1
|
Bruscaggin A, Pini K, Rossi D. Detection of Circulating Tumor DNA in Lymphoma Patients. Methods Mol Biol 2025; 2865:475-490. [PMID: 39424738 DOI: 10.1007/978-1-0716-4188-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Liquid biopsy has become an opportunity in lymphoma diagnostics, since plasma circulating tumor DNA (ctDNA) is an easily accessible source of tumor DNA, which can be complementary to tissue biopsy. Through ctDNA, lymphomas can be molecularly characterized, tumor clonal evolution can be tracked, while monitoring minimal residual diseases during and after therapy. Here, we describe the methodology of cancer personalized profiling by deep sequencing (CAPP-seq) that we use for ctDNA qualification and quantification.
Collapse
Affiliation(s)
- Alessio Bruscaggin
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Katia Pini
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland.
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
- Faculty of Biomedical Science, Universita' della Svizzera italiana, Lugano, Switzerland.
| |
Collapse
|
2
|
Bisig B, Lefort K, Carras S, de Leval L. Clinical use of circulating tumor DNA analysis in patients with lymphoma. Hum Pathol 2024:105679. [PMID: 39491629 DOI: 10.1016/j.humpath.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The analysis of circulating tumor DNA (ctDNA) in liquid biopsy specimens has an established role for the detection of predictive molecular alterations and acquired resistance mutations in several tumors. The low-invasiveness of this approach allows for repeated sampling and dynamic monitoring of disease evolution. Originating from the entire body tumor bulk, plasma-derived ctDNA reflects intra- and interlesional genetic heterogeneity. In the management of lymphoma patients, ctDNA quantification at various timepoints of the patient's clinical history is emerging as a complementary tool that may improve risk stratification, assessment of treatment response and early relapse detection during follow-up, most prominently in patients with diffuse large B-cell lymphoma or classic Hodgkin lymphoma. While liquid biopsies have not yet entered standard-of-care treatment protocols in these settings, several trials have provided evidence that at least a subset of lymphoma patients may benefit from the introduction of liquid biopsies into daily clinical care. In parallel, continuous technological developments have enabled highly sensitive ctDNA assessment methods, which span from locus-specific techniques identifying single hotspot mutations, to sequencing panels and genome-wide approaches that explore broader genetic and epigenetic alterations. Here, we provide an overview of current methods and ongoing technical developments for ctDNA evaluation. We also summarize the most important data from a selection of clinical studies that have explored the clinical use of ctDNA in several lymphoma entities.
Collapse
Affiliation(s)
- Bettina Bisig
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Switzerland
| | - Karine Lefort
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Switzerland
| | - Sylvain Carras
- Institute for Advanced Biosciences (INSERM U1209, CNRS UMR 5309, UGA), Department of Molecular Biology and Department of Oncohematology, University Grenoble Alpes and University Hospital Grenoble, France
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Switzerland
| |
Collapse
|
3
|
Küppers R. Advances in Hodgkin lymphoma research. Trends Mol Med 2024:S1471-4914(24)00271-5. [PMID: 39443214 DOI: 10.1016/j.molmed.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Hodgkin lymphoma (HL) has been and still is the most enigmatic lymphoid malignancy in humans. Since the first molecular analysis of isolated Hodgkin and Reed-Sternberg (HRS) tumor cells of classic HL 30 years ago, substantial advances in our understanding of HL have been made. This review describes the cellular origin of HL, summarizes the current knowledge about the genetic lesions in HRS cells, and highlights the role of Epstein-Barr virus (EBV) in HL pathogenesis. Moreover, the pathobiological roles of altered gene expression and deregulated signaling pathways are discussed and key aspects of the HL microenvironment are presented.
Collapse
Affiliation(s)
- Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| |
Collapse
|
4
|
Heger JM, Mammadova L, Mattlener J, Sobesky S, Cirillo M, Altmüller J, Kirst E, Reinke S, Klapper W, Bröckelmann PJ, Ferdinandus J, Kaul H, Schneider G, Schneider J, Schleifenbaum JK, Ullrich RT, Freihammer M, Awerkiew S, Lohmann M, Klein F, Nürnberg P, Hallek M, Rossi D, Mauz-Körholz C, Gattenlöhner S, Bräuninger A, Borchmann P, von Tresckow B, Borchmann S. Circulating Tumor DNA Sequencing for Biologic Classification and Individualized Risk Stratification in Patients With Hodgkin Lymphoma. J Clin Oncol 2024:JCO2301867. [PMID: 39348625 DOI: 10.1200/jco.23.01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 10/02/2024] Open
Abstract
PURPOSE Current clinical challenges in Hodgkin lymphoma (HL) include difficult-to-treat relapsed/refractory disease and considerable long-term toxicities of treatment. Since clinical risk factors lack discriminatory power, intensity of therapy is mainly based on tumor burden. Exploring HL genetics and tumor microenvironment (TME) might provide valuable insights for improved risk stratification. MATERIALS AND METHODS In this study, we applied circulating tumor DNA sequencing to 243 patients obtained from pivotal German Hodgkin Study Group trials to identify subtypes of HL. Independent validation of the subtypes was performed in 96 patients treated in the EuroNet-PHL-C2 study. Outcome differences of subtypes were assessed in an event-enriched clinical validation cohort comprising 72 patients from the HD21 trial, using a refined, validated, and clinically feasible assay. RESULTS We propose a biologic classification of HL consisting of three distinct subtypes: inflammatory immune escape HL is characterized by frequent copy-number variations including immune escape variants such as high-level amplifications of the PD-L1 locus and an inflammatory TME. Virally-driven HL is associated with Epstein-Barr virus and/or human herpesvirus 6 and an inflammatory TME with neutrophils and macrophages, while the tumor mutational burden (TMB) is low. Oncogene-driven HL is defined by a high TMB, recurrent mutations in oncogenic drivers such as TNFAIP3, ITPKB, and SOCS1, and a cold TME. A refined and validated assay version aiming at clinically feasible risk stratification showed significant progression-free survival differences between subtypes. In addition, assessment of minimal residual disease (MRD) allowed for the detection of patients at very high risk of relapse within the subtypes. CONCLUSION We propose a clinically feasible, noninvasive method for individualized risk stratification and MRD monitoring in patients with HL on the basis of circulating tumor DNA sequencing.
Collapse
Affiliation(s)
- Jan-Michel Heger
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Laman Mammadova
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Julia Mattlener
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Sophia Sobesky
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Melita Cirillo
- University of Western Australia and Royal Perth Hospital, Perth, Australia
| | - Janine Altmüller
- West German Genome Center (WGGC), University of Cologne, Cologne, Germany
- Technology Platform Genomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Elisabeth Kirst
- West German Genome Center (WGGC), University of Cologne, Cologne, Germany
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sarah Reinke
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Paul J Bröckelmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Justin Ferdinandus
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Helen Kaul
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | | | - Jessica Schneider
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
| | - Julia Katharina Schleifenbaum
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Roland T Ullrich
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
| | - Max Freihammer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
| | - Sabine Awerkiew
- Institute for Virology, University of Cologne, Cologne, Germany
| | - Mia Lohmann
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK Partner Site Essen), Essen, Germany
- Cancer Center Cologne Essen-Partner Site Essen, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Klein
- Institute for Virology, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- West German Genome Center (WGGC), University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
| | - Davide Rossi
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Christine Mauz-Körholz
- Pediatric Hematology, Oncology and Immunodeficiencies, Justus-Liebig University of Giessen, Giessen, Germany
- Medical Faculty of the Martin-Luther-University of Halle, Wittenberg, Halle, Germany
| | | | - Andreas Bräuninger
- Institute for Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Bastian von Tresckow
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK Partner Site Essen), Essen, Germany
- Cancer Center Cologne Essen-Partner Site Essen, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| |
Collapse
|
5
|
Duffles G, Maués JHDS, Lupinacci F, Pereira LG, Ferreira EN, Freitas L, Niemann F, Takahashi MES, Ramos CD, Chauffaille MDLLF, Lorand-Metze I. Circulating tumor DNA in diffuse large B-cell lymphoma: analysis of response assessment, correlation with PET/CT and clone evolution. Hematol Transfus Cell Ther 2024:S2531-1379(24)00326-2. [PMID: 39317576 DOI: 10.1016/j.htct.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 09/26/2024] Open
Abstract
INTRODUCTION Circulating tumor DNA (ctDNA) can be obtained from cell-free DNA (cfDNA) andis a new technique for genotyping, response assessment and prognosis in lymphoma. METHODS Eighteen patients with samples at diagnosis (ctDNA1), after treatment (ctDNA2) and extracted from diagnostic tissue (FFPE) were evaluated. RESULTS In all patients, at least one mutation in cfDNA was detected at diagnosis. CREBBP was the most frequent mutated gene (67 %). In 12 of the 15 patients with complete remission, the mutation attributed to the disease found at diagnosis cleared with treatment. A reduction in the ctDNA was observed after treatment in 14 patients, 12 of whom achieved complete remission. Correlations were found between the ctDNA at diagnosis and total metabolic tumor volume (r = 0.51; p-value = 0.014) and total lesion glycolysis 2.5 (r = 0.47; p-value = 0.024) by PET at diagnosis and between ctDNA at diagnosis and radiomic features of the lesions with the largest standardized uptake value. There was a strong inverse correlation between ΔctDNA1 and ΔSUVmax by PET/CT (r = -0.8788; p-value = 0.002). CONCLUSION Analysis of ctDNA and PET/CT in large B-cell lymphoma are complementary data for evaluating tumor burden and tumor clearance after treatment. Analysis of radiomic data might help to identify tumor characteristics and their changes after treatment.
Collapse
Affiliation(s)
- Guilherme Duffles
- University of Campinas, Hematology and Hemotherapy Centre, Hematology, Unicamp, Campinas 13083-878, SP, Brazil; Rede Dor Sao Luiz, Sao Paulo 01401-002, SP, Brazil.
| | | | | | | | | | - Leandro Freitas
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, 13083-888, SP, Brazil
| | - Fernanda Niemann
- University of Campinas, Hematology and Hemotherapy Centre, Hematology, Unicamp, Campinas 13083-878, SP, Brazil
| | | | - Celso Darío Ramos
- Division of Nuclear Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas 13083-888, SP, Brazil
| | | | - Irene Lorand-Metze
- University of Campinas, Hematology and Hemotherapy Centre, Hematology, Unicamp, Campinas 13083-878, SP, Brazil
| |
Collapse
|
6
|
Arai M, Hamad A, Almasry Y, Alamer A, Rasheed W, Aljurf M, El Fakih R. Minimal residual disease testing for classical Hodgkin lymphoma: A comprehensive review. Crit Rev Oncol Hematol 2024; 204:104503. [PMID: 39245298 DOI: 10.1016/j.critrevonc.2024.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a common lymphoma that affects young patients. Fortunately, the disease is highly curable as it is susceptible to the currently available treatment modalities. Disease monitoring with Positron Emission Tomography and Computed Tomography (PET/ CT) is an integral part of managing these patients. PET guided protocols are currently used to adjust treatment according to the response. The pivotal idea behind the use of response-adapted approaches is to preserve efficacy while decreasing the toxicity. It also helps to intensify therapy in patients in need because of suboptimal response. However, imaging techniques are limited by their sensitivity and specificity. Minimal Residual Disease (MRD) assessment is a newly emerging concept in many hematologic malignancies. It utilizes various molecular techniques such as polymerase chain reaction (PCR), and next-generation sequencing (NGS) as well as flow cytometry, to detect disease traces. This review looks into MRD detection techniques, its current applications, and the evidence in the literature for its use in cHL.
Collapse
Affiliation(s)
- Momo Arai
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Alaa Hamad
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
| | - Yazan Almasry
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Abdullah Alamer
- Department of Hematology, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Walid Rasheed
- Department of Hematology, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Mahmoud Aljurf
- Department of Hematology, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| | - Riad El Fakih
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Department of Hematology, King Faisal Specialist Hospital & Research Center, Riyadh 11564, Saudi Arabia
| |
Collapse
|
7
|
Li JY, Zuo LP, Xu J, Sun CY. Clinical applications of circulating tumor DNA in hematological malignancies: From past to the future. Blood Rev 2024:101237. [PMID: 39261219 DOI: 10.1016/j.blre.2024.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Liquid biopsy, particularly circulating tumor DNA (ctDNA), has drawn a lot of attention as a non- or minimal-invasive detection approach for clinical applications in patients with cancer. Many hematological malignancies are well suited for serial and repeated ctDNA surveillance due to relatively high ctDNA concentrations and high loads of tumor-specific genetic and epigenetic abnormalities. Progress of detecting technology in recent years has improved sensitivity and specificity significantly, thus broadening and strengthening the potential utilities of ctDNA including early diagnosis, prognosis estimation, treatment response evaluation, minimal residual disease monitoring, targeted therapy selection, and immunotherapy surveillance. This manuscript reviews the detection methodologies, clinical application and future challenges of ctDNA in hematological malignancies, especially for lymphomas, myeloma and leukemias.
Collapse
Affiliation(s)
- Jun-Ying Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China.
| | - Li-Ping Zuo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China
| | - Jian Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China
| | - Chun-Yan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Corcoran SR, Phelan JD, Choi J, Shevchenko G, Fenner RE, Yu X, Scheich S, Hsiao T, Morris VM, Papachristou EK, Kishore K, D'Santos CS, Ji Y, Pittaluga S, Wright GW, Urlaub H, Pan KT, Oellerich T, Muppidi J, Hodson DJ, Staudt LM. Molecular Determinants of Sensitivity to Polatuzumab Vedotin in Diffuse Large B-Cell Lymphoma. Cancer Discov 2024; 14:1653-1674. [PMID: 38683128 DOI: 10.1158/2159-8290.cd-23-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/12/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Polatuzumab vedotin (Pola-V) is an antibody-drug conjugate directed to the CD79B subunit of the B-cell receptor (BCR). When combined with conventional immunochemotherapy, Pola-V improves outcomes in diffuse large B-cell lymphoma (DLBCL). To identify determinants of Pola-V sensitivity, we used CRISPR-Cas9 screening for genes that modulated Pola-V toxicity for lymphomas or the surface expression of its target, CD79B. Our results reveal the striking impact of CD79B glycosylation on Pola-V epitope availability on the lymphoma cell surface and on Pola-V toxicity. Genetic, pharmacological, and enzymatic approaches that remove sialic acid from N-linked glycans enhanced lymphoma killing by Pola-V. Pola-V toxicity was also modulated by KLHL6, an E3 ubiquitin ligase that is recurrently inactivated in germinal center derived lymphomas. We reveal how KLHL6 targets CD79B for degradation in normal and malignant germinal center B cells, thereby determining expression of the surface BCR complex. Our findings suggest precision medicine strategies to optimize Pola-V as a lymphoma therapeutic. Significance: These findings unravel the molecular basis of response heterogeneity to Pola-V and identify approaches that might be deployed therapeutically to enhance the efficacy of CD79B-specific tumor killing. In addition, they reveal a novel post-translational mechanism used by normal and malignant germinal center B cells to regulate expression of the BCR. See related commentary by Leveille, p. 1577 See related article by Meriranta et al.
