1
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
2
|
Shouman S, El-Kholy N, Hussien AE, El-Derby AM, Magdy S, Abou-Shanab AM, Elmehrath AO, Abdelwaly A, Helal M, El-Badri N. SARS-CoV-2-associated lymphopenia: possible mechanisms and the role of CD147. Cell Commun Signal 2024; 22:349. [PMID: 38965547 PMCID: PMC11223399 DOI: 10.1186/s12964-024-01718-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024] Open
Abstract
T lymphocytes play a primary role in the adaptive antiviral immunity. Both lymphocytosis and lymphopenia were found to be associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While lymphocytosis indicates an active anti-viral response, lymphopenia is a sign of poor prognosis. T-cells, in essence, rarely express ACE2 receptors, making the cause of cell depletion enigmatic. Moreover, emerging strains posed an immunological challenge, potentially alarming for the next pandemic. Herein, we review how possible indirect and direct key mechanisms could contribute to SARS-CoV-2-associated-lymphopenia. The fundamental mechanism is the inflammatory cytokine storm elicited by viral infection, which alters the host cell metabolism into a more acidic state. This "hyperlactic acidemia" together with the cytokine storm suppresses T-cell proliferation and triggers intrinsic/extrinsic apoptosis. SARS-CoV-2 infection also results in a shift from steady-state hematopoiesis to stress hematopoiesis. Even with low ACE2 expression, the presence of cholesterol-rich lipid rafts on activated T-cells may enhance viral entry and syncytia formation. Finally, direct viral infection of lymphocytes may indicate the participation of other receptors or auxiliary proteins on T-cells, that can work alone or in concert with other mechanisms. Therefore, we address the role of CD147-a novel route-for SARS-CoV-2 and its new variants. CD147 is not only expressed on T-cells, but it also interacts with other co-partners to orchestrate various biological processes. Given these features, CD147 is an appealing candidate for viral pathogenicity. Understanding the molecular and cellular mechanisms behind SARS-CoV-2-associated-lymphopenia will aid in the discovery of potential therapeutic targets to improve the resilience of our immune system against this rapidly evolving virus.
Collapse
Affiliation(s)
- Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Nada El-Kholy
- Department of Drug Discovery, H. Lee Moffit Cancer Center& Research Institute, Tampa, FL, 33612, USA
- Cancer Chemical Biology Ph.D. Program, University of South Florida, Tampa, FL, 33620, USA
| | - Alaa E Hussien
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Shireen Magdy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | - Ahmed M Abou-Shanab
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
| | | | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Mohamed Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, 12587, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, 12587, Egypt.
| |
Collapse
|
3
|
Yang F, Liu C, Li P, Wu A, Ma-Lauer Y, Zhang H, Su Z, Lu W, von Brunn A, Zhu D. Targeting Cyclophilin A and CD147 to Inhibit Replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and SARS-CoV-2-Induced Inflammation. Mol Pharmacol 2023; 104:239-254. [PMID: 37827578 DOI: 10.1124/molpharm.122.000587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 06/25/2023] [Accepted: 07/13/2023] [Indexed: 10/14/2023] Open
Abstract
Identification and development of effective therapeutics for coronavirus disease 2019 (COVID-19) are still urgently needed. The CD147-spike interaction is involved in the severe acute respiratory syndrome coronavirus (SARS-CoV)-2 invasion process in addition to angiotensin-converting enzyme 2 (ACE2). Cyclophilin A (CyPA), the extracellular ligand of CD147, has been found to play a role in the infection and replication of coronaviruses. In this study, our results show that CyPA inhibitors such as cyclosporine A (CsA) and STG-175 can suppress the intracellular replication of SARS-CoV-2 by inhibiting the binding of CyPA to the SARS-CoV-2 nucleocapsid C-terminal domain (N-CTD), and the IC50 is 0.23 μM and 0.17 μM, respectively. Due to high homology, CsA also had inhibitory effects on SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), and the IC50 is 3.2 μM and 2.8 μM, respectively. Finally, we generated a formulation of phosphatidylserine (PS)-liposome-CsA for pulmonary drug delivery. These findings provide a scientific basis for identifying CyPA as a potential drug target for the treatment of COVID-19 as well as for the development of broad-spectrum inhibitors for coronavirus via targeting CyPA. Highlights: 1) SARS-CoV-2 infects cells via the binding of its S protein and CD147; 2) binding of SARS-CoV-2 N protein and CyPA is essential for viral replication; 3) CD147 and CyPA are potential therapeutic targets for SARS-CoV-2; and 4) CsA is a potential therapeutic strategy by interrupting CD147/CyPA interactions. SIGNIFICANCE STATEMENT: New severe acute respiratory syndrome coronavirus (SARS-CoV)-2 variants and other pathogenic coronaviruses (CoVs) are continually emerging, and new broad-spectrum anti-CoV therapy is urgently needed. We found that binding sites of cyclophilin A/cyclosporin A (CyPA/CsA) overlap with CyPA/N-CTD (nucleocapsid C-terminal domain), which shows the potential to target CyPA during SARS-CoV-2 infection. Here, we provide new evidence for targeting CyPA in the treatment of coronavirus disease 2019 (COVID-19) as well as the potential of developing CyPA inhibitors for broad-spectrum inhibition of CoVs.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Chenglong Liu
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Pengyuan Li
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Aihua Wu
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Yue Ma-Lauer
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Hao Zhang
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Zhuang Su
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Wei Lu
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Albrecht von Brunn
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| | - Di Zhu
- Department of Pharmacology, School of Pharmacy (F.Y., C.L.), Minhang Hospital and School of Pharmacy, State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Smart Drug Delivery Ministry of Education (A.W., W.L.), and Department of Pharmacology, School of Basic Medical Sciences (D.Z.), Fudan University, Shanghai, China; Max-von-Pettenkofer Institute, Ludwig-Maximilians-University of Munich and German Center for Infection Research, Munich, Germany (P.L., Y.M.-L., A.V.B.); Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, China (H.Z.); and S & T Global, Inc., Woburn, Massachusetts (Z.S.)
| |
Collapse
|
4
|
Nyalali AMK, Leonard AU, Xu Y, Li H, Zhou J, Zhang X, Rugambwa TK, Shi X, Li F. CD147: an integral and potential molecule to abrogate hallmarks of cancer. Front Oncol 2023; 13:1238051. [PMID: 38023152 PMCID: PMC10662318 DOI: 10.3389/fonc.2023.1238051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
CD147 also known as EMMPRIN, basigin, and HAb18G, is a single-chain type I transmembrane protein shown to be overexpressed in aggressive human cancers of CNS, head and neck, breasts, lungs, gastrointestinal, genitourinary, skin, hematological, and musculoskeletal. In these malignancies, the molecule is integral to the diverse but complimentary hallmarks of cancer: it is pivotal in cancerous proliferative signaling, growth propagation, cellular survival, replicative immortality, angiogenesis, metabolic reprogramming, immune evasion, invasion, and metastasis. CD147 also has regulatory functions in cancer-enabling characteristics such as DNA damage response (DDR) and immune evasion. These neoplastic functions of CD147 are executed through numerous and sometimes overlapping molecular pathways: it transduces signals from upstream molecules or ligands such as cyclophilin A (CyPA), CD98, and S100A9; activates a repertoire of downstream molecules and pathways including matrix metalloproteinases (MMPs)-2,3,9, hypoxia-inducible factors (HIF)-1/2α, PI3K/Akt/mTOR/HIF-1α, and ATM/ATR/p53; and also functions as an indispensable chaperone or regulator to monocarboxylate, fatty acid, and amino acid transporters. Interestingly, induced loss of functions to CD147 prevents and reverses the acquired hallmarks of cancer in neoplastic diseases. Silencing of Cd147 also alleviates known resistance to chemoradiotherapy exhibited by malignant tumors like carcinomas of the breast, lung, pancreas, liver, gastric, colon, ovary, cervix, prostate, urinary bladder, glioblastoma, and melanoma. Targeting CD147 antigen in chimeric and induced-chimeric antigen T cell or antibody therapies is also shown to be safer and more effective. Moreover, incorporating anti-CD147 monoclonal antibodies in chemoradiotherapy, oncolytic viral therapy, and oncolytic virus-based-gene therapies increases effectiveness and reduces on and off-target toxicity. This study advocates the expedition and expansion by further exploiting the evidence acquired from the experimental studies that modulate CD147 functions in hallmarks of cancer and cancer-enabling features and strive to translate them into clinical practice to alleviate the emergency and propagation of cancer, as well as the associated clinical and social consequences.
