadot S, Ysebaert L, Quillet-Mary A, Dupré L. Lymphocyte migration and retention properties affected by ibrutinib in chronic lymphocytic leukemia. Haematologica 2024; 109:809-823. [PMID: 37381758 PMCID: PMC10905104 DOI: 10.3324/haematol.2022.282466] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/20/2023] [Indexed: 06/30/2023] Open
Abstract
The Bruton tyrosine kinase (BTK) inhibitor ibrutinib is widely used for treatment of patients with relapsed/refractory or treatment-naïve chronic lymphocytic leukemia (CLL). A prominent effect of ibrutinib is to disrupt the retention of CLL cells from supportive lymphoid tissues, by altering BTK-dependent adhesion and migration. To further explore the mechanism of action of ibrutinib and its potential impact on non-leukemic cells, we quantified multiple motility and adhesion parameters of human primary CLL cells and non-leukemic lymphoid cells. In vitro, ibrutinib affected CCL19-, CXCL12- and CXCL13-evoked migration behavior of CLL cells and non-neoplastic lymphocytes, by reducing both motility speed and directionality. De-phosphorylation of BTK induced by ibrutinib in CLL cells was associated with defective polarization over fibronectin and inability to assemble the immunological synapse upon B-cell receptor engagement. In patients' samples collected during a 6-month monitoring of therapy, chemokine-evoked migration was repressed in CLL cells and marginally reduced in T cells. This was accompanied by profound modulation of the expression of chemokine receptors and adhesion molecules. Remarkably, the relative expression of the receptors governing lymph node entry (CCR7) versus exit (S1PR1) stood out as a reliable predictive marker of the clinically relevant treatment-induced lymphocytosis. Together, our data reveal a multifaceted modulation of motility and adhesive properties of ibrutinib on both CLL leukemic cell and T-cell populations and point to intrinsic differences in CLL recirculation properties as an underlying cause for variability in treatment response.
Collapse
Affiliation(s)
- Javier Rey-Barroso
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Alice Munaretto
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Nelly Rouquié
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Aurélie Mougel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Malika Chassan
- Institut de Mathématiques de Toulouse, CNRS UMR 5219, Université Toulouse 3 Paul Sabatier
| | - Sébastien Gadat
- Toulouse School of Economics, CNRS UMR 5314, Université Toulouse 1 Capitole; Institut Universitaire de France
| | - Océane Dewingle
- Toulouse Cancer Research Center (CRCT), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Renaud Poincloux
- Institut de Pharmacologie et Biologie Structurale, IPBS, CNRS, UPS, Université de Toulouse
| | - Sarah Cadot
- Toulouse Cancer Research Center (CRCT), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Loïc Ysebaert
- Toulouse Cancer Research Center (CRCT), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France; Clinical Hematology, IUCT Oncopole, Toulouse University Hospital, Toulouse
| | - Anne Quillet-Mary
- Toulouse Cancer Research Center (CRCT), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse
| | - Loïc Dupré
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM, CNRS, Toulouse III Paul Sabatier University, Toulouse, France; Department of Dermatology, Medical University of Vienna, Vienna.
| |
Collapse
|
5
|
Cerreto M, Foà R, Natoni A. The Role of the Microenvironment and Cell Adhesion Molecules in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5160. [PMID: 37958334 PMCID: PMC10647257 DOI: 10.3390/cancers15215160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy whose progression largely depends on the lymph node and bone marrow microenvironment. Indeed, CLL cells actively proliferate in specific regions of these anatomical compartments, known as proliferation centers, while being quiescent in the blood stream. Hence, CLL cell adhesion and migration into these protective niches are critical for CLL pathophysiology. CLL cells are lodged in their microenvironment through a series of molecular interactions that are mediated by cellular adhesion molecules and their counter receptors. The importance of these adhesion molecules in the clinic is demonstrated by the correlation between the expression levels of some of them, in particular CD49d, and the prognostic likelihood. Furthermore, novel therapeutic agents, such as ibrutinib, impair the functions of these adhesion molecules, leading to an egress of CLL cells from the lymph nodes and bone marrow into the circulation together with an inhibition of homing into these survival niches, thereby preventing disease progression. Several adhesion molecules have been shown to participate in CLL adhesion and migration. Their importance also stems from the observation that they are involved in promoting, directly or indirectly, survival signals that sustain CLL proliferation and limit the efficacy of standard and novel chemotherapeutic drugs, a process known as cell adhesion-mediated drug resistance. In this respect, many studies have elucidated the molecular mechanisms underlying cell adhesion-mediated drug resistance, which have highlighted different signaling pathways that may represent potential therapeutic targets. Here, we review the role of the microenvironment and the adhesion molecules that have been shown to be important in CLL and their impact on transendothelial migration and cell-mediated drug resistance. We also discuss how novel therapeutic compounds modulate the function of this important class of molecules.