Collapse
Affiliation(s)
- Sean R Corcoran
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Galina Shevchenko
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Rachel E Fenner
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Tony Hsiao
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Yanlong Ji
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, NIH, Bethesda, Maryland
| | - George W Wright
- Biometrics Research Program, National Cancer Institute, NIH, Bethesda, Maryland
| | - Henning Urlaub
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kuan-Ting Pan
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thomas Oellerich
- University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
9
|
Spinner MA, Advani RH. Emerging immunotherapies in the Hodgkin lymphoma armamentarium. Expert Opin Emerg Drugs 2024; 29:263-275. [PMID: 38676917 DOI: 10.1080/14728214.2024.2349083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION Brentuximab vedotin and PD-1 inhibitors have improved outcomes for classic Hodgkin lymphoma (cHL), but better therapies are needed for patients who relapse after these agents. Based on an improved understanding of cHL biology, there is a robust pipeline of novel therapies in development. In this review, we highlight emerging immunotherapeutic agents and combinations for cHL. AREAS COVERED We review clinical trials of novel PD-1/PD-L1 inhibitors beyond FDA-approved agents, checkpoint inhibitors targeting CTLA-4, LAG-3, TIM-3, TIGIT, and CD47/SIRPα, PD-1 inhibitor combinations with immunomodulatory agents and epigenetic modifying therapies, antibody-drug conjugates, bispecific antibodies, and cellular therapies including anti-CD30 CAR-T and allogeneic NK cell therapy. We review the key safety and efficacy data from published phase 1-2 studies and highlight trials in progress, including the first phase 3 trial for PD-1 inhibitor-refractory cHL. EXPERT OPINION Many novel immunotherapies hold great promise in cHL. Rational combinations with existing agents and next-generation antibody and CAR-T constructs may improve response rates and durability. Identifying biomarkers of response to these immunotherapies and using more sensitive tools to assess response, such as circulating tumor DNA, may further inform treatment decisions and enable a precision medicine approach in the future.
Collapse
Affiliation(s)
- Michael A Spinner
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Ranjana H Advani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
10
|
Mishra M, Ahmed R, Das DK, Pramanik DD, Dash SK, Pramanik A. Recent Advancements in the Application of Circulating Tumor DNA as Biomarkers for Early Detection of Cancers. ACS Biomater Sci Eng 2024; 10:4740-4756. [PMID: 38950521 PMCID: PMC11322919 DOI: 10.1021/acsbiomaterials.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Early detection of cancer is vital for increasing patient survivability chances. The three major techniques used to diagnose cancers are instrumental examination, tissue biopsy, and tumor biomarker detection. Circulating tumor DNA (ctDNA) has gained much attention in recent years due to advantages over traditional technology, such as high sensitivity, high specificity, and noninvasive nature. Through the mechanism of apoptosis, necrosis, and circulating exosome release in tumor cells, ctDNA can spread throughout the circulatory system and carry modifications such as methylations, mutations, gene rearrangements, and microsatellite instability. Traditional gene-detection technology struggles to achieve real-time, low-cost, and portable ctDNA measurement, whereas electrochemical biosensors offer low cost, high specificity alongside sensitivity, and portability for the detection of ctDNA. Therefore, this review focuses on describing the recent advancements in ctDNA biomarkers for various cancer types and biosensor developments for real-time, noninvasive, and rapid ctDNA detection. Further in the review, ctDNA sensors are also discussed in regards to their selections of probes for receptors based on the electrode surface recognition elements.
Collapse
Affiliation(s)
- Mahima Mishra
- Amity Institute
of Biotechnology, Amity University, Noida 201301, India
| | - Rubai Ahmed
- Department of Physiology, University of Gour Banga, Malda-732103, West Bengal, India
| | - Deepak Kumar Das
- Department
of Chemistry and Nanoscience, GLA University, Mathura, 281406 Uttar Pradesh, India
| | | | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda-732103, West Bengal, India
| | - Arindam Pramanik
- Amity Institute
of Biotechnology, Amity University, Noida 201301, India
- School of Medicine, University of Leeds, Leeds LS53RL, United Kingdom
| |
Collapse
|
11
|
Jamal E, Poynton E, Elbogdady M, Shamaa S, Okosun J. Prospects for liquid biopsy approaches in lymphomas. Leuk Lymphoma 2024:1-11. [PMID: 39126310 DOI: 10.1080/10428194.2024.2389210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Analytes within liquid biopsies have emerged as promising alternatives to traditional tissue biopsies for various malignancies, including lymphomas. This review explores the clinical applications of one such liquid biopsy analyte, circulating tumor DNA (ctDNA) in different types of lymphoma, focusing on its role in diagnosis, disease monitoring, and relapse detection. Advancements in next-generation sequencing (NGS) and machine learning have enhanced ctDNA analysis, offering a multi-omic approach to understanding tumor genetics. In lymphoma, ctDNA provides insights into tumor heterogeneity, aids in genetic profiling, and predicts treatment response. Recent studies demonstrate the prognostic value of ctDNA and its potential to improve patient outcomes by facilitating early disease detection and personalized treatment strategies Despite these advancements, challenges remain in optimizing sample collection, processing, assay sensitivity, and overall consensus workflows in order to facilitate integration into routine clinical practice.
Collapse
Affiliation(s)
- Esraa Jamal
- Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Clinical Haematology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Edward Poynton
- Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Mohamed Elbogdady
- Clinical Haematology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Sameh Shamaa
- Clinical Haematology Unit, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Jessica Okosun
- Centre of Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Fürstenau M, Giza A, Weiss J, Kleinert F, Robrecht S, Franzen F, Stumpf J, Langerbeins P, Al-Sawaf O, Simon F, Fink AM, Schneider C, Tausch E, Schetelig J, Dreger P, Böttcher S, Fischer K, Kreuzer KA, Ritgen M, Schilhabel A, Brüggemann M, Stilgenbauer S, Eichhorst B, Hallek M, Cramer P. Acalabrutinib, venetoclax, and obinutuzumab in relapsed/refractory CLL: final efficacy and ctDNA analysis of the CLL2-BAAG trial. Blood 2024; 144:272-282. [PMID: 38620072 DOI: 10.1182/blood.2023022730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024] Open
Abstract
ABSTRACT The phase 2 CLL2-BAAG trial tested the measurable residual disease (MRD)-guided triple combination of acalabrutinib, venetoclax, and obinutuzumab after optional bendamustine debulking in 45 patients with relapsed/refractory chronic lymphocytic leukemia (CLL). MRD was measured by flow cytometry (FCM; undetectable MRD <10-4) in peripheral blood (PB) and circulating tumor DNA (ctDNA) using digital droplet polymerase chain reaction of variable-diversity-joining (VDJ) rearrangements and CLL-related mutations in plasma. The median number of previous treatments was 1 (range, 1-4); 18 patients (40%) had received a Bruton tyrosine kinase inhibitor (BTKi) and/or venetoclax before inclusion, 14 of 44 (31.8%) had TP53 aberrations, and 34 (75.6%) had unmutated immunoglobulin heavy-chain variable region genes. With a median observation time of 36.3 months and all patients off-treatment for a median of 21.9 months, uMRD <10-4 in PB was achieved in 42 of the 45 patients (93.3%) at any time point, including 17 of 18 (94.4%) previously exposed to venetoclax/BTKi and 13 of 14 (92.9%) with TP53 aberrations. The estimated 3-year progression-free and overall survival rates were 85.0% and 93.8%, respectively. Overall, 585 paired FCM/ctDNA samples were analyzed and 18 MRD recurrences (5 with and 13 without clinical progression) occurred after the end of treatment. Twelve samples were first detected by ctDNA, 3 by FCM, and 3 synchronously. In conclusion, time-limited MRD-guided acalabrutinib, venetoclax, and obinutuzumab achieved deep remissions in almost all patients with relapsed/refractory CLL. The addition of ctDNA-based analyses to FCM MRD assessment seems to improve early detection of relapses. This trial was registered at www.clinicaltrials.gov as #NCT03787264.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Sulfonamides/administration & dosage
- Sulfonamides/therapeutic use
- Aged
- Middle Aged
- Female
- Male
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Circulating Tumor DNA/genetics
- Circulating Tumor DNA/blood
- Pyrazines/administration & dosage
- Pyrazines/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Neoplasm, Residual
- Benzamides/administration & dosage
- Benzamides/therapeutic use
- Adult
- Recurrence
Collapse
Affiliation(s)
- Moritz Fürstenau
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Adam Giza
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Jonathan Weiss
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Fanni Kleinert
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Sandra Robrecht
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Fabian Franzen
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Janina Stumpf
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Petra Langerbeins
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Othman Al-Sawaf
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Florian Simon
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Anna-Maria Fink
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Christof Schneider
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Eugen Tausch
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Johannes Schetelig
- Department I of Internal Medicine, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Peter Dreger
- Department V of Internal Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sebastian Böttcher
- Department III of Internal Medicine, University Hospital Rostock, Rostock, Germany
| | - Kirsten Fischer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Matthias Ritgen
- Department II of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Anke Schilhabel
- Department II of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Monika Brüggemann
- Department II of Internal Medicine, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stephan Stilgenbauer
- Division of Chronic Lymphocytic Leukemia, Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Barbara Eichhorst
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Paula Cramer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Olejarz W, Sadowski K, Szulczyk D, Basak G. Advancements in Personalized CAR-T Therapy: Comprehensive Overview of Biomarkers and Therapeutic Targets in Hematological Malignancies. Int J Mol Sci 2024; 25:7743. [PMID: 39062986 PMCID: PMC11276786 DOI: 10.3390/ijms25147743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is a novel anticancer therapy using autologous or allogeneic T-cells. To date, six CAR-T therapies for specific B-cell acute lymphoblastic leukemia (B-ALL), non-Hodgkin lymphomas (NHL), and multiple myeloma (MM) have been approved by the Food and Drug Administration (FDA). Significant barriers to the effectiveness of CAR-T therapy include cytokine release syndrome (CRS), neurotoxicity in the case of Allogeneic Stem Cell Transplantation (Allo-SCT) graft-versus-host-disease (GVHD), antigen escape, modest antitumor activity, restricted trafficking, limited persistence, the immunosuppressive microenvironment, and senescence and exhaustion of CAR-Ts. Furthermore, cancer drug resistance remains a major problem in clinical practice. CAR-T therapy, in combination with checkpoint blockades and bispecific T-cell engagers (BiTEs) or other drugs, appears to be an appealing anticancer strategy. Many of these agents have shown impressive results, combining efficacy with tolerability. Biomarkers like extracellular vesicles (EVs), cell-free DNA (cfDNA), circulating tumor (ctDNA) and miRNAs may play an important role in toxicity, relapse assessment, and efficacy prediction, and can be implicated in clinical applications of CAR-T therapy and in establishing safe and efficacious personalized medicine. However, further research is required to fully comprehend the particular side effects of immunomodulation, to ascertain the best order and combination of this medication with conventional chemotherapy and targeted therapies, and to find reliable predictive biomarkers.
Collapse
Affiliation(s)
- Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Karol Sadowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Daniel Szulczyk
- Chair and Department of Biochemistry, The Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Grzegorz Basak
- Department of Hematology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
14
|
Wahyudianingsih R, Sanjaya A, Jonathan T, Pranggono EH, Achmad D, Hernowo BS. Chemotherapy's effects on autophagy in the treatment of Hodgkin's lymphoma: a scoping review. Discov Oncol 2024; 15:269. [PMID: 38976168 PMCID: PMC11231119 DOI: 10.1007/s12672-024-01142-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Classical Hodgkin Lymphomas (HL) are a unique malignant growth with an excellent initial prognosis. However, 10-30% of patients will still relapse after remission. One primary cellular function that has been the focus of tumor progression is autophagy. This process can preserve cellular homeostasis under stressful conditions. Several studies have shown that autophagy may play a role in developing HL. Therefore, this review aimed to explore chemotherapy's effect on autophagy in HL, and the effects of autophagy on HL. METHODS A scoping review in line with the published PRISMA extension for scoping reviews (PRISMA-ScR) was conducted. A literature search was conducted on the MEDLINE database and the Cochrane Central Register of Controlled Trials (CENTRAL). All results were retrieved and screened, and the resulting articles were synthesized narratively. RESULTS The results showed that some cancer chemotherapy also induces autophagic flux. Although the data on HL is limited, since the mechanisms of action of these drugs are similar, we can infer a similar relationship. However, this increased autophagy activity may reflect a mechanism for increasing tumor growth or a cellular compensation to inhibit its growth. Although evidence supports both views, we argued that autophagy allowed cancer cells to resist cell death, mainly due to DNA damage caused by cytotoxic drugs. CONCLUSION Autophagy reflects the cell's adaptation to survive and explains why chemotherapy generally induces autophagy functions. However, further research on autophagy inhibition is needed as it presents a viable treatment strategy, especially against drug-resistant populations that may arise from HL chemotherapy regimens.
Collapse
Affiliation(s)
- Roro Wahyudianingsih
- Postgraduate Program of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Department of Anatomical Pathology, Faculty of Medicine, Maranatha Christian University, Bandung, West Java, Indonesia
| | - Ardo Sanjaya
- Department of Anatomy, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia.
| | - Timothy Jonathan
- Undergraduate Program in Medicine, Faculty of Medicine, Maranatha Christian University, Bandung, Indonesia
| | - Emmy Hermiyanti Pranggono
- Department of Internal Medicine, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| | - Dimyati Achmad
- Department of Oncological Surgery, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| | - Bethy Suryawathy Hernowo
- Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Rumah Sakit Hasan Sadikin, Bandung, West Java, Indonesia
| |
Collapse
|
15
|
Volodashchik TP, Polyakova EA, Mikhaleuskaya TM, Sakovich IS, Kupchinskaya AN, Dubrouski AC, Belevtsev MV, Dasso JF, Varabyou DS, Notarangelo LD, Walter JE, Sharapova SO. Infant with diffuse large B-cell lymphoma identified postmortem with homozygous founder Slavic RAG1 variant: a case report and literature review. Front Pediatr 2024; 12:1415020. [PMID: 39026935 PMCID: PMC11254792 DOI: 10.3389/fped.2024.1415020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Background and aims There is an increased risk of lymphomas in inborn errors of immunity (IEI); however, germline genetic testing is rarely used in oncological patients, even in those with early onset of cancer. Our study focuses on a child with a recombination-activating gene 1 (RAG1) deficiency who was identified through a screening program for Slavic founder genetic variants among patients who died with malignancy at an early age in Belarus. Results We identified one homozygous founder RAG1 variant out of 24 available DNA samples from 71 patients who developed lymphoma aged <3 years from the Belarusian cancer registry between 1986 and 2023. Our patient had an episode of pneumonia at 3 months of age and was hospitalized for respiratory distress, candida-positive lung disease, and lymphadenopathy at 14 months of age. The diagnosis of Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) was established. The patient had a normal lymphocyte count that decreased over time. One month after chemotherapy initiation, the patient died due to sepsis and multiple organ failure without a genetic diagnosis. In a retrospective analysis, T-cell receptor excision circles (TRECs) and kappa-deleting recombination excision circles (KRECs) were undetectable in peripheral blood. Conclusions A targeted screening program designed to detect a Slavic founder variant in the RAG1 gene among children revealed a 14-month-old Belarusian male infant with low TREC levels who died of EBV-driven DLBCL and complications of chemotherapy including infections. This case highlights how patients with IEI and recurrent infections may develop serious non-infectious complications, such as fatal malignancy. It also emphasizes the importance of early identification, such as newborn screening for severe combined immune deficiency. Earlier diagnosis of RAG deficiency could have prompted hematopoietic stem cell transplant well before the DLBCL occurrence. This likely would impact the onset and/or management strategies for the cancer.