Collapse
Affiliation(s)
- Alphonce M. K. Nyalali
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Surgery, Songwe Regional Referral Hospital, Mbeya, Tanzania
- Department of Orthopedics and Neurosurgery, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
| | - Angela U. Leonard
- Department of Pediatrics and Child Health, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
- Department of Public Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Yongxiang Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huayu Li
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Junlin Zhou
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinrui Zhang
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Tibera K. Rugambwa
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Internal Medicine, Mbeya Zonal Referral Hospital and Mbeya College of Health and Allied Sciences, University of Dar Es Salaam, Mbeya, Tanzania
| | - Xiaohan Shi
- School of Nursing and Rehabilitation, Shandong University, Jinan, China
| | - Feng Li
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
5
|
Zhai Y, Chen L, Zhao Q, Zheng ZH, Chen ZN, Bian H, Yang X, Lu HY, Lin P, Chen X, Chen R, Sun HY, Fan LN, Zhang K, Wang B, Sun XX, Feng Z, Zhu YM, Zhou JS, Chen SR, Zhang T, Chen SY, Chen JJ, Zhang K, Wang Y, Chang Y, Zhang R, Zhang B, Wang LJ, Li XM, He Q, Yang XM, Nan G, Xie RH, Yang L, Yang JH, Zhu P. Cysteine carboxyethylation generates neoantigens to induce HLA-restricted autoimmunity. Science 2023; 379:eabg2482. [PMID: 36927018 DOI: 10.1126/science.abg2482] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Autoimmune diseases such as ankylosing spondylitis (AS) can be driven by emerging neoantigens that disrupt immune tolerance. Here, we developed a workflow to profile posttranslational modifications involved in neoantigen formation. Using mass spectrometry, we identified a panel of cysteine residues differentially modified by carboxyethylation that required 3-hydroxypropionic acid to generate neoantigens in patients with AS. The lysosomal degradation of integrin αIIb [ITGA2B (CD41)] carboxyethylated at Cys96 (ITGA2B-ceC96) generated carboxyethylated peptides that were presented by HLA-DRB1*04 to stimulate CD4+ T cell responses and induce autoantibody production. Immunization of HLA-DR4 transgenic mice with the ITGA2B-ceC96 peptide promoted colitis and vertebral bone erosion. Thus, metabolite-induced cysteine carboxyethylation can give rise to pathogenic neoantigens that lead to autoreactive CD4+ T cell responses and autoantibody production in autoimmune diseases.
Collapse
Affiliation(s)
- Yue Zhai
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Qian Zhao
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Hui Zheng
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Zhi-Nan Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Huijie Bian
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xu Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Huan-Yu Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Peng Lin
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xi Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ruo Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Hao-Yang Sun
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Lin-Ni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Bin Wang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiu-Xuan Sun
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Zhuan Feng
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Meng Zhu
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jian-Sheng Zhou
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Shi-Rui Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Tao Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Si-Yu Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jun-Jie Chen
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Kui Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yan Wang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Chang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Rui Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Bei Zhang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Li-Juan Wang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Min Li
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qian He
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xiang-Min Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Gang Nan
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Rong-Hua Xie
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Liu Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Jing-Hua Yang
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, and Department of Cell Biology of National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
6
|
Zhou YQ, Wang K, Wang XY, Cui HY, Zhao Y, Zhu P, Chen ZN. SARS-CoV-2 pseudovirus enters the host cells through spike protein-CD147 in an Arf6-dependent manner. Emerg Microbes Infect 2022; 11:1135-1144. [PMID: 35343395 PMCID: PMC9037224 DOI: 10.1080/22221751.2022.2059403] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants is threatening public health around the world. Endocytosis functions as an important way for viral infection, and SARS-CoV-2 bears no exception. However, the specific endocytic mechanism of SARS-CoV-2 remains unknown. In this study, we used endocytic inhibitors to evaluate the role of different endocytic routes in SARS-CoV-2 pseudovirus infection and found that the viral infection was associated with caveolar/lipid raft- and cytoskeleton-mediated endocytosis, but independent of the clathrin-mediated endocytosis and macropinocytosis. Meanwhile, the knockdown of CD147 and Rab5a in Vero E6 and Huh-7 cells inhibited SARS-CoV-2 pseudovirus infection, and the co-localization of spike protein, CD147, and Rab5a was observed in pseudovirus-infected Vero E6 cells, which was weakened by CD147 silencing, illustrating that SARS-CoV-2 pseudovirus entered the host cells via CD147-mediated endocytosis. Additionally, Arf6 silencing markedly inhibited pseudovirus infection in Vero E6 and Huh-7 cells, while little change was observed in CD147 knockout-Vero E6 cells. This finding indicated Arf6-mediated CD147 trafficking plays a vital role in SARS-CoV-2 entry. Taken together, our findings provide new insights into the CD147-Arf6 axis in mediating SARS-CoV-2 pseudovirus entry into the host cells, and further suggest that blockade of this pathway seems to be a feasible approach to prevent the SARS-CoV-2 infection clinically.
Collapse
Affiliation(s)
- Yun-Qi Zhou
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xue-Yan Wang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Hong-Yong Cui
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhi-Nan Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, People’s Republic of China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
7
|
Maleksabet H, Rezaee E, Tabatabai SA. Host-Cell Surface Binding Targets in SARS-CoV-2 for Drug Design. Curr Pharm Des 2022; 28:3583-3591. [PMID: 36420875 DOI: 10.2174/1381612829666221123111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a major public health threat to all countries worldwide. SARS-CoV-2 interactions with its receptor are the first step in the invasion of the host cell. The coronavirus spike protein (S) is crucial in binding to receptors on host cells. Additionally, targeting the SARS-CoV-2 viral receptors is considered a therapeutic option in this regard. In this review of literature, we summarized five potential host cell receptors, as host-cell surface bindings, including angiotensin-converting enzyme 2 (ACE2), neuropilin 1 (NRP-1), dipeptidyl peptidase 4 (DPP4), glucose regulated protein-78 (GRP78), and cluster of differentiation 147 (CD147) related to the SARS-CoV-2 infection. Among these targets, ACE2 was recognized as the main SARS-CoV-2 receptor, expressed at a low/moderate level in the human respiratory system, which is also involved in SARS-CoV-2 entrance, so the virus may utilize other secondary receptors. Besides ACE2, CD147 was discovered as a novel SARS-CoV-2 receptor, CD147 appears to be an alternate receptor for SARSCoV- 2 infection. NRP-1, as a single-transmembrane glycoprotein, has been recently found to operate as an entrance factor and enhance SARS Coronavirus 2 (SARS-CoV-2) infection under in-vitro. DPP4, which was discovered as the first gene clustered with ACE2, may serve as a potential SARS-CoV-2 spike protein binding target. GRP78 could be recognized as a secondary receptor for SARS-CoV-2 because it is widely expressed at substantially greater levels, rather than ACE2, in bronchial epithelial cells and the respiratory mucosa. This review highlights recent literature on this topic.
Collapse
Affiliation(s)
- Hanieh Maleksabet
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
ACE2-Independent Alternative Receptors for SARS-CoV-2. Viruses 2022; 14:v14112535. [PMID: 36423144 PMCID: PMC9692829 DOI: 10.3390/v14112535] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is highly contagious and remains a major public health challenge despite the availability of effective vaccines. SARS-CoV-2 enters cells through the binding of its spike receptor-binding domain (RBD) to the human angiotensin-converting enzyme 2 (ACE2) receptor in concert with accessory receptors/molecules that facilitate viral attachment, internalization, and fusion. Although ACE2 plays a critical role in SARS-CoV-2 replication, its expression profiles are not completely associated with infection patterns, immune responses, and clinical manifestations. Additionally, SARS-CoV-2 infects cells that lack ACE2, and the infection is resistant to monoclonal antibodies against spike RBD in vitro, indicating that some human cells possess ACE2-independent alternative receptors, which can mediate SARS-CoV-2 entry. Here, we discuss these alternative receptors and their interactions with SARS-CoV-2 components for ACE2-independent viral entry. These receptors include CD147, AXL, CD209L/L-SIGN/CLEC4M, CD209/DC-SIGN/CLEC4L, CLEC4G/LSECtin, ASGR1/CLEC4H1, LDLRAD3, TMEM30A, and KREMEN1. Most of these receptors are known to be involved in the entry of other viruses and to modulate cellular functions and immune responses. The SARS-CoV-2 omicron variant exhibits altered cell tropism and an associated change in the cell entry pathway, indicating that emerging variants may use alternative receptors to escape the immune pressure against ACE2-dependent viral entry provided by vaccination against RBD. Understanding the role of ACE2-independent alternative receptors in SARS-CoV-2 viral entry and pathogenesis may provide avenues for the prevention of infection by SARS-CoV-2 variants and for the treatment of COVID-19.
Collapse
|
9
|
Tucker MS, Khan A, Jenkins MC, Dubey JP, Rosenthal BM. Hastening Progress in Cyclospora Requires Studying Eimeria Surrogates. Microorganisms 2022; 10:1977. [PMID: 36296256 PMCID: PMC9608778 DOI: 10.3390/microorganisms10101977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclospora cayetanensis is an enigmatic human parasite that sickens thousands of people worldwide. The scarcity of research material and lack of any animal model or cell culture system slows research, denying the produce industry, epidemiologists, and regulatory agencies of tools that might aid diagnosis, risk assessment, and risk abatement. Fortunately, related species offer a strong foundation when used as surrogates to study parasites of this type. Species of Eimeria lend themselves especially well as surrogates for C. cayetanensis. Those Eimeria that infect poultry can be produced in abundance, share many biological features with Cyclospora, pose no risk to the health of researchers, and can be studied in their natural hosts. Here, we overview the actual and potential uses of such surrogates to advance understanding of C. cayetanensis biology, diagnostics, control, and genomics, focusing on opportunities to improve prevention, surveillance, risk assessment, and risk reduction. Studying Eimeria surrogates accelerates progress, closing important research gaps and refining promising tools for producers and food safety regulators to monitor and ameliorate the food safety risks imposed by this emerging, enigmatic parasite.
