1
|
Yoshida K. Clonal hematopoiesis in cancer predisposition syndromes. Int J Hematol 2024:10.1007/s12185-024-03878-x. [PMID: 39643764 DOI: 10.1007/s12185-024-03878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/02/2024] [Accepted: 11/10/2024] [Indexed: 12/09/2024]
Abstract
After recent advances in sequencing technologies led to the discovery of novel genes associated with predisposition to hematological malignancies, studies have now shown that myeloid neoplasms associated with germline variants are more common than previously estimated. Based on these findings, myeloid neoplasms with germline predisposition have emerged as a unique category in the recent World Health Organization classification of Haematolymphoid Tumors. Clonal hematopoiesis is common in healthy individuals, particularly in older people. In patients with germline predisposition to hematological malignancies, clonal hematopoiesis is frequently observed at younger ages and is often associated with unique disease-specific driver mutations, some of which are hypothesized to compensate for the inherited defect. This review summarizes recent findings on clonal hematopoiesis in cancer predisposition syndromes.
Collapse
Affiliation(s)
- Kenichi Yoshida
- Division of Cancer Evolution, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
2
|
Aakash F, Gisriel SD, Zeidan AM, Bennett JM, Bejar R, Bewersdorf JP, Borate UM, Boultwood J, Brunner AM, Buckstein R, Carraway HE, Churpek JE, Daver NG, DeZern AE, Efficace F, Fenaux P, Figueroa ME, Garcia-Manero G, Gore SD, Greenberg PL, Griffiths EA, Halene S, Hourigan CS, Kim TK, Kim N, Komrokji RS, Kutchroo VK, List AF, Little RF, Majeti R, Nazha A, Nimer SD, Odenike O, Padron E, Patnaik MM, Platzbecker U, Della Porta MG, Roboz GJ, Sallman DA, Santini V, Sanz G, Savona MR, Sekeres MA, Stahl M, Starczynowski DT, Steensma DP, Taylor J, Abdel-Wahab O, Wei AH, Xie Z, Xu ML, Hasserjian RP, Loghavi S. Contemporary Approach to the Diagnosis and Classification of Myelodysplastic Neoplasms/Syndromes-Recommendations From the International Consortium for Myelodysplastic Neoplasms/Syndromes (MDS [icMDS]). Mod Pathol 2024; 37:100615. [PMID: 39322118 DOI: 10.1016/j.modpat.2024.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024]
Abstract
Myelodysplastic neoplasms/syndromes (MDS) are a heterogeneous group of biologically distinct entities characterized by variable degrees of ineffective hematopoiesis. Recently, 2 classification systems (the 5th edition of the World Health Organization Classification of Haematolymphoid tTumours and the International Consensus Classification) further subcharacterized MDS into morphologically and genetically defined groups. Accurate diagnosis and subclassification of MDS require a multistep systemic approach. The International Consortium for MDS (icMDS) summarizes a contemporary, practical, and multimodal approach to MDS diagnosis and classification.
Collapse
Affiliation(s)
- Fnu Aakash
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Savanah D Gisriel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale Cancer Center, New Haven, Connecticut
| | - John M Bennett
- James P. Wilmot Cancer Center, Division of Hematopathology, University of Rochester Medical Center, Rochester, New York
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, UC San Diego, La Jolla, California
| | - Jan Philipp Bewersdorf
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Uma M Borate
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jacqueline Boultwood
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew M Brunner
- Division of Hematology, Massachusetts General Hospital Brigham, Boston, Massachusetts
| | - Rena Buckstein
- Division of Medical Oncology/Hematology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Hetty E Carraway
- Leukemia Program, Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jane E Churpek
- Division of Haematology, Oncology, and Palliative Care, Department of Medicine, Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Naval G Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Hospital, Baltimore, Maryland
| | - Fabio Efficace
- Health Outcomes Research Unit, Italian Group for Adult Hematologic Diseases (GIMEMA), Rome, Italy
| | - Pierre Fenaux
- Service d'hématologie, Hôpital Saint-Louis (Assistance Publique Hôpitaux de Paris), Université de Paris-Cité, Paris, France
| | - Maria E Figueroa
- Biochemistry & Molecular Biology, Sylvester Comprehensive Cancer Center. University of Miami Miller School of Medicine, Miami, Florida
| | | | - Steven D Gore
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland
| | - Peter L Greenberg
- Division of Hematology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | | | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, Yale Cancer Center, New Haven, Connecticut
| | - Christopher S Hourigan
- Fralin Biomedical Research Institute, Virginia Tech FBRI Cancer Research Center, Washington, District of Columbia
| | - Tae Kon Kim
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Rami S Komrokji
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Alan F List
- Chief Scientific Officer, Stelexis Therapeutics, New York, New York
| | - Richard F Little
- Cancer Therapy Evaluation Program, National Cancer Institute, Rockville, Maryland
| | - Ravindra Majeti
- Division of Hematology, Department of Medicine, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Aziz Nazha
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen D Nimer
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Olatoyosi Odenike
- Leukemia Program, Section of Hematology/Oncology, University of Chicago Medicine and University of Chicago Comprehensive Cancer Center, Chicago, Illinois
| | - Eric Padron
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Uwe Platzbecker
- Department of Hematology and Cellular Therapy, University Hospital Leipzig, Leipzig, Germany
| | - Matteo G Della Porta
- IRCCS Humanitas Research Hospital, Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Gail J Roboz
- Weill Cornell Medical College and New York Presbyterian Hospital, New York, New York
| | - David A Sallman
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Valeria Santini
- Myelodysplastic Syndromes Unit, Department of Experimental and Clinical Medicine, Hematology, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Guillermo Sanz
- Health Research Institute La Fe, Valencia, Spain; Hospital Universitario y Politécnico La Fe, Valencia, Spain; CIBERONC, IS Carlos III, Madrid, Spain
| | - Michael R Savona
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mikkael A Sekeres
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Maximilian Stahl
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, Ohio
| | | | - Justin Taylor
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Omar Abdel-Wahab
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew H Wei
- Department of Haematology, Royal Melbourne Hospital, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Victoria, Australia
| | - Zhuoer Xie
- Malignant Hematology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital Brigham, Boston, Massachusetts
| | - Sanam Loghavi
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
3
|
McDonald E, Swoboda DM. Management of Myelodysplastic Syndrome in Pregnant Patients: Treatment Approaches and Considerations. Semin Hematol 2024; 61:465-469. [PMID: 39603906 DOI: 10.1053/j.seminhematol.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Myelodysplastic Syndromes (MDS) and pregnancy are a rare combination and as such, there remains limited recommendations for treatment of this special population of patients. In this paper, we present 2 clinical cases to provide theoretical decision making for management of pregnancy in the setting of MDS based on expert opinion and accumulation of available data. We outline additional considerations and workup to help guide providers in successful management of this complex clinical dilemma.
Collapse
Affiliation(s)
- Erin McDonald
- Tampa General Hospital Cancer Institute, Tampa, FL, USA
| | | |
Collapse
|
4
|
Qiu Y, Man C, Zhu L, Zhang S, Wang X, Gong D, Fan Y. R-loops' m6A modification and its roles in cancers. Mol Cancer 2024; 23:232. [PMID: 39425197 PMCID: PMC11487993 DOI: 10.1186/s12943-024-02148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
R-loops are three-stranded nucleic acid structures composed of an RNA-DNA hybrid and a displaced DNA strand. They are widespread and play crucial roles in regulating gene expression, DNA replication, and DNA and histone modifications. However, their regulatory mechanisms remain unclear. As R-loop detection technology advances, changes in R-loop levels have been observed in cancer models, often associated with transcription-replication conflicts and genomic instability. N6-methyladenosine (m6A) is an RNA epigenetic modification that regulates gene expression by affecting RNA localization, splicing, translation, and degradation. Upon reviewing the literature, we found that R-loops with m6A modifications are implicated in tumor development and progression. This article summarizes the molecular mechanisms and detection methods of R-loops and m6A modifications in gene regulation, and reviews recent research on m6A-modified R-loops in oncology. Our goal is to provide new insights into the origins of genomic instability in cancer and potential strategies for targeted therapy.
Collapse
Affiliation(s)
- Yue Qiu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Changfeng Man
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Luyu Zhu
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China.
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China.
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China.
| |
Collapse
|
5
|
Oster HS, Mittelman M. How we diagnose Myelodysplastic syndromes. Front Oncol 2024; 14:1415101. [PMID: 39346739 PMCID: PMC11427428 DOI: 10.3389/fonc.2024.1415101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
The Myelodysplastic syndromes (MDS) are a heterogenous group of clonal bone marrow (BM) stem cell myeloid neoplasms, characterized by ineffective hematopoiesis that results in dysplasia in hematopoietic cells and peripheral cytopenias, especially anemia, and a propensity to leukemic transformation. The suspicion of MDS is raised by a typical but not specific clinical picture and routine laboratory findings, but the gold standard for MDS diagnosis is still BM examination with the presence of uni-or multi-lineage dysplasia and increased blast percentage, together with exclusion of other reasons. Cytogenetics is also an essential part of the diagnostic and prognostic processes. Flow cytometry and full genetic characterization are helpful but not mandatory for MDS diagnosis. This review summarizes the current steps of diagnostic approach for a patient suspected of having MDS. We also express our hopes that within the near future, non-invasive technologies, especially digital and peripheral blood genetics, will mature and be introduced into practice.
Collapse
Affiliation(s)
- Howard S Oster
- Department of Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine, Tel Aviv, Israel
| | - Moshe Mittelman
- Department of Hematology, Tel Aviv Sourasky Medical Center, Tel Aviv University School of Medicine, Tel Aviv, Israel
| |
Collapse
|
6
|
Ma J, Zhao H, Ge F. Application of m6A regulators to predict transformation from myelodysplastic syndrome to acute myeloid leukemia via machine learning. Medicine (Baltimore) 2024; 103:e38897. [PMID: 38996166 PMCID: PMC11245222 DOI: 10.1097/md.0000000000038897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Myelodysplastic syndrome (MDS) frequently transforms into acute myeloid leukemia (AML). Predicting the risk of its transformation will help to make the treatment plan. Levels of expression of N6-methyladenosine (m6A) regulators is difference in patients with AML, MDS, and MDS transformed into AML. Seven machine learning algorithms were established based on all of 26 m6A or main differentially expressed m6A regulator genes, and attempted to establish a risk assessment method to distinguish AML from MDS and predict the transformation of MDS into AML. In collective of m6A regulators sets, support vector machine (SVM) and neural network (NNK) model best distinguished AML or MDS from control, with area under the ROC curve (AUROC) 0.966 and 0.785 respectively. The SVM model best distinguished MDS from AML, with AUROC 0.943, sensitivity 0.862, specificity 0.864, and accuracy 0.864. In differentially expressed gene sets, SVM and logistic regression (LR) model best distinguished AML or MDS from control, with AUROC 0.945 and 0.801 respectively. The random forest (RF) model best distinguished between MDS and AML, with AUROC 0.928, sensitivity 0.725, specificity 0.898, and accuracy 0.818. For predictive capacity of MDS transformed into AML, SVM model showed the best predicted in collective m6A regulators sets, with AUROC 0.781 and accuracy 0.740. The LR model showed the best predicted in differential expression m6A regulators sets, with AUROC 0.820 and accuracy 0.760. All results suggested that machine learning model established by m6A regulators can be used to distinguished AML or MDS from control, distinguished AML from MDS and predicted the transformation of MDS into AML.