Collapse
Affiliation(s)
- Tatiana P. Volodashchik
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Ekaterina A. Polyakova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Taisia M. Mikhaleuskaya
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Inga S. Sakovich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Aleksandra N. Kupchinskaya
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | | | - Mikhail V. Belevtsev
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Joseph F. Dasso
- Division of Pediatric Allergy/Immunology, Johns Hopkins All Children’s Hospital, Saint Petersburg, FL, United States
- Division of Pediatric Allergy/Immunology, University of South Florida, Tampa, FL, United States
| | - Dzmitry S. Varabyou
- Department of Geographical Ecology, Faculty of Geography and Geoinformatics, Belarusian State University, Minsk, Belarus
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIH), Bethesda, MD, United States
| | - Jolan E. Walter
- Division of Pediatric Allergy/Immunology, Johns Hopkins All Children’s Hospital, Saint Petersburg, FL, United States
- Division of Pediatric Allergy/Immunology, University of South Florida, Tampa, FL, United States
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| |
Collapse
|
16
|
Velasco-Suelto J, Gálvez-Carvajal L, Comino-Méndez I, Rueda-Domínguez A. Hodgkin lymphoma and liquid biopsy: a story to be told. J Exp Clin Cancer Res 2024; 43:184. [PMID: 38956619 PMCID: PMC11218217 DOI: 10.1186/s13046-024-03108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Hodgkin lymphoma (HL) represents a neoplasm primarily affecting adolescents and young adults, necessitating the development of precise diagnostic and monitoring tools. Specifically, classical Hodgkin lymphoma (cHL), comprising 90% of cases, necessitating tailored treatments to minimize late toxicities. Although positron emission tomography/computed tomography (PET/CT) has enhanced response assessment, its limitations underscore the urgency for more reliable progression predictive tools. Genomic characterisation of rare Hodgkin Reed-Sternberg (HRS) cells is challenging but essential. Recent studies employ single-cell molecular analyses, mass cytometry, and Next-Generation Sequencing (NGS) to unveil mutational landscapes. The integration of liquid biopsies, particularly circulating tumor DNA (ctDNA), extracellular vesicles (EVs), miRNAs and cytokines, emerge as groundbreaking approaches. Recent studies demonstrate ctDNA's potential in assessing therapy responses and predicting relapses in HL. Despite cHL-specific ctDNA applications being relatively unexplored, studies emphasize its value in monitoring treatment outcomes. Overall, this review underscores the imperative role of liquid biopsies in advancing HL diagnosis and monitoring.
Collapse
Affiliation(s)
- Jesús Velasco-Suelto
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de La Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Laura Gálvez-Carvajal
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de La Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
| | - Iñaki Comino-Méndez
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de La Victoria, 29010, Malaga, Spain.
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain.
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Seville, Spain.
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC - CB16, 12/00481); 28029, Madrid, Spain.
- Clinical and Translational Cancer Research Group, IBIMA Institute, C/ Severo Ochoa, ParqueTecnologico de Andalucia (PTA), 35, 29590, Campanillas-Malaga, Spain.
| | - Antonio Rueda-Domínguez
- Unidad de Gestion Clinica Intercentros de Oncologia Medica, Hospitales Universitarios Regional y Virgen de La Victoria, 29010, Malaga, Spain
- The Biomedical Research Institute of Málaga, IBIMA-CIMES-UMA), 29010, Malaga, Spain
- Andalusia-Roche Network in Precision Medical Oncology, 41092, Seville, Spain
| |
Collapse
|
17
|
Schroers-Martin JG, Advani RH. The role of response adapted therapy in the era of novel agents. Semin Hematol 2024:S0037-1963(24)00072-6. [PMID: 39004520 DOI: 10.1053/j.seminhematol.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
The optimal treatment of classic Hodgkin Lymphoma (cHL) requires an individualized approach, with therapy guided by pretreatment clinical risk stratification and interim response assessment with positron emission tomography (PET). The overall goal is to achieve high cure rates while minimizing acute toxicity and late therapy-related effects. Interim PET-adapted strategies (iPET) were initially developed with traditional chemotherapy, reducing intensity after interim complete response and escalating treatment for patients with iPET+ disease. Recently, novel agents including brentuximab vedotin and the checkpoint inhibitor immunotherapies (CPIs) pembrolizumab and nivolumab have been adopted into the front-line treatment of cHL, and PET-adapted approaches may be relevant for these drugs as well. In this review we discuss response-adapted strategies utilizing novel agents, consider challenges including indeterminate radiographic findings with CPIs, and address emerging techniques for response assessment including new PET-based imaging metrics and the role of circulating tumor DNA.
Collapse
Affiliation(s)
| | - Ranjana H Advani
- Department of Medicine, Division of Oncology, Stanford University, Stanford, CA.
| |
Collapse
|
18
|
Rathgeber AC, Ludwig LS, Penter L. Single-cell genomics-based immune and disease monitoring in blood malignancies. Clin Hematol Int 2024; 6:62-84. [PMID: 38884110 PMCID: PMC11180218 DOI: 10.46989/001c.117961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/25/2023] [Indexed: 06/18/2024] Open
Abstract
Achieving long-term disease control using therapeutic immunomodulation is a long-standing concept with a strong tradition in blood malignancies. Besides allogeneic hematopoietic stem cell transplantation that continues to provide potentially curative treatment for otherwise challenging diagnoses, recent years have seen impressive progress in immunotherapies for leukemias and lymphomas with immune checkpoint blockade, bispecific monoclonal antibodies, and CAR T cell therapies. Despite their success, non-response, relapse, and immune toxicities remain frequent, thus prioritizing the elucidation of the underlying mechanisms and identifying predictive biomarkers. The increasing availability of single-cell genomic tools now provides a system's immunology view to resolve the molecular and cellular mechanisms of immunotherapies at unprecedented resolution. Here, we review recent studies that leverage these technological advancements for tracking immune responses, the emergence of immune resistance, and toxicities. As single-cell immune monitoring tools evolve and become more accessible, we expect their wide adoption for routine clinical applications to catalyze more precise therapeutic steering of personal immune responses.
Collapse
Affiliation(s)
- Anja C. Rathgeber
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Leif S. Ludwig
- Berlin Institute for Medical Systems BiologyMax Delbrück Center for Molecular Medicine
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin
| | - Livius Penter
- Department of Hematology, Oncology, and TumorimmunologyCharité - Universitätsmedizin Berlin
- BIH Biomedical Innovation AcademyBerlin Institute of Health at Charité - Universitätsmedizin Berlin
| |
Collapse
|
19
|
Virga B, Pinczés L, Illés Á, Miltényi Z, Magyari F, Méhes G, Simon Z. Occurrence of Secondary Non-Hodgkin Lymphomas Among Our Classical Hodgkin Lymphoma Patients: A Single-Centre Experience. Cureus 2024; 16:e63307. [PMID: 39070524 PMCID: PMC11283309 DOI: 10.7759/cureus.63307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Non-Hodgkin lymphoma (NHL) arising as a secondary malignancy in patients treated for classical Hodgkin lymphoma (cHL) is an infrequent and challenging clinical scenario. NHL can be presented synchronously with cHL or may develop later, sequentially, up to years after treatment for cHL. The relationship between the two lymphomas is unclear, and there are no clear guidelines for the management of these patients. We would like to find a better clinical understanding of this issue so this study investigates the occurrence and clinical characteristics of secondary NHL. Materials and methods In this retrospective cohort examination, we collected cHL cases when NHL occurred during or after the course of treating cHL. We performed the histopathologic revisions of the samples, and in every case where the quality of the sample was lower, we performed molecular examinations to find the association between cHL and NHL. We performed next-generation genome sequencing (NGS) and immunoglobulin heavy-chain variable region gene (IgHV) clonality testing. Results In a cohort of 164 cHL patients diagnosed between 2011 and 2020, six patients were identified with NHL during rebiopsy prompted by lymphoma relapse or progression. Among these, five patients were diagnosed with post-germinal center-originated diffuse large B-cell lymphoma (post-GC DLBCL), and one patient presented high-grade B-cell lymphoma (HG-BCL). The NHL manifestation differed in its timing: three cases emerged after successful cHL treatment, with at least 18 months of complete remission, while the other three patients faced primary refractory cHL. Notably, the primary refractory cases did not exhibit a confirmed clonal relationship between cHL and NHL, but NGS data raised the possibility of synchronous NHL in one case. In contrast, among the patients with sequentially occurring NHL, polymerase chain reaction (PCR) testing of the IgHV gene affirmed a clonal connection between cHL and secondary DLBCL in one case, while the high morphological similarity suggested a potential clonality between the two lymphomas in another case. Conclusion This study reveals that secondary NHL may manifest both synchronously and sequentially following cHL. Our results suggest that synchronous NHL has a worse prognosis compared to sequential cases when the different lymphomas are not recognized at the time of diagnosis. As our data showed, in some cases, mutations that accompany the tumor cells throughout their clonal evolution can be identified, with additional mutations later on. In the future, next-generation sequencing (NGS)-based processing of liquid biopsy samples can overcome the limitations resulting from the spatial heterogeneity of lymphoid malignancies. Over the long term, this identification could lead to early patient selection and alternative treatment strategies, ultimately leading to improved prospects for cure.
Collapse
Affiliation(s)
- Bálint Virga
- Internal Medicine, University of Debrecen, Debrecen, HUN
- Clinical Medicine, University of Debrecen, Debrecen, HUN
| | - László Pinczés
- Internal Medicine, University of Debrecen, Debrecen, HUN
- Clinical Medicine, University of Debrecen, Debrecen, HUN
| | - Árpád Illés
- Internal Medicine, University of Debrecen, Debrecen, HUN
- Clinical Medicine, University of Debrecen, Debrecen, HUN
| | - Zsófia Miltényi
- Internal Medicine, University of Debrecen, Debrecen, HUN
- Clinical Medicine, University of Debrecen, Debrecen, HUN
| | - Ferenc Magyari
- Internal Medicine, University of Debrecen, Debrecen, HUN
- Clinical Medicine, University of Debrecen, Debrecen, HUN
| | - Gábor Méhes
- Pathology, University of Debrecen, Debrecen, HUN
| | - Zsófia Simon
- Internal Medicine, University of Debrecen, Debrecen, HUN
- Clinical Medicine, University of Debrecen, Debrecen, HUN
| |
Collapse
|
20
|
Kishida M, Fujisawa M, Steidl C. Molecular biomarkers in classic Hodgkin lymphoma. Semin Hematol 2024:S0037-1963(24)00069-6. [PMID: 38969539 DOI: 10.1053/j.seminhematol.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 07/07/2024]
Abstract
Classic Hodgkin lymphoma is a unique B-cell derived malignancy featuring rare malignant Hodgkin and Reed Sternberg (HRS) cells that are embedded in a quantitively dominant tumor microenvironment (TME). Treatment of classic Hodgkin lymphoma has significantly evolved in the past decade with improving treatment outcomes for newly diagnosed patients and the minority of patients suffering from disease progression. However, the burden of toxicity and treatment-related long-term sequelae remains high in a typically young patient population. This highlights the need for better molecular biomarkers aiding in risk-adapted treatment strategies and predicting response to an increasing number of available treatments that now prominently involve multiple immunotherapy options. Here, we review modern molecular biomarker approaches that reflect both the biology of the malignant HRS cells and cellular components in the TME, while holding the promise to improve diagnostic frameworks for clinical decision-making and be feasible in clinical trials and routine practice. In particular, technical advances in sequencing and analytic pipelines using liquid biopsies, as well as deep phenotypic characterization of tissue architecture at single-cell resolution, have emerged as the new frontier of biomarker development awaiting further validation and implementation in routine diagnostic procedures.
Collapse
Affiliation(s)
- Makoto Kishida
- Centre for Lymphoid Cancer department, BC Cancer, Vancouver, British Columbia, Canada
| | - Manabu Fujisawa
- Centre for Lymphoid Cancer department, BC Cancer, Vancouver, British Columbia, Canada; Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Christian Steidl
- Centre for Lymphoid Cancer department, BC Cancer, Vancouver, British Columbia, Canada; Institute of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
Dann EJ, Casasnovas RO. Treatment Strategies in Advanced-Stage Hodgkin Lymphoma. Cancers (Basel) 2024; 16:2059. [PMID: 38893177 PMCID: PMC11171059 DOI: 10.3390/cancers16112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
The last 3 decades have witnessed a major evolution in the treatment of advanced-stage Hodgkin lymphoma (HL). The most prominent of these developments include the introduction of the international prognostic scoring (IPS) system; therapeutic decision-making based on both IPS and interim PET/CT data; the finding that a negative interim PET/CT result could be safely used for treatment de-escalation; the introduction of intensive combination chemotherapy like escalated BEACOPP (bleomycin, etoposide, adriamycin, cyclophosphamide, oncovin (vincristine), procarbazine, and prednisone); and further modification of this protocol with the incorporation of a conjugated anti-CD30 antibody brentuximab vedotin (BV) into first-line regimens, like BV-AVD (BV+ adriamycin, vinblastine and dacarbazine) and BrECADD (brentuximab vedotin, etoposide, cyclophosphamide, doxorubicin, dacarbazine, and dexamethasone). The accruing data about the toxicity of the escalated BEACOPP protocol have led to decreasing the number of therapeutic cycles, substitution of toxic agents like procarbazine with dacarbazine (e.g., BEACOPDac), and reduction/omission of radiation therapy. Lately, a significant advancement has been made by the integration of checkpoint inhibitors in the first-line treatment, with preliminary results demonstrating the superiority of anti-PD1 combined with chemotherapy (nivolumab-AVD) compared to the BV-AVD regimen. This review aims to analyze recently published studies whose findings could change the treatment practice in advanced-stage HL.