Collapse
Affiliation(s)
| | | | | | | | - Benjamin M. Rosenthal
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, BARC-East, Beltsville, MD 20705, USA
| |
Collapse
|
10
|
Kuklina EM. T Lymphocytes as Targets for SARS-CoV-2. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:566-576. [PMID: 35790412 PMCID: PMC9201263 DOI: 10.1134/s0006297922060086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 01/11/2023]
Abstract
Despite numerous data on the absence or weak expression of the main functional receptor of SARS-CoV-2 angiotensin-converting enzyme 2 (ACE2) by T cells, it was recently demonstrated that the new coronavirus can efficiently infect T lymphocytes. Here, we analyze the data on the alternative (ACE2-independent) pathways of cell infection, identified T cell subpopulations that serve as the most plausible targets of SARS-CoV-2, discuss the mechanisms of virus-cell interaction, including both infectious and non-infectious pathways of T lymphocyte regulation, and estimate the role of the virus-dependent damage of T lymphocytes in COVID-19 pathogenesis. Particular attention is paid to regulatory T cells as potential targets of SARS-CoV-2, as well as to the possible involvement of exosomes in the sensitivity of peripheral T cells to the virus.
Collapse
Affiliation(s)
- Elena M Kuklina
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm, 614081, Russia.
| |
Collapse
|
11
|
Vection S, O'Callaghan D, Keriel A. CD98hc in host-pathogen interactions: roles of the multifunctional host protein during infections. FEMS Microbiol Rev 2022; 46:6590039. [PMID: 35595511 DOI: 10.1093/femsre/fuac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic protein CD98hc (also known as 4F2, FRP-1 or SLC3A2) is a membrane glycoprotein and one of the heavy chains of the family of heterodimeric amino acids transporters. It can associate with any of 6 different light chains to form distinct amino acid transporters. CD98hc is also involved in mediation of intracellular integrin signaling. Besides its physiological roles in the development of the placenta and the immune system, CD98hc is important during pathological processes such as tumorigenesis and host-pathogen interaction. Since its first identification as Fusion Regulatory Protein 1 regulating cell fusion in cells infected by the Newcastle disease virus, CD98hc has been reported to be mediating many viral, apicomplexan, and bacterial infectious processes. In this review we describe the role of CD98hc and its associated light chains in bacterial, apicomplexan, and viral pathogenesis. We also discuss the consequences of infection on the expression and localization of these proteins. The identification of the cellular processes in which CD98hc is involved during pathogenesis highlights the key role of this host protein in infectious diseases.
Collapse
Affiliation(s)
- Sonia Vection
- VBIC, U1047 INSERM, Université de Montpellier, Nîmes, France.,Centre National de Référence des Brucella, Laboratoire de Microbiologie, CHU de Nîmes, Nîmes, France
| | - David O'Callaghan
- VBIC, U1047 INSERM, Université de Montpellier, Nîmes, France.,Centre National de Référence des Brucella, Laboratoire de Microbiologie, CHU de Nîmes, Nîmes, France
| | - Anne Keriel
- VBIC, U1047 INSERM, Université de Montpellier, Nîmes, France.,Centre National de Référence des Brucella, Laboratoire de Microbiologie, CHU de Nîmes, Nîmes, France
| |
Collapse
|
12
|
Gorący A, Rosik J, Szostak B, Ustianowski Ł, Ustianowska K, Gorący J. Human Cell Organelles in SARS-CoV-2 Infection: An Up-to-Date Overview. Viruses 2022; 14:v14051092. [PMID: 35632833 PMCID: PMC9144443 DOI: 10.3390/v14051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Since the end of 2019, the whole world has been struggling with the life-threatening pandemic amongst all age groups and geographic areas caused by Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). The Coronavirus Disease 2019 (COVID-19) pandemic, which has led to more than 468 million cases and over 6 million deaths reported worldwide (as of 20 March 2022), is one of the greatest threats to human health in history. Meanwhile, the lack of specific and irresistible treatment modalities provoked concentrated efforts in scientists around the world. Various mechanisms of cell entry and cellular dysfunction were initially proclaimed. Especially, mitochondria and cell membrane are crucial for the course of infection. The SARS-CoV-2 invasion depends on angiotensin converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), and cluster of differentiation 147 (CD147), expressed on host cells. Moreover, in this narrative review, we aim to discuss other cell organelles targeted by SARS-CoV-2. Lastly, we briefly summarize the studies on various drugs.
Collapse
Affiliation(s)
- Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Jakub Rosik
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Jarosław Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
| |
Collapse
|
13
|
Kalejaiye TD, Bhattacharya R, Burt MA, Travieso T, Okafor AE, Mou X, Blasi M, Musah S. SARS-CoV-2 Employ BSG/CD147 and ACE2 Receptors to Directly Infect Human Induced Pluripotent Stem Cell-Derived Kidney Podocytes. Front Cell Dev Biol 2022; 10:855340. [PMID: 35517495 PMCID: PMC9065256 DOI: 10.3389/fcell.2022.855340] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the Coronavirus disease 2019 (COVID-19), which has resulted in over 5.9 million deaths worldwide. While cells in the respiratory system are the initial target of SARS-CoV-2, there is mounting evidence that COVID-19 is a multi-organ disease. Still, the direct affinity of SARS-CoV-2 for cells in other organs such as the kidneys, which are often targeted in severe COVID-19, remains poorly understood. We employed a human induced pluripotent stem (iPS) cell-derived model to investigate the affinity of SARS-CoV-2 for kidney glomerular podocytes, and examined the expression of host factors for binding and processing of the virus. We studied cellular uptake of the live SARS-CoV-2 virus as well as a pseudotyped virus. Infection of podocytes with live SARS-CoV-2 or spike-pseudotyped lentiviral particles revealed cellular uptake even at low multiplicity of infection (MOI) of 0.01. We found that direct infection of human iPS cell-derived podocytes by SARS-CoV-2 virus can cause cell death and podocyte foot process retraction, a hallmark of podocytopathies and progressive glomerular diseases including collapsing glomerulopathy observed in patients with severe COVID-19 disease. We identified BSG/CD147 and ACE2 receptors as key mediators of spike binding activity in human iPS cell-derived podocytes. These results show that SARS-CoV-2 can infect kidney glomerular podocytes in vitro via multiple binding interactions and partners, which may underlie the high affinity of SARS-CoV-2 for kidney tissues. This stem cell-derived model is potentially useful for kidney-specific antiviral drug screening and mechanistic studies of COVID-19 organotropism.
Collapse
Affiliation(s)
- Titilola D. Kalejaiye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Rohan Bhattacharya
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC, United States
| | - Morgan A. Burt
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Tatianna Travieso
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Arinze E. Okafor
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Xingrui Mou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Maria Blasi
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC, United States
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, United States
- Developmental and Stem Cell Biology Program, Duke University, Durham, NC, United States
- Department of Cell Biology, Duke University, Durham, NC, United States
| |
Collapse
|
14
|
Zhou H, Ni WJ, Huang W, Wang Z, Cai M, Sun YC. Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARS-CoV-2-Induced COVID-19. Front Immunol 2022; 13:834942. [PMID: 35450063 PMCID: PMC9016159 DOI: 10.3389/fimmu.2022.834942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
As the new year of 2020 approaches, an acute respiratory disease quietly caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known as coronavirus disease 2019 (COVID-19) was reported in Wuhan, China. Subsequently, COVID-19 broke out on a global scale and formed a global public health emergency. To date, the destruction that has lasted for more than two years has not stopped and has caused the virus to continuously evolve new mutant strains. SARS-CoV-2 infection has been shown to cause multiple complications and lead to severe disability and death, which has dealt a heavy blow to global development, not only in the medical field but also in social security, economic development, global cooperation and communication. To date, studies on the epidemiology, pathogenic mechanism and pathological characteristics of SARS-CoV-2-induced COVID-19, as well as target confirmation, drug screening, and clinical intervention have achieved remarkable effects. With the continuous efforts of the WHO, governments of various countries, and scientific research and medical personnel, the public's awareness of COVID-19 is gradually deepening, a variety of prevention methods and detection methods have been implemented, and multiple vaccines and drugs have been developed and urgently marketed. However, these do not appear to have completely stopped the pandemic and ravages of this virus. Meanwhile, research on SARS-CoV-2-induced COVID-19 has also seen some twists and controversies, such as potential drugs and the role of vaccines. In view of the fact that research on SARS-CoV-2 and COVID-19 has been extensive and in depth, this review will systematically update the current understanding of the epidemiology, transmission mechanism, pathological features, potential targets, promising drugs and ongoing clinical trials, which will provide important references and new directions for SARS-CoV-2 and COVID-19 research.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei-Jian Ni
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Huang
- The Third People’s Hospital of Hefei, The Third Clinical College of Anhui Medical University, Hefei, China
| | - Zhen Wang
- Anhui Provincial Children’s Hospital, Children’s Hospital of Fudan University-Anhui Campus, Hefei, China
| | - Ming Cai
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yan-Cai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
15
|
Behl T, Kaur I, Aleya L, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S. CD147-spike protein interaction in COVID-19: Get the ball rolling with a novel receptor and therapeutic target. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152072. [PMID: 34863742 PMCID: PMC8634688 DOI: 10.1016/j.scitotenv.2021.152072] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 05/03/2023]
Abstract
The combat against the Corona virus disease of 2019 (COVID-19), has created a chaos among the healthcare institutions and researchers, in turn accelerating the dire need to curtail the infection spread. The already established entry mechanism, via ACE2 has not yet successfully aided in the development of a suitable and reliable therapy. Taking in account the constant progression and deterioration of the cases worldwide, a different perspective and mechanistic approach is required, which has thrown light onto the cluster of differentiation 147 (CD147) transmembrane protein, as a novel route for SARS-CoV-2 entry. Despite lesser affinity towards COVID-19 virus, as compared to ACE2, this receptor provides a suitable justification behind elevated blood glucose levels in infected patients, retarded COVID-19 risk in women, enhanced susceptibility in geriatrics, greater infection susceptibility of T cells, infection prevalence in non-susceptible human cardiac pericytes and so on. The manuscript invokes the title role and distribution of CD147 in COVID-19 as an entry receptor and mediator of endocytosis-promoted entry of the virus, along with the "catch and clump" hypothesis, thereby presenting its Fundamental significance as a therapeutic target for potential candidates, such as Azithromycin, melatonin, statins, beta adrenergic blockers, ivermectin, Meplazumab etc. Thus, the authors provide a comprehensive review of a different perspective in COVID-19 infection, aiming to aid the researchers and virologists in considering all aspects of viral entry, in order to develop a sustainable and potential cure for the 2019 COVID-19 disease.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, France
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania.