Collapse
Affiliation(s)
| | | | - Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00100 Rome, Italy; (M.C.); (R.F.)
| |
Collapse
|
6
|
Chen L, Ren A, Wang Y, Qu Y, Gong H, Mayo KH, Zhou Y, Cheng H. Heterogalactan WPEP-N-b from Pleurotus eryngii enhances immunity in immunocompromised mice. Int J Biol Macromol 2023; 225:1010-1020. [PMID: 36410539 DOI: 10.1016/j.ijbiomac.2022.11.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
This study reports on in vivo immunomodulatory activities mediated by WPEP-N-b, a heterogalactan from Pleurotus eryngii. Using cyclophosphamide (CTX)-induced immunosuppressed mice, we demonstrate here that WPEP-N-b enhances immunity as determined by the immune organ index, peripheral blood immune cell content, splenocyte proliferation, NK cell activity and T lymphocyte subpopulations. WPEP-N-b prevented apoptosis of bone marrow cells induced by CTX. The level of cytokines (i.e. TNF-α, IL-6 and IL-1β) and macrophage activity in these immunocompromised mice were restored upon treated with WPEP-N-b. Mechanistically, it appears that WPEP-N-b enhances splenocyte proliferation and NK cell activity might through the Toll-like receptor 4 (TLR4)-PKC signaling axis, and increases macrophage activity by activating JNK, p38 and NF-κB signaling pathways and Toll-like receptor 2 (TLR2) is the possible receptor of WPEP-N-b in macrophages. Our findings indicate that WPEP-N-b may function as a natural immune stimulant.
Collapse
Affiliation(s)
- Lei Chen
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Ai Ren
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yushi Wang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yunhe Qu
- Central Laboratory, Changchun Normal University, No. 677 North Changji Road, Changchun 130032, China
| | - Hesong Gong
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
7
|
Collard JP, McKenna MK, Noothi SK, Alhakeem SS, Rivas JR, Rangnekar VM, Muthusamy N, Bondada S. Role of the splenic microenvironment in chronic lymphocytic leukemia development in Eµ-TCL1 transgenic mice. Leuk Lymphoma 2022; 63:1810-1822. [DOI: 10.1080/10428194.2022.2045596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- James P. Collard
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Mary K. McKenna
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Sunil K. Noothi
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Sara S. Alhakeem
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jacqueline R. Rivas
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Vivek M. Rangnekar
- Department of Radiation Medicine and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Natarajan Muthusamy
- Division of Hematology, James Cancer Center, Ohio State University, Columbus, OH, USA
| | - Subbarao Bondada
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
8
|
Härzschel A, Li L, Krenn PW, Szenes-Nagy E, Andrieux G, Bayer E, Pfeifer D, Polcik L, Denk U, Höpner JP, Karabatak E, Danner DJ, Tangermann S, Kenner L, Jumaa H, Greil R, Börries M, Ruppert R, Maity PC, Hartmann TN. Kindlin-3 maintains marginal zone B cells but confines follicular B cell activation and differentiation. J Leukoc Biol 2021; 111:745-758. [PMID: 34888947 DOI: 10.1002/jlb.1hi0621-313r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Integrin-mediated interactions between hematopoietic cells and their microenvironment are important for the development and function of immune cells. Here, the role of the integrin adaptor Kindlin-3 in B cell homeostasis is studied. Comparing the individual steps of B cell development in B cell-specific Kindlin-3 or alpha4 integrin knockout mice, we found in both conditions a phenotype of reduced