Collapse
Affiliation(s)
- Jichun Ma
- Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | | | - Fang Ge
- Yantai Harbour Hospital, Yantai, Shandong, China
| |
Collapse
|
7
|
Feng Q, Xu K, Shah M, Li S, Leavitt AD, Godley LA, De Smith AJ, Wiemels JL. Evaluation of the genetic basis of familial-associated early-onset hematologic cancers in an ancestral/ethnically diverse population. Haematologica 2024; 109:2085-2091. [PMID: 38205536 PMCID: PMC11215364 DOI: 10.3324/haematol.2023.284224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Genetic predisposition to hematologic malignancies has historically been addressed utilizing patients recruited from clinical trials and pedigrees constructed at major treatment centers. Such efforts leave unexplored the genetic basis of variations in risk by race/ethnic group shown in population-based surveillance data where cancer registration, compulsory by law, delivers universal enrollment. To address this, we performed exome sequencing on DNA isolated from newborn bloodspots derived from sibling pairs with early-onset cancers across California in which at least one of the siblings developed a hematologic cancer, using unbiased recruitment from the full state population. We identified pathogenic/likely pathogenic (P/ LP) variants among 1,172 selected cancer genes that were private or present at low allele frequencies in reference populations. Within 64 subjects from 32 families, we found 9 LP variants shared between siblings, and an additional 7 such variants in singleton children (not shared with their sibling). In 8 of the shared cases, the ancestral origin of the local haplotype that carries P/LP variants matched the dominant global ancestry of study participant families. This was the case for Latino sibling pairs on FLG and CBLB, non-Latino White sibling pairs in TP53 and NOD2, and a shared GATA2 variant for a non-Latino Black sibling pair. A new inherited mutation in HABP2 was identified in a sibling pair, one with diffuse large B-cell lymphoma and the other with neuroblastoma. Overall, the profile of P/LP germline variants across ancestral/ethnic groups suggests that rare alleles contributing to hematologic diseases originate within their race/ethnic origin parental populations, demonstrating the value of this discovery process in diverse, population-based registries.
Collapse
Affiliation(s)
- Qianxi Feng
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Keren Xu
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Mancy Shah
- Division of Hematology/Oncology, Department of Medicine, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Shaobo Li
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Andrew D Leavitt
- Departments of Medicine and Laboratory Medicine, University of California, San Francisco, San Francisco, CA
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine, and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Adam J De Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA.
| |
Collapse
|
8
|
Attardi E, Tiberi L, Mattiuz G, Formicola D, Dirupo E, Raddi MG, Consagra A, Vergani D, Artuso R, Santini V. Prospective genetic germline evaluation in a consecutive group of adult patients aged <60 years with myelodysplastic syndromes. Hemasphere 2024; 8:e112. [PMID: 39015540 PMCID: PMC11250510 DOI: 10.1002/hem3.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 07/18/2024] Open
Abstract
Relevance of germline (GL) predisposition in myelodysplastic syndromes (MDSs) was stressed in both 2022 WHO and International Consensus classifications, but its incidence is probably underestimated, especially in young adult patients. We selected a cohort of 31 consecutive de novo MDS patients with unusual young age (<60 years). We performed exome sequencing (ES) on DNA extracted from noninvasive sources (peripheral blood and saliva), filtering for a panel of 344 genes specifically tailored for detecting GL variants related to clonal and nonclonal cytopenia. We observed at least one high- or low-confidence GL MDS variant in 7/31 (22.6%) and 9/31 (29.0%) of cases, respectively. Four of 31 patients (12.9%) confirmed having established MDS/AML predisposing disorders. We found heterozygous variants in genes involved in DNA repair/cancer predisposition (ATM, ATR, FANCM, PARN, BRCA1, BRCA2, CHEK2, MSH2) in 9/31 (29.0%) cases and variants affecting ribosome biogenesis (SBDS), hematopoietic stem cell (GATA2), and megakaryocyte (ANKRD26) differentiation in single cases. Two cases had variants in RBBP6, a gene previously described exclusively in familial myeloproliferative neoplasms. Lastly, four cases had variants in genes related to inherited anemias (CUBN and PIEZO1 genes). Our results showed that "young" MDS patients aged 40-60 years carried reported and unreported GL variants with an unexpectedly high proportion, and these events co-occurred with somatic mutations recurrent in myeloid neoplasms. We explored the "no man's land" of the young adult MDS cases adopting a practical and scalable diagnostic tool, capable to detect GL variants avoiding invasive methods.
Collapse
Affiliation(s)
- Enrico Attardi
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Lucia Tiberi
- Medical Genetics UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - Giorgio Mattiuz
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | | | - Elia Dirupo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Marco G. Raddi
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Angela Consagra
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Debora Vergani
- Medical Genetics UnitMeyer Children's Hospital IRCCSFlorenceItaly
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly
| | - Rosangela Artuso
- Medical Genetics UnitMeyer Children's Hospital IRCCSFlorenceItaly
| | - Valeria Santini
- MDS Unit, Hematology, AOU Careggi ‐ Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| |
Collapse
|
9
|
Hwang WC, Park K, Park S, Cheon NY, Lee JY, Hwang T, Lee S, Lee JM, Ju MK, Lee JR, Kwon YR, Jo WL, Kim M, Kim YJ, Kim H. Impaired binding affinity of YTHDC1 with METTL3/METTL14 results in R-loop accumulation in myelodysplastic neoplasms with DDX41 mutation. Leukemia 2024; 38:1353-1364. [PMID: 38514771 PMCID: PMC11147762 DOI: 10.1038/s41375-024-02228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
DEAD box helicase 41 (DDX41) mutations are the most prevalent predisposition to familial myelodysplastic syndrome (MDS). However, the precise roles of these variants in the pathogenesis of MDS have yet to be elucidated. Here, we discovered a novel mechanism by which DDX41 contributes to R-loop-induced DNA damage responses (DDR) in cooperation with the m6A-METTL complex (MAC) and YTHDC1 using DDX41 knockout (KO) and DDX41 knock-in (KI, R525H, Y259C) cell lines as well as primary samples from MDS patients. Compared to wild type (WT), DDX41 KO and KI led to increased levels of m6A RNA methylated R-loop. Interestingly, we found that DDX41 regulates m6A/R-loop levels by interacting with MAC components. Further, DDX41 promoted the recruitment of YTHDC1 to R-loops by promoting the binding between METTL3 and YTHDC1, which was dysregulated in DDX41-deficient cells, contributing to genomic instability. Collectively, we demonstrated that DDX41 plays a key role in the physiological control of R-loops in cooperation with MAC and YTHDC1. These findings provide novel insights into how defects in DDX41 influence MDS pathogenesis and suggest potential therapeutic targets for the treatment of MDS.
Collapse
Affiliation(s)
- Won Chan Hwang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Kibeom Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Silvia Park
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Na Young Cheon
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Taejoo Hwang
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Semin Lee
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Jong-Mi Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Kyung Ju
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Joo Rak Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Yong-Rim Kwon
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woo-Lam Jo
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Orthopaedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary's Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hongtae Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| |
Collapse
|
10
|
Kongkiatkamon S, Niparuck P, Rattanathammethee T, Kobbuaklee S, Suksusut A, Wudhikarn K, Ittiwut C, Chetruengchai W, Chuncharunee S, Bunworasate U, Suphapeetiporn K, Rojnuckarin P, Polprasert C. Prevalence and clinical outcomes of germline variants among patients with myeloid neoplasms. J Clin Pathol 2024:jcp-2023-209264. [PMID: 38777570 DOI: 10.1136/jcp-2023-209264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/12/2024] [Indexed: 05/25/2024]
Abstract
AIMS Myeloid neoplasms (MNs) with germline predisposition have been recognised as a distinct entity. Emerging evidence suggests that sporadic myelodysplastic syndromes may also harbour undetected germline predispositions. We investigated germline alterations in a cohort of 122 adult Thai MNs. METHODS MN patients were recruited and tested for germline variants using deep targeted next-generation sequencing. The germline variant was filtered using American College of Medical Genetics classifications and then evaluated for the association with clinical characteristics and outcomes. RESULTS Our findings revealed pathogenic/likely pathogenic germline alterations in 12 (10%) of the patients. These germline lesions were commonly found in the DNA damage response pathway (n=6, 50%). We also identified novel deleterious FANCA A1219GfsTer59 variants in two patients diagnosed with secondary acute myeloid leukaemia (sAML) from aplastic anaemia and AML with myelodysplasia related. Among sAML, individuals with germline mutations had inferior overall survival compared with those with wild-type alleles (2 months vs 12 months) with HR 4.7 (95% CI 1.0 to 20), p=0.037. Therefore, the presence of pathogenic or likely pathogenic mutations may be linked to inferior survival outcomes. CONCLUSIONS Our study highlighted that the prevalence of germline predisposition in Southeast Asian populations is comparable to that in Caucasians. This underscores the importance of germline genetic testing within the Asian population.
Collapse
Affiliation(s)
- Sunisa Kongkiatkamon
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Pimjai Niparuck
- Department of Medicine, Faculty of Medicine, Mahidol University Ramathibodi Hospital, Bangkok, Thailand
| | | | - Sirorat Kobbuaklee
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Amornchai Suksusut
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Kitsada Wudhikarn
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Chupong Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Wanna Chetruengchai
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Suporn Chuncharunee
- Department of Medicine, Faculty of Medicine, Mahidol University Ramathibodi Hospital, Bangkok, Thailand
| | - Udomsak Bunworasate
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics,Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| | - Chantana Polprasert
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
11
|
Mak LS, Li X, Chan WYK, Leung AWK, Cheuk DKL, Yuen LYP, So JCC, Ha SY, Liu APY. Case report: Therapy-related myeloid neoplasms in three pediatric cases with medulloblastoma. Front Oncol 2024; 14:1364199. [PMID: 38595820 PMCID: PMC11002154 DOI: 10.3389/fonc.2024.1364199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Medulloblastoma is the most common malignant brain tumor in children, often requiring intensive multimodal therapy, including chemotherapy with alkylating agents. However, therapy-related complications, such as therapy-related myeloid neoplasms (t-MNs), can arise, particularly in patients with genetic predisposition syndromes. This case report presents three pediatric cases of medulloblastoma with subsequent development of t-MNs, highlighting the potential role of genetic predisposition and the importance of surveillance for hematological abnormalities in long-term survivors. Case presentation We describe three cases of pediatric medulloblastoma who developed t-MNs after receiving chemotherapy, including alkylating agents. Two of the patients had underlying genetic predisposition syndromes (TP53 pathologic variants). The latency period between initial diagnosis of medulloblastoma and the development of secondary cancer varied among the cases, ranging from 17 to 65 months. The three cases eventually succumbed from secondary malignancy, therapy-related complications and progression of primary disease, respectively. Conclusions This report highlights the potential association between genetic predisposition syndromes and the development of therapy-related myeloid neoplasms in pediatric medulloblastoma survivors. It underscores the importance of surveillance for hematological abnormalities among such patients.