Collapse
Affiliation(s)
- Eldad J. Dann
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa 3109601, Israel
- Blood Bank and Apheresis Unit, Rambam Health Care Campus, Haifa 3109601, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa 3109601, Israel
| | - René-Olivier Casasnovas
- Department of Hematology, CHU Dijon Bourgogne, 21000 Dijon, France;
- INSERM 1231 Team Epi2THM ((Epi)genetics, Epidemiology and Targeted Therapy in Hematological Malignancies), 21000 Dijon, France
| |
Collapse
|
22
|
Durand M, Cabaud Gibouin V, Duplomb L, Salmi L, Caillot M, Sola B, Camus V, Jardin F, Garrido C, Jego G. A first-in-class inhibitor of HSP110 to potentiate XPO1-targeted therapy in primary mediastinal B-cell lymphoma and classical Hodgkin lymphoma. J Exp Clin Cancer Res 2024; 43:148. [PMID: 38773631 PMCID: PMC11110392 DOI: 10.1186/s13046-024-03068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/10/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) are distinct hematological malignancies of B-cell origin that share many biological, molecular, and clinical characteristics. In particular, the JAK/STAT signaling pathway is a driver of tumor development due to multiple recurrent mutations, particularly in STAT6. Furthermore, the XPO1 gene that encodes exportin 1 (XPO1) shows a frequent point mutation (E571K) resulting in an altered export of hundreds of cargo proteins, which may impact the success of future therapies in PMBL and cHL. Therefore, targeted therapies have been envisioned for these signaling pathways and mutations. METHODS To identify novel molecular targets that could overcome the treatment resistance that occurs in PMBL and cHL patients, we have explored the efficacy of a first-in-class HSP110 inhibitor (iHSP110-33) alone and in combination with selinexor, a XPO1 specific inhibitor, both in vitro and in vivo. RESULTS We show that iHSP110-33 decreased the survival of several PMBL and cHL cell lines and the size of tumor xenografts. We demonstrate that HSP110 is a cargo of XPO1wt as well as of XPO1E571K. Using immunoprecipitation, proximity ligation, thermophoresis and kinase assays, we showed that HSP110 directly interacts with STAT6 and favors its phosphorylation. The combination of iHSP110-33 and selinexor induces a synergistic reduction of STAT6 phosphorylation and of lymphoma cell growth in vitro and in vivo. In biopsies from PMBL patients, we show a correlation between HSP110 and STAT6 phosphorylation levels. CONCLUSIONS These findings suggest that HSP110 could be proposed as a novel target in PMBL and cHL therapy.
Collapse
Affiliation(s)
- Manon Durand
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France
| | - Vincent Cabaud Gibouin
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France
| | - Laurence Duplomb
- INSERM, UMR1231, Equipe GAD, University of Burgundy, Dijon, 21078, France
| | - Leila Salmi
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France
| | | | - Brigitte Sola
- INSERM, U1245, Normandy University, Caen, 14000, France
| | - Vincent Camus
- Department of Hematology, Centre Henri Becquerel, Rouen, 76000, France
| | - Fabrice Jardin
- Department of Hematology, Centre Henri Becquerel, Rouen, 76000, France
| | - Carmen Garrido
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France
- Georges François Leclerc Cancer Centre, CGFL, Dijon, France
| | - Gaëtan Jego
- INSERM, UMR1231, Team HSP-Pathies Labellisée « Ligue Nationale Contre Le Cancer » and Labex LipSTIC, Dijon, 21000, France.
- University of Burgundy, Medical Sciences Faculty, Dijon, 21078, France.
- INSERM, UMR1231, Université Bourgogne, 7 Boulevard Jeanne d'Arc, Dijon, 21078, France.
| |
Collapse
|
23
|
Sánchez-Beato M, Méndez M, Guirado M, Pedrosa L, Sequero S, Yanguas-Casás N, de la Cruz-Merino L, Gálvez L, Llanos M, García JF, Provencio M. A genetic profiling guideline to support diagnosis and clinical management of lymphomas. Clin Transl Oncol 2024; 26:1043-1062. [PMID: 37672206 PMCID: PMC11026206 DOI: 10.1007/s12094-023-03307-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023]
Abstract
The new lymphoma classifications (International Consensus Classification of Mature Lymphoid Neoplasms, and 5th World Health Organization Classification of Lymphoid Neoplasms) include genetics as an integral part of lymphoma diagnosis, allowing better lymphoma subclassification, patient risk stratification, and prediction of treatment response. Lymphomas are characterized by very few recurrent and disease-specific mutations, and most entities have a heterogenous genetic landscape with a long tail of recurrently mutated genes. Most of these occur at low frequencies, reflecting the clinical heterogeneity of lymphomas. Multiple studies have identified genetic markers that improve diagnostics and prognostication, and next-generation sequencing is becoming an essential tool in the clinical laboratory. This review provides a "next-generation sequencing" guide for lymphomas. It discusses the genetic alterations of the most frequent mature lymphoma entities with diagnostic, prognostic, and predictive potential and proposes targeted sequencing panels to detect mutations and copy-number alterations for B- and NK/T-cell lymphomas.
Collapse
Affiliation(s)
- Margarita Sánchez-Beato
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain.
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain.
| | - Miriam Méndez
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - María Guirado
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital General Universitario de Elche, Alicante, Spain
| | - Lucía Pedrosa
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Silvia Sequero
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario San Cecilio, Granada, Spain
| | - Natalia Yanguas-Casás
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
| | - Luis de la Cruz-Merino
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Facultad de Medicina, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBID)/CSIC, Seville, Spain
| | - Laura Gálvez
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, Málaga, Spain
| | - Marta Llanos
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Hospital Universitario de Canarias, La Laguna, Sta. Cruz de Tenerife, Spain
| | - Juan Fernando García
- Servicio de Anatomía Patológica, Hospital MD Anderson Cancer Center, Madrid, Spain
| | - Mariano Provencio
- Servicio de Oncología Médica, Grupo de Investigación en Linfomas, Hospital Universitario Puerta de Hierro-Majadahonda, IDIPHISA, Madrid, Spain
- Grupo Oncológico para el Tratamiento y Estudio de los Linfomas-GOTEL, Madrid, Spain
- Servicio de Oncología Médica, Departamento de Medicina, Facultad de Medicina, Hospital Universitario Puerta de Hierro-Majadahonda, Universidad Autónoma de Madrid, IDIPHISA, Madrid, Spain
| |
Collapse
|
24
|
Wang X, Wang W, Vega F, Quesada AE. Aggressive Mediastinal Lymphomas. Semin Diagn Pathol 2024; 41:125-139. [PMID: 34175178 DOI: 10.1053/j.semdp.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 11/11/2022]
Abstract
The mediastinum contains essentially all major intrathoracic organs except for the lungs. A variety of both benign and malignant tumors can involve the mediastinum, of which lymphoma is the most common malignancy. Compared to secondary mediastinal involvement by systemic lymphomas, primary mediastinal lymphomas are less common with several specific entities that are mainly confined to mediastinal lymph nodes, and/or thymus. This review will summarize the clinical, histologic, immunophenotypic and molecular genetic features of the most common and most aggressive primary mediastinal lymphomas as well as provide suggested immunohistochemistry panels and differential diagnoses.
Collapse
Affiliation(s)
- Xiaoqiong Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Andres E Quesada
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
25
|
Milrod CJ, Pelcovits A, Ollila TA. Immune checkpoint inhibitors in advanced and relapsed/refractory Hodgkin lymphoma: current applications and future prospects. Front Oncol 2024; 14:1397053. [PMID: 38699638 PMCID: PMC11063339 DOI: 10.3389/fonc.2024.1397053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Classic Hodgkin lymphoma (cHL) treatment paradigms are undergoing a shift with the integration of immune checkpoint inhibitors (ICIs) into both first-line and relapsed/refractory (R/R) regimens. In first-line therapy, the synergy between ICIs and chemotherapy may surpass the previous standards of ABVD and BV-AVD established by landmark trials including RATHL and ECHELON-1. In R/R disease, the combination of ICIs with chemotherapy has begun to challenge the paradigm of chemotherapy as a bridge to consolidative autologous stem cell transplantation. The clinical advances heralded by ICI offer unique challenges to management. ICI treatment and the associated inflammatory response can make the traditional timing and modalities of treatment response assessment difficult to interpret. In contrast to ABVD and BV-AVD, pembrolizumab-AVD results in PET2 positivity rates that are higher and less predictive of treatment response even when ultimate outcomes may be superior. This suggests that the predictive value of PET2 may be less reliable in the ICI era, prompting a reevaluation of response assessment strategies. Looking forward, circulating tumor DNA (ctDNA) may be a promising tool in response-adapted therapy. Its potential to complement or even supersede PET scans in predicting response to ICIs represents a critical advancement. The integration of ctDNA analysis holds the promise of refining response-adapted approaches and enhancing precision in therapeutic decision-making for patients with cHL. This review navigates the evolving landscape of cHL therapy, emphasizing the paradigmatic shift brought about by ICIs. This article explores the impact of combining ICIs with chemotherapy in both relapsed/refractory and first-line settings, scrutinizes the challenges posed to response-adapted therapy by ICIs, and highlights the potential role of ctDNA as an adjunct in refining response-adapted strategies for cHL.
Collapse
|
26
|
Pepe F, Giordano C, Russo G, Palumbo L, Vincenzi A, Acanfora G, Lisi D, Picardi M, Pane F, Troncone G, Vigliar E. Liquid biopsy: A promising tool for driving strategies and predicting failures in patients with classic Hodgkin lymphoma. Cytopathology 2024; 35:182-187. [PMID: 37340989 DOI: 10.1111/cyt.13255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/04/2023] [Indexed: 06/22/2023]
Abstract
Classic Hodgkin lymphoma (cHL) consists of a heterogeneous group of haematological disorders that covers undifferentiated B cell neoplasms originating from germinal centre B cells. The HL molecular characterization still represents an ongoing challenge due to the low fraction of tumour Hodgkin and Reed-Sternberg cells mixed with a plethora of non-tumour haematological cells. In this scenario, next generation sequencing of liquid biopsy samples is emerging as a useful tool in HL patients' management. In this review, we aimed to overview the clinical and methodological topics regarding the implementation of molecular analysis in cHL, focusing on the role of liquid biopsy in diagnosis, follow-up, and response prediction.
Collapse
Affiliation(s)
- Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Claudia Giordano
- Department of Clinical Medicine and Surgery, Hematology Unit, University of Naples Federico II, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Lucia Palumbo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Annamaria Vincenzi
- Department of Clinical Medicine and Surgery, Hematology Unit, University of Naples Federico II, Naples, Italy
| | - Gennaro Acanfora
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Dario Lisi
- Department of Clinical Medicine and Surgery, Hematology Unit, University of Naples Federico II, Naples, Italy
| | - Marco Picardi
- Department of Clinical Medicine and Surgery, Hematology Unit, University of Naples Federico II, Naples, Italy
| | - Fabrizio Pane
- Department of Clinical Medicine and Surgery, Hematology Unit, University of Naples Federico II, Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
27
|
Barrett A, Appleby N, Dreau H, Fox CP, Munir T, Eyre TA. Richter's transformation: Transforming the clinical landscape. Blood Rev 2024; 64:101163. [PMID: 38097488 DOI: 10.1016/j.blre.2023.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 03/12/2024]
Abstract
Richter transformation (RT) represents an aggressive histological transformation from chronic lymphocytic leukaemia, most often to a large B cell lymphoma. It is characterised by chemo-resistance and subsequent short survival. Drug development has struggled over recent years in light of the aggressive kinetics of the disease, lack of pivotal registrational trials and relative rarity of the phenomenon. In this review we will highlight the diagnostic and therapeutic challenges of managing patients with RT as well as taking a look to the future therapeutic landscape. Highly active therapies developed across B cell malignancies are starting to impact this field, with T-cell activation therapies (CAR-T, bispecific antibodies), antibody-drug conjugates, and novel small molecule inhibitor combinations (e.g. BTKi-BCL2i) being actively studied. We will highlight the data supporting these developments and look to the studies to come to provide hope for patients suffering from this devastating disease.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/therapy
- Cell Transformation, Neoplastic
Collapse
Affiliation(s)
- A Barrett
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - N Appleby
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - H Dreau
- Oxford Molecular Diagnostic Centre, Oxford, United Kingdom
| | - C P Fox
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - T Munir
- Department of Haematology, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - T A Eyre
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
| |
Collapse
|
28
|
Santisteban-Espejo A, Bernal-Florindo I, Montero-Pavon P, Perez-Requena J, Atienza-Cuevas L, Fernandez-Valle MDC, Villalba-Fernandez A, Garcia-Rojo M. Pathogenic Variants Associated with Epigenetic Control and the NOTCH Pathway Are Frequent in Classic Hodgkin Lymphoma. Int J Mol Sci 2024; 25:2457. [PMID: 38473705 DOI: 10.3390/ijms25052457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Classic Hodgkin lymphoma (cHL) constitutes a B-cell neoplasm derived from germinal center lymphocytes. Despite high cure rates (80-90%) obtained with the current multiagent protocols, a significant proportion of cHL patients experience recurrences, characterized by a lower sensitivity to second-line treatments. The genomic background of chemorefractory cHL is still poorly understood, limiting personalized treatment strategies based on molecular features. In this study, using a targeted next-generation sequencing (NGS) panel specifically designed for cHL research, we compared chemosensitive and chemorefractory diagnostic tissue samples of cHL patients. Furthermore, we longitudinally examined paired diagnosis-relapsesamples of chemorefractory cHL in order to define patterns of dynamic evolution and clonal selection. Pathogenic variants in NOTCH1 and NOTCH2 genes frequently arise in cHL. Mutations in genes associated with epigenetic regulation (CREBBP and EP300) are particularly frequent in relapsed/refractory cHL. The appearance of novel clones characterized by mutations previously not identified at diagnosis is a common feature in cHL cases showing chemoresistance to frontline treatments. Our results expand current molecular and pathogenic knowledge of cHL and support the performance of molecular studies in cHL prior to the initiation of first-line therapies.