late immature, mature, and recirculating B cells in the bone marrow. In the spleen, constitutive B cell-specific Kindlin-3 knockout caused a loss of marginal zone B cells and an unexpected expansion of follicular B cells. Alpha4 integrin deficiency did not induce this phenotype. In Kindlin-3 knockout B cells VLA-4 as well as LFA-1-mediated adhesion was abrogated, and short-term homing of these cells in vivo was redirected to the spleen. Upon inducible Kindlin-3 knockout, marginal zone B cells were lost due to defective retention within 2 weeks, while follicular B cell numbers were unaltered. Kindlin-3 deficient follicular B cells displayed higher IgD, CD40, CD44, CXCR5, and EBI2 levels, and elevated PI3K signaling upon CXCR5 stimulation. They also showed transcriptional signatures of spontaneous follicular B cell activation. This activation manifested in scattered germinal centers in situ, early plasmablasts differentiation, and signs of IgG class switch.
Collapse
Affiliation(s)
- Andrea Härzschel
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Lixia Li
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Peter W Krenn
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Biosciences, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Eva Szenes-Nagy
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elisabeth Bayer
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Dietmar Pfeifer
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Laura Polcik
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Ursula Denk
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Jan P Höpner
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Elif Karabatak
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Danielle-Justine Danner
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Simone Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Lukas Kenner
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine, Vienna, Austria.,Department of Clinical Pathology, Medical University Vienna, Vienna, Austria.,Department of Experimental Pathology and Laboratory Animal Science, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Hassan Jumaa
- Institute of Immunology, Ulm University, Ulm, Germany
| | - Richard Greil
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, Salzburg, Austria
| | - Melanie Börries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Kharfan-Dabaja MA, Yassine F, Gadd ME, Qin H. Driving Out Chronic Lymphocytic Leukemia With CAR T Cells. Transplant Cell Ther 2021; 28:5-17. [PMID: 34656807 DOI: 10.1016/j.jtct.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent leukemia in the Western hemisphere. The recent availability of novel targeted therapies, namely Bruton's tyrosine kinase, phosphoinositide-3 kinase, and BCL-2 inhibitors, have revolutionized the treatment algorithm for CLL but have not yet resulted in cure. Advances in the field of immuno-oncology and T cell engineering brought chimeric antigen receptor (CAR) T cell therapy from the laboratory to the clinic for treatment of B cell lymphoid malignancies and has improved the disease response and survival outcomes of various types of relapsed and/or refractory B cell lymphomas. While acknowledging that there are no approved CAR T cell therapies for CLL at this time, in this comprehensive review we explore novel targets for CAR T cell therapy in CLL and highlight the promising results of CAR T cell trials reported to date. Furthermore, we shed light on future areas of development, including multitarget CAR T cell products for this disease.
Collapse
Affiliation(s)
- Mohamed A Kharfan-Dabaja
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, Florida.