Collapse
Affiliation(s)
- Li Shun Mak
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Xiuling Li
- Department of Pathology, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Wilson Y. K. Chan
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Alex W. K. Leung
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Daniel K. L. Cheuk
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Liz Y. P. Yuen
- Department of Pathology, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Jason C. C. So
- Department of Pathology, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Shau Yin Ha
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
| | - Anthony P. Y. Liu
- Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Kulasekararaj A, Cavenagh J, Dokal I, Foukaneli T, Gandhi S, Garg M, Griffin M, Hillmen P, Ireland R, Killick S, Mansour S, Mufti G, Potter V, Snowden J, Stanworth S, Zuha R, Marsh J. Guidelines for the diagnosis and management of adult aplastic anaemia: A British Society for Haematology Guideline. Br J Haematol 2024; 204:784-804. [PMID: 38247114 DOI: 10.1111/bjh.19236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 01/23/2024]
Abstract
Pancytopenia with hypocellular bone marrow is the hallmark of aplastic anaemia (AA) and the diagnosis is confirmed after careful evaluation, following exclusion of alternate diagnosis including hypoplastic myelodysplastic syndromes. Emerging use of molecular cyto-genomics is helpful in delineating immune mediated AA from inherited bone marrow failures (IBMF). Camitta criteria is used to assess disease severity, which along with age and availability of human leucocyte antigen compatible donor are determinants for therapeutic decisions. Supportive care with blood and platelet transfusion support, along with anti-microbial prophylaxis and prompt management of opportunistic infections remain key throughout the disease course. The standard first-line treatment for newly diagnosed acquired severe/very severe AA patients is horse anti-thymocyte globulin and ciclosporin-based immunosuppressive therapy (IST) with eltrombopag or allogeneic haemopoietic stem cell transplant (HSCT) from a matched sibling donor. Unrelated donor HSCT in adults should be considered after lack of response to IST, and up front for young adults with severe infections and a readily available matched unrelated donor. Management of IBMF, AA in pregnancy and in elderly require special attention. In view of the rarity of AA and complexity of management, appropriate discussion in multidisciplinary meetings and involvement of expert centres is strongly recommended to improve patient outcomes.
Collapse
Affiliation(s)
- Austin Kulasekararaj
- King's College Hospital NHS Foundation Trust, London and King's College London, London, UK
| | - Jamie Cavenagh
- St Bartholomew's Hospital, Barts Health NHS Trust, London, UK
| | - Inderjeet Dokal
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London and Barts Health NHS Trust, London, UK
| | - Theodora Foukaneli
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- NHS Blood and Transplant, Bristol, UK
| | - Shreyans Gandhi
- King's College Hospital NHS Foundation Trust, London and King's College London, London, UK
| | - Mamta Garg
- Leicester Royal Infirmary, Leicester, UK
- British Society Haematology Task Force Representative, London, UK
| | | | | | - Robin Ireland
- King's College Hospital NHS Foundation Trust, London and King's College London, London, UK
| | - Sally Killick
- University Hospitals Dorset NHS Foundation Trust, The Royal Bournemouth Hospital, Bournemouth, UK
| | - Sahar Mansour
- St George's Hospital/St George's University of London, London, UK
| | - Ghulam Mufti
- King's College Hospital NHS Foundation Trust, London and King's College London, London, UK
| | - Victoria Potter
- King's College Hospital NHS Foundation Trust, London and King's College London, London, UK
| | - John Snowden
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Simon Stanworth
- Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford and NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Roslin Zuha
- James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, Norfolk, England
| | - Judith Marsh
- King's College Hospital NHS Foundation Trust, London and King's College London, London, UK
| |
Collapse
|
13
|
Elghetany MT, Patnaik MM, Khoury JD. Myelodysplastic neoplasms evolving from inherited bone marrow failure syndromes / germline predisposition syndromes: Back under the microscope. Leuk Res 2024; 137:107441. [PMID: 38301422 DOI: 10.1016/j.leukres.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Inherited bone marrow failure syndromes and germline predisposition syndromes (IBMFS/GPS) are associated with increased risk for hematologic malignancies, particularly myeloid neoplasms, such as myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). The diagnosis of MDS in these syndromes poses difficulty due to frequent bone marrow hypocellularity and the presence of some degree of dysplastic features related to the underlying germline defect causing abnormal maturation of one or more cell lines. Yet, the diagnosis of MDS is usually associated with a worse outcome in several IBMFS/GPS. Criteria for the diagnosis of MDS in IBMFS/GPS have not been standardized with some authors suggesting a mixture of morphologic, cytogenetic, and genetic criteria. This review highlights these challenges and suggests a more standardized approach to nomenclature and diagnostic criteria.
Collapse
Affiliation(s)
- M Tarek Elghetany
- Department of Pathology & Immunology and Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph D Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
14
|
Gera K, Chauhan A, Castillo P, Rahman M, Mathavan A, Mathavan A, Oganda-Rivas E, Elliott L, Wingard JR, Sayour EJ. Vaccines: a promising therapy for myelodysplastic syndrome. J Hematol Oncol 2024; 17:4. [PMID: 38191498 PMCID: PMC10773074 DOI: 10.1186/s13045-023-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024] Open
Abstract
Myelodysplastic neoplasms (MDS) define clonal hematopoietic malignancies characterized by heterogeneous mutational and clinical spectra typically seen in the elderly. Curative treatment entails allogeneic hematopoietic stem cell transplant, which is often not a feasible option due to older age and significant comorbidities. Immunotherapy has the cytotoxic capacity to elicit tumor-specific killing with long-term immunological memory. While a number of platforms have emerged, therapeutic vaccination presents as an appealing strategy for MDS given its promising safety profile and amenability for commercialization. Several preclinical and clinical trials have investigated the efficacy of vaccines in MDS; these include peptide vaccines targeting tumor antigens, whole cell-based vaccines and dendritic cell-based vaccines. These therapeutic vaccines have shown acceptable safety profiles, but consistent clinical responses remain elusive despite robust immunological reactions. Combining vaccines with immunotherapeutic agents holds promise and requires further investigation. Herein, we highlight therapeutic vaccine trials while reviewing challenges and future directions of successful vaccination strategies in MDS.
Collapse
Affiliation(s)
- Kriti Gera
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Anjali Chauhan
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Paul Castillo
- Division of Hematology and Oncology, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Maryam Rahman
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Akash Mathavan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Akshay Mathavan
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Elizabeth Oganda-Rivas
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA
| | - Leighton Elliott
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - John R Wingard
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA.
| | - Elias J Sayour
- Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Immunotherapy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Li Y, Cheng L, Peng Y, Wang L, Zhang W, Yin Y, Zhang J, Wu X. The role of genetic factors in pediatric myelodysplastic syndromes with different outcomes. BMC Pediatr 2024; 24:28. [PMID: 38191334 PMCID: PMC10773107 DOI: 10.1186/s12887-023-04492-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Pediatric myelodysplastic syndromes (MDS) are rare disorders with an unrevealed pathogenesis. Our aim is to explore the role of genetic factors in the pathogenesis of MDS in children with different outcomes and to discover the correlation between genetic features and clinical outcomes as well as disease characteristics. METHODS We conducted an analysis of archived genetic data from 26 patients diagnosed with pediatric MDS at our institution between 2015 and 2021, examining the association between different genetic characteristics and clinical manifestations as well as prognosis. Additionally, We presented three cases with distinct genetic background and outcomes as examples to elaborate the role of genetic factors in pediatric MDS with different prognoses. RESULTS Genetic variations were detected in 13 out of the 26 patients, including 8 patients with co-occurrence of somatic and germline mutations (CSGMs) and 5 patients with somatic mutations alone. Our analysis revealed that advanced MDS (4/8, 50% vs. 1/5, 20% and 4/11, 36.4%), PD (3/8, 37.5% vs. 1/5, 20% and 1/11 9.1%), and TD (6/8, 75% vs. 2/5, 40% and 2/11, 18.2%) were more common in patients with CSGMs than those with somatic mutations alone or without any mutations. We also found out in our study that 8 patients with CSGMs had evidently different clinical outcomes, and we presented 3 of them as examples for elaboration. Case 1 with germline and somatic mutations of unknown significance had a relatively slow disease course and a good prognosis. Case 2 with compound heterozygous germline SBDS variants and somatic mutations like del20q had a stable disease course and a reversed outcome. Case 3 with a germline GATA2 variant and somatic mutations including - 7 had a rapidly progressive disease course and a worst prognosis. CONCLUSION Our findings indicate that genetic background of pediatric MDS is closely linked with disease characteristics as well as outcomes and that CSGMs may lead to disease progression. It should be emphasized that the interaction between certain germline variants and somatic mutations, such as SBDS and del20q, may result in hematopoietic stem cell adaptation (improved hematopoiesis) and reversed clinical outcomes, which can facilitate the development of targeted therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Cheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yun Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenzhi Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhong Yin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Zhang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
16
|
Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, Minami Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int J Mol Sci 2024; 25:652. [PMID: 38203823 PMCID: PMC10779750 DOI: 10.3390/ijms25010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuoku 104-0045, Japan;
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8665, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| |
Collapse
|
17
|
Hellström-Lindberg ES, Kröger N. Clinical decision-making and treatment of myelodysplastic syndromes. Blood 2023; 142:2268-2281. [PMID: 37874917 DOI: 10.1182/blood.2023020079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
ABSTRACT The myelodysplastic syndromes (MDSs) constitute a profoundly heterogeneous myeloid malignancy with a common origin in the hemopoietic stem cell compartment. Consequently, patient management and treatment are as heterogeneous. Decision-making includes identifying risk, symptoms, and options for an individual and conducting a risk-benefit analysis. The only potential cure is allogeneic stem cell transplantation, and albeit the fraction of patients with MDS who undergo transplant increase over time because of better management and increased donor availability, a majority are not eligible for this intervention. Current challenges encompass to decrease the relapse risk, the main cause of hematopoietic stem cell transplantation failure. Hypomethylating agents (HMAs) constitute firstline treatment for higher-risk MDSs. Combinations with other drugs as firstline treatment has, to date, not proven more efficacious than monotherapy, although combinations approved for acute myeloid leukemia, including venetoclax, are under evaluation and often used as rescue treatment. The treatment goal for lower-risk MDS is to improve cytopenia, mainly anemia, quality of life, and, possibly, overall survival. Erythropoiesis-stimulating agents (ESAs) constitute firstline treatment for anemia and have better and more durable responses if initiated before the onset of a permanent transfusion need. Treatment in case of ESA failure or ineligibility should be tailored to the main disease mechanism: immunosuppression for hypoplastic MDS without high-risk genetics, lenalidomide for low-risk del(5q) MDS, and luspatercept for MDS with ring sideroblasts. Approved therapeutic options are still scarcer for MDS than for most other hematologic malignancies. Better tools to match disease biology with treatment, that is, applied precision medicines are needed to improve patient outcome.
Collapse
Affiliation(s)
- Eva S Hellström-Lindberg
- Department of Medicine, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Calvete O, Mestre J, Risueño RM, Manzanares A, Acha P, Xicoy B, Solé F. Two-Time Multiplexed Targeted Next-Generation Sequencing Might Help the Implementation of Germline Screening Tools for Myelodysplastic Syndromes/Hematologic Neoplasms. Biomedicines 2023; 11:3222. [PMID: 38137443 PMCID: PMC10740751 DOI: 10.3390/biomedicines11123222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Next-generation sequencing (NGS) tools have importantly helped the classification of myelodysplastic syndromes (MDS), guiding the management of patients. However, new concerns are under debate regarding their implementation in routine clinical practice for the identification of germline predisposition. Cost-effective targeted NGS tools would improve the current standardized studies and genetic counseling. Here, we present our experience in a preliminary study detecting variants using a two-time multiplexed library strategy. Samples from different MDS patients were first mixed before library preparation and later multiplexed for a sequencing run. Two different mixes including a pool of three (3×) and four (4×) samples were evaluated. The filtered variants found in the individually sequenced samples were compared with the variants found in the two-time multiplexed studies to determine the detection efficiency scores. The same candidate variants were found in the two-time multiplexed studies in comparison with the individual tNGS. The variant allele frequency (VAF) values of the candidate variants were also compared. No significant differences were found between the expected and observed VAF percentages in both the 3× (p-value 0.74) and 4× (p-value 0.34) multiplexed studies. Our preliminary results suggest that the two-time multiplexing strategy might have the potential to help reduce the cost of evaluating germline predisposition.
