1
|
Li H, Ma T, Zhao Z, Chen Y, Xi X, Zhao X, Zhou X, Gao Y, Wei L, Zhang X. scTML: a pan-cancer single-cell landscape of multiple mutation types. Nucleic Acids Res 2025; 53:D1547-D1556. [PMID: 39420637 PMCID: PMC11701564 DOI: 10.1093/nar/gkae898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Investigating mutations, including single nucleotide variations (SNVs), gene fusions, alternative splicing and copy number variations (CNVs), is fundamental to cancer study. Recent computational methods and biological research have demonstrated the reliability and biological significance of detecting mutations from single-cell transcriptomic data. However, there is a lack of a single-cell-level database containing comprehensive mutation information in all types of cancer. Establishing a single-cell mutation landscape from the huge emerging single-cell transcriptomic data can provide a critical resource for elucidating the mechanisms of tumorigenesis and evolution. Here, we developed scTML (http://sctml.xglab.tech/), the first database offering a pan-cancer single-cell landscape of multiple mutation types. It includes SNVs, insertions/deletions, gene fusions, alternative splicing and CNVs, along with gene expression, cell states and other phenotype information. The data are from 74 datasets with 2 582 633 cells, including 35 full-length (Smart-seq2) transcriptomic single-cell datasets (all publicly available data with raw sequencing files), 23 datasets from 10X technology and 16 spatial transcriptomic datasets. scTML enables users to interactively explore multiple mutation landscapes across tumors or cell types, analyze single-cell-level mutation-phenotype associations and detect cell subclusters of interest. scTML is an important resource that will significantly advance deciphering intra-tumor and inter-tumor heterogeneity, and how mutations shape cell phenotypes.
Collapse
Affiliation(s)
- Haochen Li
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
- School of Medicine, Tsinghua Medicine, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| | - Tianxing Ma
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| | - Zetong Zhao
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
- Department of Biostatistics, School of Public Health, Yale University, 60 College St, New Haven, CT 06510, USA
| | - Yixin Chen
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| | - Xi Xi
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| | - Xiaofei Zhao
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| | - Xiaoxiang Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
- Institute of Cancer Research, Henan Academy of Innovations in Medical Science, No. 2 Biotechnology Street, Hangkonggang District, Zhengzhou 450000, China
- Department of Gastroenterology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancers Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No. 3,ZhiGongXin Street, Xinghualing District, Taiyuan 030013, China
- Central Laboratory and Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 113 Baohe Road, Longgang District, Shenzhen 518116, China
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
| | - Lei Wei
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics, Bioinformatics Division of BNRIST and Department of Automation, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
- School of Medicine, Tsinghua Medicine, Tsinghua University, 30 Shuangqing Rd, Haidian District, Beijing 100084, China
| |
Collapse
|
2
|
Chen Y, Liu N, Yang Y, Yang L, Li Y, Qiao Z, Zhang Y, Li A, Xiang R, Wen L, Huang W. NCAM1 modulates the proliferation and migration of pulmonary arterial smooth muscle cells in pulmonary hypertension. Respir Res 2024; 25:435. [PMID: 39696429 DOI: 10.1186/s12931-024-03068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a malignant vascular disease characterized by pulmonary arterial remodeling. Neural cell adhesion molecule 1 (NCAM1) is a cell surface glycoprotein that is involved in a variety of diseases, including cardiovascular disease. However, the role of NCAM1 in PH remains underexplored. METHODS Pulmonary hypertension models were established using monocrotaline in rats and hypoxia in mice. NCAM1 protein levels in plasma from patients and rats were measured by ELISA. Expression of NCAM1 in rat lung tissues were evaluated using qRT-PCR, Western blotting, and immunofluorescence. The effects of NCAM1 on rat pulmonary artery smooth muscle cells were studied by stimulating these cells with PDGF-BB. RESULTS Elevated levels of NCAM1 protein and mRNA were observed in both PH patients and monocrotaline-induced PH rats. NCAM1 knockdown ameliorated hypoxia-induced PH, highlighting its role in pulmonary artery remodeling. In PASMCs, NCAM1 expression was upregulated by PDGF-BB stimulation, enhancing cell proliferation and migration. This effect was attenuated by NCAM1 knockdown but partially restored by an ERK1/2 pathway activator (tert-butylhydroquinone, TBHQ), suggesting NCAM1's involvement in PASMC dynamics through the ERK1/2 signaling pathway. CONCLUSION Our findings confirm the role of NCAM1 in pulmonary arterial hypertension and demonstrate its promotion of PASMC proliferation and migration through the ERK1/2 signaling pathway.
Collapse
MESH Headings
- Animals
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/drug effects
- Rats
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Cell Proliferation/physiology
- Cell Movement/physiology
- Cell Movement/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Male
- Humans
- Mice
- Rats, Sprague-Dawley
- CD56 Antigen/metabolism
- Cells, Cultured
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Female
- Vascular Remodeling/physiology
Collapse
Affiliation(s)
- Yunwei Chen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ningxin Liu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunjing Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingzhi Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Zhuo Qiao
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yumin Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ailing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Xiang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Wen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Wei Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Meriç N, Erkan PÇ, Kocabaş F. Deciphering avian hematopoietic stem cells by surface marker screening and gene expression profiling. Mol Immunol 2024; 175:20-30. [PMID: 39288684 DOI: 10.1016/j.molimm.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Avian species have played a pivotal role in developmental hematopoiesis research, leading to numerous critical discoveries. Avian influenza, particularly the H5N1 strain, poses a significant threat to poultry and has zoonotic potential for humans. Infections often result in abnormal hematologic profiles, highlighting the complex interplay between avian diseases and hematopoiesis. Many avian diseases can suppress immune cells in the bone marrow (BM), impacting immune responses. Studying hematopoietic stem cells (HSCs) in avian BM is crucial for understanding these processes and developing effective vaccines and protection strategies for both avian and human health. METHODS This study adapted methods from mouse studies to isolate avian HSCs as Lineage-negative (Lin-) cells. These isolated cells were further identified as Lin-Sca1+c-Kit+ (LSK) and were found to be more prevalent than in control groups. RT-PCR analyses were conducted, showing that genes like MEIS1 and TSC1 were upregulated, while SIRT1, FOXO1, and AHR were downregulated in these stem cells. Screening for LSK markers revealed ten unique surface antigens in the Sca1+c-Kit+ cell populations, including highly enriched antigens such as CD178, CD227, and CD184. Additionally, studies on quail HSCs demonstrated that similar labeling techniques were effective in quail BM. RESULTS The research demonstrated that the identification of avian HSC-specific surface antigens provides valuable insights into the pathogenesis of avian influenza and other diseases, enhancing our understanding of how these diseases suppress HSC function. Notably, the upregulation of MEIS1 and TSC1 genes in LSK cells underscores their critical roles in regulating hematopoietic processes. Conversely, the downregulation of SIRT1, FOXO1, and AHR genes provides important clues about their roles in differentiation and immune response mechanisms. DISCUSSION The findings of this study deepen our understanding of the effects of avian diseases on the immune system by identifying surface markers specific to avian HSCs. The suppression of HSC function by pathogens such as influenza highlights the importance of understanding these cells in developing targeted vaccines. These results represent a significant step towards improving global health security by mitigating risks associated with avian pathogens.
Collapse
Affiliation(s)
- Neslihan Meriç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Türkiye; Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, Kütahya, Türkiye.
| | - Pınar Çolakoğlu Erkan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Türkiye
| | - Fatih Kocabaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Türkiye.
| |
Collapse
|
4
|
Driessen A, Unger S, Nguyen AP, Ries RE, Meshinchi S, Kreutmair S, Alberti C, Sumazin P, Aplenc R, Redell MS, Becher B, Rodríguez Martínez M. Identification of single-cell blasts in pediatric acute myeloid leukemia using an autoencoder. Life Sci Alliance 2024; 7:e202402674. [PMID: 39191488 PMCID: PMC11358707 DOI: 10.26508/lsa.202402674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Pediatric acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis and high relapse rate. Current challenges in the identification of immunotherapy targets arise from patient-specific blast immunophenotypes and their change during disease progression. To overcome this, we present a new computational research tool to rapidly identify malignant cells. We generated single-cell flow cytometry profiles of 21 pediatric AML patients with matched samples at diagnosis, remission, and relapse. We coupled a classifier to an autoencoder for anomaly detection and classified malignant blasts with 90% accuracy. Moreover, our method assigns a developmental stage to blasts at the single-cell level, improving current classification approaches based on differentiation of the dominant phenotype. We observed major immunophenotype and developmental stage alterations between diagnosis and relapse. Patients with KMT2A rearrangement had more profound changes in their blast immunophenotypes at relapse compared to patients with other molecular features. Our method provides new insights into the immunophenotypic composition of AML blasts in an unbiased fashion and can help to define immunotherapy targets that might improve personalized AML treatment.
Collapse
Affiliation(s)
- Alice Driessen
- Data and AI Research, IBM Research Europe, Zürich, Switzerland
- ETH Zürich, Zürich, Switzerland
| | - Susanne Unger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - An-Phi Nguyen
- Data and AI Research, IBM Research Europe, Zürich, Switzerland
| | - Rhonda E Ries
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Stefanie Kreutmair
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Chiara Alberti
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Pavel Sumazin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Richard Aplenc
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michele S Redell
- Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX, USA
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
5
|
Fu C, Qiu D, Zhou M, Ni S, Jin X. Characterization of ligand-receptor pair in acute myeloid leukemia: a scoring model for prognosis, therapeutic response, and T cell dysfunction. Front Oncol 2024; 14:1473048. [PMID: 39484036 PMCID: PMC11525004 DOI: 10.3389/fonc.2024.1473048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction The significance of ligand-receptor (LR) pair interactions in the progression of acute myeloid leukemia (AML) has been the focus of numerous studies. However, the relationship between LR pairs and the prognosis of AML, as well as their impact on treatment outcomes, is not fully elucidated. Methods Leveraging data from the TCGA-LAML cohort, we mapped out the LR pair interactions and distinguished specific molecular subtypes, with each displaying distinct biological characteristics. These subtypes exhibited varying mutation landscapes, pathway characteristics, and immune infiltration levels. Further insight into the immune microenvironment among these subtypes revealed disparities in immune cell abundance. Results Notably, one subtype showed a higher prevalence of CD8 T cells and plasma cells, suggesting increased adaptive immune activities. Leveraging a multivariate Lasso regression, we formulated an LR pair-based scoring model, termed "LR.score," to classify patients based on prognostic risk. Our findings underscored the association between elevated LR scores and T-cell dysfunction in AML. This connection highlights the LR score's potential as both a prognostic marker and a guide for personalized therapeutic interventions. Moreover, our LR.score revealed substantial survival prediction capacities in an independent AML cohort. We highlighted CLEC11A, ICAM4, ITGA4, and AVP as notably AML-specific. Discussion qRT-PCR analysis on AML versus normal bone marrow samples confirmed the significant downregulation of CLEC11A, ITGA4, ICAM4, and AVP in AML, suggesting their inverse biomarker potential in AML. In summary, this study illuminates the significance of the LR pair network in predicting AML prognosis, offering avenues for more precise treatment strategies tailored to individual patient profiles.