| | - Farah Yassine
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, Florida
| | - Martha E Gadd
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, Florida
| | - Hong Qin
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
10
|
Gutjahr JC, Bayer E, Yu X, Laufer JM, Höpner JP, Tesanovic S, Härzschel A, Auer G, Rieß T, Salmhofer A, Szenes E, Haslauer T, Durand-Onayli V, Ramspacher A, Pennisi SP, Artinger M, Zaborsky N, Chigaev A, Aberger F, Neureiter D, Pleyer L, Legler DF, Orian-Rousseau V, Greil R, Hartmann TN. CD44 engagement enhances acute myeloid leukemia cell adhesion to the bone marrow microenvironment by increasing VLA-4 avidity. Haematologica 2021; 106:2102-2113. [PMID: 32616529 PMCID: PMC8327716 DOI: 10.3324/haematol.2019.231944] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Adhesive properties of leukemia cells shape the degree of organ infiltration and the extent of leukocytosis. CD44 and the integrin VLA-4, a CD49d/CD29 heterodimer, are important factors in progenitor cell adhesion in bone marrow. Here, we report their cooperation in acute myeloid leukemia (AML) by a novel non-classical CD44-mediated way of inside-out VLA-4 activation. In primary AML bone marrow samples from patients and the OCI-AML3 cell line, CD44 engagement by hyaluronan induced inside-out activation of VLA-4 resulting in enhanced leukemia cell adhesion on VCAM-1. This was independent of VLA-4 affinity regulation but based on ligand-induced integrin clustering on the cell surface. CD44-induced VLA-4 activation could be inhibited by the Src family kinase inhibitor PP2 and the multikinase inhibitor midostaurin. As a further consequence, the increased adhesion on VCAM-1 allowed AML cells to bind stromal cells strongly. Thereby, the VLA-4/VCAM-1 interaction promoted activation of Akt, MAPK, NF-kB and mTOR signaling and decreased AML cell apoptosis. Collectively, our investigations provide a mechanistic description of an unusual CD44 function in regulating VLA-4 avidity in AML, enhancing AML cell retention in the supportive bone marrow microenvironment.
Collapse
Affiliation(s)
- Julia C Gutjahr
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Elisabeth Bayer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Xiaobing Yu
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics
| | - Julia M Laufer
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz
| | - Jan P Höpner
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | | | - Andrea Härzschel
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg
| | - Georg Auer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Tanja Rieß
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Astrid Salmhofer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Eva Szenes
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Theresa Haslauer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Valerie Durand-Onayli
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | | | - Sandra P Pennisi
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg
| | - Marc Artinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Nadja Zaborsky
- 1Laboratory for Immunological and Molecular Cancer Research
| | | | - Fritz Aberger
- Department Biosciences, Paris-Lodron University of Salzburg
| | | | - Lisa Pleyer
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz
| | | | - Richard Greil
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| | - Tanja N Hartmann
- 3rd Medical Department, SCRI-LIMCR, Paracelsus Medical University, Cancer Cluster Salzburg
| |
Collapse
|
11
|
Abstract
In contrast to solid cancers, which often require genetic modifications and complex cellular reprogramming for effective metastatic dissemination, leukaemic cells uniquely possess the innate ability for migration and invasion. Dedifferentiated, malignant leukocytes retain the benign leukocytes' capacity for cell motility and survival in the circulation, while acquiring the potential for rapid and uncontrolled cell division. For these reasons, leukaemias, although not traditionally considered as metastatic diseases, are in fact models of highly efficient metastatic spread. Accordingly, they are often aggressive and challenging diseases to treat. In this Perspective, we discuss the key molecular processes that facilitate metastasis in a variety of leukaemic subtypes, the clinical significance of leukaemic invasion into specific tissues and the current pipeline of treatments targeting leukaemia metastasis.
Collapse
Affiliation(s)
- Andrew E Whiteley
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Trevor T Price
- Department of Medicine, Duke University, Durham, NC, USA
| | - Gaia Cantelli
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Dorothy A Sipkins
- Department of Medicine, Duke University, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
12
|
Mining the Microenvironment for Therapeutic Targets in Chronic Lymphocytic Leukemia. ACTA ACUST UNITED AC 2021; 27:306-313. [PMID: 34398557 DOI: 10.1097/ppo.0000000000000536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT The leukemia cells of patients with chronic lymphocytic leukemia (CLL) are highly fastidious, requiring stimulation by soluble factors and interactions with accessory cells within the supportive niches of lymphoid tissue that comprise the leukemia microenvironment. The advent of therapies that can disrupt some of the stimulatory signaling afforded by the microenvironment has ushered in a new era of targeted therapy, which has dramatically improved clinical outcome and patient survival. Future advances are required for patients who develop intolerance or resistance to current targeted therapies. These may be found by investigating novel drugs that can inhibit identified targets, such as the pathways involved in B-cell receptor signaling, or by developing agents that inhibit additional targets of the leukemia microenvironment. This review describes some of the molecules involved in promoting the growth and/or survival of CLL cells and discusses targeting strategies that may become tomorrow's therapy for patients with CLL.