Collapse
Affiliation(s)
- Oriol Calvete
- MDS Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Julia Mestre
- MDS Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ruth M. Risueño
- Leukos Biotech, 08021 Barcelona, Spain
- Faculty of Education, University of Atlántico Medio, 35017 Las Palmas, Spain
| | - Ana Manzanares
- MDS Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Pamela Acha
- MDS Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Blanca Xicoy
- Hematology Service, ICO-Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Francesc Solé
- MDS Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
19
|
Chen X, Li C, Wang Y, Geng S, Xiao M, Zeng L, Deng C, Li M, Huang X, Weng J, Du X, Lai P. Diagnostic and prognostic value of ferroptosis-related genes in patients with Myelodysplastic neoplasms. Hematology 2023; 28:2288475. [PMID: 38038045 DOI: 10.1080/16078454.2023.2288475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
This study delves into the emerging role of ferroptosis in Myelodysplastic Neoplasms (MDS) and aims to identify a prognostic ferroptosis-related gene signature for MDS. Utilizing RNA-seq data and clinical information from the Gene Expression Omnibus database, the researchers extracted ferroptosis-related genes from the FerrDb website and conducted differential expression analysis using the 'limma' package in R. Hub ferroptosis-related genes in MDS were screened using the "RandomForest" and "carat" R packages. Kaplan -Meier and Cox regression analyses were employed to assess the prognostic role of three identified hub genes (BNIP3, MDM2, and RRM2). Receiver operator characteristic curve analysis confirmed the diagnostic efficacy of these genes. The study delved further into immune infiltration correlations, ncRNA-transcription factor coregulatory network analysis, and the identification of potential therapeutic drugs targeting hub ferroptosis-related genes in MDS. The researchers constructed a 3-gene signature-based risk score using datasets GSE58831 and GSE19429, demonstrating high accuracy (AUC > 0.75) in both datasets for survival prediction in MDS. A nomogram analysis reinforced the prognostic value of the risk-scoring model. Immunological analysis revealed an association between the risk score and immune infiltration. Quantitative reverse transcription polymerase chain reaction (qPCR) data indicated significant expression differences in MDM2, RRM2, and BNIP3 between MDS and healthy bone marrow samples. Notably, MDM2 and RRM2 showed decreased expression, while BNIP3 exhibited increased expression in MDS samples. This comprehensive study concludes that BNIP3, MDM2, and RRM2 hold diagnostic and prognostic significance in MDS and provide valuable insights into immune cell landscapes and potential therapeutic avenues for this condition.
Collapse
Affiliation(s)
- Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chao Li
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Yulian Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Maozhi Xiao
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lingji Zeng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chengxin Deng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Minming Li
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xin Huang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
20
|
Mendoza H, Siddon AJ. Molecular Techniques and Gene Mutations in Myelodysplastic Syndromes. Clin Lab Med 2023; 43:549-563. [PMID: 37865502 DOI: 10.1016/j.cll.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Sequencing technology, particularly next-generation sequencing, has highlighted the importance of gene mutations in myelodysplastic syndromes (MDSs). Mutations affecting DNA methylation, chromatin modification, RNA splicing, cohesin complex, and other pathways are present in most MDS cases and often have prognostic and clinical implications. Updated international diagnostic guidelines as well as the new International Prognostic Scoring System-Molecular incorporate molecular data into the diagnosis and prognostication of MDS. With whole-genome sequencing predicted to become the future standard of genetic evaluation, it is likely that MDS diagnosis and management will become increasingly personalized based on an individual's clinical and genomic profile.
Collapse
Affiliation(s)
- Hadrian Mendoza
- Department of Internal Medicine, Yale School of Medicine, PO Box 208030, New Haven, CT 06520, USA
| | - Alexa J Siddon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Abstract
Myelodysplastic syndrome (MDS) in children is rare, accounting for < 5% of all childhood hematologic malignancies. With the advent of next-generation sequencing, the etiology of many childhood MDS (cMDS) cases has been elucidated with the finding of predisposing germline mutations in one-quarter to one-third of cases; somatic mutations have also been identified, indicating that cMDS is different than adult MDS. Herein, cMDS classification schema, clinical presentation, laboratory values, bone marrow histology, differential diagnostic considerations, and the recent molecular findings of cMDS are described.
Collapse
Affiliation(s)
- Karen M Chisholm
- Hematopathology, Department of Laboratories, Seattle Children's Hospital, 4800 Sand Point Way Northeast, FB.4.510, Seattle, WA 98105, USA; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, 4800 Sand Point Way Northeast, FB.4.510, Seattle, WA 98105, USA.
| | - Sandra D Bohling
- Hematopathology, Department of Laboratories, Seattle Children's Hospital, 4800 Sand Point Way Northeast, FB.4.510, Seattle, WA 98105, USA; Department of Laboratory Medicine and Pathology, University of Washington Medical Center, 4800 Sand Point Way Northeast, FB.4.510, Seattle, WA 98105, USA
| |
Collapse
|
22
|
Li J, Bledsoe JR. Inherited bone marrow failure syndromes and germline predisposition to myeloid neoplasia: A practical approach for the pathologist. Semin Diagn Pathol 2023; 40:429-442. [PMID: 37507252 DOI: 10.1053/j.semdp.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
The diagnostic work up and surveillance of germline disorders of bone marrow failure and predisposition to myeloid malignancy is complex and involves correlation between clinical findings, laboratory and genetic studies, and bone marrow histopathology. The rarity of these disorders and the overlap of clinical and pathologic features between primary and secondary causes of bone marrow failure, acquired aplastic anemia, and myelodysplastic syndrome may result in diagnostic uncertainty. With an emphasis on the pathologist's perspective, we review diagnostically useful features of germline disorders including Fanconi anemia, Shwachman-Diamond syndrome, telomere biology disorders, severe congenital neutropenia, GATA2 deficiency, SAMD9/SAMD9L diseases, Diamond-Blackfan anemia, and acquired aplastic anemia. We discuss the distinction between baseline morphologic and genetic findings of these disorders and features that raise concern for the development of myelodysplastic syndrome.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Pathology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, United States
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, United States.
| |
Collapse
|
23
|
Patel N, Calvo KR. How I diagnose myeloid neoplasms with germline predisposition. Am J Clin Pathol 2023; 160:352-364. [PMID: 37458302 PMCID: PMC11004794 DOI: 10.1093/ajcp/aqad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/05/2023] [Indexed: 10/04/2023] Open
Abstract
OBJECTIVES Pathologists play a crucial role in the initial diagnosis of germline predisposition to myeloid neoplasia and subsequent surveillance for disease progression. The diagnostic workup can be challenging, particularly if clinical history, laboratory testing, or genetic studies are incomplete or unavailable. METHODS Through case-based examples, we illustrate common diagnostic challenges and pitfalls encountered during bone marrow examination of patients being evaluated for myeloid malignancy with potential germline predisposition to myeloid neoplasia. RESULTS Lack of familial disease, the absence of syndromic manifestations, and late-onset hematologic malignancy do not exclude an underlying germline predisposition syndrome. Targeted myeloid sequencing panels can help identify potential germline alterations but may not detect large deletions or insertions, noncoding, or novel variants. Confirmation of the germline nature of an alteration detected in the peripheral blood or bone marrow ideally requires genetic testing using nonhematopoietic germline DNA to definitively distinguish between germline and somatic alterations. The ideal tissue source for germline testing is cultured skin fibroblasts. Certain germline predisposition syndromes can contain characteristic baseline bone marrow dysplastic-appearing features associated with cytopenias without constituting myelodysplastic syndrome. CONCLUSION Recognizing germline predisposition to myeloid neoplasia is critical for proper disease management. This recognition is particularly important for patients who will undergo hematopoietic stem cell transplantation to screen potential related donors. Integration of the clinical history, bone marrow findings, cytogenetic studies, and specialized laboratory and molecular genetic testing is often essential for accurate diagnosis and subsequent disease monitoring.
Collapse
Affiliation(s)
- Nisha Patel
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, US
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, US
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, US
| |
Collapse
|
24
|
Rosenquist R, Bernard E, Erkers T, Scott DW, Itzykson R, Rousselot P, Soulier J, Hutchings M, Östling P, Cavelier L, Fioretos T, Smedby KE. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med 2023; 294:413-436. [PMID: 37424223 DOI: 10.1111/joim.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
- PRISM Center for Personalized Medicine, Gustave Roussy, Villejuif, France
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - David W Scott
- BC Cancer's Centre for Lymphoid Cancer, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Jean Soulier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Hématologie Biologique, APHP, Hôpital Saint-Louis, Paris, France
| | - Martin Hutchings
- Department of Haematology and Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Karin E Smedby
- Department of Hematology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
25
|
Badar T, Madanat YF, Zeidan AM. Updates on risk stratification and management of lower-risk myelodysplastic syndromes/neoplasms. Future Oncol 2023; 19:1877-1889. [PMID: 37750305 DOI: 10.2217/fon-2023-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The majority of lower-risk myelodysplastic syndromes/neoplasms patients present with anemia. Historically, these patients were treated with erythropoiesis-stimulating agents (ESA), with modest responses. A subset of these patients with del(5q) may do better with lenalidomide. Recently, in randomized trials, luspatercept has shown better responses compared with ESAs in treatment-naive patients and imetelstat in patients refractory to ESAs. Other evaluated novel compounds (fostamatinib, H3B-880, roxadustat, pyruvate kinase receptor activator) have not yet shown meaningful efficacy. More needs to be done to improve outcomes; in pursuance of this, participation in clinical trials evaluating novel therapies should be encouraged. While lower-risk myelodysplastic syndromes/neoplasms tend to have an indolent course, a subset of them has a dismal prognosis. Improving prognostication and serial monitoring will help in identifying high-risk patients for appropriate management.
Collapse
Affiliation(s)
- Talha Badar
- Division of Hematology & Oncology, Department of Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yazan F Madanat
- Division of Hematology & Medical Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Leukemia Program, Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine & Yale Cancer Center, New Haven, CT 06510, USA
| |
Collapse
|
26
|
Marion W, Koppe T, Chen CC, Wang D, Frenis K, Fierstein S, Sensharma P, Aumais O, Peters M, Ruiz-Torres S, Chihanga T, Boettcher S, Shimamura A, Bauer DE, Schlaeger T, Wells SI, Ebert BL, Starczynowski D, da Rocha EL, Rowe RG. RUNX1 mutations mitigate quiescence to promote transformation of hematopoietic progenitors in Fanconi anemia. Leukemia 2023; 37:1698-1708. [PMID: 37391485 PMCID: PMC11009868 DOI: 10.1038/s41375-023-01945-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Many inherited bone marrow failure syndromes (IBMFSs) present a high risk of transformation to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). During transformation of IBMFSs, hematopoietic stem and progenitor cells (HSPCs) with poor fitness gain ectopic, dysregulated self-renewal secondary to somatic mutations via undefined mechanisms. Here, in the context of the prototypical IBMFS Fanconi anemia (FA), we performed multiplexed gene editing of mutational hotspots in MDS-associated genes in human induced pluripotent stem cells (iPSCs) followed by hematopoietic differentiation. We observed aberrant self-renewal and impaired differentiation of HSPCs with enrichment of RUNX1 insertions and deletions (indels), generating a model of IBMFS-associated MDS. We observed that compared to the failure state, FA MDS cells show mutant RUNX1-mediated blunting of the G1/S cell cycle checkpoint that is normally activated in FA in response to DNA damage. RUNX1 indels also lead to activation of innate immune signaling, which stabilizes the homologous recombination (HR) effector BRCA1, and this pathway can be targeted to abrogate viability and restore sensitivity to genotoxins in FA MDS. Together, these studies develop a paradigm for modeling clonal evolution in IBMFSs, provide basic understanding of the pathogenesis of MDS, and uncover a therapeutic target in FA-associated MDS.