Collapse
Affiliation(s)
- Chunlan Fu
- Department of Hematology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, Zhejiang, China
| | - Di Qiu
- Department of Hematology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, Zhejiang, China
| | - Mei Zhou
- Department of Hematology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, Zhejiang, China
| | - Shaobo Ni
- Department of Hematology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, Zhejiang, China
| | - Xin Jin
- Department of Breast Surgery, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, Zhejiang, China
| |
Collapse
|
6
|
Reuvekamp T, Bachas C, Cloos J. Immunophenotypic features of early haematopoietic and leukaemia stem cells. Int J Lab Hematol 2024; 46:795-808. [PMID: 39045906 DOI: 10.1111/ijlh.14348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Many tumours are organised in a hierarchical structure with at its apex a cell that can maintain, establish, and repopulate the tumour-the cancer stem cell. The haematopoietic stem cell (HSC) is the founder cell for all functional blood cells. Like HSCs, the leukaemia stem cells (LSC) are hypothesised to be the leukaemia-initiating cells, which have features of stemness such as self-renewal, quiescence, and resistance to cytotoxic drugs. Immunophenotypically, CD34+CD38- defines HSCs by adding lineage negativity and CD90+CD45RA-. At which stage of maturation the further differentiation is blocked, determines the type of leukaemia, and determines the immunophenotype of the LSC specific to the leukaemia type. No apparent LSC phenotype has been described in lymphoid leukaemia, and it is debated if a specific acute lymphocytic leukaemia-initiating cell is present, as all cells are capable of engraftment in a secondary mouse model. In chronic lymphocytic leukaemia, a B-cell clone is responsible for uncontrolled proliferation, not a specific LSC. In chronic and acute myeloid leukaemia, LSC is described as CD34+CD38- with the expression of a marker that is aberrantly expressed (LSC marker), such as CD45RA, CD123 or in the case of chronic myeloid leukaemia CD26. In acute myeloid leukaemia, the LSC load had prognostic relevance and might be a biomarker that can be used for monitoring and as an addition to measurable residual disease. However, challenges such as the CD34-negative immunophenotype need to be explored.
Collapse
Affiliation(s)
- Tom Reuvekamp
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam UMC Location Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Costa Bachas
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Weiss LM, Warwick T, Zehr S, Günther S, Wolf S, Schmachtel T, Izquierdo Ponce J, Pálfi K, Teichmann T, Schneider A, Stötzel J, Knapp S, Weigert A, Savai R, Rieger MA, Oellerich T, Wittig I, Oo JA, Brandes RP, Leisegang MS. RUNX1 interacts with lncRNA SMANTIS to regulate monocytic cell functions. Commun Biol 2024; 7:1131. [PMID: 39271940 PMCID: PMC11399395 DOI: 10.1038/s42003-024-06794-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Monocytes, the circulating macrophage precursors, contribute to diseases like atherosclerosis and asthma. Long non-coding RNAs (lncRNAs) have been shown to modulate the phenotype and inflammatory capacity of monocytes. We previously discovered the lncRNA SMANTIS, which contributes to cellular phenotype expression by controlling BRG1 in mesenchymal cells. Here, we report that SMANTIS is particularly highly expressed in monocytes and lost during differentiation into macrophages. Moreover, different types of myeloid leukemia presented specific SMANTIS expression patterns. Interaction studies revealed that SMANTIS binds RUNX1, a transcription factor frequently mutated in AML, primarily through its Alu-element on the RUNT domain. RNA-seq after CRISPR/Cas9-mediated deletion of SMANTIS or RUNX1 revealed an association with cell adhesion and both limited the monocyte adhesion to endothelial cells. Mechanistically, SMANTIS KO reduced RUNX1 genomic binding and altered the interaction of RUNX1 with EP300 and CBFB. Collectively, SMANTIS interacts with RUNX1 and attenuates monocyte adhesion, which might limit monocyte vascular egress.
Collapse
Affiliation(s)
- Lisa M Weiss
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Timothy Warwick
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Simonida Zehr
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sebastian Wolf
- Goethe University Frankfurt, University Hospital, Department of Medicine II, Hematology/Oncology, Frankfurt, Germany
| | - Tessa Schmachtel
- Goethe University Frankfurt, University Hospital, Department of Medicine II, Hematology/Oncology, Frankfurt, Germany
| | - Judit Izquierdo Ponce
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
| | - Katalin Pálfi
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
| | - Tom Teichmann
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Alicia Schneider
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Julia Stötzel
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Stefan Knapp
- Goethe University Frankfurt, Institute for Pharmaceutical Chemistry, Buchman Institute for Life Sciences Campus Riedberg, Frankfurt, Germany
| | - Andreas Weigert
- Goethe University Frankfurt, Institute of Biochemistry I, Frankfurt, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Lung Microenvironmental Niche in Cancerogenesis, Institute for Lung Health (ILH), Justus Liebig University Giessen, Giessen, Germany
| | - Michael A Rieger
- Goethe University Frankfurt, University Hospital, Department of Medicine II, Hematology/Oncology, Frankfurt, Germany
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, Department of Medicine II, Hematology/Oncology, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Ilka Wittig
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
- Goethe University Frankfurt, Functional Proteomics, Institute for Cardiovascular Physiology, Frankfurt, Germany
| | - James A Oo
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Matthias S Leisegang
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany.
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany.
| |
Collapse
|
8
|
Yaghoubi Naei V, Monkman J, Sadeghirad H, Mehdi A, Blick T, Mullally W, O'Byrne K, Warkiani ME, Kulasinghe A. Spatial proteomic profiling of tumor and stromal compartments in non-small-cell lung cancer identifies signatures associated with overall survival. Clin Transl Immunology 2024; 13:e1522. [PMID: 39026528 PMCID: PMC11257771 DOI: 10.1002/cti2.1522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives Non-small-cell lung carcinoma (NSCLC) is the most prevalent and lethal form of lung cancer. The need for biomarker-informed stratification of targeted therapies has underpinned the need to uncover the underlying properties of the tumor microenvironment (TME) through high-plex quantitative assays. Methods In this study, we profiled resected NSCLC tissues from 102 patients by targeted spatial proteomics of 78 proteins across tumor, immune activation, immune cell typing, immune-oncology, drug targets, cell death and PI3K/AKT modules to identify the tumor and stromal signatures associated with overall survival (OS). Results Survival analysis revealed that stromal CD56 (HR = 0.384, P = 0.06) and tumoral TIM3 (HR = 0.703, P = 0.05) were associated with better survival in univariate Cox models. In contrast, after adjusting for stage, BCLXL (HR = 2.093, P = 0.02) and cleaved caspase 9 (HR = 1.575, P = 0.1) negatively influenced survival. Delta testing indicated the protective effect of TIM-3 (HR = 0.614, P = 0.04) on OS. In multivariate analysis, CD56 (HR = 0.172, P = 0.001) was associated with better survival in the stroma, while B7.H3 (HR = 1.72, P = 0.008) was linked to poorer survival in the tumor. Conclusions Deciphering the TME using high-plex spatially resolved methods is giving us new insights into compartmentalised tumor and stromal protein signatures associated with clinical endpoints in NSCLC.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - James Monkman
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Ahmed Mehdi
- Queensland Cyber Infrastructure Foundation (QCIF) LtdThe University of QueenslandBrisbaneQLDAustralia
| | - Tony Blick
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | | | - Ken O'Byrne
- The Princess Alexandra HospitalBrisbaneQLDAustralia
| | | | - Arutha Kulasinghe
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
9
|
Bordeleau ME, Audemard É, Métois A, Theret L, Lisi V, Farah A, Spinella JF, Chagraoui J, Moujaber O, Aubert L, Khakipoor B, Mallinger L, Boivin I, Mayotte N, Hajmirza A, Bonneil É, Béliveau F, Pfammatter S, Feghaly A, Boucher G, Gendron P, Thibault P, Barabé F, Lemieux S, Richard-Carpentier G, Hébert J, Lavallée VP, Roux PP, Sauvageau G. Immunotherapeutic targeting of surfaceome heterogeneity in AML. Cell Rep 2024; 43:114260. [PMID: 38838225 DOI: 10.1016/j.celrep.2024.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/29/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
Immunotherapy remains underexploited in acute myeloid leukemia (AML) compared to other hematological malignancies. Currently, gemtuzumab ozogamicin is the only therapeutic antibody approved for this disease. Here, to identify potential targets for immunotherapeutic intervention, we analyze the surface proteome of 100 genetically diverse primary human AML specimens for the identification of cell surface proteins and conduct single-cell transcriptome analyses on a subset of these specimens to assess antigen expression at the sub-population level. Through this comprehensive effort, we successfully identify numerous antigens and markers preferentially expressed by primitive AML cells. Many identified antigens are targeted by therapeutic antibodies currently under clinical evaluation for various cancer types, highlighting the potential therapeutic value of the approach. Importantly, this initiative uncovers AML heterogeneity at the surfaceome level, identifies several antigens and potential primitive cell markers characterizing AML subgroups, and positions immunotherapy as a promising approach to target AML subgroup specificities.
Collapse
Affiliation(s)
- Marie-Eve Bordeleau
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Éric Audemard
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Arnaud Métois
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Louis Theret
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Véronique Lisi
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Azer Farah
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Jean-François Spinella
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Jalila Chagraoui
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Ossama Moujaber
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Léo Aubert
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Banafsheh Khakipoor
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Laure Mallinger
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Isabel Boivin
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Nadine Mayotte
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Azadeh Hajmirza
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Éric Bonneil
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - François Béliveau
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada
| | - Sybille Pfammatter
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Albert Feghaly
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Geneviève Boucher
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Patrick Gendron
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Pierre Thibault
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Chemistry, Faculty of Arts and Science, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Frédéric Barabé
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Sébastien Lemieux
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Guillaume Richard-Carpentier
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medicine, Division of Medical Oncology and Hematology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Josée Hébert
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.
| | - Vincent-Philippe Lavallée
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada; Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Hematology and Oncology Division, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC H3T 1C5, Canada.
| | - Philippe P Roux
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Guy Sauvageau
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.
| |
Collapse
|
10
|
Liang F, Liang X, Pan L, Jin Q, Deng J, Hong M, Wei W, Hao Z, Ren H, Wang H, Chen X. Immunophenotype of myeloid granulocytes in Chinese patients with BCR::ABL1-negative myeloproliferative neoplasms. Clin Exp Med 2024; 24:106. [PMID: 38771542 PMCID: PMC11108956 DOI: 10.1007/s10238-024-01363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024]
Abstract
Typical BCR::ABL1-negative myeloproliferative neoplasms (MPN) are mainly referred to as polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofbrosis (PMF). Granulocytes in MPN patients are involved in their inflammation and form an important part of the pathophysiology of MPN patients. It has been shown that the immunophenotype of granulocytes in MPN patients is altered. We used flow cytometry to explore the immunophenotype of MPN patients and correlate it with clinical parameters. The results showed that PMF patients and PV patients had higher CD15+CD11b+ granulocytes than ET patients and normal controls. When grouped by gene mutation, changes in the granulocyte immunophenotype of MPN patients were independent of the JAK2V617F and CALR mutations. There was no significant heterogeneity in immunophenotype between ET patients and Pre-PMF, and between Overt-PMF and Pre-PMF patients. Granulocytes from some MPN patients showed an abnormal CD13/CD16 phenotype with a significant increase in mature granulocytes on molecular and cytomorphological grounds, and this abnormal pattern occurred significantly more frequently in PMF patients than in ET patients. CD15-CD11b- was negatively correlated with WBC and Hb and positively correlated with DIPSS score, whereas high CD10+ granulocytes were significantly and negatively associated with prognostic system IPSS and DIPSS scores in PMF patients. In conclusion, this study demonstrates the landscape of bone marrow granulocyte immunophenotypes in MPN patients. MPN patients, especially those with PMF, have a significant granulocyte developmental overmaturation phenotype. CD10+ granulocytes may be involved in the prognosis of PMF patients.