Collapse
|
13
|
Kumar S, Singh SK, Rana B, Rana A. The regulatory function of mixed lineage kinase 3 in tumor and host immunity. Pharmacol Ther 2021; 219:107704. [PMID: 33045253 PMCID: PMC7887016 DOI: 10.1016/j.pharmthera.2020.107704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Protein kinases are the second most sought-after G-protein coupled receptors as drug targets because of their overexpression, mutations, and dysregulated catalytic activities in various pathological conditions. Till 2019, 48 protein kinase inhibitors have received FDA approval for the treatment of multiple illnesses, of which the majority of them are indicated for different malignancies. One of the attractive sub-group of protein kinases that has attracted attention for drug development is the family members of MAPKs that are recognized to play significant roles in different cancers. Several inhibitors have been developed against various MAPK members; however, none of them as monotherapy has shown sustainable efficacy. One of the MAPK members, called Mixed Lineage Kinase 3 (MLK3), has attracted considerable attention due to its role in inflammation and neurodegenerative diseases; however, its role in cancer is an emerging area that needs more investigation. Recent advances have shown that MLK3 plays a role in cancer cell survival, migration, drug resistance, cell death, and tumor immunity. This review describes how MLK3 regulates different MAPK pathways, cancer cell growth and survival, apoptosis, and host's immunity. We also discuss how MLK3 inhibitors can potentially be used along with immunotherapy for different malignancies.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA.
| | - Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, IL 60612, USA; University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
14
|
Szenes E, Härzschel A, Decker S, Tissino E, Pischeli J, Gutjahr JC, Kissel S, Pennisi S, Höpner JP, Egle A, Zaborsky N, Dierks C, Follo M, Chigaev A, Zucchetto A, Greil R, Gattei V, Hartmann TN. TCL1 transgenic mice as a model for CD49d-high chronic lymphocytic leukemia. Leukemia 2020; 34:2498-2502. [PMID: 32086446 PMCID: PMC7449868 DOI: 10.1038/s41375-020-0759-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/20/2020] [Accepted: 02/11/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Eva Szenes
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria
| | - Andrea Härzschel
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sarah Decker
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Justine Pischeli
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria
| | - Julia Christine Gutjahr
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria
| | - Sandra Kissel
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Pennisi
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jan Philip Höpner
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria
| | - Alexander Egle
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria
| | - Nadja Zaborsky
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria
| | - Christine Dierks
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexandre Chigaev
- Department of Pathology and Cancer Center, University of New Mexico, Albuquerque, NM, USA
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Richard Greil
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Tanja Nicole Hartmann
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Salzburg, Austria.