| |
Collapse
|
16
|
Helal MA, Shouman S, Abdelwaly A, Elmehrath AO, Essawy M, Sayed SM, Saleh AH, El-Badri N. Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 in COVID-19 associated-lymphopenia. J Biomol Struct Dyn 2022; 40:1109-1119. [PMID: 32936048 PMCID: PMC7544927 DOI: 10.1080/07391102.2020.1822208] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Lymphopenia is considered one of the most characteristic clinical features of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 infects host cells via the interaction of its spike protein with the human angiotensin-converting enzyme 2 (hACE2) receptor. Since T lymphocytes display a very low expression level of hACE2, a novel receptor might be involved in the entry of SARS-CoV-2 into T cells. The transmembrane glycoprotein CD147 is highly expressed by activated T lymphocytes, and was recently proposed as a probable route for SARS-CoV-2 invasion. To understand the molecular basis of the potential interaction of SARS-CoV-2 to CD147, we have investigated the binding of the viral spike protein to this receptor in-silico. The results showed that this binding is dominated by electrostatic interactions involving residues Arg403, Asn481, and the backbone of Gly502. The overall binding arrangement shows the CD147 C-terminal domain interacting with the spike external subdomain in the grove between the short antiparallel β strands, β1' and β2', and the small helix α1'. This proposed interaction was further confirmed using MD simulation and binding free energy calculation. These data contribute to a better understanding of the mechanism of infection of SARS-CoV-2 to T lymphocytes and could provide valuable insights for the rational design of adjuvant treatment for COVID-19. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed A. Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shaimaa Shouman
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmad Abdelwaly
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Ahmed O. Elmehrath
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Essawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Shireen M. Sayed
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| | - Amr H. Saleh
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
17
|
CD98-induced CD147 signaling stabilizes the Foxp3 protein to maintain tissue homeostasis. Cell Mol Immunol 2021; 18:2618-2631. [PMID: 34759371 PMCID: PMC8632965 DOI: 10.1038/s41423-021-00785-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Regulatory T cell (Treg) stability is necessary for the proper control of immune activity and tissue homeostasis. However, it remains unclear whether Treg stability must be continually reinforced or is established during development under physiological conditions. Foxp3 has been characterized as a central mediator of the genetic program that governs Treg stability. Here, we demonstrate that to maintain Foxp3 protein expression, Tregs require cell-to-cell contact, which is mediated by the CD147-CD98 interaction. As Tregs are produced, CD147, which is expressed on their surface, is stimulated by CD98, which is widely expressed in the physiological environment. As a result, CD147's intracellular domain binds to CDK2 and retains it near the membrane, leading to Foxp3 dephosphorylation and the prevention of Foxp3 degradation. In addition, the optimal distribution of Foxp3+ Tregs under both pathological and physiological conditions depends on CD98 expression. Thus, our study provides direct evidence that Foxp3-dependent Treg stability is reinforced in the periphery by the interaction between CD147 and CD98 in the surrounding environment. More importantly, Tregs with high CD147 expression effectively inhibit inflammatory responses and maintain Foxp3 stability, which has guiding significance for the application of Tregs in immunotherapy.
Collapse
|
18
|
Kalejaiye TD, Bhattacharya R, Burt MA, Travieso T, Okafor AE, Mou X, Blasi M, Musah S. BSG/CD147 and ACE2 receptors facilitate SARS-CoV-2 infection of human iPS cell-derived kidney podocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34816259 DOI: 10.1101/2021.11.16.468893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the Coronavirus disease 2019 (COVID-19), which was declared a pandemic by the World Health Organization (WHO) in March 2020. The disease has caused more than 5.1 million deaths worldwide. While cells in the respiratory system are frequently the initial target for SARS-CoV-2, clinical studies suggest that COVID-19 can become a multi-organ disease in the most severe cases. Still, the direct affinity of SARS-CoV-2 for cells in other organs such as the kidneys, which are often affected in severe COVID-19, remains poorly understood. METHOD In this study, we employed a human induced pluripotent stem (iPS) cell-derived model to investigate the affinity of SARS-CoV-2 for kidney glomerular podocytes. We studied uptake of the live SARS-CoV-2 virus as well as pseudotyped viral particles by human iPS cell derived podocytes using qPCR, western blot, and immunofluorescence. Global gene expression and qPCR analyses revealed that human iPS cell-derived podocytes express many host factor genes (including ACE2, BSG/CD147, PLS3, ACTR3, DOCK7, TMPRSS2, CTSL CD209, and CD33) associated with SARS-CoV-2 binding and viral processing. RESULT Infection of podocytes with live SARS-CoV-2 or spike-pseudotyped lentiviral particles revealed viral uptake by the cells at low Multiplicity of Infection (MOI of 0.01) as confirmed by RNA quantification and immunofluorescence studies. Our results also indicate that direct infection of human iPS cell-derived podocytes by SARS-CoV-2 virus can cause cell death and podocyte foot process retraction, a hallmark of podocytopathies and progressive glomerular diseases including collapsing glomerulopathy observed in patients with severe COVID-19 disease. Additionally, antibody blocking experiments identified BSG/CD147 and ACE2 receptors as key mediators of spike binding activity in human iPS cell-derived podocytes. CONCLUSION These results show that SARS-CoV-2 can infect kidney glomerular podocytes in vitro . These results also show that the uptake of SARS-CoV-2 by kidney podocytes occurs via multiple binding interactions and partners, which may underlie the high affinity of SARS-CoV-2 for kidney tissues. This stem cell-derived model is potentially useful for kidney-specific antiviral drug screening and mechanistic studies of COVID-19 organotropism. SIGNIFICANT STATEMENT Many patients with COVID19 disease exhibit multiorgan complications, suggesting that SARS-CoV-2 infection can extend beyond the respiratory system. Acute kidney injury is a common COVID-19 complication contributing to increased morbidity and mortality. Still, SARS-Cov-2 affinity for specialized kidney cells remain less clear. By leveraging our protocol for stem cell differentiation, we show that SARS-CoV-2 can directly infect kidney glomerular podocytes by using multiple Spike-binding proteins including ACE2 and BSG/CD147. Our results also indicate that infection by SARS-CoV-2 virus can cause podocyte cell death and foot process effacement, a hallmark of podocytopathies including collapsing glomerulopathy observed in patients with severe COVID-19 disease. This stem cell-derived model is potentially useful for kidney-specific antiviral drug screening and mechanistic studies of COVID-19 organotropism.
Collapse
|
19
|
Longoni SS, Tiberti N, Bisoffi Z, Piubelli C. Monoclonal Antibodies for Protozoan Infections: A Future Reality or a Utopic Idea? Front Med (Lausanne) 2021; 8:745665. [PMID: 34712683 PMCID: PMC8545981 DOI: 10.3389/fmed.2021.745665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
Following the SARS-CoV-2 pandemic, several clinical trials have been approved for the investigation of the possible use of mAbs, supporting the potential of this technology as a therapeutic approach for infectious diseases. The first monoclonal antibody (mAb), Muromonab CD3, was introduced for the prevention of kidney transplant rejection more than 30 years ago; since then more than 100 mAbs have been approved for therapeutic purposes. Nonetheless, only four mAbs are currently employed for infectious diseases: Palivizumab, for the prevention of respiratory syncytial virus (RSV) infections, Raxibacumab and Obiltoxaximab, for the prophylaxis and treatment against anthrax toxin and Bezlotoxumab, for the prevention of Clostridium difficile recurrence. Protozoan infections are often neglected diseases for which effective and safe chemotherapies are generally missing. In this context, drug resistance and drug toxicity are two crucial problems. The recent advances in bioinformatics, parasite genomics, and biochemistry methodologies are contributing to better understand parasite biology, which is essential to guide the development of new therapies. In this review, we present the efforts that are being made in the evaluation of mAbs for the prevention or treatment of leishmaniasis, Chagas disease, malaria, and toxoplasmosis. Particular emphasis will be placed on the potential strengths and weaknesses of biological treatments in the control of these protozoan diseases that are still affecting hundreds of thousands of people worldwide.