Collapse
Affiliation(s)
- Fengting Liang
- Key Laboratory of Molecular Diagnosis and Treatment of Hematologic Diseases of Shanxi Province, Taiyuan, China
| | - Xuelan Liang
- Key Laboratory of Molecular Diagnosis and Treatment of Hematologic Diseases of Shanxi Province, Taiyuan, China
| | | | - Qianni Jin
- Key Laboratory of Molecular Diagnosis and Treatment of Hematologic Diseases of Shanxi Province, Taiyuan, China
| | - Ju Deng
- Key Laboratory of Molecular Diagnosis and Treatment of Hematologic Diseases of Shanxi Province, Taiyuan, China
| | - Minglin Hong
- Key Laboratory of Molecular Diagnosis and Treatment of Hematologic Diseases of Shanxi Province, Taiyuan, China
| | - Wei Wei
- Key Laboratory of Molecular Diagnosis and Treatment of Hematologic Diseases of Shanxi Province, Taiyuan, China
| | - Zhuanghui Hao
- Key Laboratory of Molecular Diagnosis and Treatment of Hematologic Diseases of Shanxi Province, Taiyuan, China
| | - Huanying Ren
- Key Laboratory of Molecular Diagnosis and Treatment of Hematologic Diseases of Shanxi Province, Taiyuan, China
| | - Hongwei Wang
- Key Laboratory of Molecular Diagnosis and Treatment of Hematologic Diseases of Shanxi Province, Taiyuan, China.
| | - Xiuhua Chen
- Key Laboratory of Molecular Diagnosis and Treatment of Hematologic Diseases of Shanxi Province, Taiyuan, China.
| |
Collapse
|
11
|
Zhao C, Song Y, Zhang G, Zhang K, Yin S, Ji J. Multi-omics analysis identifies sex-specific hepatic protein-metabolite networks in yellow catfish (Pelteobagrus fulvidraco) exposed to chronic hypoxia. Int J Biol Macromol 2024; 268:131892. [PMID: 38677698 DOI: 10.1016/j.ijbiomac.2024.131892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Hypoxia disrupts the endocrine system of teleosts. The liver plays important roles in the endocrine system, energy storage, and metabolic processes. The aim of this study was to investigate the sex-specific hepatic response of yellow catfish under chronic hypoxia at the multi-omics level. Common hepatic responses in both sexes included the HIF-1 signaling pathway, glycolysis/gluconeogenesis, and steroid biosynthesis. Hypoxia dysregulated primary bile acid biosynthesis, lipid metabolism, and vitellogenin levels in female fish. Endoplasmic reticulum function in females also tended to be disrupted by hypoxia, as evidenced by significantly enriched pathways, including ribosome, protein processing in the endoplasmic reticulum, and RNA degradation. Other pathways, including the TCA cycle, oxidative phosphorylation, and Parkinson's and Huntington's disease, were highly enriched by hypoxia in male fish, suggesting that mitochondrial function was dysregulated. In both sexes of yellow catfish, the cell cycle was arrested and apoptosis was inhibited under chronic hypoxia. Multi-omics suggested that SLC2A5, CD209, LGMN, and NEDD8 served as sex-specific markers in these fish under chronic hypoxia. Our results provide insights into hepatic adaptation to chronic hypoxia and facilitate our understanding of sex-specific responses in fish.
Collapse
Affiliation(s)
- Cheng Zhao
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, China
| | - Yufeng Song
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Guosong Zhang
- School of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Kai Zhang
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, China
| | - Shaowu Yin
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, China.
| | - Jie Ji
- College of Marine Science and Engineering, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang, Jiangsu, China.
| |
Collapse
|
12
|
Tang Y, Wu Y, Wang S, Lu X, Gu X, Li Y, Yang F, Xu R, Wang T, Jiao Z, Wu Y, Liu L, Chen JQ, Wang Q, Chen Q. An integrative platform for detection of RNA 2'-O-methylation reveals its broad distribution on mRNA. CELL REPORTS METHODS 2024; 4:100721. [PMID: 38452769 PMCID: PMC10985248 DOI: 10.1016/j.crmeth.2024.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/29/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Ribose 2'-O-methylation is involved in critical biological processes, but its biological functions and significance in mRNAs remain underexplored. We have developed NJU-seq, a sensitive method for unbiased 2'-O-methylation (Nm) profiling, and Nm-VAQ, a site-specific quantification tool. Using these tools in tandem, we identified thousands of Nm sites on mRNAs of human and mouse cell lines, of which 68 of 84 selected sites were further validated to be more than 1% 2'-O-methylated. Unlike rRNA, most mRNA Nm sites were from 1% to 30% methylated. In addition, mRNA Nm was dynamic, changing according to the circumstance. Furthermore, we show that fibrillarin is involved as a methyltransferase. By mimicking the detected Nm sites and the context sequence, the RNA fragments could be 2'-O-methylated and demonstrated higher stability but lower translation efficiency. Last, profiling of Nm sites in lung surgery samples revealed common signatures of lung cancer pathogenesis, providing potential new diagnostic markers.
Collapse
Affiliation(s)
- Yao Tang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Yifan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sainan Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaolan Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xiangwen Gu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yong Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fan Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Ruilin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tao Wang
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zichen Jiao
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Liwei Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jian-Qun Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Qiang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Qihan Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, China.
| |
Collapse
|
13
|
Song J, Li W, Bai Y, Zhou P, Niu J, Niu X, Liu Y, Liu X, Drokow EK, Sun K, Zhou H. A blastic plasmacytoid dendritic cell neoplasm-like immunophenotype is negatively associated with CEBPA bZIP mutation and predicts unfavorable prognosis in acute myeloid leukemia. Ann Hematol 2024; 103:463-473. [PMID: 38183444 DOI: 10.1007/s00277-023-05594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/17/2023] [Indexed: 01/08/2024]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and aggressive myeloid malignancy which characteristically expresses an atypical phenotype including CD123+, CD56+, and CD4+. We are aimed to investigate the clinical and prognostic characteristics of AML patients exhibiting BPDCN-like immunophenotype and provide additional insights for risk stratification of AML. A total of 241 newly diagnosed AML patients were enrolled in this retrospective study and categorized into BPDCN-like positive (n = 125)/negative (n = 116) groups, determined by the present with CD123+ along with either CD56+ or CD4+, or both. Subsequently, an analysis was conducted to examine the general clinical characteristics, genetic profiles, and prognosis of the two respective groups. Patients with BPDCN-like immunophenotype manifested higher frequencies of acute myelomonocytic leukemia and acute monoblastic leukemia. Surprisingly, the presence of the BPDCN-like immunophenotype exhibited an inverse relationship with CEBPA bZIP mutation. Notably, patients with BPDCN-like phenotype had both worse OS and EFS compared to those without BPDCN-like phenotype. In the CN-AML subgroups, the BPDCN-like phenotype was associated with worse EFS. Similarly, a statistically significant disparity was observed in both OS and EFS within the favorable-risk subgroup, while only OS was significant within the adverse-risk subgrouMoreover, patients possessing favorable-risk genetics without BPDCN-like phenotype had the longest survival, whereas those who had both adverse-risk genetics and BPDCN-like phenotype exhibited the worst survival. Our study indicated that BPDCN-like phenotype negatively associated with CEBPA bZIP mutation and revealed a significantly poor prognosis in AML. Moreover, the 2022 ELN classification, in combination with the BPDCN-like phenotype, may better distinguish between different risk groups.
Collapse
Affiliation(s)
- Juanjuan Song
- Department of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Tumor Hospital of Henan Province, Institute of Hematology of Henan Province, No.127 Dongming Road, Jinshui District, Zhengzhou, 450000, Henan, People's Republic of China
| | - Weiya Li
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Yanliang Bai
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Pan Zhou
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Junwei Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Xiaona Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Ying Liu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Xiaobo Liu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Emmanuel Kwateng Drokow
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China
| | - Kai Sun
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, People's Republic of China.
| | - Hu Zhou
- Department of Hematology, Affiliated Tumor Hospital of Zhengzhou University, Tumor Hospital of Henan Province, Institute of Hematology of Henan Province, No.127 Dongming Road, Jinshui District, Zhengzhou, 450000, Henan, People's Republic of China.
| |
Collapse
|
14
|
Knoll J, Amend B, Abruzzese T, Harland N, Stenzl A, Aicher WK. Production of Proliferation- and Differentiation-Competent Porcine Myoblasts for Preclinical Studies in a Porcine Large Animal Model of Muscular Insufficiency. Life (Basel) 2024; 14:212. [PMID: 38398721 PMCID: PMC10889968 DOI: 10.3390/life14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Muscular insufficiency is observed in many conditions after injury, chronic inflammation, and especially in elderly populations. Causative cell therapies for muscle deficiencies are not state of the art. Animal models to study the therapy efficacy are, therefore, needed. We developed an improved protocol to produce myoblasts suitable for pre-clinical muscle therapy studies in a large animal model. Myoblasts were isolated from the striated muscle, expanded by employing five different protocols, and characterized on transcript and protein expression levels to determine procedures that yielded optimized regeneration-competent myoblasts and multi-nucleated myotubes. We report that swine skeletal myoblasts proliferated well under improved conditions without signs of cellular senescence, and expressed significant levels of myogenic markers including Pax7, MyoD1, Myf5, MyoG, Des, Myf6, CD56 (p ≤ 0.05 each). Upon terminal differentiation, myoblasts ceased proliferation and generated multi-nucleated myotubes. Injection of such myoblasts into the urethral sphincter complex of pigs with sphincter muscle insufficiency yielded an enhanced functional regeneration of this muscle (81.54% of initial level) when compared to the spontaneous regeneration in the sham controls without myoblast injection (67.03% of initial level). We conclude that the optimized production of porcine myoblasts yields cells that seem suitable for preclinical studies of cell therapy in a porcine large animal model of muscle insufficiency.
Collapse
Affiliation(s)
- Jasmin Knoll
- Centre of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72072 Tuebingen, Germany
| | - Bastian Amend
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (B.A.)
| | - Tanja Abruzzese
- Centre of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72072 Tuebingen, Germany
| | - Niklas Harland
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (B.A.)
| | - Arnulf Stenzl
- Department of Urology, University of Tuebingen Hospital, 72076 Tuebingen, Germany; (B.A.)
| | - Wilhelm K. Aicher
- Centre of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72072 Tuebingen, Germany
| |
Collapse
|
15
|
Guarnera L, Santinelli E, Galossi E, Cristiano A, Fabiani E, Falconi G, Voso MT. Microenvironment in acute myeloid leukemia: focus on senescence mechanisms, therapeutic interactions, and future directions. Exp Hematol 2024; 129:104118. [PMID: 37741607 DOI: 10.1016/j.exphem.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Acute myeloid leukemia (AML) is a disease with a dismal prognosis, mainly affecting the elderly. In recent years, new drugs have improved life expectancy and quality of life, and a better understanding of the genetic-molecular nature of the disease has shed light on previously unknown aspects of leukemogenesis. In parallel, increasing attention has been attracted to the complex interactions between cells and soluble factors in the bone marrow (BM) environment, collectively known as the microenvironment. In this review, we discuss the central role of the microenvironment in physiologic and pathologic hematopoiesis and the mechanisms of senescence, considered a fundamental protective mechanism against the proliferation of damaged and pretumoral cells. The microenvironment also represents a fertile ground for the development of myeloid malignancies, and the leukemic niche significantly interacts with drugs commonly used in AML treatment. Finally, we focus on the role of the microenvironment in the engraftment and complications of allogeneic hematopoietic stem cell transplantation, the only curative option in a conspicuous proportion of patients.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Enrico Santinelli
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Elisa Galossi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Antonio Cristiano
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Emiliano Fabiani
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Saint Camillus International, University of Health Sciences, Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy; Neuro-Oncohematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
16
|
Qi S, Du Y, Sun M, Zhang L, Chen Z, Xiong H. Aberrant myelomonocytic CD56 expression predicts response to cyclosporine therapy in pediatric patients with moderate aplastic anemia. Front Pediatr 2023; 11:1272593. [PMID: 38152649 PMCID: PMC10751928 DOI: 10.3389/fped.2023.1272593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Objects This study aimed to investigate the expression patterns and clinical significance of neural cell adhesion molecule-positive (CD56+) myelomonocytes in pediatric patients with moderate aplastic anemia (mAA). Methods Fifty-six pediatric patients with mAA were enrolled in this study. The patients' clinical characteristics, laboratory data, and response to cyclosporine therapy were obtained. CD56 expression on bone marrow myelomonocytic cells was investigated using flow cytometry. The association between aberrant CD56 expression and cyclosporine response was evaluated by a multivariate analysis. Results CD56+ myelomonocytes were detected in 43% of the mAA cases. Aberrant CD56 expression was frequent on immature CD45dimCD16dim granulocytes and mature CD45brightCD14bright monocytes. Compared with patients with CD56- myelomonocytes (CD56- patients), patients with CD56+ myelomonocytes (CD56+ patients) were in moderate hematological condition and had a distinct bone marrow cellular composition profile, which included an increased proportion of myeloid cells and CD56bright natural killer cells and a reduced proportion of CD4+ T cells, CD8+ T cells, and B cells. The multivariate analysis determined that CD56+ myelomonocytes were a favorable factor for achieving response at 6 months after cyclosporine therapy. There was a trend towards a lower 3-year rate of evolution to severe aplastic anemia or relapse among the CD56+ patients (8%) than the CD56- patients (22%). Conclusion CD56+ patients had an increased myeloid compartment and better prognosis compared with CD56- patients. The findings demonstrated the favorable role of CD56+ myelomonocytes in aplastic anemia progression.