Collapse
Affiliation(s)
- Antonio Santisteban-Espejo
- Department of Pathology, Puerta del Mar University Hospital, 11009 Cadiz, Spain
- Department of Medicine and Surgery, Faculty of Medicine, University of Cadiz, 11003 Cadiz, Spain
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), 11009 Cadiz, Spain
| | - Irene Bernal-Florindo
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), 11009 Cadiz, Spain
- Department of Pathology, Jerez de la Frontera University Hospital, 11407 Cadiz, Spain
| | - Pedro Montero-Pavon
- Department of Pathology, Jerez de la Frontera University Hospital, 11407 Cadiz, Spain
| | - Jose Perez-Requena
- Department of Pathology, Puerta del Mar University Hospital, 11009 Cadiz, Spain
| | | | | | | | - Marcial Garcia-Rojo
- Institute of Research and Innovation in Biomedical Sciences of the Province of Cadiz (INiBICA), 11009 Cadiz, Spain
- Department of Pathology, Jerez de la Frontera University Hospital, 11407 Cadiz, Spain
| |
Collapse
|
29
|
Noerenberg D, Briest F, Hennch C, Yoshida K, Hablesreiter R, Takeuchi Y, Ueno H, Staiger AM, Ziepert M, Asmar F, Locher BN, Toth E, Weber T, Amini RM, Klapper W, Bouzani M, Poeschel V, Rosenwald A, Held G, Campo E, Ishaque N, Stamatopoulos K, Kanellis G, Anagnostopoulos I, Bullinger L, Goldschmidt N, Zinzani PL, Bödör C, Rosenquist R, Vassilakopoulos TP, Ott G, Ogawa S, Damm F. Genetic Characterization of Primary Mediastinal B-Cell Lymphoma: Pathogenesis and Patient Outcomes. J Clin Oncol 2024; 42:452-466. [PMID: 38055913 DOI: 10.1200/jco.23.01053] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE Primary mediastinal large B-cell lymphoma (PMBCL) is a rare aggressive lymphoma predominantly affecting young female patients. Large-scale genomic investigations and genetic markers for risk stratification are lacking. PATIENTS AND METHODS To elucidate the full spectrum of genomic alterations, samples from 340 patients with previously untreated PMBCL were investigated by whole-genome (n = 20), whole-exome (n = 78), and targeted (n = 308) sequencing. Statistically significant prognostic variables were identified using a multivariable Cox regression model and confirmed by L1/L2 regularized regressions. RESULTS Whole-genome sequencing revealed a commonly disrupted p53 pathway with nonredundant somatic structural variations (SVs) in TP53-related genes (TP63, TP73, and WWOX) and identified novel SVs facilitating immune evasion (DOCK8 and CD83). Integration of mutation and copy-number data expanded the repertoire of known PMBCL alterations (eg, ARID1A, P2RY8, and PLXNC1) with a previously unrecognized role for epigenetic/chromatin modifiers. Multivariable analysis identified six genetic lesions with significant prognostic impact. CD58 mutations (31%) showed the strongest association with worse PFS (hazard ratio [HR], 2.52 [95% CI, 1.50 to 4.21]; P < .001) and overall survival (HR, 2.33 [95% CI, 1.14 to 4.76]; P = .02). IPI high-risk patients with mutated CD58 demonstrated a particularly poor prognosis, with 5-year PFS and OS rates of 41% and 58%, respectively. The adverse prognostic significance of the CD58 mutation status was predominantly observed in patients treated with nonintensified regimens, indicating that dose intensification may, to some extent, mitigate the impact of this high-risk marker. By contrast, DUSP2-mutated patients (24%) displayed durable responses (PFS: HR, 0.2 [95% CI, 0.07 to 0.55]; P = .002) and prolonged OS (HR, 0.11 [95% CI, 0.01 to 0.78]; P = .028). Upon CHOP-like treatment, these patients had very favorable outcome, with 5-year PFS and OS rates of 93% and 98%, respectively. CONCLUSION This large-scale genomic characterization of PMBCL identified novel treatment targets and genetic lesions for refined risk stratification. DUSP2 and CD58 mutation analyses may guide treatment decisions between rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone and dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab.
Collapse
Affiliation(s)
- Daniel Noerenberg
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Briest
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelius Hennch
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan
| | - Raphael Hablesreiter
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yasuhide Takeuchi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroo Ueno
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Annette M Staiger
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology Stuttgart, and University of Tuebingen, Stuttgart, Germany
| | - Marita Ziepert
- Institute of Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Fazila Asmar
- Department of Hematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Benjamin N Locher
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Erika Toth
- Department of Surgical and Molecular Pathology, National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Thomas Weber
- Department of Internal Medicine IV, Haematology and Oncology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University and University Hospital, Uppsala, Sweden
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Maria Bouzani
- Department of Hematology and Lymphoma, BMTU, Evaggelismos General Hospital, Athens, Greece
| | - Viola Poeschel
- Department of Internal Medicine 1 (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical School, Homburg, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
| | - Gerhard Held
- Department of Internal Medicine 1 (Oncology, Hematology, Clinical Immunology, and Rheumatology), Saarland University Medical School, Homburg, Germany
- Department Internal Medicine I, Westpfalzklinikum Kaiserslautern, Kaiserslautern, Germany
| | - Elías Campo
- Centro de Investigacion Biomedica en Red en Oncologia (CIBERONC), Madrid, Spain
- Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Naveed Ishaque
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Digital Health, Berlin, Germany
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - George Kanellis
- Department of Hematopathology, Evangelismos General Hospital, Athens, Greece
| | - Ioannis Anagnostopoulos
- Institute of Pathology, University of Würzburg and Comprehensive Cancer Center (CCC) Mainfranken, Würzburg, Germany
- Department of Pathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli," Bologna, Italy
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università di Bologna, Bologna, Italy
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Theodoros P Vassilakopoulos
- Department of Internal Medicine IV, Haematology and Oncology, University Hospital Halle (Saale), Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Frederik Damm
- Department of Hematology, Oncology and Cancer Immunology, Campus Virchow, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Calabretta E, di Trani M, Corrado F, Sollini M, Cristaldi V, Marino F, Terzi di Bergamo L, Bruscaggin A, Pirosa MC, Bramanti S, Chiti A, Rossi D, Carlo-Stella C. Baseline circulating tumour DNA and interim PET predict response in relapsed/refractory classical Hodgkin lymphoma. Br J Haematol 2024; 204:514-524. [PMID: 37853658 DOI: 10.1111/bjh.19162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Reliable biomarkers for early identification of treatment failure in relapsed/refractory (r/r) classical Hodgkin lymphoma (cHL) are lacking. Circulating tumour DNA (ctDNA) profiling has emerged as a powerful predictive and prognostic tool in several haemopoietic and non-haemopoietic malignancies and may guide rational treatment choices in r/r cHL. To assess the predictive and prognostic value of ctDNA, we performed a retrospective analysis on 55 r/r cHL patients treated with the bendamustine, gemcitabine and vinorelbine (BEGEV) regimen and additionally evaluated the potential utility of integrating ctDNA with interim [18 F]-FDG positron emission tomography (iPET). Baseline ctDNA genotyping in r/r cHL mirrored gene mutations and pathways involved in newly diagnosed cHL. We found that baseline ctDNA quantification and serial ctDNA monitoring have prognostic value in r/r cHL receiving salvage chemotherapy. Lastly, integrating ctDNA quantification with iPET evaluation may improve the early identification of patients at high risk of failing standard salvage therapy, who may benefit from an early switch to immunotherapeutic agents. Collectively, our results support the implementation of non-invasive methods to detect minimal residual disease in recurrent cHL and justify its prospective evaluation in appropriately designed clinical trials.
Collapse
Affiliation(s)
- Eleonora Calabretta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina di Trani
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesco Corrado
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Vanessa Cristaldi
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabrizio Marino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lodovico Terzi di Bergamo
- Laboratory of Experimental Hematology, Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alessio Bruscaggin
- Laboratory of Experimental Hematology, Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Maria Cristina Pirosa
- Laboratory of Experimental Hematology, Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Stefania Bramanti
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Arturo Chiti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Nuclear Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Oncology and Hematology, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
31
|
Fernández S, Cereceda L, Díaz E, Figueroa S, Reguera L, Menéndez V, Solórzano JL, Montalbán C, Estévez M, García JF. Circulating tumor DNA for monitoring classic Hodgkin lymphoma patients: Correlation with FDG-PET/CT. EJHAEM 2024; 5:70-75. [PMID: 38406538 PMCID: PMC10887323 DOI: 10.1002/jha2.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 02/27/2024]
Abstract
The value of circulating tumor DNA (ctDNA) as a biomarker of disease activity in classic Hodgkin lymphoma (cHL) patients has not yet been well established. By profiling primary tumors and ctDNA, we identified common variants between primary tumors and longitudinal plasma samples in most of the cases, confirming high spatial and temporal heterogeneity. Although ctDNA analyses mirrored HRS cell genetics overall, the prevalence of variants shows that none of them can be used as a single biomarker. Conversely, the estimation of hGE/mL, based on measures of total ctDNA, reflects disease activity and is almost perfectly correlated with standard parameters such as PET/CT that are associated with refractoriness.
Collapse
Affiliation(s)
- Sara Fernández
- Translational Research, Fundación MD Anderson International España S.L. MadridMadridSpain
| | - Laura Cereceda
- Translational Research, Fundación MD Anderson International España S.L. MadridMadridSpain
- Pathology DepartmentMD Anderson Cancer Center MadridMadridSpain
| | - Eva Díaz
- Translational Research, Fundación MD Anderson International España S.L. MadridMadridSpain
| | - Sasha Figueroa
- Translational Research, Fundación MD Anderson International España S.L. MadridMadridSpain
- Pathology DepartmentMD Anderson Cancer Center MadridMadridSpain
| | - Laura Reguera
- Nuclear Medicine DepartmentMD Anderson Cancer Center MadridMadridSpain
| | - Victoria Menéndez
- Translational Research, Fundación MD Anderson International España S.L. MadridMadridSpain
| | | | - Carlos Montalbán
- Hematology DepartmentMD Anderson Cancer Center MadridMadridSpain
| | - Mónica Estévez
- Hematology DepartmentMD Anderson Cancer Center MadridMadridSpain
| | - Juan F. García
- Translational Research, Fundación MD Anderson International España S.L. MadridMadridSpain
- Pathology DepartmentMD Anderson Cancer Center MadridMadridSpain
- Center for Biomedical Network Research on Cancer (CIBERONC)ISCIIIMadridSpain
| |
Collapse
|
32
|
Wang X, Wang L, Lin H, Zhu Y, Huang D, Lai M, Xi X, Huang J, Zhang W, Zhong T. Research progress of CTC, ctDNA, and EVs in cancer liquid biopsy. Front Oncol 2024; 14:1303335. [PMID: 38333685 PMCID: PMC10850354 DOI: 10.3389/fonc.2024.1303335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), and extracellular vehicles (EVs) have received significant attention in recent times as emerging biomarkers and subjects of transformational studies. The three main branches of liquid biopsy have evolved from the three primary tumor liquid biopsy detection targets-CTC, ctDNA, and EVs-each with distinct benefits. CTCs are derived from circulating cancer cells from the original tumor or metastases and may display global features of the tumor. ctDNA has been extensively analyzed and has been used to aid in the diagnosis, treatment, and prognosis of neoplastic diseases. EVs contain tumor-derived material such as DNA, RNA, proteins, lipids, sugar structures, and metabolites. The three provide different detection contents but have strong complementarity to a certain extent. Even though they have already been employed in several clinical trials, the clinical utility of three biomarkers is still being studied, with promising initial findings. This review thoroughly overviews established and emerging technologies for the isolation, characterization, and content detection of CTC, ctDNA, and EVs. Also discussed were the most recent developments in the study of potential liquid biopsy biomarkers for cancer diagnosis, therapeutic monitoring, and prognosis prediction. These included CTC, ctDNA, and EVs. Finally, the potential and challenges of employing liquid biopsy based on CTC, ctDNA, and EVs for precision medicine were evaluated.
Collapse
Affiliation(s)
- Xiaoling Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Lijuan Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Haihong Lin
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Yifan Zhu
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Defa Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mi Lai
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xuxiang Xi
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junyun Huang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
33
|
Chang Y, Li S, Li Z, Wang X, Chang F, Geng S, Zhu D, Zhong G, Wu W, Chang Y, Tu S, Mao M. Non-invasive detection of lymphoma with circulating tumor DNA features and protein tumor markers. Front Oncol 2024; 14:1341997. [PMID: 38313801 PMCID: PMC10834776 DOI: 10.3389/fonc.2024.1341997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
Background According to GLOBOCAN 2020, lymphoma ranked as the 9th most common cancer and the 12th leading cause of cancer-related deaths worldwide. Traditional diagnostic methods rely on the invasive excisional lymph node biopsy, which is an invasive approach with some limitations. Most lymphoma patients are diagnosed at an advanced stage since they are asymptomatic at the beginning, which has significantly impacted treatment efficacy and prognosis of the disease. Method This study assessed the performance and utility of a newly developed blood-based assay (SeekInCare) for lymphoma early detection. SeekInCare utilized protein tumor markers and a comprehensive set of cancer-associated genomic features, including copy number aberration (CNA), fragment size (FS), end motif, and lymphoma-related virus, which were profiled by shallow WGS of cfDNA. Results Protein marker CA125 could be used for lymphoma detection independent of gender, and the sensitivity was 27.8% at specificity of 98.0%. After integrating these multi-dimensional features, 77.8% sensitivity was achieved at specificity of 98.0%, while its NPV and PPV were both more than 92% for lymphoma detection. The sensitivity of early-stage (I-II) lymphoma was up to 51.3% (47.4% and 55.0% for stage I and II respectively). After 2 cycles of treatment, the molecular response of SeekInCare was correlated with the clinical outcome. Conclusion In summary, a blood-based assay can be an alternative to detect lymphoma with adequate performance. This approach becomes particularly valuable in cases where obtaining tissue biopsy is difficult to obtain or inconclusive.