Collapse
Affiliation(s)
- William Marion
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Tiago Koppe
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Chun-Chin Chen
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dahai Wang
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Katie Frenis
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Sara Fierstein
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Prerana Sensharma
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Olivia Aumais
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Michael Peters
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Steffen Boettcher
- Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Akiko Shimamura
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Susanne I Wells
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Benjamin L Ebert
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Daniel Starczynowski
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | | | - R Grant Rowe
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA.
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Okabe S, Tanaka Y, Moriyama M, Gotoh A. WEE1 and PARP-1 play critical roles in myelodysplastic syndrome and acute myeloid leukemia treatment. Cancer Cell Int 2023; 23:128. [PMID: 37370065 DOI: 10.1186/s12935-023-02961-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Myelodysplastic syndrome (MDS) is a clonal bone marrow disorder defined by cytopenia and is associated with an increased risk of transformation to acute myeloid leukemia (AML). The outcome of MDS is poor, so alternative therapeutic approaches are needed to improve survival. The inhibition of the DNA damage response pathway, including poly (ADP-ribose) polymerase-1 (PARP-1), has been approved to treat several cancers. In addition, WEE1, a nuclear kinase, is overexpressed in many cancers. Therefore, a WEE1 inhibitor combined with a PARP-1 inhibitor could inhibit the proliferation of MDS and AML. METHODS We analyzed whether WEE1 was regulated in the progression of MDS and AML. We also evaluated the efficacy of MK-1775 (WEE1 inhibitor) and talazoparib (PARP-1 inhibitor). RESULTS PARP-1 expression was higher in the AML cells than in the MDS cells. However, WEE1 expression remained unchanged. MK-1775 or talazoparib alone inhibited MDS and AML cells after 72 h, and cellular cytotoxicity and caspase 3/7 activity were increased. The combined use of MK-1775 and talazoparib produced superior efficacy than either drug alone and SKM-1 colony formation was reduced. Significant cell populations in the sub-G1 phase were found in the cell-cycle analyses. Additionally, γ-H2AX expression and caspase 3 activity were increased. The combined treatment also changed the mitochondrial membrane potential. CONCLUSIONS The combination of a WEE1 inhibitor and PARP-1 inhibitor had enhanced efficacy and is proposed as a new therapeutic option for patients with MDS or AML. Our findings have clinical implications for a potential novel therapeutic strategy for MDS and AML patients.
Collapse
Affiliation(s)
- Seiichi Okabe
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan.
| | - Yuko Tanaka
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan
| | - Mitsuru Moriyama
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, 160-0023, Tokyo, Japan
| |
Collapse
|
28
|
Mendes-de-Almeida DP, Andrade FG, Sampaio Carvalho MDPS, Córdoba JC, Souza MDS, Neto PC, Spector LG, Pombo-de-Oliveira MS. Identifying childhood leukemia with an excess of hematological malignancies in first-degree relatives in Brazil. Front Oncol 2023; 13:1207695. [PMID: 37416530 PMCID: PMC10322205 DOI: 10.3389/fonc.2023.1207695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/23/2023] [Indexed: 07/08/2023] Open
Abstract
Background Familial aggregation in childhood leukemia is associated with epidemiological and genomic factors. Albeit epidemiological studies on the familial history of hematological malignancies (FHHMs) are scarce, genome-wide studies have identified inherited gene variants associated with leukemia risk. We revisited a dataset of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) patients to explore the familial aggregation of malignancies among their relatives. Methods A series of 5,878 childhood leukemia (≤21 years of age) from the EMiLI study (2000-2019) were assessed. Lack of well-documented familial history of cancer (FHC) and 670 cases associated with genetic phenotypic syndromes were excluded. Leukemia subtypes were established according to World Health Organization recommendations. Logistic regression-derived odds ratios (ORs) and 95% confidence intervals (CIs) were performed and adjusted by age as a continuous variable, where ALL was the reference group for AML and conversely. The pedigree of 18 families with excess hematological malignancy was constructed. Results FHC was identified in 472 of 3,618 eligible cases (13%). Ninety-six of the 472 patients (20.3%) had an occurrence of FHHMs among relatives. Overall, FHC was significantly associated with AML (OR, 1.36; 95% CI, 1.01-1.82; p = 0.040). Regarding the first-degree relatives, the OR, 2.92 95% CI,1.57-5.42 and the adjOR, 1.16 (1.03-1.30; p0.001) were found for FHC and FHHM, respectively. Conclusion Our findings confirmed that AML subtypes presented a significant association with hematological malignancies in first-degree relatives. Genomic studies are needed to identify germline mutations that significantly increase the risk of developing myeloid malignancies in Brazil.
Collapse
Affiliation(s)
- Daniela P. Mendes-de-Almeida
- Department of Hematology, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | | | | | - José Carlos Córdoba
- Department of Pediatric Hematology, Hospital da Criança de Brasília Jose Alencar, Brasília, Distrito Federal, Brazil
| | - Marcelo dos Santos Souza
- Department of Pediatric Hematology, Centro de Tratamento Oncológico e Hematológico Infantil - Hospital Regional Rosa Pedrossian (CETOHI-HRMS), Campo Grande, Mato Grosso do Sul, Brazil
| | - Paulo Chagas Neto
- Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Logan G. Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
29
|
Baccelli F, Leardini D, Cerasi S, Messelodi D, Bertuccio SN, Masetti R. ERCC6L2-related disease: a novel entity of bone marrow failure disorder with high risk of clonal evolution. Ann Hematol 2023; 102:699-705. [PMID: 36790458 PMCID: PMC9998559 DOI: 10.1007/s00277-023-05128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
ERCC excision repair 6 like 2 (ERCC6L2) gene encodes for different helicase-like protein members of the Snf2 family involved in transcription-coupled nucleotide excision repair and in cell proliferation. Germline homozygous mutations in children and adults predispose to a peculiar bone marrow failure phenotype characterized by mild hematological alterations with a high risk of developing acute myeloid leukemia. The outcome for patients with leukemia progression is dismal while patients undergoing hematopoietic stem cell transplantation in the early stage have better outcomes. The ERCC6L2-related hematological disease presents a high penetrance, posing important questions regarding the treatment strategies and possible preemptive approaches. This review describes the biological function of ERCC6L2 and the clinical manifestations of the associated disease, trying to focus on the unsolved clinical questions.
Collapse
Affiliation(s)
- Francesco Baccelli
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti, 11, 40138, Bologna, Italy
| | - Davide Leardini
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti, 11, 40138, Bologna, Italy.
| | - Sara Cerasi
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti, 11, 40138, Bologna, Italy
| | - Daria Messelodi
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti, 11, 40138, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Salvatore Nicola Bertuccio
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti, 11, 40138, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Oncology and Hematology Unit "Lalla Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Giuseppe Massarenti, 11, 40138, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
30
|
Calvete O, Mestre J, Durmaz A, Gurnari C, Maciejewski JP, Solé F. Are the current guidelines for identification of myelodysplastic syndrome with germline predisposition strong enough? Br J Haematol 2023; 201:e5-e11. [PMID: 36717968 PMCID: PMC11104019 DOI: 10.1111/bjh.18676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Affiliation(s)
- Oriol Calvete
- Myelodysplastic Syndrome Group, Josep Carreras, Leukaemia Research Institute, ICO-Hospital Germans, Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julia Mestre
- Myelodysplastic Syndrome Group, Josep Carreras, Leukaemia Research Institute, ICO-Hospital Germans, Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arda Durmaz
- Department of Translational Hematology and, Oncology Research, Lerner Research Institute, Cleveland Clinic, Ohio, Cleveland, USA
| | - Carmelo Gurnari
- Department of Translational Hematology and, Oncology Research, Lerner Research Institute, Cleveland Clinic, Ohio, Cleveland, USA
- Department of Biomedicine and Prevention, PhD, in Immunology, Molecular Medicine and Applied, Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and, Oncology Research, Lerner Research Institute, Cleveland Clinic, Ohio, Cleveland, USA
| | - Francesc Solé
- Myelodysplastic Syndrome Group, Josep Carreras, Leukaemia Research Institute, ICO-Hospital Germans, Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Kotsiafti A, Giannakas K, Christoforou P, Liapis K. Progress toward Better Treatment of Therapy-Related AML. Cancers (Basel) 2023; 15:cancers15061658. [PMID: 36980546 PMCID: PMC10046015 DOI: 10.3390/cancers15061658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Therapy-related acute myeloid leukemia (t-AML) comprises 10-20% of all newly diagnosed cases of AML and is related to previous use of chemotherapy or ionizing radiotherapy for an unrelated malignant non-myeloid disorder or autoimmune disease. Classic examples include alkylating agents and topoisomerase II inhibitors, whereas newer targeted therapies such as poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors have emerged as causative agents. Typically, t-AML is characterized by adverse karyotypic abnormalities and molecular lesions that confer a poor prognosis. Nevertheless, there are also cases of t-AML without poor-risk features. The management of these patients remains controversial. We describe the causes and pathophysiology of t-AML, putting emphasis on its mutational heterogeneity, and present recent advances in its treatment including CPX-351, hypomethylating agent plus venetoclax combination, and novel, molecularly targeted agents that promise to improve the cure rates. Evidence supporting personalized medicine for patients with t-AML is presented, as well as the authors' clinical recommendations.
Collapse
Affiliation(s)
| | | | - Panagiotis Christoforou
- Pathophysiology Department, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Konstantinos Liapis
- Dragana Campus, Democritus University of Thrace Medical School, 681 00 Alexandroupolis, Greece
| |
Collapse
|
32
|
Calvete O, Mestre J, Jerez A, Solé F. The Secondary Myelodysplastic Neoplasms (MDS) Jigsaw. Cancers (Basel) 2023; 15:1483. [PMID: 36900275 PMCID: PMC10000488 DOI: 10.3390/cancers15051483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
There is a great deal of controversy in the hematologic community regarding the classification of secondary myelodysplastic neoplasms (MDSs). Current classifications are based on the presence of genetic predisposition and MDS post-cytotoxic therapy (MDS-pCT) etiologies. However, since these risk factors are not exclusive for secondary MDSs and there are multiple overlapping scenarios, a comprehensive and definitive classification is yet to come. In addition, a sporadic MDS might arise after a primary tumor fulfills the diagnostic criteria of MDS-pCT without a causative cytotoxicity. In this review, we describe the triggering pieces of a secondary MDS jigsaw: previous cytotoxic therapy, germline predisposition and clonal hematopoiesis. Epidemiological and translational efforts are needed to put these pieces together and ascertain the real weight of each of these pieces in each MDS patient. Future classifications must contribute to understanding the role of secondary MDS jigsaw pieces in different concomitant or independent clinical scenarios associated with the primary tumor.