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Chen L, Fu C, Zhang Q, He C, Zhang F, Wei Q. The role of CD44 in pathological angiogenesis. FASEB J 2020; 34:13125-13139. [PMID: 32830349 DOI: 10.1096/fj.202000380rr] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is required for normal development and occurs as a pathological step in a variety of disease settings, such as cancer, ocular diseases, and ischemia. Recent studies have revealed the role of CD44, a widely expressed cell surface adhesion molecule, in promoting pathological angiogenesis and the development of its associated diseases through its regulation of diverse function of endothelial cells, such as proliferation, migration, adhesion, invasion, and communication with the microenvironment. Conversely, the absence of CD44 expression or inhibition of its function impairs pathological angiogenesis and disease progression. Here, we summarize the current understanding of the roles of CD44 in pathological angiogenesis and the underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Li Chen
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
16
|
Rodriguez CM, Gilardoni MB, Remedi MM, Sastre D, Heller V, Pellizas CG, Donadio AC. Tumor-stroma interaction increases CD147 expression in neoplastic B lymphocytes in chronic lymphocytic leukemia. Blood Cells Mol Dis 2020; 82:102405. [PMID: 32007924 DOI: 10.1016/j.bcmd.2020.102405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) microenvironment plays a critical role in disease pathogenesis. Matrix metalloproteinases (MMPs) are involved in CLL-B cell migration and survival. CD147 is associated with MMPs production by tumor and stromal cells. AIM To analyze CD147, MMP2 and MMP9 expression in CLL-B cells and its modulation by fibroblasts (Fb)-CLL-B cell interaction. METHODS CLL-B cells were co-cultured with Fb, as a simulation of CLL microenvironment. CD147 was evaluated in healthy donor (HD)-B cells and CLL-B cells by flow cytometry. MMP2 and MMP9 activity in CLL-plasma samples and conditioned media (CMs) was studied by zymography. RESULTS MMP9/MMP2 plasma levels were significantly higher in CLL patients than in HD. CD147 expression (median fluorescence intensity) in CLL patients characterized 3 groups: low- (19.1 ± 3.2; n=3), middle- (42.7 ± 12.8; n=18) and high- (76.5 ± 9.6; n=5) related to CD147 expression in HD-B cells. CD147 expression significantly increased in CLL-B cells after Fb-CLL-B cell co-culture. A significant increase in proMMP2 activity was observed in CMs obtained from Fb-CLL-B cell co-cultures in comparison with isolated CLL-B cells. CONCLUSIONS CD147 expression in CLL-B cells and MMPs secretion was induced by Fb-CLL-B cell contact, suggesting CD147 participation in the CLL pathophysiology.
Collapse
Affiliation(s)
- Cecilia M Rodriguez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina; Universidad Nacional de Córdoba, Hospital Nacional de Clínicas, Laboratorio de Oncohematología, Argentina
| | - Mónica B Gilardoni
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.
| | - María M Remedi
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Darío Sastre
- Universidad Nacional de Córdoba, Hospital Nacional de Clínicas, Laboratorio de Oncohematología, Argentina
| | - Viviana Heller
- Universidad Nacional de Córdoba, Hospital Nacional de Clínicas, Laboratorio de Oncohematología, Argentina
| | - Claudia G Pellizas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| | - Ana C Donadio
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina
| |
Collapse
|
17
|
Najafi M, Ahmadi A, Mortezaee K. Extracellular-signal-regulated kinase/mitogen-activated protein kinase signaling as a target for cancer therapy: an updated review. Cell Biol Int 2019; 43:1206-1222. [PMID: 31136035 DOI: 10.1002/cbin.11187] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022]
Abstract
Mitogen-activated protein kinase (MAPK) signaling pathway is activated in a wide spectrum of human tumors, exhibiting cardinal oncogenic roles and sustained inhibition of this pathway is considered as a primary goal in clinic. Within this pathway, receptor tyrosine kinases such as epithelial growth factor receptor, mesenchymal-epithelial transition, and AXL act as upstream regulators of RAS/RAF/MEK/extracellular-signal-regulated kinase. MAPK signaling is active in both early and advanced stages of tumorigenesis, and it promotes tumor proliferation, survival, and metastasis. MAPK regulatory effects on cellular constituent of the tumor microenvironment is for immunosuppressive purposes. Cross-talking between MAPK with oncogenic signaling pathways including WNT, cyclooxygenase-2, transforming growth factor-β, NOTCH and (in particular) with phosphatidylinositol 3-kinase is contributed to the multiplication of tumor progression and drug resistance. Developing resistance (intrinsic or acquired) to MAPK-targeted therapy also occurs due to heterogeneity of tumors along with mutations and negative feedback loop of interactions exist between various kinases causing rebound activation of this signaling. Multidrug regimen is a preferred therapeutic avenue for targeting MAPK signaling. To enhance patient tolerance and to mitigate potential adversarial effects related to the combination therapy, determination of a desired dose and drug along with pre-evaluation of cancer-type-specific kinase mutation and sensitivity, especially for patients receiving triplet therapy is an urgent need.