Collapse
Affiliation(s)
- Yu Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiyong Li
- Research and Development, SeekIn Inc, Shenzhen, China
| | - Zhiming Li
- Department of Internal Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | | | - Dandan Zhu
- Clinical Laboratories, Shenyou Bio, Zhengzhou, China
| | - Guolin Zhong
- Research and Development, SeekIn Inc, Shenzhen, China
| | - Wei Wu
- Research and Development, SeekIn Inc, Shenzhen, China
| | - Yinyin Chang
- Clinical Laboratories, Shenyou Bio, Zhengzhou, China
| | - Shichun Tu
- Clinical Laboratories, Shenyou Bio, Zhengzhou, China
| | - Mao Mao
- Research and Development, SeekIn Inc, Shenzhen, China
- Yonsei Song-Dang Institute for Cancer Research, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Diez-Feijóo R, Andrade-Campos M, Gibert J, Sánchez-González B, Fernández-Ibarrondo L, Fernández-Rodríguez C, Garcia-Gisbert N, Camacho L, Lafuente M, Vázquez I, Colomo L, Salar A, Bellosillo B. Cell-Free DNA as a Biomarker at Diagnosis and Follow-Up in 256 B and T-Cell Lymphomas. Cancers (Basel) 2024; 16:321. [PMID: 38254810 PMCID: PMC10813584 DOI: 10.3390/cancers16020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Cell-free DNA (cfDNA) analysis has become a promising tool for the diagnosis, prognosis, and monitoring of lymphoma cases. Until now, research in this area has mainly focused on aggressive lymphomas, with scanty information from other lymphoma subtypes. METHODS We selected 256 patients diagnosed with lymphomas, including a large variety of B-cell and T-cell non-Hodgkin and Hodgkin lymphomas, and quantified cfDNA from plasma at the time of diagnosis. We further selected 49 large B-cell lymphomas (LBCL) and analyzed cfDNA levels at diagnosis (pre-therapy) and after therapy. In addition, we performed NGS on cfDNA and tissue in this cohort of LBCL. RESULTS Lymphoma patients showed a statistically significant higher cfDNA concentration than healthy controls (mean 53.0 ng/mL vs. 5.6 ng/mL, p < 0.001). The cfDNA concentration was correlated with lymphoma subtype, lactate dehydrogenase, the International Prognostic Index (IPI) score, Ann Arbor (AA), and B-symptoms. In 49 LBCL cases, the cfDNA concentration decreased after therapy in cases who achieved complete response (CR) and increased in non-responders. The median cfDNA at diagnosis of patients who achieved CR and later relapsed was higher (81.5 ng/mL) compared with levels of those who did not (38.6 ng/mL). A concordance of 84% was observed between NGS results in tumor and cfDNA samples. Higher VAF in cfDNA is correlated with advanced stage and bulky disease. CONCLUSIONS cfDNA analysis can be easily performed in almost all lymphoma cases. The cfDNA concentration correlated with the characteristics of the aggressiveness of the lymphomas and, in LBCL, with the response achieved after therapy. These results support the utility of cfDNA analysis as a complementary tool in the management of lymphoma patients.
Collapse
Affiliation(s)
- Ramón Diez-Feijóo
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (R.D.-F.); (M.A.-C.); (B.S.-G.)
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Marcio Andrade-Campos
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (R.D.-F.); (M.A.-C.); (B.S.-G.)
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Joan Gibert
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Blanca Sánchez-González
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (R.D.-F.); (M.A.-C.); (B.S.-G.)
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Lierni Fernández-Ibarrondo
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Concepción Fernández-Rodríguez
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Nieves Garcia-Gisbert
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Laura Camacho
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Marta Lafuente
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Ivonne Vázquez
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Luis Colomo
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| | - Antonio Salar
- Department of Hematology, Hospital del Mar, 08003 Barcelona, Spain; (R.D.-F.); (M.A.-C.); (B.S.-G.)
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
| | - Beatriz Bellosillo
- Cancer Research Program, Hospital del Mar Research Institute, 08003 Barcelona, Spain; (J.G.); (L.F.-I.); (C.F.-R.); (N.G.-G.); (L.C.); (M.L.); (L.C.); (B.B.)
- Department of Pathology, Hospital del Mar, Hospital del Mar Research Institute, 08003 Barcelona, Spain;
| |
Collapse
|
35
|
Vassilakopoulos TP, Arapaki M, Diamantopoulos PT, Liaskas A, Panitsas F, Siakantaris MP, Dimou M, Kokoris SI, Sachanas S, Belia M, Chatzidimitriou C, Konstantinou EA, Asimakopoulos JV, Petevi K, Boutsikas G, Kanellopoulos A, Piperidou A, Lefaki ME, Georgopoulou A, Kopsaftopoulou A, Zerzi K, Drandakis I, Dimopoulou MN, Kyrtsonis MC, Tsaftaridis P, Plata E, Variamis E, Tsourouflis G, Kontopidou FN, Konstantopoulos K, Pangalis GA, Panayiotidis P, Angelopoulou MK. Prognostic Impact of Serum β 2-Microglobulin Levels in Hodgkin Lymphoma Treated with ABVD or Equivalent Regimens: A Comprehensive Analysis of 915 Patients. Cancers (Basel) 2024; 16:238. [PMID: 38254729 PMCID: PMC10813286 DOI: 10.3390/cancers16020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The significance of serum beta-2 microglobulin (sβ2m) in Hodgkin lymphoma (HL) is controversial. We analyzed 915 patients with HL, who were treated with ABVD or equivalent regimens with or without radiotherapy. Sβ2m levels were measured by a radioimmunoassay (upper normal limit 2.4 mg/L). Sequential cutoffs (1.8-3.0 by 0.1 mg/L increments, 3.5 and 4.0 mg/L) were tested along with ROC analysis. The median sβ2m levels were 2.20 mg/L and were elevated (>2.4 mg/L) in 383/915 patients (41.9%). Higher sβ2m was associated with inferior freedom from progression (FFP) at all tested cutoffs. The best cutoff was 2.0 mg/L (10-year FFP 83% vs. 70%, p = 0.001), which performed better than the 2.4 mg/L cutoff ("normal versus high"). In multivariate analysis, sβ2m > 2.0 mg/L was an independent adverse prognostic factor in the whole patient population. In multivariate overall survival analysis, sβ2m levels were predictive at 2.0 mg/L cutoff in the whole patient population and in advanced stages. Similarly, sβ2m > 2.0 mg/L independently predicted inferior HL-specific survival in the whole patient population. Our data suggest that higher sβ2m is an independent predictor of outcome in HL but the optimal cutoff lies within the normal limits (i.e., at 2.0 mg/L) in this predominantly young patient population, performing much better than a "normal versus high" cutoff set at 2.4 mg/L.
Collapse
Affiliation(s)
- Theodoros P. Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Maria Arapaki
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Panagiotis T. Diamantopoulos
- First Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (P.T.D.)
| | - Athanasios Liaskas
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Fotios Panitsas
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Marina P. Siakantaris
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Maria Dimou
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Styliani I. Kokoris
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Sotirios Sachanas
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Marina Belia
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Chrysovalantou Chatzidimitriou
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Elianna A. Konstantinou
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - John V. Asimakopoulos
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Kyriaki Petevi
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - George Boutsikas
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Alexandros Kanellopoulos
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Alexia Piperidou
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Maria-Ekaterini Lefaki
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Angeliki Georgopoulou
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Anastasia Kopsaftopoulou
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Kalliopi Zerzi
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Ioannis Drandakis
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Maria N. Dimopoulou
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Marie-Christine Kyrtsonis
- First Department of Internal Medicine Propedeutic, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece
| | - Panayiotis Tsaftaridis
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Eleni Plata
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Eleni Variamis
- First Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (P.T.D.)
| | - Gerassimos Tsourouflis
- Second Department of Surgery Propedeutic, National and Kapodistrian University of Athens, Laikon General Hospital, 11527Athens, Greece
| | - Flora N. Kontopidou
- Second Department of Internal Medicine, National and Kapodistrian University of Athens, Ippokration General Hospital, 11527 Athens, Greece;
| | - Kostas Konstantopoulos
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Gerassimos A. Pangalis
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Panayiotis Panayiotidis
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| | - Maria K. Angelopoulou
- Department of Haematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, School of Medicine, Laikon General Hospital, 17 Ag. Thoma Str., 11527 Athens, Greece; (M.A.); (M.D.); (M.B.); (C.C.); (E.A.K.); (J.V.A.); (A.K.); (P.T.); (M.K.A.)
| |
Collapse
|
36
|
Alig SK, Shahrokh Esfahani M, Garofalo A, Li MY, Rossi C, Flerlage T, Flerlage JE, Adams R, Binkley MS, Shukla N, Jin MC, Olsen M, Telenius A, Mutter JA, Schroers-Martin JG, Sworder BJ, Rai S, King DA, Schultz A, Bögeholz J, Su S, Kathuria KR, Liu CL, Kang X, Strohband MJ, Langfitt D, Pobre-Piza KF, Surman S, Tian F, Spina V, Tousseyn T, Buedts L, Hoppe R, Natkunam Y, Fornecker LM, Castellino SM, Advani R, Rossi D, Lynch R, Ghesquières H, Casasnovas O, Kurtz DM, Marks LJ, Link MP, André M, Vandenberghe P, Steidl C, Diehn M, Alizadeh AA. Distinct Hodgkin lymphoma subtypes defined by noninvasive genomic profiling. Nature 2024; 625:778-787. [PMID: 38081297 PMCID: PMC11293530 DOI: 10.1038/s41586-023-06903-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
The scarcity of malignant Hodgkin and Reed-Sternberg cells hampers tissue-based comprehensive genomic profiling of classic Hodgkin lymphoma (cHL). By contrast, liquid biopsies show promise for molecular profiling of cHL due to relatively high circulating tumour DNA (ctDNA) levels1-4. Here we show that the plasma representation of mutations exceeds the bulk tumour representation in most cases, making cHL particularly amenable to noninvasive profiling. Leveraging single-cell transcriptional profiles of cHL tumours, we demonstrate Hodgkin and Reed-Sternberg ctDNA shedding to be shaped by DNASE1L3, whose increased tumour microenvironment-derived expression drives high ctDNA concentrations. Using this insight, we comprehensively profile 366 patients, revealing two distinct cHL genomic subtypes with characteristic clinical and prognostic correlates, as well as distinct transcriptional and immunological profiles. Furthermore, we identify a novel class of truncating IL4R mutations that are dependent on IL-13 signalling and therapeutically targetable with IL-4Rα-blocking antibodies. Finally, using PhasED-seq5, we demonstrate the clinical value of pretreatment and on-treatment ctDNA levels for longitudinally refining cHL risk prediction and for detection of radiographically occult minimal residual disease. Collectively, these results support the utility of noninvasive strategies for genotyping and dynamic monitoring of cHL, as well as capturing molecularly distinct subtypes with diagnostic, prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Stefan K Alig
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | | | - Andrea Garofalo
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Michael Yu Li
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Cédric Rossi
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
- Hematology Department, University Hospital F. Mitterrand and Inserm UMR 1231, Dijon, France
| | - Tim Flerlage
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jamie E Flerlage
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ragini Adams
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Stanford University, Stanford, CA, USA
| | - Michael S Binkley
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA
| | - Navika Shukla
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Michael C Jin
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Mari Olsen
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Adèle Telenius
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Jurik A Mutter
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Joseph G Schroers-Martin
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Brian J Sworder
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Shinya Rai
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Daniel A King
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Andre Schultz
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Jan Bögeholz
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Shengqin Su
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA
| | - Karan R Kathuria
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Chih Long Liu
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Xiaoman Kang
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Maya J Strohband
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Deanna Langfitt
- Department of Bone Marrow Transplant and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Sherri Surman
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Feng Tian
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Valeria Spina
- Laboratory of Molecular Diagnostics, Department of Medical Genetics EOLAB, Bellinzona, Switzerland
| | - Thomas Tousseyn
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | | | - Richard Hoppe
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA
| | | | - Luc-Matthieu Fornecker
- Institut de Cancérologie Strasbourg Europe (ICANS) and University of Strasbourg, Strasbourg, France
| | - Sharon M Castellino
- Department of Pediatrics, Emory University, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Ranjana Advani
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Davide Rossi
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Ryan Lynch
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hervé Ghesquières
- Department of Hematology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Pierre Benite, France
| | - Olivier Casasnovas
- Hematology Department, University Hospital F. Mitterrand and Inserm UMR 1231, Dijon, France
| | - David M Kurtz
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA
| | - Lianna J Marks
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Stanford University, Stanford, CA, USA
| | - Michael P Link
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Stanford University, Stanford, CA, USA
| | - Marc André
- Department of Haematology, Université Catholique de Louvain, CHU UCL Namur, Yvoir, Belgium
| | - Peter Vandenberghe
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA.
| | - Ash A Alizadeh
- Department of Medicine, Divisions of Oncology and Hematology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Ferdinandus J, van Heek L, Roth K, Dietlein M, Eich HT, Baues C, Borchmann P, Kobe C. Patterns of PET-positive residual tissue at interim restaging and risk of treatment failure in advanced-stage Hodgkin's lymphoma: an analysis of the randomized phase III HD18 trial by the German Hodgkin Study Group. Eur J Nucl Med Mol Imaging 2024; 51:490-495. [PMID: 37735258 PMCID: PMC10774157 DOI: 10.1007/s00259-023-06431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE Response-adapted treatment using early interim functional imaging with PET after two cycles of chemotherapy (PET-2) for advanced-stage Hodgkin's lymphoma (AS-HL) is the standard of care in several countries. However, the distribution of residual metabolic disease in PET-2 and the prognostic relevance of multiple involved regions have not been reported to date. METHODS We retrospectively analyzed data from all PET-2-positive patients included in HD18. Residual tissue was visually compared with reference regions according to the Deauville score (DS). PET-2 positivity was defined as residual tissue with uptake above the liver (DS4). PFS was defined as the time from staging until progression, relapse, or death from any cause, or to the day when information was last received on the patient's disease status and analyzed using Kaplan-Meier and Cox regressions. Comparisons were made between patients with 1-2 and >2 positive regions in PET-2 as well as patients without PET-2-positive regions randomized into comparator arms of HD18. RESULTS Between 2008 and 2014, 1964 patients with newly diagnosed AS-HL were recruited in HD18 and randomized following their PET-2 scan. Of these, 480 patients had a positive PET-2 and were eligible for this analysis. Upper and lower mediastinum in almost half of all patients: 230 (47.9%) and 195 (40.6%), respectively. 372 (77.5%) of patients have 1-2 positive regions in PET-2. 5y-PFS for patients with 1-2 regions was 91.7% (CI95: 88.7-94.6) vs. 81.8% (CI95: 74.2-90.1) for those with >2 regions with a corresponding hazard ratio (HR) of 2.2 (CI95: 1.2-4.0). Compared with patients without PET-2-positive disease receiving 6-8 cycles of chemotherapy, patients with 1-2 had a higher risk for a PFS event (HR 1.35; CI95 0.81-2.28), but it was not statistically significant (p=0.25). Patients with >2 PET-2-positive lesions had a significantly higher risk (HR 2.95; CI95: 1.62-5.37; p<0.001). CONCLUSION PET-2-positive residuals of AS-HL are mostly located in the mediastinum, and a majority of patients have few affected regions. The risk of progression was twofold higher in patients with more than two positive regions in PET-2.
Collapse
Affiliation(s)
- Justin Ferdinandus
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Gleueler Straße 269-273, 50935, Cologne, Germany.