Collapse
Affiliation(s)
- Shanshan Qi
- Laboratory of Pediatric Hematology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Du
- Department of Hematology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Sun
- Laboratory of Pediatric Hematology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Zhang
- Department of Hematology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Chen
- Department of Hematology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Xiong
- Laboratory of Pediatric Hematology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Hematology, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Du A, Yang Q, Sun X, Zhao Q. Exosomal circRNA-001264 promotes AML immunosuppression through induction of M2-like macrophages and PD-L1 overexpression. Int Immunopharmacol 2023; 124:110868. [PMID: 37657244 DOI: 10.1016/j.intimp.2023.110868] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
Exosomes can help to effectively regulate the crosstalk between cancer cells and normal cells in the tumor microenvironment. They also regulate cancer cell proliferation and apoptosis by virtue of their cargo molecules. Transmission electron microscopy (TEM) together with differential ultracentrifugation served for verifying the presence of exosomes. In vivo and in vitro assays served for determining the role of exosomal circ_001264. RNA pull-down and dual-luciferase reporter assays assisted in the classification of the mechanism of exosomal circ_001264-mediated regulation of the crosstalk between Acute myeloid leukemia (AML) cells and M2 macrophages. Furthermore, we adopted a programmed death ligand 1 antibody (aPD-L1) in combination with exosomal circ_001264 siRNA for antitumor treatment in vitro and in vivo mouse models served for validating the in vivo outcomes. Out study illustrated the aberrant overexpression of circ_001264 in AML patients and its correlation with poor patient prognosis. AML cell-derived exosomal circ_001264 regulated the RAF1 expression and activated the p38-STAT3 signaling pathway, thereby inducing the M2 macrophage polarization. Polarized M2 macrophages can induce PD-L1 overexpression by secreting PD-L1. Here, a programmed death ligand (aPD-L1) was adopted for preventing the immunosuppression, which was able to achieve the desired therapeutic effect at the tumor site. Indeed, in the mouse model, leukemia tumor load decreased remarkably in the exosomal circ_001264 siRNA plus aPD-L1 combination group. Taken together, our study contributed to a theoretical basis for AML treatment. The co-administration of exosomal circ_001264 siRNA and aPD-L1 exhibited an obvious anti-cancer effectiveness in AML.
Collapse
Affiliation(s)
- Ashuai Du
- Department of Infection, Guizhou Provincial People's Hospital, Guiyang 550002, PR China
| | - Qinglong Yang
- Department of General Surgery, Guizhou Provincial people's Hospital, Guiyang 550002, PR China; Department of Cell Biology, School of Life Sciences, Central South University, Changsha 410013, PR China
| | - Xiaoying Sun
- The First Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China; School of Nursing, Sun Yat-sen University, Guangzhou 528406, China.
| | - Qiangqiang Zhao
- Department of Hematology, The People's Hospital of Liuzhou City, Liuzhou 545026, PR China; Department of Hematology, the Qinghai Provincial People's Hospital, Xining 810007, PR China.
| |
Collapse
|
18
|
Wang P, Anderson DE, Ye Y. PI3K-AKT activation resculpts integrin signaling to drive filamentous tau-induced proinflammatory astrogliosis. Cell Biosci 2023; 13:179. [PMID: 37759245 PMCID: PMC10536728 DOI: 10.1186/s13578-023-01128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Microtubule-binding protein tau is a misfolding-prone protein associated with tauopathies. As tau undergoes cell-to-cell transmission, extracellular tau aggregates convert astrocytes into a pro-inflammatory state via integrin activation, causing them to release unknown neurotoxic factors. RESULTS Here, we combine transcriptomics with isotope labeling-based quantitative mass spectrometry analysis of mouse primary astrocyte secretome to establish PI3K-AKT as a critical differentiator between pathogenic and physiological integrin activation; simultaneous activation of PI3K-AKT and focal adhesion kinase (FAK) in tau fibril-treated astrocytes changes the output of integrin signaling, causing pro-inflammatory gene upregulation, trans-Golgi network restructuring, and altered secretory flow. Furthermore, NCAM1, as a proximal signaling component in tau-stimulated integrin and PI3K-AKT activation, facilitates the secretion of complement C3 as a main neurotoxic factor. Significantly, tau fibrils-associated astrogliosis and C3 secretion can be mitigated by FAK or PI3K inhibitors. CONCLUSIONS These findings reveal an unexpected function for PI3K-AKT in tauopathy-associated reactive astrogliosis, which may be a promising target for anti-inflammation-based Alzheimer's therapy.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - D Eric Anderson
- Advanced Mass Spectrometry Core, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Wang P, Anderson DE, Ye Y. PI3K-AKT activation resculpts integrin signaling to drive filamentous tau-induced proinflammatory astrogliosis. RESEARCH SQUARE 2023:rs.3.rs-3253118. [PMID: 37674732 PMCID: PMC10479431 DOI: 10.21203/rs.3.rs-3253118/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Microtubule-binding protein tau is a misfolding-prone protein associated with tauopathies. As tau undergoes cell-to-cell transmission, extracellular tau aggregates convert astrocytes into a pro-inflammatory state via integrin activation, causing them to release unknown neurotoxic factors. Results Here, we combine transcriptomics with isotope labeling-based quantitative mass spectrometry analysis of mouse primary astrocyte secretome to establish PI3K-AKT as a critical differentiator between pathogenic and physiological integrin activation; simultaneous activation of PI3K-AKT and focal adhesion kinase (FAK) in tau fibril-treated astrocytes changes the output of integrin signaling, causing pro-inflammatory gene upregulation, trans-Golgi network restructuring, and altered secretory flow. Furthermore, NCAM1, as a proximal signaling component in tau-stimulated integrin and PI3K-AKT activation, facilitates the secretion of complement C3 as a main neurotoxic factor. Significantly, tau fibrils-associated astrogliosis and C3 secretion can be mitigated by FAK or PI3K inhibitors. Conclusions These findings reveal an unexpected function for PI3K-AKT in tauopathy-associated reactive astrogliosis, which may be a promising target for anti-inflammation-based Alzheimer's therapy.
Collapse
Affiliation(s)
- Peng Wang
- National Institute of Diabetes and Digestive and Kidney Diseases
| | - D Eric Anderson
- National Institute of Diabetes and Digestive and Kidney Diseases
| | - Yihong Ye
- National Institute of Diabetes and Digestive and Kidney Diseases
| |
Collapse
|
20
|
Arévalo CM, Cruz-Rodriguez N, Quijano S, Fiorentino S. Plant-derived extracts and metabolic modulation in leukemia: a promising approach to overcome treatment resistance. Front Mol Biosci 2023; 10:1229760. [PMID: 37520325 PMCID: PMC10382028 DOI: 10.3389/fmolb.2023.1229760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Leukemic cells acquire complex and often multifactorial mechanisms of resistance to treatment, including various metabolic alterations. Although the use of metabolic modulators has been proposed for several decades, their use in clinical practice has not been established. Natural products, the so-called botanical drugs, are capable of regulating tumor metabolism, particularly in hematopoietic tumors, which could partly explain the biological activity attributed to them for a long time. This review addresses the most recent findings relating to metabolic reprogramming-Mainly in the glycolytic pathway and mitochondrial activity-Of leukemic cells and its role in the generation of resistance to conventional treatments, the modulation of the tumor microenvironment, and the evasion of immune response. In turn, it describes how the modulation of metabolism by plant-derived extracts can counteract resistance to chemotherapy in this tumor model and contribute to the activation of the antitumor immune system.
Collapse
Affiliation(s)
- Cindy Mayerli Arévalo
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Sandra Quijano
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
21
|
Sadovskaya A, Petinati N, Drize N, Smirnov I, Pobeguts O, Arapidi G, Lagarkova M, Belyavsky A, Vasilieva A, Aleshina O, Parovichnikova E. Acute Myeloid Leukemia Causes Serious and Partially Irreversible Changes in Secretomes of Bone Marrow Multipotent Mesenchymal Stromal Cells. Int J Mol Sci 2023; 24:ijms24108953. [PMID: 37240298 DOI: 10.3390/ijms24108953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In patients with acute myeloid leukemia (AML), malignant cells modify the properties of multipotent mesenchymal stromal cells (MSCs), reducing their ability to maintain normal hematopoiesis. The aim of this work was to elucidate the role of MSCs in supporting leukemia cells and the restoration of normal hematopoiesis by analyzing ex vivo MSC secretomes at the onset of AML and in remission. The study included MSCs obtained from the bone marrow of 13 AML patients and 21 healthy donors. The analysis of proteins contained in the MSCs-conditioned medium demonstrated that secretomes of patient MSCs differed little between the onset of AML and remission; pronounced differences were observed between MSC secretomes of AML patients and healthy donors. The onset of AML was accompanied by a decrease in the secretion of proteins related to ossification, transport, and immune response. In remission, but not at the onset, secretion of proteins responsible for cell adhesion, immune response, and complement was reduced compared to donors. We conclude that AML causes crucial and, to a large extent, irreversible changes in the secretome of bone marrow MSCs ex vivo. In remission, functions of MSCs remain impaired despite the absence of tumor cells and the formation of benign hematopoietic cells.
Collapse
Affiliation(s)
- Aleksandra Sadovskaya
- National Medical Research Center for Hematology, 125167 Moscow, Russia
- Department of Immunology, Faculty of Biology, Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nataliya Petinati
- National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Nina Drize
- National Medical Research Center for Hematology, 125167 Moscow, Russia
| | - Igor Smirnov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Olga Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Georgiy Arapidi
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maria Lagarkova
- Department of Immunology, Faculty of Biology, Federal State Budget Educational Institution of Higher Education M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Olga Aleshina
- National Medical Research Center for Hematology, 125167 Moscow, Russia
| | | |
Collapse
|
22
|
Steinskog ESS, Finne K, Enger M, Helgeland L, Iversen PO, McCormack E, Wiig H, Tenstad O. Isolation of lymph shows dysregulation of STAT3 and CREB pathways in the spleen and liver during leukemia development in a rat model. Microcirculation 2023; 30:e12800. [PMID: 36702790 DOI: 10.1111/micc.12800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND AIMS Acute myeloid leukemia (AML) is a heterogeneous malignant condition characterized by massive infiltration of poorly differentiated white blood cells in the blood stream, bone marrow, and extramedullary sites. During leukemic development, hepatosplenomegaly is expected to occur because large blood volumes are continuously filtered through these organs. We asked whether infiltration of leukemic blasts initiated a response that could be detected in the interstitial fluid phase of the spleen and liver. MATERIAL AND METHODS We used a rat model known to mimic human AML in growth characteristics and behavior. By cannulating efferent lymphatic vessels from the spleen and liver, we were able to monitor the response of the microenvironment during AML development. RESULTS AND DISCUSSION Flow cytometric analysis of lymphocytes showed increased STAT3 and CREB signaling in spleen and depressed signaling in liver, and proteins related to these pathways were identified with a different profile in lymph and plasma in AML compared with control. Additionally, several proteins were differently regulated in the microenvironment of spleen and liver in AML when compared with control. CONCLUSION Interstitial fluid, and its surrogate efferent lymph, can be used to provide unique information about responses in AML-infiltered organs and substances released to the general circulation during leukemia development.