Collapse
Affiliation(s)
- Oriol Calvete
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Barcelona, Spain
| | - Julia Mestre
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Barcelona, Spain
| | - Andrés Jerez
- Experimental Hematology Unit, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, 08916 Barcelona, Spain
| |
Collapse
|
33
|
Deng J, McReynolds LJ. Inherited bone marrow failure syndromes: a review of current practices and potential future research directions. Curr Opin Pediatr 2023; 35:75-83. [PMID: 36354296 PMCID: PMC9812861 DOI: 10.1097/mop.0000000000001196] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE OF REVIEW Recent advances in diagnosis and treatment of inherited bone marrow failure syndromes (IBMFS) have significantly improved disease understanding and patient outcomes. Still, IBMFS present clinical challenges that require further progress. This review aims to provide an overview of the current state of diagnosis and treatment modalities of the major IBMFS seen in paediatrics and present areas of prioritization for future research. RECENT FINDINGS Haematopoietic cell transplantation (HCT) for IBMFS has greatly improved in recent years, shifting the research and clinical focus towards cancer predispositions and adverse effects of treatment. Each year, additional novel genes and pathogenic variants are described, and genotype-phenotype mapping becomes more sophisticated. Moreover, novel therapeutics exploring disease-specific mechanisms show promise to complement HCT and treat patients who cannot undergo current treatment options. SUMMARY Research on IBMFS should have short-term and long-term goals. Immediate challenges include solidifying diagnostic and treatment guidelines, cancer detection and treatment, and continued optimization of HCT. Long-term goals should emphasize genotype-phenotype mapping, genetic screening tools and gene-targeted therapy.
Collapse
Affiliation(s)
- Joseph Deng
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lisa J. McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
34
|
DeFilipp Z, Ciurea SO, Cutler C, Robin M, Warlick ED, Nakamura R, Brunner AM, Dholaria B, Walker AR, Kröger N, Bejanyan N, Atallah E, Tamari R, Solh MM, Percival ME, de Lima M, Scott B, Oran B, Garcia-Manero G, Hamadani M, Carpenter P, DeZern AE. Hematopoietic Cell Transplantation in the Management of Myelodysplastic Syndrome: An Evidence-Based Review from the American Society for Transplantation and Cellular Therapy Committee on Practice Guidelines. Transplant Cell Ther 2023; 29:71-81. [PMID: 36436780 DOI: 10.1016/j.jtct.2022.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
The sole curative therapy for myelodysplastic syndrome (MDS) is allogeneic hematopoietic cell transplantation (HCT). Here this therapeutic modality is reviewed and critically evaluated in the context of the evidence. Specific criteria were used for searching the published literature and for grading the quality and strength of the evidence and the strength of the recommendations. A panel of MDS experts comprising transplantation and nontransplantation physicians developed consensus treatment recommendations. This review summarizes the standard MDS indications for HCT and addresses areas of controversy. Recent prospective trials have confirmed that allogeneic HCT confers survival benefits in patients with advanced or high-risk MDS compared with nontransplantation approaches, and the use of HCT is increasing in older patients with good performance status. However, patients with high-risk cytogenetic or molecular mutations remain at high risk for relapse. It is unknown whether administration of novel therapies before or after transplantation may decrease the risk of disease relapse in selected populations. Ongoing and future studies will investigate revised approaches to disease risk stratification, patient selection, and post-transplantation approaches to optimize allogeneic HCT outcomes for patients with MDS.
Collapse
Affiliation(s)
- Zachariah DeFilipp
- Hematopoieitic Cell Transplant and Cell Therapy Program, Massachusetts General Hospital, Boston, Massachusetts.
| | - Stefan O Ciurea
- Hematopoietic Stem Cell Transplantation and Cellular Therapy Program, Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Orange, California
| | - Corey Cutler
- Division of Stem Cell Transplantation and Cellular Therapy, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Marie Robin
- Service d'Hématologie-Greffe, Hôpital Saint-Louis, APHP, Université de Paris-Cité, Paris, France
| | - Erica D Warlick
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Andrew M Brunner
- Center for Leukemia, Massachusetts General Hospital, Boston, Massachusetts
| | - Bhagirathbhai Dholaria
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alison R Walker
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida
| | - Nicolaus Kröger
- University Hospital Eppendorf, Bone Marrow Transplant Centre, Hamburg, Germany
| | - Nelli Bejanyan
- Department of Blood & Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, Florida
| | - Ehab Atallah
- Division of Hematology and Oncology, Medical College of Wisconsin, Cancer Center-Froedtert Hospital, Milwaukee, Wisconsin
| | - Roni Tamari
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melhem M Solh
- Blood and Marrow Transplant Program at Northside Hospital, Atlanta, Georgia
| | - Mary-Elizabeth Percival
- Fred Hutchinson Cancer Research Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Marcos de Lima
- The Ohio State University James Comprehensive Cancer Center, Columbus, Ohio
| | - Bart Scott
- Fred Hutchinson Cancer Research Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Mehdi Hamadani
- Blood and Marrow Transplant and Cellular Therapy Program, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul Carpenter
- Fred Hutchinson Cancer Research Center, Clinical Research Division and University of Washington, Seattle, Washington
| | - Amy E DeZern
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
35
|
Kim K, Ong F, Sasaki K. Current Understanding of DDX41 Mutations in Myeloid Neoplasms. Cancers (Basel) 2023; 15:344. [PMID: 36672294 PMCID: PMC9857085 DOI: 10.3390/cancers15020344] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
The DEAD-box RNA helicase 41 gene, DDX41, is frequently mutated in hereditary myeloid neoplasms, identified in 2% of entire patients with AML/MDS. The pathogenesis of DDX41 mutation is related to the defect in the gene's normal functions of RNA and innate immunity. About 80% of patients with germline DDX41 mutations have somatic mutations in another allele, resulting in the biallelic DDX41 mutation. Patients with the disease with DDX41 mutations reportedly often present with the higher-grade disease, but there are conflicting reports about its impact on survival outcomes. Recent studies using larger cohorts reported a favorable outcome with a better response to standard therapies in patients with DDX41 mutations to patients without DDX41 mutations. For stem-cell transplantation, it is important for patients with DDX41 germline mutations to identify family donors early to improve outcomes. Still, there is a gap in knowledge on whether germline DDX41 mutations and its pathology features can be targetable for treatment, and what constitutes an appropriate screening/surveillance strategy for identified carriers. This article reviews our current understanding of DDX41 mutations in myeloid neoplasms in pathologic and clinical features and their clinical implications.
Collapse
Affiliation(s)
| | | | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
36
|
Caldirola MS, Seminario AG, Luna PC, Curciarello R, Docena GH, Fernandez Escobar N, Drelichman G, Gattorno M, de Jesus AA, Goldbach-Mansky R, Gaillard MI, Bezrodnik L. Case report: De novo SAMD9L truncation causes neonatal-onset autoinflammatory syndrome which was successfully treated with hematopoietic stem cell transplantation. Front Pediatr 2023; 11:1108207. [PMID: 36969289 PMCID: PMC10036571 DOI: 10.3389/fped.2023.1108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/16/2023] [Indexed: 03/29/2023] Open
Abstract
During recent years, the identification of monogenic mutations that cause sterile inflammation has expanded the spectrum of autoinflammatory diseases, clinical disorders characterized by uncontrolled systemic and organ-specific inflammation that, in some cases, can mirror infectious conditions. Early studies support the concept of innate immune dysregulation with a predominance of myeloid effector cell dysregulation, particularly neutrophils and macrophages, in causing tissue inflammation. However, recent discoveries have shown a complex overlap of features of autoinflammation and/or immunodeficiency contributing to severe disease phenotypes. Here, we describe the first Argentine patient with a newly described frameshift mutation in SAMD9L c.2666delT/p.F889Sfs*2 presenting with a complex phenotypic overlap of CANDLE-like features and severe infection-induced cytopenia and immunodeficiency. The patient underwent a fully matched unrelated HSCT and has since been in inflammatory remission 5 years post-HSCT.
Collapse
Affiliation(s)
- María Soledad Caldirola
- Servicio de Inmunología, “Hospital de Niños “Dr. Ricardo Gutiérrez,”Buenos Aires, Argentina
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP-CONICET-GCBA), Buenos Aires, Argentina
- Correspondence: María Soledad Caldirola
| | - Analía Gisela Seminario
- Servicio de Inmunología, “Hospital de Niños “Dr. Ricardo Gutiérrez,”Buenos Aires, Argentina
- Centro de Inmunología Clínica Dra. Bezrodnik y equipo, Buenos Aires, Argentina
| | | | - Renata Curciarello
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)-CONICET-UNLP, Dto. de Cs Biológicas, Facultad de Ciencias Exactas, La Plata, Buenos Aires, Argentina
| | - Guillermo Horacio Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)-CONICET-UNLP, Dto. de Cs Biológicas, Facultad de Ciencias Exactas, La Plata, Buenos Aires, Argentina
| | | | | | - Marco Gattorno
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Adriana A. de Jesus
- Translational Autoinflammatory Diseases Section, NIAID/NIH, Bethesda, MD, United States
| | | | - María Isabel Gaillard
- Servicio de Inmunología, “Hospital de Niños “Dr. Ricardo Gutiérrez,”Buenos Aires, Argentina
- Sección Citometría-Laboratorio Stamboulian, Buenos Aires, Argentina
| | - Liliana Bezrodnik
- Centro de Inmunología Clínica Dra. Bezrodnik y equipo, Buenos Aires, Argentina
| |
Collapse
|
37
|
Cazzola M. Risk stratifying MDS in the time of precision medicine. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:375-381. [PMID: 36485160 PMCID: PMC9821394 DOI: 10.1182/hematology.2022000349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Myelodysplastic syndromes (MDS) are myeloid neoplasms characterized by morphologic dysplasia, persistent cytopenia, and a variable risk of evolution to acute myeloid leukemia (AML). Risk stratification is crucial in a patient-centered approach to the treatment of MDS. Based on hematologic parameters and cytogenetic abnormalities, the Revised International Prognostic Scoring System is currently used for this purpose. In the past years, the use of massively parallel DNA sequencing has clarified the genetic basis of MDS and has enabled development of novel diagnostic and prognostic approaches. When conventional cytogenetics is combined with gene sequencing, more than 90% of patients are found to carry a somatic genetic lesion. In addition, a portion of patients has germline variants that predispose them to myeloid neoplasms. The recently developed International Consensus Classification of MDS includes new entities that are molecularly defined-namely, SF3B1-mutant and TP53-mutant MDS. The International Working Group for Prognosis in MDS has just developed the International Prognostic Scoring System-Molecular (IPSS-M) for MDS, which considers hematologic parameters, cytogenetic abnormalities, and somatic gene mutations. The IPSS-M score is personalized and can be obtained using a web-based calculator that returns not only the individual score but also the expected leukemia-free survival, overall survival, and risk of AML transformation. Providing an efficient risk stratification of patients with MDS, the IPSS-M represents a valuable tool for individual risk assessment and treatment decisions.