- German Hodgkin Study Group (GHSG), Cologne, Germany.
| | - Lutz van Heek
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Katrin Roth
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Markus Dietlein
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Hans-Theodor Eich
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Radiation Oncology, University Hospital Münster, Münster, Germany
| | - Christian Baues
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Radiotherapy and Cyberknife Center, University Hospital Cologne, Cologne, Germany
- Department of Radiooncology, Marienhospital Herne, Ruhr University Bochum, Bochum, Germany
| | - Peter Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Gleueler Straße 269-273, 50935, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Carsten Kobe
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
38
|
Masel R, Roche ME, Martinez-Outschoorn U. Hodgkin Lymphoma: A disease shaped by the tumor micro- and macroenvironment. Best Pract Res Clin Haematol 2023; 36:101514. [PMID: 38092473 DOI: 10.1016/j.beha.2023.101514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 12/18/2023]
Abstract
The tumor microenvironment (TMicroE) and tumor macroenvironment (TMacroE) are defining features of classical Hodgkin lymphoma (cHL). They are of critical importance to clinicians since they explain the common signs and symptoms, allow us to classify these neoplasms, develop prognostic and predictive biomarkers, bioimaging and novel treatments. The TMicroE is defined by effects of cancer cells to their immediate surrounding and within the tumor. Effects of cancer cells at a distance or outside of the tumor define the TMacroE. Paraneoplastic syndromes are signs and symptoms due to effects of cancer at a distance or the TMacroE, which are not due to direct cancer cell infiltration. The most common paraneoplastic symptoms are B-symptoms, which manifest as fevers, chills, drenching night sweats, and/or weight loss. Less common paraneoplastic syndromes include those that affect the central nervous system, skin, kidney, and hematological autoimmune phenomena including hemophagocytic lymphohistiocytosis (HLH). Paraneoplastic signs such as leukocytosis, lymphopenia, anemia, and hypoalbuminemia are prognostic biomarkers. The neoplastic cells in cHL are the Hodgkin and Reed Sternberg (HRS) cells, which are preapoptotic germinal center B cells with a high mutational burden and almost universal genetic alterations at the 9p24.1 locus primarily through copy gain and amplification with strong activation of signaling via PD-L1, JAK-STAT, NFkB, and c-MYC. In the majority of cases of cHL over 95% of the tumor cells are non-neoplastic. In the TMicroE, HRS cells recruit and mold non-neoplastic cells vigorously via extracellular vesicles, chemokines, cytokines and growth factors such as CCL5, CCL17, IL6, and TGF-β to promote a feed-forward inflammatory loop, which drives cancer aggressiveness and anti-cancer immune evasion. Novel single cell profiling techniques provide critical information on the role in cHL of monocytes-macrophages, neutrophils, T helper, Tregs, cytotoxic CD8+ T cells, eosinophils, mast cells and fibroblasts. Here, we summarize the effects of EBV on the TMicroE and TMacroE. In addition, how the metabolism of the TMicroE of cHL affects bioimaging and contributes to cancer aggressiveness is reviewed. Finally, we discuss how the TMicroE is being leveraged for risk adapted treatment strategies based on bioimaging results and novel immune therapies. In sum, it is clear that we cannot effectively manage patients with cHL without understanding the TMicroE and TMacroE and its clinical importance is expected to continue to grow rapidly.
Collapse
Affiliation(s)
- Rebecca Masel
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University-Philadelphia, USA; Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University-Philadelphia, USA
| | - Megan E Roche
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University-Philadelphia, USA
| | - Ubaldo Martinez-Outschoorn
- Department of Medicine, Cardeza Foundation for Hematological Research, Thomas Jefferson University-Philadelphia, USA.
| |
Collapse
|
39
|
Cuzzo B, Lipsky A, Cherng HJJ. Measurable Residual Disease Monitoring in Lymphoma. Curr Hematol Malig Rep 2023; 18:292-304. [PMID: 37930608 DOI: 10.1007/s11899-023-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE OF REVIEW The utility of analyzing circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and disease in the bone marrow as an adjunctive tool in caring for hematologic cancer patients is expanding. This holds true for lymphoma where these biomarkers are being explored as a means of genotyping and quantifying disease. Regarding the latter, they can be used to monitor measurable residual disease (MRD) during and after treatment. This holds potential for aiding clinical decisions amidst treatment, detecting earlier relapse, and improving prognostication. Here, we review the evidence to support these applications in a variety of lymphoma subtypes. RECENT FINDINGS Numerous clinical trials across a variety of lymphomas have demonstrated value in MRD monitoring. MRD monitoring is often prognostic for progression free survival (PFS) and even overall survival (OS) at several time points in a disease course, particularly when utilizing serial measurements. With regards to tailoring treatment, there are a growing number of trials examining MRD-adaptive treatment strategies to intensify or de-escalate treatment to individualize care. Lastly, MRD monitoring has been utilized successfully in detecting earlier relapse when compared to more standard methods of clinical surveillance such as radiographic assessment. Although not routinely implemented into clinical practice, MRD monitoring in lymphoma is helping shape the future landscape of this disease by aiding in prognostication, guiding therapy, and detecting earlier relapse. Steps to standardize and further examine this technology prospectively are being taken to bring MRD monitoring to the forefront of the field.
Collapse
Affiliation(s)
- Brian Cuzzo
- Columbia University Medical Center, 161 Fort Washington Ave, New York, NY, 10032, USA
| | - Andrew Lipsky
- Columbia University Medical Center, 161 Fort Washington Ave, New York, NY, 10032, USA
| | - Hua-Jay J Cherng
- Columbia University Medical Center, 161 Fort Washington Ave, New York, NY, 10032, USA.
| |
Collapse
|
40
|
Gomez F, Fisk B, McMichael JF, Mosior M, Foltz JA, Skidmore ZL, Duncavage EJ, Miller CA, Abel H, Li YS, Russler-Germain DA, Krysiak K, Watkins MP, Ramirez CA, Schmidt A, Martins Rodrigues F, Trani L, Khanna A, Wagner JA, Fulton RS, Fronick CC, O'Laughlin MD, Schappe T, Cashen AF, Mehta-Shah N, Kahl BS, Walker J, Bartlett NL, Griffith M, Fehniger TA, Griffith OL. Ultra-Deep Sequencing Reveals the Mutational Landscape of Classical Hodgkin Lymphoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:2312-2330. [PMID: 37910143 PMCID: PMC10648575 DOI: 10.1158/2767-9764.crc-23-0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified >95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL. SIGNIFICANCE Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient.
Collapse
Affiliation(s)
- Felicia Gomez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Bryan Fisk
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Joshua F. McMichael
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Matthew Mosior
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Jennifer A. Foltz
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Zachary L. Skidmore
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Eric J. Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Christopher A. Miller
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Haley Abel
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Yi-Shan Li
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - David A. Russler-Germain
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Kilannin Krysiak
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Marcus P. Watkins
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Cody A. Ramirez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Alina Schmidt
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Fernanda Martins Rodrigues
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Lee Trani
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Ajay Khanna
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Julia A. Wagner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Robert S. Fulton
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Catrina C. Fronick
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Michelle D. O'Laughlin
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Timothy Schappe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Amanda F. Cashen
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Neha Mehta-Shah
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Brad S. Kahl
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Jason Walker
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nancy L. Bartlett
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Malachi Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| | - Todd A. Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Obi L. Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
41
|
Steidl C, Kridel R, Binkley M, Morton LM, Chadburn A. The pathobiology of select adolescent young adult lymphomas. EJHAEM 2023; 4:892-901. [PMID: 38024596 PMCID: PMC10660115 DOI: 10.1002/jha2.785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 12/01/2023]
Abstract
Lymphoid cancers are among the most frequent cancers diagnosed in adolescents and young adults (AYA), ranging from approximately 30%-35% of cancer diagnoses in adolescent patients (age 10-19) to approximately 10% in patients aged 30-39 years. Moreover, the specific distribution of lymphoid cancer types varies by age with substantial shifts in the subtype distributions between pediatric, AYA, adult, and older adult patients. Currently, biology studies specific to AYA lymphomas are rare and therefore insight into age-related pathogenesis is incomplete. This review focuses on the paradigmatic epidemiology and pathogenesis of select lymphomas, occurring in the AYA patient population. With the example of posttransplant lymphoproliferative disorders, nodular lymphocyte-predominant Hodgkin lymphoma, follicular lymphoma (incl. pediatric-type follicular lymphoma), and mediastinal lymphomas (incl. classic Hodgkin lymphoma, primary mediastinal large B cell lymphoma and mediastinal gray zone lymphoma), we here illustrate the current state-of-the-art in lymphoma classification, recent molecular insights including genomics, and translational opportunities. To improve outcome and quality of life, international collaboration in consortia dedicated to AYA lymphoma is needed to overcome challenges related to siloed biospecimens and data collections as well as to develop studies designed specifically for this unique population.
Collapse
Affiliation(s)
- Christian Steidl
- Centre for Lymphoid CancerBC CancerVancouverBritish ColumbiaCanada
| | - Robert Kridel
- Princess Margaret Cancer Centre ‐ University Health NetworkTorontoOntarioCanada
| | - Michael Binkley
- Department of Radiation OncologyStanford UniversityStanfordCaliforniaUSA
| | - Lindsay M. Morton
- Radiation Epidemiology BranchDivision of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMarylandUSA
| | - Amy Chadburn
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
42
|
Gupta S, Craig JW. Classic Hodgkin lymphoma in young people. Semin Diagn Pathol 2023; 40:379-391. [PMID: 37451943 DOI: 10.1053/j.semdp.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Classic Hodgkin lymphoma (CHL) is a unique form of lymphoid cancer featuring a heterogeneous tumor microenvironment and a relative paucity of malignant Hodgkin and Reed-Sternberg (HRS) cells with characteristic phenotype. Younger individuals (children, adolescents and young adults) are affected as often as the elderly, producing a peculiar bimodal age-incidence profile that has generated immense interest in this disease and its origins. Decades of epidemiological investigations have documented the populations most susceptible and identified multiple risk factors that can be broadly categorized as either biological or environmental in nature. Most risk factors result in overt immunodeficiency or confer more subtle alterations to baseline health, physiology or immune function. Epstein Barr virus, however, is both a risk factor and well-established driver of lymphomagenesis in a significant subset of cases. Epigenetic changes, along with the accumulation of somatic driver mutations and cytogenetic abnormalities are required for the malignant transformation of germinal center-experienced HRS cell precursors. Chromosomal instability and the influence of endogenous mutational processes are critical in this regard, by impacting genes involved in key signaling pathways that promote the survival and proliferation of HRS cells and their escape from immune destruction. Here we review the principal features, known risk factors and lymphomagenic mechanisms relevant to newly diagnosed CHL, with an emphasis on those most applicable to young people.
Collapse
Affiliation(s)
- Srishti Gupta
- Department of Pathology, University of Virginia Health System, 1215 Lee Street, 3rd Floor Hospital Expansion Room 3032, PO Box 800904, Charlottesville, VA 22908, USA
| | - Jeffrey W Craig
- Department of Pathology, University of Virginia Health System, 1215 Lee Street, 3rd Floor Hospital Expansion Room 3032, PO Box 800904, Charlottesville, VA 22908, USA.
| |
Collapse
|
43
|
Maura F, Adams RM, Aoki T. Scientific techniques in adolescent and young adult classic Hodgkin lymphoma. EJHAEM 2023; 4:902-907. [PMID: 38024640 PMCID: PMC10660113 DOI: 10.1002/jha2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 12/01/2023]
Abstract
Understanding the tumor microenvironment and genomic landscape is crucial for better prediction of treatment outcomes and developing novel therapies in Hodgkin lymphoma (HL). Recent advancements in genomics have enabled researchers to gain deeper insights into the genomic characteristics of HL at both single-cell resolution and the whole genome level. The use of noninvasive methods such as liquid biopsies and formalin-fixed paraffin-embedded-based imaging techniques has expanded the possibilities of applying cutting-edge analyses to routine clinically available samples. Collaborative efforts between adult and pediatric group are imperative to translate novel findings into routine patient care.
Collapse
Affiliation(s)
- Francesco Maura
- Sylvester Comprehensive Cancer CenterUniversity of MiamiMiamiFloridaUSA
| | - Ragini M. Adams
- Division of Pediatric Hematology, OncologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Tomohiro Aoki
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
44
|
Veltmaat N, Zhong Y, de Jesus FM, Tan GW, Bult JAA, Terpstra MM, Mutsaers PGNJ, Stevens WBC, Mous R, Vermaat JSP, Chamuleau MED, Noordzij W, Verschuuren EAM, Kok K, Kluiver JL, Diepstra A, Plattel WJ, van den Berg A, Nijland M. Genomic profiling of post-transplant lymphoproliferative disorders using cell-free DNA. J Hematol Oncol 2023; 16:104. [PMID: 37705050 PMCID: PMC10500745 DOI: 10.1186/s13045-023-01500-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023] Open
Abstract
Diagnosing post-transplant lymphoproliferative disorder (PTLD) is challenging and often requires invasive procedures. Analyses of cell-free DNA (cfDNA) isolated from plasma is minimally invasive and highly effective for genomic profiling of tumors. We studied the feasibility of using cfDNA to profile PTLD and explore its potential to serve as a screening tool. We included seventeen patients with monomorphic PTLD after solid organ transplantation in this multi-center observational cohort study. We used low-coverage whole genome sequencing (lcWGS) to detect copy number variations (CNVs) and targeted next-generation sequencing (NGS) to identify Epstein-Barr virus (EBV) DNA load and somatic single nucleotide variants (SNVs) in cfDNA from plasma. Seven out of seventeen (41%) patients had EBV-positive tumors, and 13/17 (76%) had stage IV disease. Nine out of seventeen (56%) patients showed CNVs in cfDNA, with more CNVs in EBV-negative cases. Recurrent gains were detected for 3q, 11q, and 18q. Recurrent losses were observed at 6q. The fraction of EBV reads in cfDNA from EBV-positive patients was 3-log higher compared to controls and EBV-negative patients. 289 SNVs were identified, with a median of 19 per sample. SNV burden correlated significantly with lactate dehydrogenase levels. Similar SNV burdens were observed in EBV-negative and EBV-positive PTLD. The most commonly mutated genes were TP53 and KMT2D (41%), followed by SPEN, TET2 (35%), and ARID1A, IGLL5, and PIM1 (29%), indicating DNA damage response, epigenetic regulation, and B-cell signaling/NFkB pathways as drivers of PTLD. Overall, CNVs were more prevalent in EBV-negative lymphoma, while no difference was observed in the number of SNVs. Our data indicated the potential of analyzing cfDNA as a tool for PTLD screening and response monitoring.