Collapse
Affiliation(s)
- Silvia Stefania Longoni
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Natalia Tiberti
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Zeno Bisoffi
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy.,Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Chiara Piubelli
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Sacro Cuore Don Calabria Hospital, Verona, Italy
| |
Collapse
|
20
|
Peng R, Wu LA, Wang Q, Qi J, Gao GF. Cell entry by SARS-CoV-2. Trends Biochem Sci 2021; 46:848-860. [PMID: 34187722 PMCID: PMC8180548 DOI: 10.1016/j.tibs.2021.06.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome virus 2 (SARS-CoV-2) invades host cells by interacting with receptors/coreceptors, as well as with other cofactors, via its spike (S) protein that further mediates fusion between viral and cellular membranes. The host membrane protein, angiotensin-converting enzyme 2 (ACE2), is the major receptor for SARS-CoV-2 and is a crucial determinant for cross-species transmission. In addition, some auxiliary receptors and cofactors are also involved that expand the host/tissue tropism of SARS-CoV-2. After receptor engagement, specific proteases are required that cleave the S protein and trigger its fusogenic activity. Here we discuss the recent advances in understanding the molecular events during SARS-CoV-2 entry which will contribute to developing vaccines and therapeutics.
Collapse
Affiliation(s)
- Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Lian-Ao Wu
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230039, China
| | - Qingling Wang
- Shanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230039, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China.
| |
Collapse
|
21
|
SARS-CoV-2 and Plasmodium falciparum are probably adopting Analogous strategy to invade erythrocytes. J Infect Public Health 2021; 14:883-885. [PMID: 34118739 PMCID: PMC8189613 DOI: 10.1016/j.jiph.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
|
22
|
Bian H, Zheng ZH, Wei D, Wen A, Zhang Z, Lian JQ, Kang WZ, Hao CQ, Wang J, Xie RH, Dong K, Xia JL, Miao JL, Kang W, Li G, Zhang D, Zhang M, Sun XX, Ding L, Zhang K, Jia J, Ding J, Li Z, Jia Y, Liu LN, Zhang Z, Gao ZW, Du H, Yao N, Wang Q, Wang K, Geng JJ, Wang B, Guo T, Chen R, Zhu YM, Wang LJ, He Q, Yao RR, Shi Y, Yang XM, Zhou JS, Ma YN, Wang YT, Liang X, Huo F, Wang Z, Zhang Y, Yang X, Zhang Y, Gao LH, Wang L, Chen XC, Tang H, Liu SS, Wang QY, Chen ZN, Zhu P. Safety and efficacy of meplazumab in healthy volunteers and COVID-19 patients: a randomized phase 1 and an exploratory phase 2 trial. Signal Transduct Target Ther 2021; 6:194. [PMID: 34001849 PMCID: PMC8127508 DOI: 10.1038/s41392-021-00603-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that CD147 serves as a novel receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Blocking CD147 via anti-CD147 antibody could suppress the in vitro SARS-CoV-2 replication. Meplazumab is a humanized anti-CD147 IgG2 monoclonal antibody, which may effectively prevent SARS-CoV-2 infection in coronavirus disease 2019 (COVID-19) patients. Here, we conducted a randomized, double-blinded, placebo-controlled phase 1 trial to evaluate the safety, tolerability, and pharmacokinetics of meplazumab in healthy subjects, and an open-labeled, concurrent controlled add-on exploratory phase 2 study to determine the efficacy in COVID-19 patients. In phase 1 study, 59 subjects were enrolled and assigned to eight cohorts, and no serious treatment-emergent adverse event (TEAE) or TEAE grade ≥3 was observed. The serum and peripheral blood Cmax and area under the curve showed non-linear pharmacokinetic characteristics. No obvious relation between the incidence or titer of positive anti-drug antibody and dosage was observed in each cohort. The biodistribution study indicated that meplazumab reached lung tissue and maintained >14 days stable with the lung tissue/cardiac blood-pool ratio ranging from 0.41 to 0.32. In the exploratory phase 2 study, 17 COVID-19 patients were enrolled, and 11 hospitalized patients were involved as concurrent control. The meplazumab treatment significantly improved the discharged (P = 0.005) and case severity (P = 0.021), and reduced the time to virus negative (P = 0.045) in comparison to the control group. These results show a sound safety and tolerance of meplazumab in healthy volunteers and suggest that meplazumab could accelerate the recovery of patients from COVID-19 pneumonia with a favorable safety profile.
Collapse
Affiliation(s)
- Huijie Bian
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China.
| | - Zhao-Hui Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ding Wei
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zheng Zhang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jian-Qi Lian
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen-Zhen Kang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Chun-Qiu Hao
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Rong-Hua Xie
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke Dong
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie-Lai Xia
- College of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Jin-Lin Miao
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Wen Kang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Guoquan Li
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Di Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiu-Xuan Sun
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Likun Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Kui Zhang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Junfeng Jia
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jin Ding
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhiqin Li
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yanyan Jia
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin-Na Liu
- Department of Pharmaceutics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Zhang
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhao-Wei Gao
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hong Du
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Na Yao
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qing Wang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jie-Jie Geng
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Bin Wang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Ting Guo
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yu-Meng Zhu
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Li-Juan Wang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Qian He
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Rui-Rui Yao
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Ying Shi
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Xiang-Min Yang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jian-Sheng Zhou
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yi-Nan Ma
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Ya-Tao Wang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Xue Liang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Fei Huo
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Zhe Wang
- Department of Pathology, Fourth Military Medical University, Xi'an, China
| | - Yang Zhang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Xu Yang
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Ye Zhang
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lu-Hua Gao
- Center for Infectious Diseases, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ling Wang
- College of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China
| | - Xiao-Chun Chen
- Jiangsu Pacific Meinuoke Biopharmaceutical Co. Ltd, Changzhou, China
| | - Hao Tang
- Jiangsu Pacific Meinuoke Biopharmaceutical Co. Ltd, Changzhou, China
| | - Shuang-Shuang Liu
- Jiangsu Pacific Meinuoke Biopharmaceutical Co. Ltd, Changzhou, China
| | - Qing-Yi Wang
- Department of Foreign Languages, Fourth Military Medical University, Xi'an, China
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, China.
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
23
|
Tavakol S, Zahmatkeshan M, Mohammadinejad R, Mehrzadi S, Joghataei MT, Alavijeh MS, Seifalian A. The role of nanotechnology in current COVID-19 outbreak. Heliyon 2021; 7:e06841. [PMID: 33880422 PMCID: PMC8049405 DOI: 10.1016/j.heliyon.2021.e06841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/16/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 has recently become one of the most challenging pandemics of the last century with deadly outcomes and a high rate of reproduction number. It emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis by the high sensitivity and selectivity diagnostic kits, and effective antiviral and protective therapeutics to decline and eliminate the viral load and side effects derived from tissue damages. Therefore, non-toxic antiviral nanoparticles (NPs) have been under development for clinical application to prevent and treat COVID-19. NPs showed great promise to provide nano vaccines against viral infections. Here, we discuss the potentials of NPs that may be applied as a drug itself or as a platform for the aim of drug and vaccine repurposing and development. Meanwhile, the advanced strategies based on NPs to detect viruses will be described with the goal of encouraging scientists to design effective and cost-benefit nanoplatforms for prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Pharmidex Pharmaceutical Services Ltd., London, United Kingdom
| | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad T. Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Mo S. Alavijeh
- Pharmidex Pharmaceutical Services Ltd., London, United Kingdom
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, UK), London BioScience Innovation Centre, London, NW1 0NH, United Kingdom
| |
Collapse
|
24
|
Zarubin A, Stepanov V, Markov A, Kolesnikov N, Marusin A, Khitrinskaya I, Swarovskaya M, Litvinov S, Ekomasova N, Dzhaubermezov M, Maksimova N, Sukhomyasova A, Shtygasheva O, Khusnutdinova E, Radzhabov M, Kharkov V. Structural Variability, Expression Profile, and Pharmacogenetic Properties of TMPRSS2 Gene as a Potential Target for COVID-19 Therapy. Genes (Basel) 2020; 12:E19. [PMID: 33375616 PMCID: PMC7823984 DOI: 10.3390/genes12010019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
The human serine protease serine 2 TMPRSS2 is involved in the priming of proteins of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and represents a possible target for COVID-19 therapy. The TMPRSS2 gene may be co-expressed with SARS-CoV-2 cell receptor genes angiotensin-converting enzyme 2 (ACE2) and Basigin (BSG), but only TMPRSS2 demonstrates tissue-specific expression in alveolar cells according to single-cell RNA sequencing data. Our analysis of the structural variability of the TMPRSS2 gene based on genome-wide data from 76 human populations demonstrates that a functionally significant missense mutation in exon 6/7 in the TMPRSS2 gene is found in many human populations at relatively high frequencies, with region-specific distribution patterns. The frequency of the missense mutation encoded by rs12329760, which has previously been found to be associated with prostate cancer, ranged between 10% and 63% and was significantly higher in populations of Asian origin compared with European populations. In addition to single-nucleotide polymorphisms, two copy number variants were detected in the TMPRSS2 gene. A number of microRNAs have been predicted to regulate TMPRSS2 and BSG expression levels, but none of them is enriched in lung or respiratory tract cells. Several well-studied drugs can downregulate the expression of TMPRSS2 in human cells, including acetaminophen (paracetamol) and curcumin. Thus, the interactions of TMPRSS2 with SARS-CoV-2, together with its structural variability, gene-gene interactions, expression regulation profiles, and pharmacogenomic properties, characterize this gene as a potential target for COVID-19 therapy.