Collapse
Affiliation(s)
| | - Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Marianne Enger
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Lars Helgeland
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Per Ole Iversen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Emmet McCormack
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Helge Wiig
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Olav Tenstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
23
|
van den Akker TA, Liu YC, Liu H, Chapman J, Levine JM, Weinberg OK, Geyer JT. Myeloid Proliferations Associated with Down Syndrome: Clinicopathologic Characteristics of Forty Cases from Five Large Academic Institutions. Pathobiology 2023; 91:89-98. [PMID: 36996802 PMCID: PMC10857798 DOI: 10.1159/000530431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
INTRODUCTION The incidence of myelodysplastic syndrome and acute myeloid leukemia is significantly increased in children with Down syndrome (DS). Within the revised 2016 WHO edition, these entities are jointly classified as myeloid leukemia associated with DS (ML-DS). Additionally, infants with DS may develop transient abnormal myelopoiesis (TAM) which is histomorphologically similar to ML-DS. While TAM is self-limiting, it is associated with an increased risk of subsequently developing ML-DS. Differentiating TAM and ML-DS is challenging but clinically critical. METHODS We performed a retrospective review of ML-DS and TAM cases collected from five large academic institutions in the USA. We assessed clinical, pathological, immunophenotypical, and molecular features to identify differentiating criteria. RESULTS Forty cases were identified: 28 ML-DS and 12 TAM. Several features were diagnostically distinct, including younger age in TAM (p < 0.05), as well as presentation with clinically significant anemia and thrombocytopenia in ML-DS (p < 0.001). Dyserythropoiesis was unique to ML-DS, as well as structural cytogenetic abnormalities aside from the constitutional trisomy 21. Immunophenotypic characteristics of TAM and ML-DS were indistinguishable, including the aberrant expression of CD7 and CD56 by the myeloid blasts. DISCUSSION The findings of the study confirm marked biological similarities between TAM and ML-DS. At the same time, several significant clinical, morphological, and genetic differences were observed between TAM and ML-DS. The clinical approach and the differential diagnosis between these entities are discussed in detail.
Collapse
Affiliation(s)
| | - Yen-Chun Liu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Huifei Liu
- Department of Pathology, Nationwide Children’s Hospital, Columbus, OH, USA
| | | | | | - Olga K. Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, Boston Children’s Hospital, Boston, MA, USA
| | - Julia T. Geyer
- Department of Pathology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
24
|
Xie X, Zhang W, Zhou X, Ye Z, Wang H, Qiu Y, Pan Y, Hu Y, Li L, Chen Z, Yang W, Lu Y, Zou S, Li Y, Bai X. Abemaciclib drives the therapeutic differentiation of acute myeloid leukaemia stem cells. Br J Haematol 2023; 201:940-953. [PMID: 36916190 DOI: 10.1111/bjh.18735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/15/2023]
Abstract
Self-renewal and differentiation arrest are two features of leukaemia stem cells (LSCs) responsible for the high relapse rate of acute myeloid leukaemia (AML). To screen drugs to overcome differentiation blockade for AML, we conducted screening of 2040 small molecules from a library of United States Food and Drug Administration-approved drugs and found that the cyclin-dependent kinase (CDK)4/6 inhibitor, abemaciclib, exerts high anti-leukaemic activity. Abemaciclib significantly suppressed proliferation and promoted the differentiation of LSCs in vitro. Abemaciclib also efficiently induced differentiation and impaired self-renewal of LSCs, thus reducing the leukaemic cell burden and improving survival in various preclinical animal models, including patient-derived xenografts. Importantly, abemaciclib strongly enhanced anti-tumour effects in combination with venetoclax, a B-cell lymphoma 2 (Bcl-2) inhibitor. This treatment combination led to a marked decrease in LSC-enriched populations and resulted in a synergistic anti-leukaemic effect. Target screening revealed that in addition to CDK4/6, abemaciclib bound to and inhibited CDK9, consequently attenuating the protein levels of global p-Ser2 RNA Polymerase II (Pol II) carboxy terminal domain (CTD), Myc, Bcl-2, and myeloid cell leukaemia-1 (Mcl-1), which was important for the anti-AML effect of abemaciclib. Collectively, these data provide a strong rationale for the clinical evaluation of abemaciclib to induce LSC differentiation and treat highly aggressive AML as well as other advanced haematological malignancies.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wuju Zhang
- Department of Oncology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixin Ye
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hao Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingqi Qiu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yating Pan
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Luyao Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhuanzhuan Chen
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wanwen Yang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yao Lu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuxin Zou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Illangeswaran RSS, Jebanesan DZP, Sivakumar KK, Vidhyadharan RT, Rajamani BM, Janet NB, David E, Velayudhan SR, Mathews V, Balasubramanian P. Chemotherapeutic drugs elicit stemness and metabolic alteration to mediate acquired drug-resistant phenotype in acute myeloid leukemia cell lines. Leuk Res 2023; 128:107054. [PMID: 36906941 DOI: 10.1016/j.leukres.2023.107054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Chemotherapy resistance leading to disease relapse is a significant barrier in treating acute myeloid leukemia (AML). Metabolic adaptations have been shown to contribute to therapy resistance. However, little is known about whether specific therapies cause specific metabolic changes. We established cytarabine-resistant (AraC-R) and Arsenic trioxide-resistant (ATO-R) AML cell lines, displaying distinct cell surface expression and cytogenetic abnormalities. Transcriptomic analysis revealed a significant difference in the expression profiles of ATO-R and AraC-R cells. Geneset enrichment analysis showed AraC-R cells rely on OXPHOS, while ATO-R cells on glycolysis. ATO-R cells were also enriched for stemness gene signatures, whereas AraC-R cells were not. The mito stress and glycolytic stress tests confirmed these findings. The distinct metabolic adaptation of AraC-R cells increased sensitivity to the OXPHOS inhibitor venetoclax. Cytarabine resistance was circumvented in AraC-R cells by combining Ven and AraC. In vivo, ATO-R cells showed increased repopulating potential, leading to aggressive leukemia compared to the parental and AraC-R. Overall, our study shows that different therapies can cause different metabolic changes and that these metabolic dependencies can be used to target chemotherapy-resistant AML.
Collapse
Affiliation(s)
| | | | | | | | | | - Nancy Beryl Janet
- Department of Haematology, Christian Medical College, Vellore, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Shaji Ramachandran Velayudhan
- Department of Haematology, Christian Medical College, Vellore, India; Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Vellore, India
| | | |
Collapse
|
26
|
Trinh T, Ropa J, Cooper S, Aljoufi A, Sinn A, Capitano M, Broxmeyer HE, Kaplan MH. Age-related decline in LEPR + hematopoietic stem cell function. Leukemia 2023; 37:712-716. [PMID: 36650272 PMCID: PMC9991916 DOI: 10.1038/s41375-023-01815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Affiliation(s)
- Thao Trinh
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - James Ropa
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Scott Cooper
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Arafat Aljoufi
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Anthony Sinn
- In Vivo Therapeutics Core, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Maegan Capitano
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hal E Broxmeyer
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mark H Kaplan
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
27
|
Zhao L, Wu X, Zhang Z, Fang L, Yang B, Li Y. ELF1 suppresses autophagy to reduce cisplatin resistance via the miR-152-3p/NCAM1/ERK axis in lung cancer cells. Cancer Sci 2023. [PMID: 36846943 DOI: 10.1111/cas.15770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023] Open
Abstract
Resistance to chemotherapeutic drugs limits the efficacy of chemotherapy in non-small cell lung cancer (NSCLC). Autophagy is an essential mechanism which involves in drug resistance. Our previous research has revealed that miR-152-3p represses NSCLC progression. However, the mechanism of miR-152-3p in autophagy-mediated chemoresistance in NSCLC remains unclear. Cisplatin-resistant cell lines (A549/DDP and H446/DDP) were transfected with related vectors and subjected to cisplatin, autophagy inhibitor, activator, or extracellular signal-regulated kinase (ERK) activator. Flow cytometry, CCK8 and colony formation assays were performed for testing apoptosis and cell viability. The related RNAs or proteins were detected by qRT-PCR or Western blot. Chromatin immunoprecipitation, luciferase reporter assay or RNA immunoprecipitation were used for validating the interaction between miR-152-3p and ELF1 or NCAM1. Co-IP verified the binding between NCAM1 and ERK. The role of miR-152-3p in cisplatin resistance of NSCLC was also validated in vivo. The results showed that miR-152-3p and ELF1 were decreased in NSCLC tissues. miR-152-3p reversed cisplatin resistance by inhibiting autophagy through NCAM1. NCAM1 promoted autophagy through the ERK pathway and facilitated cisplatin resistance. ELF1 positively regulated miR-152-3p level by directly interacting with miR-152-3p promoter. miR-152-3p targeted NCAM1 to regulate NCAM1 level and then affected the binding of NCAM1 to ERK1/2. ELF1 inhibited autophagy and reversed cisplatin resistance through miR-152-3p/NCAM1. miR-152-3p inhibited autophagy and cisplatin resistance of xenograft tumor in mice. In conclusion, our study revealed that ELF1 inhibited autophagy to attenuate cisplatin resistance through the miR-152-3p/NCAM1/ERK pathway in H446/DDP and A549/DDP cells, suggesting a potential novel treatment strategy for NSCLC.
Collapse
Affiliation(s)
- Lifeng Zhao
- Departments of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiangsheng Wu
- School of Clinical Medicine, Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Zhiwen Zhang
- School of Clinical Medicine, Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Lini Fang
- Departments of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Bo Yang
- Departments of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yepeng Li
- Departments of Oncology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
28
|
Tian XP, Zhang YC, Lin NJ, Wang L, Li ZH, Guo HG, Ma SY, An MJ, Yang J, Hong YH, Wang XH, Zhou H, Li YJ, Rao HL, Li M, Hu SX, Lin TY, Li ZM, Huang H, Liang Y, Xia ZJ, Lv Y, Liu YY, Duan ZH, Chen QY, Wang JN, Cai J, Xie Y, Ong CK, Liu F, Liu YY, Yan Z, Huang L, Tao R, Li WY, Huang HQ, Cai QQ. Diagnostic performance and prognostic value of circulating tumor DNA methylation marker in extranodal natural killer/T cell lymphoma. Cell Rep Med 2023; 4:100859. [PMID: 36812892 PMCID: PMC9975248 DOI: 10.1016/j.xcrm.2022.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/12/2022] [Accepted: 11/18/2022] [Indexed: 02/23/2023]
Abstract
Circulating tumor DNA (ctDNA) carries tumor-specific genetic and epigenetic variations. To identify extranodal natural killer/T cell lymphoma (ENKTL)-specific methylation markers and establish a diagnostic and prognosis prediction model for ENKTL, we describe the ENKTL-specific ctDNA methylation patterns by analyzing the methylation profiles of ENKTL plasma samples. We construct a diagnostic prediction model based on ctDNA methylation markers with both high specificity and sensitivity and close relevance to tumor staging and therapeutic response. Subsequently, we built a prognostic prediction model showing excellent performance, and its predictive accuracy is significantly better than the Ann Arbor staging and prognostic index of natural killer lymphoma (PINK) risk system. Notably, we further establish a PINK-C risk grading system to select individualized treatment for patients with different prognostic risks. In conclusion, these results suggest that ctDNA methylation markers are of great value in diagnosis, monitoring, and prognosis, which might have implications for clinical decision-making of patients with ENKTL.