Collapse
Affiliation(s)
- Nick Veltmaat
- Department of Hematology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Yujie Zhong
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Filipe Montes de Jesus
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Geok Wee Tan
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Johanna A A Bult
- Department of Hematology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn M Terpstra
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Pim G N J Mutsaers
- Department of Hematology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Wendy B C Stevens
- Department of Hematology, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Rogier Mous
- Department of Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost S P Vermaat
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martine E D Chamuleau
- Department of Hematology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Walter Noordzij
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik A M Verschuuren
- Department of Pulmonology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Kok
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Joost L Kluiver
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Wouter J Plattel
- Department of Hematology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel Nijland
- Department of Hematology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
45
|
Randall MP, Spinner MA. Optimizing Treatment for Relapsed/Refractory Classic Hodgkin Lymphoma in the Era of Immunotherapy. Cancers (Basel) 2023; 15:4509. [PMID: 37760478 PMCID: PMC10526852 DOI: 10.3390/cancers15184509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Most patients with classic Hodgkin lymphoma (cHL) are cured with combination chemotherapy, but approximately 10-20% will relapse, and another 5-10% will have primary refractory disease. The treatment landscape of relapsed/refractory (R/R) cHL has evolved significantly over the past decade following the approval of brentuximab vedotin (BV), an anti-CD30 antibody-drug conjugate, and the PD-1 inhibitors nivolumab and pembrolizumab. These agents have significantly expanded options for salvage therapy prior to autologous hematopoietic cell transplantation (AHCT), post-transplant maintenance, and treatment of relapse after AHCT, which have led to improved survival in the modern era. In this review, we highlight our approach to the management of R/R cHL in 2023 with a focus on choosing first salvage therapy, post-transplant maintenance, and treatment of relapse after AHCT. We also discuss the management of older adults and transplant-ineligible patients, who require a separate approach. Finally, we review novel immunotherapy approaches in clinical trials, including combinations of PD-1 inhibitors with other immune-activating agents as well as novel antibody-drug conjugates, bispecific antibodies, and cellular immunotherapies. Ongoing studies assessing biomarkers of response to immunotherapy and dynamic biomarkers such as circulating tumor DNA may further inform treatment decisions and enable a more personalized approach in the future.
Collapse
Affiliation(s)
| | - Michael A. Spinner
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA;
| |
Collapse
|
46
|
Nagy Á, Bátai B, Kiss L, Gróf S, Király PA, Jóna Á, Demeter J, Sánta H, Bátai Á, Pettendi P, Szendrei T, Plander M, Körösmezey G, Alizadeh H, Kajtár B, Méhes G, Krenács L, Timár B, Csomor J, Tóth E, Schneider T, Mikala G, Matolcsy A, Alpár D, Masszi A, Bödör C. Parallel testing of liquid biopsy (ctDNA) and tissue biopsy samples reveals a higher frequency of EZH2 mutations in follicular lymphoma. J Intern Med 2023; 294:295-313. [PMID: 37259686 DOI: 10.1111/joim.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND Recent genomic studies revealed enhancer of zeste homolog 2 (EZH2) gain-of-function mutations, representing novel therapeutic targets in follicular lymphoma (FL) in around one quarter of patients. However, these analyses relied on single-site tissue biopsies and did not investigate the spatial heterogeneity and temporal dynamics of these alterations. OBJECTIVES We aimed to perform a systematic analysis of EZH2 mutations using paired tissue (tumor biopsies [TB]) and liquid biopsies (LB) collected prior to treatment within the framework of a nationwide multicentric study. METHODS Pretreatment LB and TB samples were collected from 123 patients. Among these, 114 had paired TB and LB, with 39 patients characterized with paired diagnostic and relapse samples available. The EZH2 mutation status and allele burden were assessed using an in-house-designed, highly sensitive multiplex droplet digital PCR assay. RESULTS EZH2 mutation frequency was found to be 41.5% in the entire cohort. In patients with paired TB and LB samples, EZH2 mutations were identified in 37.8% of the patients with mutations exclusively found in 5.3% and 7.9% of TB and LB samples, respectively. EZH2 mutation status switch was documented in 35.9% of the patients with paired diagnostic and relapse samples. We also found that EZH2 wild-type clones may infiltrate the bone marrow more frequently compared to the EZH2 mutant ones. CONCLUSION The in-depth spatio-temporal analysis identified EZH2 mutations in a considerably higher proportion of patients than previously reported. This expands the subset of FL patients who most likely would benefit from EZH2 inhibitor therapy.
Collapse
Affiliation(s)
- Ákos Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Bence Bátai
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Laura Kiss
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Stefánia Gróf
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Péter Attila Király
- Hematology and Lymphoma Unit, National Institute of Oncology, Budapest, Hungary
| | - Ádám Jóna
- Department of Hematology, Faculty of Medicine, Medical School of Clinical Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Demeter
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Hermina Sánta
- Szent György Hospital of County Fejér, Székesfehérvár, Hungary
| | - Árpád Bátai
- Szent György Hospital of County Fejér, Székesfehérvár, Hungary
| | - Piroska Pettendi
- Hetényi Géza Hospital, Clinic of County Jász-Nagykun-Szolnok, Szolnok, Hungary
| | - Tamás Szendrei
- Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Márk Plander
- Markusovszky University Teaching Hospital, Szombathely, Hungary
| | - Gábor Körösmezey
- Department of Medicine, Military Hospital - Medical Centre, Hungarian Defence Forces, Budapest, Hungary
| | - Hussain Alizadeh
- 1st Department of Internal Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, Medical School, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Krenács
- Laboratory of Tumor Pathology and Molecular Diagnostics, Szeged, Hungary
| | - Botond Timár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Judit Csomor
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Erika Tóth
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Tamás Schneider
- Hematology and Lymphoma Unit, National Institute of Oncology, Budapest, Hungary
| | - Gábor Mikala
- Department of Hematology and Stem Cell Transplantation, National Institute for Hematology and Infectious Diseases, South Pest Central Hospital, Budapest, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - András Masszi
- Hematology and Lymphoma Unit, National Institute of Oncology, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
47
|
Alderuccio JP, Kuker RA, Yang F, Moskowitz CH. Quantitative PET-based biomarkers in lymphoma: getting ready for primetime. Nat Rev Clin Oncol 2023; 20:640-657. [PMID: 37460635 DOI: 10.1038/s41571-023-00799-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 08/20/2023]
Abstract
The use of functional quantitative biomarkers extracted from routine PET-CT scans to characterize clinical responses in patients with lymphoma is gaining increased attention, and these biomarkers can outperform established clinical risk factors. Total metabolic tumour volume enables individualized estimation of survival outcomes in patients with lymphoma and has shown the potential to predict response to therapy suitable for risk-adapted treatment approaches in clinical trials. The deployment of machine learning tools in molecular imaging research can assist in recognizing complex patterns and, with image classification, in tumour identification and segmentation of data from PET-CT scans. Initial studies using fully automated approaches to calculate metabolic tumour volume and other PET-based biomarkers have demonstrated appropriate correlation with calculations from experts, warranting further testing in large-scale studies. The extraction of computer-based quantitative tumour characterization through radiomics can provide a comprehensive view of phenotypic heterogeneity that better captures the molecular and functional features of the disease. Additionally, radiomics can be integrated with genomic data to provide more accurate prognostic information. Further improvements in PET-based biomarkers are imminent, although their incorporation into clinical decision-making currently has methodological shortcomings that need to be addressed with confirmatory prospective validation in selected patient populations. In this Review, we discuss the current knowledge, challenges and opportunities in the integration of quantitative PET-based biomarkers in clinical trials and the routine management of patients with lymphoma.
Collapse
Affiliation(s)
- Juan Pablo Alderuccio
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Russ A Kuker
- Department of Radiology, Division of Nuclear Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fei Yang
- Department of Radiation Oncology, Division of Medical Physics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Craig H Moskowitz
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
48
|
Chamba C, Mawalla W. The future of lymphoma diagnosis, prognosis, and treatment monitoring in countries with limited access to pathology services. Semin Hematol 2023; 60:215-219. [PMID: 37596119 DOI: 10.1053/j.seminhematol.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
The world is moving towards precision medicine for cancer. This movement goes hand in hand with the development of newer advanced technologies for early, precise diagnosis of cancer and personalized treatment plans with fewer adverse effects for the patient. Liquid biopsy is one such advancement. At the same time, it has the advantage of minimal invasion and avoids serial invasive biopsies. In countries with limited access to pathology services, such as sub-Saharan Africa, liquid biopsy may provide an opportunity for early detection and prognostication of lymphoma. We discuss the current diagnostic modalities for lymphoma, highlighting the existing challenges with tissue biopsy, and how feasible it is for countries with limited pathology resources to leverage advancements made in the clinical application of liquid biopsy to improve lymphoma care.
Collapse
Affiliation(s)
- Clara Chamba
- Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - William Mawalla
- Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
49
|
Vassilakopoulos TP, Liaskas A, Pereyra P, Panayiotidis P, Angelopoulou MK, Gallamini A. Incorporating Monoclonal Antibodies into the First-Line Treatment of Classical Hodgkin Lymphoma. Int J Mol Sci 2023; 24:13187. [PMID: 37685994 PMCID: PMC10487754 DOI: 10.3390/ijms241713187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
The long-term survival of Hodgkin lymphoma (HL) patients treated according to the current standard of care is excellent. Combined-modality schedules (ABVD plus radiotherapy) in early-stage disease, along with treatment intensity adaptation to early metabolic response assessed by PET/CT in advanced stage HL, have been the cornerstones of risk stratification and treatment decision-making, minimizing treatment-related complications while keeping efficacy. Nevertheless, a non-negligible number of patients are primary refractory or relapse after front-line treatment. Novel immunotherapeutic agents, namely Brentuximab Vedotin (BV) and immune checkpoint inhibitors (CPI), have already shown outstanding efficacy in a relapsed/refractory setting in recent landmark studies. Several phase 2 single-arm studies suggest that the addition of these agents in the frontline setting could further improve long-term disease control permitting one to reduce the exposure to cytotoxic drugs. However, a longer follow-up is needed. At the time of this writing, the only randomized phase 3 trial so far published is the ECHELON-1, which compares 1 to 1 BV-AVD (Bleomycin is replaced by BV) with standard ABVD in untreated advanced-stage III and IV HL. The ECHELON-1 trial has proven that BV-AVD is safe and more effective both in terms of long-term disease control and overall survival. Just recently, the results of the S1826 SWOG trial demonstrated that the combination nivolumab-AVD (N-AVD) is better than BV-AVD, while preliminary results of other randomized ongoing phase 3 trials incorporating anti-PD-1 in this setting will be soon available. The aim of this review is to present the recent data regarding these novel agents in first-line treatment of HL and to highlight current and future trends which will hopefully reshape the overall management of this disease.
Collapse
Affiliation(s)
- Theodoros P. Vassilakopoulos
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.L.); (P.P.); (M.K.A.)
| | - Athanasios Liaskas
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.L.); (P.P.); (M.K.A.)
| | - Patricio Pereyra
- Department of Hematology, National Hospital Alejandro Posadas, Buenos Aires 1684, Argentina;
| | - Panayiotis Panayiotidis
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.L.); (P.P.); (M.K.A.)
| | - Maria K. Angelopoulou
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (A.L.); (P.P.); (M.K.A.)
| | - Andrea Gallamini
- Research and Clinical Innovation Department, Antoine Lacassagne Cancer Center, 06100 Nice, France;
| |
Collapse
|
50
|
Iriyama C, Murate K, Iba S, Okamoto A, Goto N, Yamamoto H, Kato T, Mihara K, Miyama T, Hattori K, Kajiya R, Okamoto M, Mizutani Y, Yamada S, Tsukamoto T, Hirose Y, Mutoh T, Watanabe H, Tomita A. Utility of cerebrospinal fluid liquid biopsy in distinguishing CNS lymphoma from cerebrospinal infectious/demyelinating diseases. Cancer Med 2023; 12:16972-16984. [PMID: 37501501 PMCID: PMC10501233 DOI: 10.1002/cam4.6329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/12/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Distinguishing between central nervous system lymphoma (CNSL) and CNS infectious and/or demyelinating diseases, although clinically important, is sometimes difficult even using imaging strategies and conventional cerebrospinal fluid (CSF) analyses. To determine whether detection of genetic mutations enables differentiation between these diseases and the early detection of CNSL, we performed mutational analysis using CSF liquid biopsy technique. METHODS In this study, we extracted cell-free DNA from the CSF (CSF-cfDNA) of CNSL (N = 10), CNS infectious disease (N = 10), and demyelinating disease (N = 10) patients, and performed quantitative mutational analysis by droplet-digital PCR. Conventional analyses were also performed using peripheral blood and CSF to confirm the characteristics of each disease. RESULTS Blood hemoglobin and albumin levels were significantly lower in CNSL than CNS infectious and demyelinating diseases, CSF cell counts were significantly higher in infectious diseases than CNSL and demyelinating diseases, and CSF-cfDNA concentrations were significantly higher in infectious diseases than CNSL and demyelinating diseases. Mutation analysis using CSF-cfDNA detected MYD88L265P and CD79Y196 mutations in 60% of CNSLs each, with either mutation detected in 80% of cases. Mutual existence of both mutations was identified in 40% of cases. These mutations were not detected in either infectious or demyelinating diseases, and the sensitivity and specificity of detecting either MYD88/CD79B mutations in CNSL were 80% and 100%, respectively. In the four cases biopsied, the median time from collecting CSF with the detected mutations to definitive diagnosis by conventional methods was 22.5 days (range, 18-93 days). CONCLUSIONS These results suggest that mutation analysis using CSF-cfDNA might be useful for differentiating CNSL from CNS infectious/demyelinating diseases and for early detection of CNSL, even in cases where brain biopsy is difficult to perform.
Collapse
Affiliation(s)
- Chisako Iriyama
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Kenichiro Murate
- Department of NeurologyFujita Health University School of MedicineToyoakeJapan
| | - Sachiko Iba
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Akinao Okamoto
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Naoe Goto
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Hideyuki Yamamoto
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Toshiharu Kato
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Keichiro Mihara
- International Center for Cell and Gene TherapyFujita Health UniversityToyoakeJapan
| | - Takahiko Miyama
- International Center for Cell and Gene TherapyFujita Health UniversityToyoakeJapan
| | - Keiko Hattori
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Ryoko Kajiya
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Masataka Okamoto
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
- Department of Hematology and OncologyFujita Health University Okazaki Medical CenterOkazakiJapan
| | - Yasuaki Mizutani
- Department of NeurologyFujita Health University School of MedicineToyoakeJapan
| | - Seiji Yamada
- Department of PathologyFujita Health University School of MedicineToyoakeJapan
| | - Tetsuya Tsukamoto
- Department of PathologyFujita Health University School of MedicineToyoakeJapan
| | - Yuichi Hirose
- Department of NeurosurgeryFujita Health University School of MedicineToyoakeJapan
| | - Tatsuro Mutoh
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| | - Hirohisa Watanabe
- Department of NeurologyFujita Health University School of MedicineToyoakeJapan
| | - Akihiro Tomita
- Department of HematologyFujita Health University School of MedicineToyoakeJapan
| |
Collapse
|