Collapse
Affiliation(s)
- Aleksei Zarubin
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Vadim Stepanov
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Anton Markov
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Nikita Kolesnikov
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Andrey Marusin
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Irina Khitrinskaya
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Maria Swarovskaya
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| | - Sergey Litvinov
- Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (N.E.); (M.D.); (E.K.)
| | - Natalia Ekomasova
- Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (N.E.); (M.D.); (E.K.)
| | - Murat Dzhaubermezov
- Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (N.E.); (M.D.); (E.K.)
| | - Nadezhda Maksimova
- Medical Institute, North-Eastern Federal University, 677000 Yakutsk, Russia; (N.M.); (A.S.)
| | - Aitalina Sukhomyasova
- Medical Institute, North-Eastern Federal University, 677000 Yakutsk, Russia; (N.M.); (A.S.)
| | - Olga Shtygasheva
- Medical-Psychological-Social Institute, Katanov State University of Khakassia, 655017 Abakan, Russia;
| | - Elza Khusnutdinova
- Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450000 Ufa, Russia; (S.L.); (N.E.); (M.D.); (E.K.)
| | - Magomed Radzhabov
- Laboratory of Genomic Medicine, Dagestan State Medical University, 367000 Makhachkala, Russia;
| | - Vladimir Kharkov
- Tomsk National Medical Research Center, Research Institute for Medical Genetics, 634050 Tomsk, Russia; (V.S.); (A.M.); (N.K.); (A.M.); (I.K.); (M.S.); (V.K.)
| |
Collapse
|
25
|
Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, Wei D, Zhang Y, Sun XX, Gong L, Yang X, He L, Zhang L, Yang Z, Geng JJ, Chen R, Zhang H, Wang B, Zhu YM, Nan G, Jiang JL, Li L, Wu J, Lin P, Huang W, Xie L, Zheng ZH, Zhang K, Miao JL, Cui HY, Huang M, Zhang J, Fu L, Yang XM, Zhao Z, Sun S, Gu H, Wang Z, Wang CF, Lu Y, Liu YY, Wang QY, Bian H, Zhu P, Chen ZN. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther 2020. [PMID: 33277466 DOI: 10.1101/2020.03.14.988345] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
In face of the everlasting battle toward COVID-19 and the rapid evolution of SARS-CoV-2, no specific and effective drugs for treating this disease have been reported until today. Angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, mediates the virus infection by binding to spike protein. Although ACE2 is expressed in the lung, kidney, and intestine, its expressing levels are rather low, especially in the lung. Considering the great infectivity of COVID-19, we speculate that SARS-CoV-2 may depend on other routes to facilitate its infection. Here, we first discover an interaction between host cell receptor CD147 and SARS-CoV-2 spike protein. The loss of CD147 or blocking CD147 in Vero E6 and BEAS-2B cell lines by anti-CD147 antibody, Meplazumab, inhibits SARS-CoV-2 amplification. Expression of human CD147 allows virus entry into non-susceptible BHK-21 cells, which can be neutralized by CD147 extracellular fragment. Viral loads are detectable in the lungs of human CD147 (hCD147) mice infected with SARS-CoV-2, but not in those of virus-infected wild type mice. Interestingly, virions are observed in lymphocytes of lung tissue from a COVID-19 patient. Human T cells with a property of ACE2 natural deficiency can be infected with SARS-CoV-2 pseudovirus in a dose-dependent manner, which is specifically inhibited by Meplazumab. Furthermore, CD147 mediates virus entering host cells by endocytosis. Together, our study reveals a novel virus entry route, CD147-spike protein, which provides an important target for developing specific and effective drug against COVID-19.
Collapse
Affiliation(s)
- Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zheng Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongqiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jian-Qi Lian
- Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Peng Du
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Ding Wei
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiu-Xuan Sun
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Li Gong
- Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xu Yang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lei He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie-Jie Geng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hai Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Meng Zhu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Gang Nan
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jian-Li Jiang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Wan Huang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | | | - Zhao-Hui Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kui Zhang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jin-Lin Miao
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hong-Yong Cui
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Min Huang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Zhang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Ling Fu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiang-Min Yang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hongjing Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhe Wang
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Chun-Fu Wang
- Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yacheng Lu
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying-Ying Liu
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Qing-Yi Wang
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
26
|
Wang K, Chen W, Zhang Z, Deng Y, Lian JQ, Du P, Wei D, Zhang Y, Sun XX, Gong L, Yang X, He L, Zhang L, Yang Z, Geng JJ, Chen R, Zhang H, Wang B, Zhu YM, Nan G, Jiang JL, Li L, Wu J, Lin P, Huang W, Xie L, Zheng ZH, Zhang K, Miao JL, Cui HY, Huang M, Zhang J, Fu L, Yang XM, Zhao Z, Sun S, Gu H, Wang Z, Wang CF, Lu Y, Liu YY, Wang QY, Bian H, Zhu P, Chen ZN. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther 2020; 5:283. [PMID: 33277466 PMCID: PMC7714896 DOI: 10.1038/s41392-020-00426-x] [Citation(s) in RCA: 711] [Impact Index Per Article: 142.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
In face of the everlasting battle toward COVID-19 and the rapid evolution of SARS-CoV-2, no specific and effective drugs for treating this disease have been reported until today. Angiotensin-converting enzyme 2 (ACE2), a receptor of SARS-CoV-2, mediates the virus infection by binding to spike protein. Although ACE2 is expressed in the lung, kidney, and intestine, its expressing levels are rather low, especially in the lung. Considering the great infectivity of COVID-19, we speculate that SARS-CoV-2 may depend on other routes to facilitate its infection. Here, we first discover an interaction between host cell receptor CD147 and SARS-CoV-2 spike protein. The loss of CD147 or blocking CD147 in Vero E6 and BEAS-2B cell lines by anti-CD147 antibody, Meplazumab, inhibits SARS-CoV-2 amplification. Expression of human CD147 allows virus entry into non-susceptible BHK-21 cells, which can be neutralized by CD147 extracellular fragment. Viral loads are detectable in the lungs of human CD147 (hCD147) mice infected with SARS-CoV-2, but not in those of virus-infected wild type mice. Interestingly, virions are observed in lymphocytes of lung tissue from a COVID-19 patient. Human T cells with a property of ACE2 natural deficiency can be infected with SARS-CoV-2 pseudovirus in a dose-dependent manner, which is specifically inhibited by Meplazumab. Furthermore, CD147 mediates virus entering host cells by endocytosis. Together, our study reveals a novel virus entry route, CD147-spike protein, which provides an important target for developing specific and effective drug against COVID-19.
Collapse
Affiliation(s)
- Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Chen
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Zheng Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yongqiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Jian-Qi Lian
- Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Peng Du
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Ding Wei
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiu-Xuan Sun
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Li Gong
- Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Xu Yang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lei He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jie-Jie Geng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ruo Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hai Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Meng Zhu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Gang Nan
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jian-Li Jiang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Wan Huang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | | | - Zhao-Hui Zheng
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kui Zhang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jin-Lin Miao
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Hong-Yong Cui
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Min Huang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Zhang
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Ling Fu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiang-Min Yang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhongpeng Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Hongjing Gu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhe Wang
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Chun-Fu Wang
- Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yacheng Lu
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ying-Ying Liu
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Qing-Yi Wang
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ping Zhu
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
27
|
Ahmed Shakoori T, Hafeez MM, Malik A. COULD COVID-19 BE A HEMOGLOBINOPATHY? Acta Clin Croat 2020; 59:740-744. [PMID: 34285445 PMCID: PMC8253065 DOI: 10.20471/acc.2020.59.04.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022] Open
Abstract
The world is struggling to deal with the corona pandemic. Effective therapies are still awaited due to the lack of understanding of the pathophysiological mechanism of the disease. Bearing recent research and clinical observations in mind, the authors propose a novel physiological mechanism of COVID-19 and explain development of COVID-19 related acute respiratory distress syndrome (ARDS) secondary to COVID-19 related hemoglobinopathy. It is a consistent observation that the radiological picture of COVID-19 related ARDS bears more resemblance to high altitude pulmonary edema (HAPE) than typical ARDS. There has been great controversy regarding this proposed similarity. The main argument from those objecting to this comparison is that the etiology is hypoxia in case of HAPE and inflammation in COVID-19 related ARDS. We propose that considering the recent bioinformatics prediction models, COVID-19 might first infect red blood cells via CD147 and cause hemoglobin damage. The resulting hypoxemia may cause pulmonary hypoxic vasoconstriction leading to HAPE-like lung lesions. The now introduced alveolar hypoxia further exaggerates hemoglobinopathy hypoxemia leading to a vicious cycle. In this review, the authors recommend laboratory experiments to prove these hypotheses. The proposed physiological mechanism has significant therapeutic implications. If proven, the authors suggest the use of exchange transfusion as adjunct therapy and development of anti-CD147 drugs.