Collapse
Affiliation(s)
- Mario Cazzola
- Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Duncavage EJ, Bagg A, Hasserjian RP, DiNardo CD, Godley LA, Iacobucci I, Jaiswal S, Malcovati L, Vannucchi AM, Patel KP, Arber DA, Arcila ME, Bejar R, Berliner N, Borowitz MJ, Branford S, Brown AL, Cargo CA, Döhner H, Falini B, Garcia-Manero G, Haferlach T, Hellström-Lindberg E, Kim AS, Klco JM, Komrokji R, Lee-Cheun Loh M, Loghavi S, Mullighan CG, Ogawa S, Orazi A, Papaemmanuil E, Reiter A, Ross DM, Savona M, Shimamura A, Skoda RC, Solé F, Stone RM, Tefferi A, Walter MJ, Wu D, Ebert BL, Cazzola M. Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood 2022; 140:2228-2247. [PMID: 36130297 PMCID: PMC10488320 DOI: 10.1182/blood.2022015853] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/27/2022] [Indexed: 11/20/2022] Open
Abstract
Myeloid neoplasms and acute leukemias derive from the clonal expansion of hematopoietic cells driven by somatic gene mutations. Although assessment of morphology plays a crucial role in the diagnostic evaluation of patients with these malignancies, genomic characterization has become increasingly important for accurate diagnosis, risk assessment, and therapeutic decision making. Conventional cytogenetics, a comprehensive and unbiased method for assessing chromosomal abnormalities, has been the mainstay of genomic testing over the past several decades and remains relevant today. However, more recent advances in sequencing technology have increased our ability to detect somatic mutations through the use of targeted gene panels, whole-exome sequencing, whole-genome sequencing, and whole-transcriptome sequencing or RNA sequencing. In patients with myeloid neoplasms, whole-genome sequencing represents a potential replacement for both conventional cytogenetic and sequencing approaches, providing rapid and accurate comprehensive genomic profiling. DNA sequencing methods are used not only for detecting somatically acquired gene mutations but also for identifying germline gene mutations associated with inherited predisposition to hematologic neoplasms. The 2022 International Consensus Classification of myeloid neoplasms and acute leukemias makes extensive use of genomic data. The aim of this report is to help physicians and laboratorians implement genomic testing for diagnosis, risk stratification, and clinical decision making and illustrates the potential of genomic profiling for enabling personalized medicine in patients with hematologic neoplasms.
Collapse
Affiliation(s)
- Eric J. Duncavage
- Department of Pathology and Immunology, Washington University, St. Louis, MO
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Courtney D. DiNardo
- Division of Cancer Medicine, Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Lucy A. Godley
- Section of Hematology and Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | | | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia & Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Alessandro M. Vannucchi
- Department of Hematology, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence and Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Keyur P. Patel
- Division of Pathology/Lab Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Maria E. Arcila
- Department of Pathology, Memorial Sloan Lettering Cancer Center, New York, NY
| | - Rafael Bejar
- Division of Hematology and Oncology, University of California San Diego, La Jolla, CA
| | - Nancy Berliner
- Division of Hematology, Brigham and Women’s Hospital, Harvard University, Boston, MA
| | - Michael J. Borowitz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Susan Branford
- Department of Genetics and Molecular Pathology, Center for Cancer Biology, SA Pathology, Adelaide, Australia
| | - Anna L. Brown
- Department of Pathology, South Australia Heath Alliance, Adelaide, Australia
| | - Catherine A. Cargo
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Brunangelo Falini
- Department of Hematology, CREO, University of Perugia, Perugia, Italy
| | | | | | - Eva Hellström-Lindberg
- Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette S. Kim
- Department of Pathology, Brigham and Women’s Hospital, Harvard University, Boston, MA
| | - Jeffery M. Klco
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Rami Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Mignon Lee-Cheun Loh
- Department of Pediatrics, Ben Towne Center for Childhood Cancer Research, Seattle Children’s Hospital, University of Washington, Seattle, WA
| | - Sanam Loghavi
- Division of Pathology/Lab Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Seishi Ogawa
- University of Kyoto School of Medicine, Kyoto, Japan
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX
| | | | - Andreas Reiter
- University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - David M. Ross
- Haematology Directorate, SA Pathology, Adelaide, Australia
| | - Michael Savona
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Akiko Shimamura
- Dana Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Radek C. Skoda
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Francesc Solé
- MDS Group, Institut de Recerca contra la Leucèmia Josep Carreras, Barcelona, Spain
| | - Richard M. Stone
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - David Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mario Cazzola
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
39
|
Abstract
Myelodysplastic syndromes (MDS) are a family of myeloid cancers with diverse genotypes and phenotypes characterized by ineffective haematopoiesis and risk of transformation to acute myeloid leukaemia (AML). Some epidemiological data indicate that MDS incidence is increasing in resource-rich regions but this is controversial. Most MDS cases are caused by randomly acquired somatic mutations. In some patients, the phenotype and/or genotype of MDS overlaps with that of bone marrow failure disorders such as aplastic anaemia, paroxysmal nocturnal haemoglobinuria (PNH) and AML. Prognostic systems, such as the revised International Prognostic Scoring System (IPSS-R), provide reasonably accurate predictions of survival at the population level. Therapeutic goals in individuals with lower-risk MDS include improving quality of life and minimizing erythrocyte and platelet transfusions. Therapeutic goals in people with higher-risk MDS include decreasing the risk of AML transformation and prolonging survival. Haematopoietic cell transplantation (HCT) can cure MDS, yet fewer than 10% of affected individuals receive this treatment. However, how, when and in which patients with HCT for MDS should be performed remains controversial, with some studies suggesting HCT is preferred in some individuals with higher-risk MDS. Advances in the understanding of MDS biology offer the prospect of new therapeutic approaches.
Collapse
|
40
|
Polyclonal evolution of Fanconi anemia to MDS and AML revealed at single cell resolution. Exp Hematol Oncol 2022; 11:64. [PMID: 36167633 PMCID: PMC9513989 DOI: 10.1186/s40164-022-00319-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Background Fanconi anemia (FA) is a rare disease of bone marrow failure. FA patients are prone to develop myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). However, the molecular clonal evolution of the progression from FA to MDS/AML remains elusive. Methods Herein, we performed a comprehensive genomic analysis using an FA patient (P1001) sample that transformed to MDS and subsequently AML, together with other three FA patient samples at the MDS stage. Results Our finding showed the existence of polyclonal pattern in these cases at MDS stage. The clonal evolution analysis of FA case (P1001) showed the mutations of UBASH3A, SF3B1, RUNX1 and ASXL1 gradually appeared at the later stage of MDS, while the IDH2 alteration become the dominant clone at the leukemia stage. Moreover, single-cell sequencing analyses further demonstrated a polyclonal pattern was present at either MDS or AML stages, whereas IDH2 mutated cell clones appeared only at the leukemia stage. Conclusions We thus propose a clonal evolution model from FA to MDS and AML for this patient. The results of our study on the clonal evolution and mutated genes of the progression of FA to AML are conducive to understanding the progression of the disease that still perplexes us. Supplementary Information The online version contains supplementary material available at 10.1186/s40164-022-00319-5.
Collapse
|
41
|
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, Wang SA, Bagg A, Barbui T, Branford S, Bueso-Ramos CE, Cortes JE, Dal Cin P, DiNardo CD, Dombret H, Duncavage EJ, Ebert BL, Estey EH, Facchetti F, Foucar K, Gangat N, Gianelli U, Godley LA, Gökbuget N, Gotlib J, Hellström-Lindberg E, Hobbs GS, Hoffman R, Jabbour EJ, Kiladjian JJ, Larson RA, Le Beau MM, Loh MLC, Löwenberg B, Macintyre E, Malcovati L, Mullighan CG, Niemeyer C, Odenike OM, Ogawa S, Orfao A, Papaemmanuil E, Passamonti F, Porkka K, Pui CH, Radich JP, Reiter A, Rozman M, Rudelius M, Savona MR, Schiffer CA, Schmitt-Graeff A, Shimamura A, Sierra J, Stock WA, Stone RM, Tallman MS, Thiele J, Tien HF, Tzankov A, Vannucchi AM, Vyas P, Wei AH, Weinberg OK, Wierzbowska A, Cazzola M, Döhner H, Tefferi A. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022; 140:1200-1228. [PMID: 35767897 PMCID: PMC9479031 DOI: 10.1182/blood.2022015850] [Citation(s) in RCA: 1158] [Impact Index Per Article: 579.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 02/02/2023] Open
Abstract
The classification of myeloid neoplasms and acute leukemias was last updated in 2016 within a collaboration between the World Health Organization (WHO), the Society for Hematopathology, and the European Association for Haematopathology. This collaboration was primarily based on input from a clinical advisory committees (CACs) composed of pathologists, hematologists, oncologists, geneticists, and bioinformaticians from around the world. The recent advances in our understanding of the biology of hematologic malignancies, the experience with the use of the 2016 WHO classification in clinical practice, and the results of clinical trials have indicated the need for further revising and updating the classification. As a continuation of this CAC-based process, the authors, a group with expertise in the clinical, pathologic, and genetic aspects of these disorders, developed the International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias. Using a multiparameter approach, the main objective of the consensus process was the definition of real disease entities, including the introduction of new entities and refined criteria for existing diagnostic categories, based on accumulated data. The ICC is aimed at facilitating diagnosis and prognostication of these neoplasms, improving treatment of affected patients, and allowing the design of innovative clinical trials.
Collapse
Affiliation(s)
| | - Attilio Orazi
- Texas Tech University Health Sciences Center El Paso, El Paso, TX
| | | | | | | | | | - Sa A Wang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adam Bagg
- University of Pennsylvania, Philadelphia, PA
| | - Tiziano Barbui
- Clinical Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | | | | | | | | | - Hervé Dombret
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | - Jason Gotlib
- Stanford University School of Medicine, Stanford, CA
| | | | | | | | | | - Jean-Jacques Kiladjian
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kimmo Porkka
- Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Akiko Shimamura
- Dana-Farber Cancer Institute, Boston, MA
- Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Jorge Sierra
- Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | - Hwei-Fang Tien
- National Taiwan University Hospital, Taipei City, Taiwan
| | | | | | - Paresh Vyas
- University of Oxford, Oxford, United Kingdom
| | - Andrew H Wei
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
42
|
Merli P, Pagliara D, Mina T, Bertaina V, Li Pira G, Lazzaro S, Biagini S, Galaverna F, Strocchio L, Carta R, Catanoso ML, Quagliarella F, Becilli M, Boccieri E, Del Bufalo F, Panigari A, Agostini A, Pedace L, Pizzi S, Perotti C, Algeri M, Zecca M, Locatelli F. αβT- and B-cell-depleted HLA-haploidentical hematopoietic stem cell transplantation in children with myelodysplastic syndromes. Haematologica 2022; 107:2966-2971. [PMID: 36005558 PMCID: PMC9713553 DOI: 10.3324/haematol.2022.280698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Pietro Merli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome,P. MERLI -
| | - Daria Pagliara
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Tommaso Mina
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Valentina Bertaina
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Giuseppina Li Pira
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Stefania Lazzaro
- Transfusion Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Simone Biagini
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Federica Galaverna
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Luisa Strocchio
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Roberto Carta
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Maria Luigia Catanoso
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Francesco Quagliarella
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marco Becilli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Emilia Boccieri
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Francesca Del Bufalo
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Arianna Panigari
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Annalisa Agostini
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Lucia Pedace
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Cesare Perotti
- Departments of Immunohematology and Transfusion, Infectious Diseases, Respiratory Diseases, Intensive Care, Virology and Clinical Epidemiology & Biometry, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Mattia Algeri
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome,Department of Life Sciences and Public Health, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
43
|
Alcedo PE, Gutierrez-Rodrigues F, Patel BA. Somatic mutations in VEXAS Syndrome and Erdheim-Chester Disease: Inflammatory Myeloid Diseases. Semin Hematol 2022; 59:156-166. [DOI: 10.1053/j.seminhematol.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 12/27/2022]
|
44
|
Templé M, Kosmider O. VEXAS Syndrome: A Novelty in MDS Landscape. Diagnostics (Basel) 2022; 12:1590. [PMID: 35885496 PMCID: PMC9315795 DOI: 10.3390/diagnostics12071590] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Fever, inflammation and vacuoles in hematopoietic cells represent the main features associated with VEXAS syndrome, a new prototype of autoinflammatory disorders genetically characterized by somatic mutation of the UBA1 gene which encodes the enzyme1-activating enzyme (E1) required for ubiquitin signaling. Described very recently, patients with VEXAS syndrome present a systemic autoinflammatory syndrome associated with hematological impairments, especially cytopenias whose pathophysiology is mainly non-elucidated. Initially diagnosed in elderly male patients, VEXAS syndrome was frequently associated with a diagnosis of myelodysplastic syndromes (MDS) leading the medical community to first consider VEXAS syndrome as a new subtype of MDS. However, since the first description of VEXAS patients in 2021, it appears from the multitude of case reports that MDS associated with VEXAS are different from the classically described MDS.