Collapse
Affiliation(s)
- Xiao-Peng Tian
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yu-Chen Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ning-Jing Lin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, P.R. China
| | - Zhi-Hua Li
- Department of Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, P. R. China
| | - Han-Guo Guo
- Division of Lymphoma, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Shu-Yun Ma
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ming-Jie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, P.R. China
| | - Jing Yang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, P.R. China
| | - Yu-Heng Hong
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Xian-Huo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P.R. China
| | - Hui Zhou
- Department of Lymphoma and Hematology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Ya-Jun Li
- Department of Lymphoma and Hematology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Hui-Lan Rao
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Mei Li
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Shao-Xuan Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Lymphoma, Peking University Cancer Hospital & Institute, Beijing, P.R. China
| | - Tong-Yu Lin
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zhi-Ming Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - He Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yang Liang
- Department of Hematology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zhong-Jun Xia
- Department of Hematology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yue Lv
- Department of Hematology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Yu-Ying Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Zhao-Hui Duan
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Guangzhou, P.R. China
| | - Qing-Yu Chen
- Department of Medical Examination Center, Sun Yat-sen Memorial Hospital, Guangzhou, P.R. China
| | - Jin-Ni Wang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Jun Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Ying Xie
- Guangdong Provincial Academy of Chinese Medical Sciences, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Choon-Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, 169610 Singapore, Singapore
| | - Fang Liu
- Department of Pathology, The First People's Hospital of Foshan, Foshan, P.R. China
| | - Yan-Yan Liu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou 450008, P.R. China
| | - Zheng Yan
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou 450008, P.R. China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Rong Tao
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China.
| | - Wen-Yu Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, P.R. China.
| | - Hui-Qiang Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| | - Qing-Qing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
| |
Collapse
|
29
|
Alldredge J, Kumar V, Nguyen J, Sanders BE, Gomez K, Jayachandran K, Zhang J, Schwarz J, Rahmatpanah F. Endogenous Retrovirus RNA Expression Differences between Race, Stage and HPV Status Offer Improved Prognostication among Women with Cervical Cancer. Int J Mol Sci 2023; 24:1492. [PMID: 36675007 PMCID: PMC9864224 DOI: 10.3390/ijms24021492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Endogenous human retroviruses (ERVs) are remnants of exogenous retroviruses that have integrated into the human genome. Using publicly available RNA-seq data from 63 cervical cancer patients, we investigated the expression of ERVs in cervical cancers. Four aspects of cervical cancer were investigated: patient ancestral background, tumor HPV type, tumor stage and patient survival. Between the racial subgroups, 74 ERVs were significantly differentially expressed, with Black Americans having 30 upregulated and 44 downregulated (including MER21C, HERV9-int, and HERVH-int) ERVs when compared to White Americans. We found that 3313 ERVs were differentially expressed between HPV subgroups, including MER41A, HERVH-int and HERVK9. There were 28 downregulated (including MLT1D and HERVH-int) and 61 upregulated (including MER41A) ERVs in locally advanced-stage compared to early-stage samples. Tissue microarrays of cervical cancer patients were used to investigate the protein expression of ERVs with protein coding potential (i.e., HERVK and ERV3). Significant differences in protein expression of ERV3 (p = 0.000905) were observed between early-stage and locally advanced-stage tumors. No significant differential expression at the protein level was found for HERVK7 (p = 0.243). We also investigated a prognostic model, supplementing a baseline prediction model using FIGO stage, age and HPV positivity with ERVs data. The expression levels of all ERVs in the HERVd were input into a Lasso-Cox proportional hazards model, developing a predictive 67-ERV panel. When ERVs expression levels were supplemented with the clinical data, a significant increase in prognostic power (p = 9.433 × 10-15) relative to that obtained with the clinical parameters alone (p = 0.06027) was observed. In summary, ERV RNA expression in cervical cancer tumors is significantly different among racial cohorts, HPV subgroups and disease stages. The combination of the expression of certain ERVs in cervical cancers with clinical factors significantly improved prognostication compared to clinical factors alone; therefore, ERVs may serve as future prognostic biomarkers and therapeutic targets. Novelty and Impact: When endogenous retroviral (ERV) expression signatures were combined with currently employed clinical prognosticators of relapse of cervical cancer, the combination outperformed prediction models based on clinical prognosticators alone. ERV expression signatures in tumor biopsies may therefore be useful to help identify patients at greater risk of recurrence. The novel ERV expression signatures or adjacent genes possibly impacted by ERV expression described here may also be targets for the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Jill Alldredge
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO 80045, USA
| | - Vinay Kumar
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - James Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Brooke E. Sanders
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO 80045, USA
| | - Karina Gomez
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, CO 80045, USA
| | - Kay Jayachandran
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63108, USA
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Julie Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA
- Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63108, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
30
|
Evaluating the prognostic value of CD56 in pediatric acute myeloid leukemia. BMC Cancer 2022; 22:1339. [PMID: 36544113 PMCID: PMC9768963 DOI: 10.1186/s12885-022-10460-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Many cytogenetic changes and gene mutations are associated with acute myeloid leukemia (AML) survival outcomes. CD56 is related to poor prognosis when expressed in adult AML patients. However, the prognostic value of CD56 in children with AML has rarely been reported. In this research, we aimed to evaluate the prognostic value of CD56 in childhood AML. METHODS The present retrospective study included 145 newly diagnosed pediatric patients with de novo AML (excluding AML-M3) in two hospitals between January 2015 and April 2021. RESULTS The total median (range) age was 75 (8-176) months, and the median follow-up time was 35 months. No significant difference in the 3-year overall survival rate was noted between the CD56-positive and CD56-negative groups (67.0% vs. 79.3%, P = 0.157) who received chemotherapy. However, among high-risk patients, the CD56-positive group had a worse overall survival rate and event-free survival rate (P < 0.05). Furthermore, among high-risk patients, the CD56-positive group had higher relapse and mortality rates than the CD56-negative group (P < 0.05). CONCLUSIONS CD56 represents a potential factor of poor prognosis in specific groups of children with AML and should be considered in the risk stratification of the disease. Given the independent prognostic value of CD56 expression, we should consider integrating this marker with some immunophenotypic or cytogenetic abnormalities for comprehensive analysis.
Collapse
|
31
|
Micro-Slab Coil Design for Hyperpolarized Metabolic Flux Analysis in Multiple Samples. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010014. [PMID: 36671586 PMCID: PMC9854444 DOI: 10.3390/bioengineering10010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Abnormal metabolism is a hallmark of cancer cells. Accumulating evidence suggests that metabolic changes are likely to occur before other cellular responses in cancer cells upon drug treatment. Therefore, the metabolic activity or flux in cancer cells could be a potent biomarker for cancer detection and treatment monitoring. Magnetic resonance (MR)-based sensing technologies have been developed with hyperpolarized molecules for real-time flux analysis, but they still suffer from low sensitivity and throughput. To address this limitation, we have developed an innovative miniaturized MR coil, termed micro-slab MR coil, for simultaneous analysis of metabolic flux in multiple samples. Combining this approach with hyperpolarized probes, we were able to quantify the pyruvate-to-lactate flux in two different leukemic cell lines in a non-destructive manner, simultaneously. Further, we were able to rapidly assess flux changes with drug treatment in a single hyperpolarization experiment. This new multi-sample system has the potential to transform our ability to assess metabolic dynamics at scale.
Collapse
|
32
|
Wang J, Gao N, Wang X, Yu W, Li A. Prognostic Factors in Acute Myeloid Leukemia with t(8;21)/ AML1-ETO: Strategies to Define High-Risk Patients. Indian J Hematol Blood Transfus 2022; 38:631-637. [PMID: 36258727 PMCID: PMC9569252 DOI: 10.1007/s12288-021-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022] Open
Abstract
Acute myeloid leukemia (AML) with t(8;21)/AML1-ETO is considered to have favorable prognosis. However, outcome is not universally satisfactory. The aim of this study was to search for potential prognostic risk factors which can help individualized treatment in t(8;21) AML patients. All available clinical and laboratory indicators were analyzed retrospectively in 103 t (8;21) AML patients. All patients were followed up for median of 30 months (range 0.3-73 months). CD56 and IDH1 were found to be closely related to high recurrence (p = 0.002; p = 0.001) and incidence of cumulative recurrence (p = 0.001; p < 0.0001). C-KIT was associated with a high cumulative incidence of non-relapse mortality (p < 0.0001). Elevated galectin-3 (gal-3) had a significantly adverse effect on overall survival (OS) and disease-free survival (DFS) of patients receiving standard-dose cytarabine-based consolidation chemotherapy. In multivariable analysis, gal-3 (p = 0.01), CD56 (p = 0.002), IDH1 (p = 0.007) and C-KIT (p = 0.041) were the independent unfavorable factors for OS. CD56 (p = 0.019), IDH1 (p = 0.001) and consolidation chemotherapy regimen (p = 0.041) were the independent risk factors in terms of DFS. A scoring system incorporating gal-3, CD56, IDH1 and C-KIT proved to be helpful for predicting OS in t (8;21) AML patients. Our results revealed that those carrying four factors mentioned above should be considered to be high-risk patients.
Collapse
Affiliation(s)
- Jianyong Wang
- Department of Pediatric Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong China
| | - Na Gao
- Department of Hematology, Binzhou Medical University Hospital, Binzhou, 256600 Shandong China
| | - Xuexia Wang
- Department of Hematology, Binzhou Medical University Hospital, Binzhou, 256600 Shandong China
| | - Wenzheng Yu
- Department of Hematology, Binzhou Medical University Hospital, Binzhou, 256600 Shandong China
| | - Aimin Li
- Department of Pediatric Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 Shandong China
| |
Collapse
|
33
|
Properties of Leukemic Stem Cells in Regulating Drug Resistance in Acute and Chronic Myeloid Leukemias. Biomedicines 2022; 10:biomedicines10081841. [PMID: 36009388 PMCID: PMC9405586 DOI: 10.3390/biomedicines10081841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Notoriously known for their capacity to reconstitute hematological malignancies in vivo, leukemic stem cells (LSCs) represent key drivers of therapeutic resistance and disease relapse, posing as a major medical dilemma. Despite having low abundance in the bulk leukemic population, LSCs have developed unique molecular dependencies and intricate signaling networks to enable self-renewal, quiescence, and drug resistance. To illustrate the multi-dimensional landscape of LSC-mediated leukemogenesis, in this review, we present phenotypical characteristics of LSCs, address the LSC-associated leukemic stromal microenvironment, highlight molecular aberrations that occur in the transcriptome, epigenome, proteome, and metabolome of LSCs, and showcase promising novel therapeutic strategies that potentially target the molecular vulnerabilities of LSCs.