Collapse
Affiliation(s)
| | - Muhammad Mansoor Hafeez
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, New Campus, Defense Road 1, KM off Raiwind Road, Lahore, Pakistan
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore, New Campus, Defense Road 1, KM off Raiwind Road, Lahore, Pakistan
| |
Collapse
|
28
|
Radzikowska U, Ding M, Tan G, Zhakparov D, Peng Y, Wawrzyniak P, Wang M, Li S, Morita H, Altunbulakli C, Reiger M, Neumann AU, Lunjani N, Traidl-Hoffmann C, Nadeau KC, O'Mahony L, Akdis C, Sokolowska M. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy 2020; 75:2829-2845. [PMID: 32496587 DOI: 10.1101/2020.05.14.090332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19. METHODS We performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status. RESULTS ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis. CONCLUSIONS Our data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne - Center for Research and Education (CK-CARE), Davos, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne - Center for Research and Education (CK-CARE), Davos, Switzerland
- Department of Allergology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Functional Genomic Centre Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yaqi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne - Center for Research and Education (CK-CARE), Davos, Switzerland
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne - Center for Research and Education (CK-CARE), Davos, Switzerland
- Division of Clinical Chemistry and Biochemistry, University Children`s Hospital Zurich, Zurich, Switzerland
- Children`s Research Center, University Children`s Hospital Zurich, Zurich, Switzerland
| | - Ming Wang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne - Center for Research and Education (CK-CARE), Davos, Switzerland
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University and the Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Shuo Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Hideaki Morita
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne - Center for Research and Education (CK-CARE), Davos, Switzerland
| | - Matthias Reiger
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum Munchen, Augsburg, Germany
| | - Avidan U Neumann
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum Munchen, Augsburg, Germany
- Institute of Computational Biology (ICB), Helmholtz Zentrum Munchen, Munich, Germany
- Institute of Experimental Medicine (IEM), Czech Academy of Sciences, Prague, Czech Republic
| | - Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne - Center for Research and Education (CK-CARE), Davos, Switzerland
| | - Claudia Traidl-Hoffmann
- Christine Kühne - Center for Research and Education (CK-CARE), Davos, Switzerland
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University of Munich and Helmholtz Zentrum Munchen, Augsburg, Germany
| | - Kari C Nadeau
- Sean N Parker Centre for Allergy and Asthma Research at Stanford University, Department of Medicine, Stanford University School of Medicine, Stanford, USA
| | - Liam O'Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, National University of Ireland, Cork, Ireland
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne - Center for Research and Education (CK-CARE), Davos, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne - Center for Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
29
|
Radzikowska U, Ding M, Tan G, Zhakparov D, Peng Y, Wawrzyniak P, Wang M, Li S, Morita H, Altunbulakli C, Reiger M, Neumann AU, Lunjani N, Traidl‐Hoffmann C, Nadeau KC, O’Mahony L, Akdis C, Sokolowska M. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy 2020; 75:2829-2845. [PMID: 32496587 PMCID: PMC7300910 DOI: 10.1111/all.14429] [Citation(s) in RCA: 371] [Impact Index Per Article: 74.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
Background Morbidity and mortality from COVID‐19 caused by novel coronavirus SARS‐CoV‐2 is accelerating worldwide, and novel clinical presentations of COVID‐19 are often reported. The range of human cells and tissues targeted by SARS‐CoV‐2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS‐CoV‐2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID‐19. Methods We performed RNA sequencing and explored available RNA‐Seq databases to study gene expression and co‐expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID‐19 risk factor status. Results ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age‐related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2‐ and CD147‐related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147‐related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147‐related genes in the lesional skin of patients with atopic dermatitis. Conclusions Our data suggest different receptor repertoire potentially involved in the SARS‐CoV‐2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID‐19 morbidity and severity patterns.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Research and Education (CK‐CARE) Davos Switzerland
- Department of Regenerative Medicine and Immune Regulation Medical University of Bialystok Bialystok Poland
| | - Mei Ding
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Research and Education (CK‐CARE) Davos Switzerland
- Department of Allergology Zhongnan Hospital of Wuhan University Wuhan China
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Functional Genomic Centre ZurichETH Zurich/University of Zurich Zurich Switzerland
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Yaqi Peng
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Research and Education (CK‐CARE) Davos Switzerland
- Otorhinolaryngology HospitalThe First Affiliated HospitalSun Yat‐sen University Guangzhou China
| | - Paulina Wawrzyniak
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Research and Education (CK‐CARE) Davos Switzerland
- Division of Clinical Chemistry and Biochemistry University Children`s Hospital Zurich Zurich Switzerland
- Children`s Research Center University Children`s Hospital Zurich Zurich Switzerland
| | - Ming Wang
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Research and Education (CK‐CARE) Davos Switzerland
- Department of Otolaryngology, Head and Neck Surgery Beijing TongRen HospitalCapital Medical University and the Beijing Key Laboratory of Nasal DiseasesBeijing Institute of Otolaryngology Beijing China
| | - Shuo Li
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Cancer Immunology Institute for Cancer ResearchOslo University Hospital Oslo Norway
| | - Hideaki Morita
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Can Altunbulakli
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Research and Education (CK‐CARE) Davos Switzerland
| | - Matthias Reiger
- Chair and Institute of Environmental Medicine UNIKA‐TTechnical University of Munich and Helmholtz Zentrum Munchen Augsburg Germany
| | - Avidan U. Neumann
- Chair and Institute of Environmental Medicine UNIKA‐TTechnical University of Munich and Helmholtz Zentrum Munchen Augsburg Germany
- Institute of Computational Biology (ICB) Helmholtz Zentrum Munchen Munich Germany
- Institute of Experimental Medicine (IEM) Czech Academy of Sciences Prague Czech Republic
| | - Nonhlanhla Lunjani
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Research and Education (CK‐CARE) Davos Switzerland
| | - Claudia Traidl‐Hoffmann
- Christine Kühne – Center for Research and Education (CK‐CARE) Davos Switzerland
- Chair and Institute of Environmental Medicine UNIKA‐TTechnical University of Munich and Helmholtz Zentrum Munchen Augsburg Germany
| | - Kari C. Nadeau
- Sean N Parker Centre for Allergy and Asthma Research at Stanford University Department of Medicine Stanford University School of Medicine Stanford USA
| | - Liam O’Mahony
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Department of Medicine and School of Microbiology APC Microbiome IrelandNational University of Ireland Cork Ireland
| | - Cezmi Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Research and Education (CK‐CARE) Davos Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne – Center for Research and Education (CK‐CARE) Davos Switzerland
| |
Collapse
|
30
|
Miao J, Zhang K, Zheng Z, Zhang R, Lv M, Guo N, Xu Y, Han Q, Chen Z, Zhu P. CD147 Expressed on Memory CD4 + T Cells Limits Th17 Responses in Patients With Rheumatoid Arthritis. Front Immunol 2020; 11:545980. [PMID: 33193313 PMCID: PMC7655988 DOI: 10.3389/fimmu.2020.545980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease in which T helper-type 17 (Th17) cells have been critically involved. CD147 is a T cell activation-associated molecule and is involved in T cell development. However, it remains unclear whether CD147 participates in Th17 responses in RA patients. In this study, we demonstrated that in both the RA and healthy controls (HC) groups, CD147 expression on CD4+ T cells was increased in CCR6+ and CD161+ subsets, and was associated with IL-17 production. Ligation of CD147 with its monoclonal antibody (mAb) strongly inhibited Th17 responses, and knock down of CD147 expression on CD4+ Tm cells specifically enhanced Th17 responses, triggered by coculture with in vitro activated monocytes from HC. Further functional studies showed that anti-CD147 mAb decreased the activation of AKT, mTORC1 and STAT3 signaling, which is known to enhance Th17 responses. Ligation of CD147 with its mAb on CD4+ Tm cells specifically reduced Th17 responses induced by in vitro or in vivo activated monocytes from RA patients. In collagen-induced arthritis model, anti-CD147 mAb treatment reduced the Th17 levels and severity of arthritis in vivo. These data suggest that CD147 plays a negative role in regulating human Th17 responses. Anti-CD147 mAb can limit the extraordinary proliferation of Th17 cells and may be a new therapeutic option in RA.
Collapse
Affiliation(s)
- Jinlin Miao
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.,National Translational Science Center for Molecular Medicine & Department of Cell Biology, The Fourth Military Medical University, Xi'an, China
| | - Kui Zhang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhaohui Zheng
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rui Zhang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Minghua Lv
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Na Guo
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yingming Xu
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Qing Han
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhinan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, The Fourth Military Medical University, Xi'an, China
| | - Ping Zhu
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
31
|
Zhang K, Zhao Y, Zhang Z, Zhang M, Wu X, Bian H, Zhu P, Chen Z. Nonclinical safety, tolerance and pharmacodynamics evaluation for meplazumab treating chloroquine-resistant Plasmodium falciparum. Acta Pharm Sin B 2020; 10:1680-1693. [PMID: 33088688 PMCID: PMC7564037 DOI: 10.1016/j.apsb.2020.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022] Open
Abstract
Meplazumab is an anti-CD147 humanized IgG2 antibody. The purpose of this study was to characterize the nonclinical safety, tolerance and efficacy evaluation of meplazumab treating chloroquine resistant Plasmodium falciparum. Meplazumab was well tolerated in repeat-dose toxicology studies in cynomolgus monkeys. No observed adverse effect level was 12 mg/kg. No difference between genders in the primary toxicokinetic parameters after repeat intravenous injection of meplazumab. No increased levels of drug exposure and drug accumulation were observed in different gender and dose groups. Meplazumab had a low cross-reactivity rate in various tissues and did not cause hemolysis or aggregation of red blood cells. The biodistribution and excretion results indicated that meplazumab was mainly distributed in the plasma, whole blood, and hemocytes, and excreted in the urine. Moreover, meplazumab effectively inhibited the parasites from invading erythrocytes in humanized mice in a time-dependent manner and the efficacy is superior to that of chloroquine. All these studies suggested that meplazumab is safe and well tolerated in cynomolgus monkeys, and effectively inhibits P. falciparum from invading into human red blood cells. These nonclinical data facilitated the initiation of an ongoing clinical trial of meplazumab for antimalarial therapy.