Collapse
Affiliation(s)
- Masoud Najafi
- Department of Radiology and Nuclear Medicine, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, 48175-861, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
18
|
Li J, You S, Zhang S, Hu Q, Wang F, Chi X, Zhao W, Xie C, Zhang C, Yu Y, Liu J, Zhao Y, Liu P, Zhang Y, Wei X, Li Q, Wang X, Yin Z. Elevated N-methyltransferase expression induced by hepatic stellate cells contributes to the metastasis of hepatocellular carcinoma via regulation of the CD44v3 isoform. Mol Oncol 2019; 13:1993-2009. [PMID: 31294922 PMCID: PMC6717763 DOI: 10.1002/1878-0261.12544] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/17/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022] Open
Abstract
The cross‐talk between hepatic stellate cells (HSCs) and hepatic carcinoma cells contributes to hepatocellular carcinoma (HCC) progression, but the underlying mechanism is largely unknown. We report here that activated HSCs induce upregulation of nicotinamide N‐methyltransferase (NNMT), which is known to regulate multiple metabolic pathways in hepatoma cells of the liver. High levels of NNMT in HCC tissues were positively correlated with vascular invasion, increased serum HBV‐DNA levels, and distant metastasis. In addition, functional assays showed that NNMT promoted HCC cell invasion and metastasis by altering the histone H3 methylation on 27 methylation pattern and transcriptionally activating cluster of differentiation 44 (CD44). NNMT‐mediated N6‐methyladenosine modification of CD44 mRNA resulted in the formation of a CD44v3 splice variant, while its product 1‐methyl‐nicotinamide stabilized CD44 protein by preventing ubiquitin‐mediated degradation. Finally, NNMT was also shown to be a target of statins that inhibited metastasis of hepatoma cells. Taken together, our study shows for the first time that the NNMT/CD44v3 axis regulates HCC metastasis and presents NNMT as a promising prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Jie Li
- Department of Hepatobiliary Surgery, ZhongShan Hospital of Xiamen University, Fujian, China.,Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| | - Song You
- Graduate College of Fujian Medical University, Fuzhou, Fujian, China
| | - Sheng Zhang
- Department of Pathology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Hu
- Medicine Clinical Laboratory, Xiamen Xianyue Hospital, Fujian, China
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, ZhongShan Hospital of Xiamen University, Fujian, China.,Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| | - Xiaoqin Chi
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| | - Wenxiu Zhao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| | - Chengrong Xie
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| | - Changmao Zhang
- Graduate College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yaqi Yu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| | - Jianmin Liu
- Department of Hepatobiliary Surgery, ZhongShan Hospital of Xiamen University, Fujian, China.,Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| | - Yue Zhao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| | - Pingguo Liu
- Department of Hepatobiliary Surgery, ZhongShan Hospital of Xiamen University, Fujian, China.,Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| | - Yi Zhang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| | - Xujin Wei
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| | - Qiu Li
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| | - Xiaomin Wang
- Department of Hepatobiliary Surgery, ZhongShan Hospital of Xiamen University, Fujian, China.,Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| | - Zhenyu Yin
- Department of Hepatobiliary Surgery, ZhongShan Hospital of Xiamen University, Fujian, China.,Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, ZhongShan Hospital of Xiamen University, Fujian, China
| |
Collapse
|
19
|
Greene JT, Mani R, Ramaswamy R, Frissora F, Yano M, Zapolnik K, Harrington B, Wasmuth R, Tran M, Mo X, McKenna M, Rangnekar VM, Byrd JC, Bondada S, Muthusamy N. Par-4 overexpression impedes leukemogenesis in the Eµ-TCL1 leukemia model through downregulation of NF-κB signaling. Blood Adv 2019; 3:1255-1266. [PMID: 30987970 PMCID: PMC6482354 DOI: 10.1182/bloodadvances.2018025973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/23/2019] [Indexed: 01/25/2023] Open