Collapse
Affiliation(s)
- Marie Templé
- Cochin Hospital, Université de Paris, F-75006 Paris, France;
| | - Olivier Kosmider
- Institut Cochin, Université de Paris Cité, CNRS UMR8104, INSERM U1016, F-75014 Paris, France
| |
Collapse
|
45
|
Poyer F, Jimenez Heredia R, Novak W, Zeitlhofer P, Nebral K, Dworzak MN, Haas OA, Boztug K, Kager L. Case Report: Refractory Cytopenia With a Switch From a Transient Monosomy 7 to a Disease-Ameliorating del(20q) in a NHEJ1-Deficient Long-term Survivor. Front Immunol 2022; 13:869047. [PMID: 35812385 PMCID: PMC9263211 DOI: 10.3389/fimmu.2022.869047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
We report the case of a male Pakistani patient with a pathogenic homozygous loss of function variant in the non-homologous end-joining factor 1 (NHEJ1) gene. The growth retarded and microcephalic boy with clinodactyly of both hands and hyperpigmentation of the skin suffered from recurrent respiratory infections. He was five and a half years old when he came to our attention with refractory cytopenia and monosomy 7. Hematopoietic stem cell transplantation was considered but not feasible because there was no suitable donor available. Monosomy 7 was not detected anymore in subsequent bone marrow biopsies that were repeated in yearly intervals. Instead, seven and a half years later, a novel clone with a del(20q) appeared and steadily increased thereafter. In parallel, the patient’s blood count, which had remained stable for over 20 years without necessitating any specific therapeutic interventions, improved gradually and the erythropoiesis-associated dysplasia resolved.
Collapse
Affiliation(s)
- Fiona Poyer
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Raúl Jimenez Heredia
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Center for Molecular Medicine Center for Molecular Medicine (CeMM) Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Wolfgang Novak
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Zeitlhofer
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Labdia, Labordiagnostik, Vienna, Austria
| | - Karin Nebral
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Labdia, Labordiagnostik, Vienna, Austria
| | - Michael N. Dworzak
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Oskar A. Haas
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Labdia, Labordiagnostik, Vienna, Austria
- *Correspondence: Oskar A. Haas, ; Kaan Boztug, ; Leo Kager,
| | - Kaan Boztug
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- Center for Molecular Medicine Center for Molecular Medicine (CeMM) Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- *Correspondence: Oskar A. Haas, ; Kaan Boztug, ; Leo Kager,
| | - Leo Kager
- St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
- *Correspondence: Oskar A. Haas, ; Kaan Boztug, ; Leo Kager,
| |
Collapse
|
46
|
Xu Y, Wang B, Zhang M, Zhang J, Li Y, Jia P, Zhang H, Duan L, Li Y, Li Y, Qu X, Wang S, Liu D, Zhou W, Zhao H, Zhang H, Chen L, An X, Lu S, Zhang S. Carbon Dots as a Potential Therapeutic Agent for the Treatment of Cancer-Related Anemia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200905. [PMID: 35294781 DOI: 10.1002/adma.202200905] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Due to the adverse effects of erythropoietin (EPO) on cancer patient survival, it is necessary to develop new agents that can be used to efficiently manage and treat cancer-related anemia. In this study, novel distinctive carbon dots, J-CDs, derived from jujube are designed, synthesized, and characterized. Based on the obtained results, this material comprises sp2 and sp3 carbon atoms, as well as oxygen/nitrogen-based groups, and it specifically promotes the proliferation of erythroid cells by stimulating the self-renewal of erythroid progenitor cells in vitro and in vivo. Moreover, J-CDs have no discernible effects on tumor proliferation and metastasis, unlike EPO. Transcriptome profiling suggests that J-CDs upregulate the molecules involved in hypoxia response, and they also significantly increase the phosphorylation levels of STAT5, the major transducer of signals for erythroid progenitor cell proliferation. Overall, this study demonstrates that J-CDs effectively promote erythrocyte production without affecting tumor proliferation and metastasis; thus, they may be promising agents for the treatment of cancer-related anemia.
Collapse
Affiliation(s)
- Yuanlin Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 45001, China
| | - Boyang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Mingming Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingxin Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yudong Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Peijun Jia
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, 10065, USA
| | - Lulu Duan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yating Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoli Qu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shihui Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Donghao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenping Zhou
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 45001, China
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hengchao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lixiang Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, 10065, USA
| | - Siyu Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shijie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
47
|
Xing T, Lyu ZS, Duan CW, Zhao HY, Tang SQ, Wen Q, Zhang YY, Lv M, Wang Y, Xu LP, Zhang XH, Huang XJ, Kong Y. Dysfunctional bone marrow endothelial progenitor cells are involved in patients with myelodysplastic syndromes. J Transl Med 2022; 20:144. [PMID: 35351133 PMCID: PMC8962499 DOI: 10.1186/s12967-022-03354-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal disorders characterized by ineffective haematopoiesis and immune deregulation. Emerging evidence has shown the effect of bone marrow (BM) endothelial progenitor cells (EPCs) in regulating haematopoiesis and immune balance. However, the number and functions of BM EPCs in patients with different stages of MDS remain largely unknown. METHODS Patients with MDS (N = 30), de novo acute myeloid leukaemia (AML) (N = 15), and healthy donors (HDs) (N = 15) were enrolled. MDS patients were divided into lower-risk MDS (N = 15) and higher-risk MDS (N = 15) groups according to the dichotomization of the Revised International Prognostic Scoring System. Flow cytometry was performed to analyse the number of BM EPCs. Tube formation and migration assays were performed to evaluate the functions of BM EPCs. In order to assess the gene expression profiles of BM EPCs, RNA sequencing (RNA-seq) were performed. BM EPC supporting abilities of haematopoietic stem cells (HSCs), leukaemia cells and T cells were assessed by in vitro coculture experiments. RESULTS Increased but dysfunctional BM EPCs were found in MDS patients compared with HDs, especially in patients with higher-risk MDS. RNA-seq indicated the progressive change and differences of haematopoiesis- and immune-related pathways and genes in MDS BM EPCs. In vitro coculture experiments verified that BM EPCs from HDs, lower-risk MDS, and higher-risk MDS to AML exhibited a progressively decreased ability to support HSCs, manifested as elevated apoptosis rates and intracellular reactive oxygen species (ROS) levels and decreased colony-forming unit plating efficiencies of HSCs. Moreover, BM EPCs from higher-risk MDS patients demonstrated an increased ability to support leukaemia cells, characterized by increased proliferation, leukaemia colony-forming unit plating efficiencies, decreased apoptosis rates and apoptosis-related genes. Furthermore, BM EPCs induced T cell differentiation towards more immune-tolerant cells in higher-risk MDS patients in vitro. In addition, the levels of intracellular ROS and the apoptosis ratios were increased in BM EPCs from MDS patients, especially in higher-risk MDS patients, which may be therapeutic candidates for MDS patients. CONCLUSION Our results suggest that dysfunctional BM EPCs are involved in MDS patients, which indicates that improving haematopoiesis supporting ability and immuneregulation ability of BM EPCs may represent a promising therapeutic approach for MDS patients.
Collapse
Affiliation(s)
- Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhong-Shi Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Cai-Wen Duan
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Collaborative Innovation Center for Translational Medicine and Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Yan Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Shu-Qian Tang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Qi Wen
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yuan-Yuan Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China.
| |
Collapse
|
48
|
Ma L, Yang H, Yang X. Identification and integrative analysis of
microRNAs
in myelodysplastic syndromes based on
microRNAs
expression profile. PRECISION MEDICAL SCIENCES 2022. [DOI: 10.1002/prm2.12054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Limin Ma
- Department of Hematology The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang Henan Province China
| | - Haiping Yang
- Department of Hematology The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang Henan Province China
| | - Xuewen Yang
- Department of Hematology The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology Luoyang Henan Province China
| |
Collapse
|
49
|
Jain AG, Elmariah H. BMT for Myelodysplastic Syndrome: When and Where and How. Front Oncol 2022; 11:771614. [PMID: 35070975 PMCID: PMC8770277 DOI: 10.3389/fonc.2021.771614] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/09/2021] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a diverse group of hematological malignancies distinguished by a combination of dysplasia in the bone marrow, cytopenias and the risk of leukemic transformation. The hallmark of MDS is bone marrow failure which occurs due to selective growth of somatically mutated clonal hematopoietic stem cells. Multiple prognostic models have been developed to help predict survival and leukemic transformation, including the international prognostic scoring system (IPSS), revised international prognostic scoring system (IPSS-R), WHO prognostic scoring system (WPSS) and MD Anderson prognostic scoring system (MDAPSS). This risk stratification informs management as low risk (LR)-MDS treatment focuses on improving quality of life and cytopenias, while the treatment of high risk (HR)-MDS focuses on delaying disease progression and improving survival. While therapies such as erythropoiesis stimulating agents (ESAs), erythroid maturation agents (EMAs), immunomodulatory imide drugs (IMIDs), and hypomethylating agents (HMAs) may provide benefit, allogeneic blood or marrow transplant (alloBMT) is the only treatment that can offer cure for MDS. However, this therapy is marred, historically, by high rates of toxicity and transplant related mortality (TRM). Because of this, alloBMT is considered in a minority of MDS patients. With modern techniques, alloBMT has become a suitable option even for patients of advanced age or with significant comorbidities, many of whom who would not have been considered for transplant in prior years. Hence, a formal transplant evaluation to weigh the complex balance of patient and disease related factors and determine the potential benefit of transplant should be considered early in the disease course for most MDS patients. Once alloBMT is recommended, timing is a crucial consideration since delaying transplant can lead to disease progression and development of other comorbidities that may preclude transplant. Despite the success of alloBMT, relapse remains a major barrier to success and novel approaches are necessary to mitigate this risk and improve long term cure rates. This review describes various factors that should be considered when choosing patients with MDS who should pursue transplant, approaches and timing of transplant, and future directions of the field.
Collapse
Affiliation(s)
- Akriti G Jain
- Fellow, Hematology Oncology, H. Lee Moffitt Cancer and Research Institute, Tampa, FL, United States
| | - Hany Elmariah
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer and Research Institute, Tampa, FL, United States
| |
Collapse
|
50
|
Abstract
INTRODUCTION Risk stratification is crucial to the appropriate management of many diseases, but in patients with myelodysplastic syndromes (MDS), for whom expected survival can vary greatly, accurate disease prognostication is especially important. This is further supported by a relative lack of therapies in MDS, and thus we must prognosticate carefully and accurately. Currently, patients with MDS are often grouped into higher-risk (HR) versus lower-risk (LR) disease using clinical prognostic scoring systems, but these systems have limitations. AREAS COVERED The authors reviewed the literature on diagnostics, prognostics, therapeutics and outcomes in MDS. Factors such as disease etiology, specific clinical characteristics, or molecular genetic information not captured in the international prognostic scoring system revised IPSS-R can alter risk stratification, and identify a subset of LR-MDS patients who actually behave more like HR-MDS. EXPERT OPINION This review will describe the current identification and management of patients with LR MDS disease whose condition is likely to behave in a less favorable manner than predicted by the IPSS-R. The authors comment on clinical and molecular features which are believe to upstage a patient from lower to higher risk disease.
Collapse
Affiliation(s)
- Amy E DeZern
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - William Brian Dalton
- Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|