Collapse
|
34
|
Sarafidis M, Lambrou GI, Zoumpourlis V, Koutsouris D. An Integrated Bioinformatics Analysis towards the Identification of Diagnostic, Prognostic, and Predictive Key Biomarkers for Urinary Bladder Cancer. Cancers (Basel) 2022; 14:cancers14143358. [PMID: 35884419 PMCID: PMC9319344 DOI: 10.3390/cancers14143358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Bladder cancer is evidently a challenge as far as its prognosis and treatment are concerned. The investigation of potential biomarkers and therapeutic targets is indispensable and still in progress. Most studies attempt to identify differential signatures between distinct molecular tumor subtypes. Therefore, keeping in mind the heterogeneity of urinary bladder tumors, we attempted to identify a consensus gene-related signature between the common expression profile of bladder cancer and control samples. In the quest for substantive features, we were able to identify key hub genes, whose signatures could hold diagnostic, prognostic, or therapeutic significance, but, primarily, could contribute to a better understanding of urinary bladder cancer biology. Abstract Bladder cancer (BCa) is one of the most prevalent cancers worldwide and accounts for high morbidity and mortality. This study intended to elucidate potential key biomarkers related to the occurrence, development, and prognosis of BCa through an integrated bioinformatics analysis. In this context, a systematic meta-analysis, integrating 18 microarray gene expression datasets from the GEO repository into a merged meta-dataset, identified 815 robust differentially expressed genes (DEGs). The key hub genes resulted from DEG-based protein–protein interaction and weighted gene co-expression network analyses were screened for their differential expression in urine and blood plasma samples of BCa patients. Subsequently, they were tested for their prognostic value, and a three-gene signature model, including COL3A1, FOXM1, and PLK4, was built. In addition, they were tested for their predictive value regarding muscle-invasive BCa patients’ response to neoadjuvant chemotherapy. A six-gene signature model, including ANXA5, CD44, NCAM1, SPP1, CDCA8, and KIF14, was developed. In conclusion, this study identified nine key biomarker genes, namely ANXA5, CDT1, COL3A1, SPP1, VEGFA, CDCA8, HJURP, TOP2A, and COL6A1, which were differentially expressed in urine or blood of BCa patients, held a prognostic or predictive value, and were immunohistochemically validated. These biomarkers may be of significance as prognostic and therapeutic targets for BCa.
Collapse
Affiliation(s)
- Michail Sarafidis
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece;
- Correspondence: ; Tel.: +30-210-772-2430
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 8 Thivon & Levadeias Str., 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 8 Thivon & Levadeias Str., 11527 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Konstantinou Ave., 11635 Athens, Greece;
| | - Dimitrios Koutsouris
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece;
| |
Collapse
|
35
|
Ge L, Sun Y, Shi Y, Liu G, Teng F, Geng Z, Chen X, Xu H, Xu J, Jia X. Plasma circRNA microarray profiling identifies novel circRNA biomarkers for the diagnosis of ovarian cancer. J Ovarian Res 2022; 15:58. [PMID: 35550610 PMCID: PMC9097182 DOI: 10.1186/s13048-022-00988-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background Circular RNA (circRNA), a class of RNA with a covalent closed circular structure that widely existed in serum and plasma, has been considered an ideal liquid biopsy marker in many diseases. In this study, we employed microarray and qRT-PCR to evaluate the potential circulating circRNAs with diagnostic efficacy in ovarian cancer. Methods We used microarray to explore the circRNA expression profile in ovarian cancer patients’ plasma and quantitative real-time (qRT)-PCR approach to assessing the candidate circRNA’s expression. Then the receiver operating characteristic (ROC) curve was employed to analyze the diagnostic values of candidate circRNAs. The diagnostic model circCOMBO was a combination of hsa_circ_0003972 and hsa_circ_0007288 built by binary logistic regression. Then bioinformatic tools were used to predict their potential mechanisms. Results Hsa_circ_0003972 and hsa_circ_0007288 were downregulated in ovarian cancer patients’ plasma, tissues, and cell lines, comparing with the controls. Hsa_circ_0003972 and hsa_circ_0007288 exhibited diagnostic values with the Area Under Curve (AUC) of 0.724 and 0.790, respectively. circCOMBO showed a better diagnostic utility (AUC: 0.781), while the combination of circCOMBO and carbohydrate antigen 125 (CA125) showed the highest diagnostic value (AUC: 0.923). Furthermore, the higher expression level of hsa_circ_0007288 in both plasma and ovarian cancer tissues was associated with lower lymph node metastasis potential in ovarian cancer. Conclusions Our results revealed that hsa_circ_0003972 and hsa_circ_0007288 may serve as novel circulating biomarkers for ovarian cancer diagnosis. Supplementary information The online version contains supplementary material available at 10.1186/s13048-022-00988-0.
Collapse
Affiliation(s)
- Lili Ge
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123 Mochou Rd, 210004, Nanjing, China
| | - Yu Sun
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123 Mochou Rd, 210004, Nanjing, China
| | - Yaqian Shi
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123 Mochou Rd, 210004, Nanjing, China
| | - Guangquan Liu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123 Mochou Rd, 210004, Nanjing, China
| | - Fang Teng
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123 Mochou Rd, 210004, Nanjing, China
| | - Zhe Geng
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123 Mochou Rd, 210004, Nanjing, China
| | - Xiyi Chen
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123 Mochou Rd, 210004, Nanjing, China
| | - Hanzi Xu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, 210009, Nanjing, China.
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123 Mochou Rd, 210004, Nanjing, China.
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), 123 Mochou Rd, 210004, Nanjing, China.
| |
Collapse
|
36
|
Modeling Down Syndrome Myeloid Leukemia by Sequential Introduction of GATA1 and STAG2 Mutations in Induced Pluripotent Stem Cells with Trisomy 21. Cells 2022; 11:cells11040628. [PMID: 35203280 PMCID: PMC8870267 DOI: 10.3390/cells11040628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/21/2023] Open
Abstract
Children with Down syndrome (DS) have a high risk for acute myeloid leukemia (DS-ML). Genomic characterization of DS-ML blasts showed the presence of unique mutations in GATA1, an essential hematopoietic transcription factor, leading to the production of a truncated from of GATA1 (GATA1s). GATA1s, together with trisomy 21, is sufficient to develop a pre-leukemic condition called transient abnormal myelopoiesis (TAM). Approximately 30% of these cases progress into DS-ML by acquisition of additional somatic mutations in a stepwise manner. We previously developed a model for TAM by introducing disease-specific GATA1 mutation in trisomy 21-induced pluripotent stem cells (iPSCs), leading to the production of N-terminally truncated short form of GATA1 (GATA1s). In this model, we used CRISPR/Cas9 to introduce a co-operating mutation in STAG2, a member of the cohesin complex recurrently mutated in DS-ML but not in TAM. Hematopoietic differentiation of GATA1 STAG2 double-mutant iPSC lines confirmed GATA1s expression and the loss of functional STAG2 protein, leading to enhanced production of immature megakaryocytic population compared to GATA1 mutant alone. Megakaryocyte-specific lineage expansion of the double-mutant HSPCs exhibited close resemblance to the DS-ML immunophenotype. Transcriptome analysis showed that GATA1 mutation resulted in downregulation of megakaryocytic and erythrocytic differentiation pathways and interferon α/β signaling, along with an upregulation of pathways promoting myeloid differentiation such as toll-like receptor cascade. The co-occurrence of STAG2 knockout partially reverted the expression of genes involved in myeloid differentiation, likely leading to enhanced self-renewal and promoting leukemogenesis. In conclusion, we developed a DS-ML model via hematopoietic differentiation of gene-targeted iPSCs bearing trisomy 21.
Collapse
|
37
|
Grenier JMP, Testut C, Fauriat C, Mancini SJC, Aurrand-Lions M. Adhesion Molecules Involved in Stem Cell Niche Retention During Normal Haematopoiesis and in Acute Myeloid Leukaemia. Front Immunol 2021; 12:756231. [PMID: 34867994 PMCID: PMC8636127 DOI: 10.3389/fimmu.2021.756231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022] Open
Abstract
In the bone marrow (BM) of adult mammals, haematopoietic stem cells (HSCs) are retained in micro-anatomical structures by adhesion molecules that regulate HSC quiescence, proliferation and commitment. During decades, researchers have used engraftment to study the function of adhesion molecules in HSC's homeostasis regulation. Since the 90's, progress in genetically engineered mouse models has allowed a better understanding of adhesion molecules involved in HSCs regulation by BM niches and raised questions about the role of adhesion mechanisms in conferring drug resistance to cancer cells nested in the BM. This has been especially studied in acute myeloid leukaemia (AML) which was the first disease in which the concept of cancer stem cell (CSC) or leukemic stem cells (LSCs) was demonstrated. In AML, it has been proposed that LSCs propagate the disease and are able to replenish the leukemic bulk after complete remission suggesting that LSC may be endowed with drug resistance properties. However, whether such properties are due to extrinsic or intrinsic molecular mechanisms, fully or partially supported by molecular crosstalk between LSCs and surrounding BM micro-environment is still matter of debate. In this review, we focus on adhesion molecules that have been involved in HSCs or LSCs anchoring to BM niches and discuss if inhibition of such mechanism may represent new therapeutic avenues to eradicate LSCs.
Collapse
Affiliation(s)
- Julien M P Grenier
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Céline Testut
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Cyril Fauriat
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Stéphane J C Mancini
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| | - Michel Aurrand-Lions
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Equipe Labellisée Ligue Nationale Contre le Cancer 2020, Marseille, France
| |
Collapse
|
38
|
Zhou W, Xu S, Chen X, Wang C. HOTAIR suppresses PTEN via DNMT3b and confers drug resistance in acute myeloid leukemia. Hematology 2021; 26:170-178. [PMID: 33538241 DOI: 10.1080/16078454.2021.1880733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE HOTAIR has been well reported to be involved in the drug resistance of many diseases. This study aims to explore the possible implication of HOTAIR in doxorubicin (ADM) resistance in acute myeloid leukemia (AML). METHODS Expressions of HOTAIR and PTEN in bone marrows of patient with newly diagnosed AML and relapsed/refractory AML and of healthy controls were determined by RT-qPCR. The half maximal inhibitory concentration (IC50) was calculated after AML-ADM-sensitive cells HL60 and AML-ADM-resistant cells HL60/ADM cells were treated by ADM. The IC50 of HL60/ADM to ADM dosage was determined by CCK-8. After cells were transfected with Sh-HOTAIR, pcDNA3.1-HOTAIR or pcDNA3.1-PTEN, cell biology of HL60/ADM cells was detected by flow cytometry, clone formation assay. The methylation of PTEN was determined by Methylmion-specific PCR and Bisulfite Genomic Sequence. RESULTS Patient with relapsed/refractory AML had the highest HOTAIR and the lowest PTEN expression, followed by that in newly diagnosed AML patients and then healthy controls. After ADM treatment, cell viability and IC50 were enhanced in HL60/ADM cell when compared with HL60 cells. Up-regulated HOTAIR and down-regulated PTEN were found in HL60/ADM cells. Cell transfection with sh-HOTAIR or pcDNA3.1-PTEN leads to increased ADM sensitivity, apoptosis rate as well as decreased IC50 and cell clones, while those expression patterns can be reversed by co-transfection of pcDNA3.1-PTEN and pcDNA3.1-HOTAIR. Methylation was observed in the promoter of PTEN. HOTAIR can positively regulate DNMT3b. CONCLUSION HOTAIR suppresses PTEN through up-regulating DNMT3b-dependent way and confers ADM resistance in AML.