Abstract
Prostate apoptosis response 4 (Par-4) is a tumor suppressor that prevents proliferation and induces cell death in several solid tumors. However, its role in B-cell malignancies has not been elucidated. To describe the role of Par-4 in chronic lymphocytic leukemia (CLL) pathogenesis, we developed a B-cell-specific human Par-4-overexpressing mouse model of CLL using the TCL1 leukemia model. While Par-4 transgenic mice did not display any obvious defects in B-cell development or function, disease burden as evidenced by abundance of CD19+CD5+ B cells in the peripheral blood was significantly reduced in Par-4 × TCL1 mice compared with TCL1 littermates. This conferred a survival advantage on the Par-4-overexpressing mice. In addition, a B-cell-specific knockout model displayed the opposite effect, where lack of Par-4 expression resulted in accelerated disease progression and abbreviated survival in the TCL1 model. Histological and flow cytometry-based analysis of spleen and bone marrow upon euthanasia revealed comparable levels of malignant B-cell infiltration in Par-4 × TCL1 and TCL1 individuals, indicating delayed but pathologically normal disease progression in Par-4 × TCL1 mice. In vivo analysis of splenic B-cell proliferation by 5-ethynyl-2-deoxyuridine incorporation indicated >50% decreased expansion of CD19+CD5+ cells in Par-4 × TCL1 mice compared with TCL1 littermates. Moreover, reduced nuclear p65 levels were observed in Par-4 × TCL1 splenic B cells compared with TCL1, suggesting suppressed NF-κB signaling. These findings have identified an in vivo antileukemic role for Par-4 through an NF-κB-dependent mechanism in TCL1-mediated CLL-like disease progression.
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/biosynthesis
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mice
- Mice, Transgenic
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Signal Transduction
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- J T Greene
- The James Comprehensive Cancer Center and
| | | | | | | | - Max Yano
- The James Comprehensive Cancer Center and
| | | | | | | | - Minh Tran
- The James Comprehensive Cancer Center and
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH; and
| | - Mary McKenna
- Markey Cancer Center, University of Kentucky, Lexington, KY
| | | | | | | | | |
Collapse
|
20
|
CD44 is a RAS/STAT5-regulated invasion receptor that triggers disease expansion in advanced mastocytosis. Blood 2018; 132:1936-1950. [PMID: 30018080 DOI: 10.1182/blood-2018-02-833582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023] Open
Abstract
The Hermes receptor CD44 is a multifunctional adhesion molecule that plays an essential role in the homing and invasion of neoplastic stem cells in various myeloid malignancies. Although mast cells (MCs) reportedly express CD44, little is known about the regulation and function of this receptor in neoplastic cells in systemic mastocytosis (SM). We found that clonal CD34+/CD38- stem cells, CD34+/CD38+ progenitor cells, and CD117++/CD34- MCs invariably express CD44 in patients with indolent SM (ISM), SM with an associated hematologic neoplasm, aggressive SM, and MC leukemia (MCL). In addition, all human MCL-like cell lines examined (HMC-1, ROSA, and MCPV-1) displayed cytoplasmic and cell-surface CD44. We also found that expression of CD44 in neoplastic MCs depends on RAS-MEK and STAT5 signaling and increases with the aggressiveness of SM. Correspondingly, higher levels of soluble CD44 were measured in the sera of patients with advanced SM compared with ISM or cutaneous mastocytosis and were found to correlate with overall and progression-free survival. To investigate the functional role of CD44, a xenotransplantation model was employed using severe combined immunodeficient (SCID) mice, HMC-1.2 cells, and a short hairpin RNA (shRNA) against CD44. In this model, the shRNA-mediated knockdown of CD44 resulted in reduced MC expansion and tumor formation and prolonged survival in SCID mice compared with HMC-1.2 cells transduced with control shRNA. Together, our data show that CD44 is a RAS-MEK/STAT5-driven MC invasion receptor that correlates with the aggressiveness of SM. Whether CD44 can serve as therapeutic target in advanced SM remains to be determined in forthcoming studies.
Collapse
|