Collapse
Key Words
- ADA, anti-drug antibody
- ADCC, antibody-dependent cell-mediated cytotoxicity
- Antimalarial therapy
- CD147
- Efficacy
- FFPE, formalin-fixed paraffin-embedded
- Fab, variable region of monoclonal antibody
- Fc, crystalline region of monoclonal antibody
- HPLC, high-performance liquid chromatography
- HRP, horseradish peroxidase
- IR, inhibition rate
- Meplazumab
- NOG mice, NOD/Shi-scid/IL-2Rγ null mice
- Nonclinical
- PBS, phosphate buffered saline
- PC50, median parasite clearance time
- Plasmodium falciparum
- Pr, parasitemia
- RAP2, rhoptry-associated protein 2
- RBCs, red blood cells
- RH5, reticulocyte-binding protein homolog 5
- RO, receptor occupancy
- SD rats, Sprague–Dawley rats
- Safety
- TCA, trichloroacetic acid
- Tolerance
- WHO, World Health Organization
- huRBCs, human red blood cells
- mAbs, monoclonal antibodies
Collapse
|
32
|
Zhou H, Fang Y, Xu T, Ni W, Shen A, Meng X. Potential therapeutic targets and promising drugs for combating SARS-CoV-2. Br J Pharmacol 2020; 177:3147-3161. [PMID: 32368792 PMCID: PMC7267399 DOI: 10.1111/bph.15092] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
As of April 9, 2020, a novel coronavirus (SARS-CoV-2) had caused 89,931 deaths and 1,503,900 confirmed cases worldwide, which indicates an increasingly severe and uncontrollable situation. Initially, little was known about the virus. As research continues, we now know the genome structure, epidemiological and clinical characteristics, and pathogenic mechanisms of SARS-CoV-2. Based on this knowledge, potential targets involved in the processes of virus pathogenesis need to be identified, and the discovery or development of drugs based on these potential targets is the most pressing need. Here, we have summarized the potential therapeutic targets involved in virus pathogenesis and discuss the advances, possibilities, and significance of drugs based on these targets for treating SARS-CoV-2. This review will facilitate the identification of potential targets and provide clues for drug development that can be translated into clinical applications for combating SARS-CoV-2.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Yan Fang
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of PharmacyAnhui Medical UniversityHefeiChina
| | - Wei‐Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of PharmacyAnhui Medical UniversityHefeiChina
| | - Ai‐Zong Shen
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Xiao‐Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of PharmacyAnhui Medical UniversityHefeiChina
| |
Collapse
|
33
|
Scorei IR, Biţă A, Mogoşanu GD. Letter to the Editor: Boron enhances the antiviral activity of the curcumin against SARS-CoV-2. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2020; 61:967-970. [PMID: 33817742 PMCID: PMC8112755 DOI: 10.47162/rjme.61.3.39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Ion Romulus Scorei
- BioBoron Research Institute, S.C. Natural Research S.R.L., Podari, Dolj County, Romania;
| | | | | |
Collapse
|
34
|
Chen R, Wang K, Feng Z, Zhang MY, Wu J, Geng JJ, Chen ZN. CD147 deficiency in T cells prevents thymic involution by inhibiting the EMT process in TECs in the presence of TGFβ. Cell Mol Immunol 2020; 18:171-181. [PMID: 31900457 PMCID: PMC7853129 DOI: 10.1038/s41423-019-0353-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
Thymic involution during aging is a major cause of decreased T-cell production and reduced immunity. Here, we show that the loss of CD147 on T cells prevents thymic senescence, resulting in slowed shrinkage of the thymus with age and increased production of naive T cells. This phenotype is the result of slowing of the epithelial–mesenchymal transition (EMT) process in thymic epithelial cells (TECs), which eventually leads to reduced adipocyte accumulation. In an in vitro coculture system, we found that TGFβ is an important factor in the EMT process in TECs and that it can reduce the expression of E-cadherin through p-Smad2/FoxC2 signaling. Moreover, CD147 on T cells can accelerate the decline in E-cadherin expression by interacting with Annexin A2 on TECs. In the presence of TGFβ, Annexin A2 and E-cadherin colocalize on TECs. However, CD147 on T cells competitively binds to Annexin A2 on TECs, leading to the isolation of E-cadherin. Then, the isolated E-cadherin is easily phosphorylated by phosphorylated Src kinase, the phosphorylation of which was induced by TGFβ, and finally, p-E-cadherin is degraded. Thus, in the thymus, the interaction between T cells and TECs contributes to thymic involution with age. In this study, we illuminate the mechanism underlying the triggering of the EMT process in TECs and show that inhibiting TGFβ and/or CD147 may serve as a strategy to hinder age-related thymic involution.
Collapse
Affiliation(s)
- Ruo Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong, China.,National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Zhuan Feng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Ming-Yang Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China
| | - Jie-Jie Geng
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China.
| | - Zhi-Nan Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong, China. .,National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Shaanxi, China.
| |
Collapse
|
35
|
Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, Van Wijk R. Red Blood Cells: Chasing Interactions. Front Physiol 2019; 10:945. [PMID: 31417415 PMCID: PMC6684843 DOI: 10.3389/fphys.2019.00945] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Human red blood cells (RBC) are highly differentiated cells that have lost all organelles and most intracellular machineries during their maturation process. RBC are fundamental for the nearly all basic physiologic dynamics and they are key cells in the body's respiratory system by being responsible for the oxygen transport to all cells and tissues, and delivery of carbon dioxide to the lungs. With their flexible structure RBC are capable to deform in order to travel through all blood vessels including very small capillaries. Throughout their in average 120 days lifespan, human RBC travel in the bloodstream and come in contact with a broad range of different cell types. In fact, RBC are able to interact and communicate with endothelial cells (ECs), platelets, macrophages, and bacteria. Additionally, they are involved in the maintenance of thrombosis and hemostasis and play an important role in the immune response against pathogens. To clarify the mechanisms of interaction of RBC and these other cells both in health and disease as well as to highlight the role of important key players, we focused our interest on RBC membrane components such as ion channels, proteins, and phospholipids.
Collapse
Affiliation(s)
- Virginia Pretini
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Mischa H. Koenen
- Department of Laboratory of Translational Immunology and Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marcel H. A. M. Fens
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marije Bartels
- Paediatric Haematology Department, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Richard Van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
36
|
Abstract
The development of highly effective and durable vaccines against the human malaria parasites Plasmodium falciparum and P. vivax remains a key priority. Decades of endeavor have taught that achieving this goal will be challenging; however, recent innovation in malaria vaccine research and a diverse pipeline of novel vaccine candidates for clinical assessment provides optimism. With first-generation pre-erythrocytic vaccines aiming for licensure in the coming years, it is important to reflect on how next-generation approaches can improve on their success. Here we review the latest vaccine approaches that seek to prevent malaria infection, disease, and transmission and highlight some of the major underlying immunological and molecular mechanisms of protection. The synthesis of rational antigen selection, immunogen design, and immunization strategies to induce quantitatively and qualitatively improved immune effector mechanisms offers promise for achieving sustained high-level protection.
Collapse
|
37
|
Gunalan K, Niangaly A, Thera MA, Doumbo OK, Miller LH. Plasmodium vivax Infections of Duffy-Negative Erythrocytes: Historically Undetected or a Recent Adaptation? Trends Parasitol 2018. [PMID: 29530446 DOI: 10.1016/j.pt.2018.02.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasmodium vivax is the main cause of malarial disease in Asia and South America. Plasmodium vivax infection was thought to be absent in African populations who are Duffy blood group antigen negative (Duffy-negative). However, many cases of P. vivax infection have recently been observed in Duffy-negative Africans. This raises the question: were P. vivax infections in Duffy-negative populations previously missed or has P. vivax adapted to infect Duffy-negative populations? This review focuses on recent P. vivax findings in Africa and reports views on the parasite ligands that may play a role in Duffy-negative P. vivax infections. In addition, clues gained from studying P. vivax infection of reticulocytes are presented, which may provide possible avenues for establishing P. vivax culture in vitro.
Collapse
Affiliation(s)
- Karthigayan Gunalan
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; These authors contributed equally.
| | - Amadou Niangaly
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali; These authors contributed equally
| | - Mahamadou A Thera
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Center, International Center for Excellence in Research, University of Sciences, Techniques and Technology of Bamako, Bamako, Mali
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|