Collapse
MESH Headings
- Adult
- Aged
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Bone Marrow Cells
- Cell Line, Tumor
- DNA (Cytosine-5-)-Methyltransferases/genetics
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Leukemic
- Gene Knockdown Techniques
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Male
- Middle Aged
- PTEN Phosphohydrolase/genetics
- RNA Interference
- RNA, Long Noncoding/genetics
- Recurrence
- Young Adult
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- Wei Zhou
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, People's Republic of China
| | - Shilin Xu
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, People's Republic of China
| | - Xiaowei Chen
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, People's Republic of China
| | - Caixia Wang
- Department of Hematology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
39
|
Liu JM, Li M, Luo W, Sun HB. Curcumin attenuates Adriamycin-resistance of acute myeloid leukemia by inhibiting the lncRNA HOTAIR/miR-20a-5p/WT1 axis. J Transl Med 2021; 101:1308-1317. [PMID: 34282279 DOI: 10.1038/s41374-021-00640-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a common subtype of leukemia, and a large proportion of patients with AML eventually develop drug resistance. Curcumin exerts cancer suppressive effects and increases sensitivity to chemotherapy in several diseases. This study aimed to investigate the mechanism by which curcumin affects the resistance of AML to Adriamycin by regulating HOX transcript antisense RNA (HOTAIR) expression. Cell viability, colony-formation, flow cytometry, and Transwell assays were used to assess cell proliferation, apoptosis, and migration. A dual-luciferase reporter assay was used to verify the interaction between microRNA (miR)-20a-5p and HOTAIR or Wilms' tumor 1 (WT1). RT-qPCR and Western blotting assays were performed to detect gene and protein expression. The results showed that curcumin suppressed the resistance to Adriamycin, inhibited the expression of HOTAIR and WT1, and promoted the expression of miR-20a-5p in human acute leukemia cells (HL-60) or Adriamycin-resistant HL-60 cells (HL-60/ADR). Furthermore, curcumin suppressed proliferation and promoted apoptosis of HL-60/ADR cells. Overexpression of HOTAIR reversed the regulatory effect of curcumin on apoptosis and migration and restored the effect of curcumin on inducing the expression of cleaved caspase3, Bax, and P27. In addition, HOTAIR upregulated WT1 expression by targeting miR-20a-5p, and inhibition of miR-20a-5p reversed the regulation of Adriamycin resistance by curcumin in AML cells. Finally, curcumin inhibited Adriamycin resistance by suppressing the HOTAIR/miR-20a-5p/WT1 pathway in vivo. In short, curcumin suppressed the proliferation and migration, blocked the cell cycle progression of AML cells, and sensitized AML cells to Adriamycin by regulating the HOTAIR/miR-20a-5p/WT1 axis. These findings suggest a potential role of curcumin and HOTAIR in AML treatment.
Collapse
Affiliation(s)
- Jun-Min Liu
- Department of Hematology, People's Hospital of Longhua District, Shenzhen, Guangdong Province, People's Republic of China.
| | - Min Li
- Department of Hematology, People's Hospital of Longhua District, Shenzhen, Guangdong Province, People's Republic of China
| | - Wei Luo
- Department of Hematology, People's Hospital of Longhua District, Shenzhen, Guangdong Province, People's Republic of China
| | - Hong-Bo Sun
- Department of Hematology, People's Hospital of Longhua District, Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
40
|
Soare DS, Radu E, Dumitru I, Vlădăreanu AM, Bumbea H. Quantitative analyses of CD7, CD33, CD34, CD56, and CD123 within the FLT3-ITD/ NPM1-MUT myeloblastic/monocytic bulk AML blastic populations. Leuk Lymphoma 2021; 62:2716-2726. [PMID: 34034609 DOI: 10.1080/10428194.2021.1927018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The most frequent mutations in acute myeloid leukemia (AML) - FLT3-ITD and NPM1 - are associated with a specific immunophenotype. We evaluated the levels of surface antigens in an uninvestigated AML patient population according to the combination of FLT3-ITD/NPM1 mutations. Antigen levels were calculated as the geometric mean fluorescence index (MFI) ratio between myeloblasts or monoblasts/monocytes and a negative population for the specific antigen. In myeloblastic populations, FLT3-ITD cases presented CD7high MFI values (p < .001), while NPM1-MUT cases presented CD33high (p < .001), and CD34low (p < .001) MFI values. Within the monoblastic/monocytic populations, CD56high expression was observed only in the FLT3-WT/NPM1-MUT population (p=.003). The single common antigen expression between myeloblasts and monoblasts/monocytes was CD123high expression only within the FLT3-ITD/NPM1-MUT subgroup. Our results present a subtle influence of FLT3-ITD/NPM1 mutations upon antigen expression profiles in myeloblasts vs monoblasts/monocytes, and we described a novel correlation between the presence of NPM1 and CD56high values within bulk leukemic monoblasts/monocytes.
Collapse
Affiliation(s)
- Dan-Sebastian Soare
- Bone Marrow Transplant Unit, University Emergency Hospital Bucharest, Bucharest, Romania.,Cellular Biology and Histology Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Eugen Radu
- Microbiology Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Molecular Pathology Laboratory, University Emergency Hospital Bucharest, Bucharest, Romania
| | - Ion Dumitru
- Transfusion Department, University Emergency Hospital Bucharest, Bucharest, Romania
| | - Ana Maria Vlădăreanu
- Hematology Department, University Emergency Hospital Bucharest, Bucharest, Romania.,Hematology Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Horia Bumbea
- Bone Marrow Transplant Unit, University Emergency Hospital Bucharest, Bucharest, Romania.,Hematology Department, Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
41
|
Single-cell RNA-seq reveals developmental plasticity with coexisting oncogenic states and immune evasion programs in ETP-ALL. Blood 2021; 137:2463-2480. [PMID: 33227818 DOI: 10.1182/blood.2019004547] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Lineage plasticity and stemness have been invoked as causes of therapy resistance in cancer, because these flexible states allow cancer cells to dedifferentiate and alter their dependencies. We investigated such resistance mechanisms in relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) carrying activating NOTCH1 mutations via full-length single-cell RNA sequencing (scRNA-seq) of malignant and microenvironmental cells. We identified 2 highly distinct stem-like states that critically differed with regard to cell cycle and oncogenic signaling. Fast-cycling stem-like leukemia cells demonstrated Notch activation and were effectively eliminated in patients by Notch inhibition, whereas slow-cycling stem-like cells were Notch independent and rather relied on PI3K signaling, likely explaining the poor efficacy of Notch inhibition in this disease. Remarkably, we found that both stem-like states could differentiate into a more mature leukemia state with prominent immunomodulatory functions, including high expression of the LGALS9 checkpoint molecule. These cells promoted an immunosuppressive leukemia ecosystem with clonal accumulation of dysfunctional CD8+ T cells that expressed HAVCR2, the cognate receptor for LGALS9. Our study identified complex interactions between signaling programs, cellular plasticity, and immune programs that characterize ETP-ALL, illustrating the multidimensionality of tumor heterogeneity. In this scenario, combination therapies targeting diverse oncogenic states and the immune ecosystem seem most promising to successfully eliminate tumor cells that escape treatment through coexisting transcriptional programs.
Collapse
|
42
|
Gadgeel M, AlQanber B, Buck S, Taub JW, Ravindranath Y, Savaşan S. Aberrant myelomonocytic CD56 expression in Down syndrome is frequent and not associated with leukemogenesis. Ann Hematol 2021; 100:1695-1700. [PMID: 33890142 DOI: 10.1007/s00277-021-04531-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Children with Down syndrome (DS) are at an increased risk of developing transient abnormal myelopoiesis (TAM) and acute leukemia. Aberrant expression of CD56 has been observed on myeloid leukemic blasts in DS patients. In general, CD56 expression in acute myeloid leukemia (AML) is considered a promoter of leukemogenesis. We did a retrospective flow cytometric study to investigate mature myelomonocytic cell CD56 expression patterns in TAM, non-TAM, and leukemia cases with DS. Flow cytometric analysis showed that granulocyte and monocyte aberrant/dysplastic CD56 expression is an inherent characteristic of most DS patients irrespective of the presence of TAM or leukemia. Increased CD56 expression in monocyte and granulocyte populations in DS could be multifactorial; greater expression of RUNX1 secondary to the gene dose effect of trisomy 21 along with the maturational state of the cells are the potential contributors. Unlike AML seen in non-DS patients, CD56 overexpression in DS AML cases does not appear to play a role in leukemogenesis.
Collapse
Affiliation(s)
- Manisha Gadgeel
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA
| | - Batool AlQanber
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA
| | - Steven Buck
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA
| | - Jeffrey W Taub
- Children's Hospital of Michigan, Division of Hematology/Oncology, Barbara Ann Karmanos Cancer Center, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yaddanapudi Ravindranath
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA.,Children's Hospital of Michigan, Division of Hematology/Oncology, Barbara Ann Karmanos Cancer Center, Wayne State University School of Medicine, Detroit, MI, USA
| | - Süreyya Savaşan
- Children's Hospital of Michigan, Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Detroit, MI, USA. .,Children's Hospital of Michigan, Division of Hematology/Oncology, Pediatric Blood and Marrow Transplant Program, Barbara Ann Karmanos Cancer Center, Central Michigan University College of Medicine, 3901 Beaubien Blvd., Detroit, MI, 48201, USA.
| |
Collapse
|
43
|
Prognostic Significance of CD56 Antigen Expression in Patients with De Novo Non-M3 Acute Myeloid Leukemia. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1929357. [PMID: 33928145 PMCID: PMC8049794 DOI: 10.1155/2021/1929357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 02/02/2021] [Accepted: 03/20/2021] [Indexed: 01/18/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of disorders with distinct characteristics and prognoses. Although cytogenetic changes and gene mutations are associated with AML prognosis, there is a need to identify further factors. CD56 is considered a prognostic factor for AML, which is abnormally expressed in leukemia cells. However, a clear consensus for this surface molecule is lacking, which has prompted us to investigate its prognostic significance. Bone marrow samples of de novo non-M3 AML were collected to detect CD56 expression using multiparameter flow cytometry (FCM). As a result, the CD56 expression in de novo non-M3 AML was found to be significantly higher than that in acute lymphoma leukemia (ALL, P = 0.017) and healthy controls (P = 0.02). The X-Tile program produced a CD56 cutoff point at a relative expression level of 24.62%. Based on this cutoff point, high CD56 expression was observed in 29.21% of de novo non-M3 AML patients. CD56-high patients had a poor overall survival (OS, P = 0.015) compared to CD56-low patients. Bone marrow transplantation (BMT) improved OS (P = 0.004), but a poor genetic risk was associated with an inferior OS (P = 0.002). Compared with CD56-low patients, CD56-high patients had lower peripheral blood platelet (PLT) counts (P = 0.010). Our research confirmed that high CD56 expression is associated with adverse clinical outcomes in de novo non-M3 AML patients, indicating that CD56 could be used as a prognostic marker for a more precise stratification of de novo non-M3 AML patients.
Collapse
|
44
|
Drexler B, Tzankov A, Martinez M, Baerlocher S, Passweg JR, Dirnhofer S, Tsakiris DA, Dirks J. Blast counts are lower in the aspirate as compared to trephine biopsy in acute myeloid leukemia and myelodysplastic syndrome expressing CD56. Int J Lab Hematol 2021; 43:1078-1084. [PMID: 33709561 DOI: 10.1111/ijlh.13508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 11/27/2022]
Abstract
INTRODUCTION CD56 is aberrantly expressed in myeloid neoplasms including myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Considering the adhesion effects of CD56, blast quantification in bone marrow might depend on the technique used to obtain respective diagnostic specimens. Therefore, the objective of our study was to investigate the impact of CD56-expression on blast counts in myeloid neoplasms comparing bone marrow aspirates to biopsies. METHODS We retrospectively analyzed 75 patients diagnosed with MDS and AML. We compared patients with (n = 36) and without (n = 39) CD56-expression by flow cytometry with respect to their blast quantities assessed on bone marrow aspirates versus biopsies. RESULTS The frequency of CD56-expression on blasts correlated with higher blast counts on biopsies vs. aspirate smears (rs = 0.52; P = .001). This difference in blast counts was only significant in the CD56 high expressing subgroup (median 68%, 5.5%-95% in biopsy compared to median 32.5%, 1.5%-90% in aspirate; P < .01). The percentage of CD56-positive blasts among the total blast population was lower in the peripheral blood compared to bone marrow (median 31%, 6%-88% vs. 55%, 14%-98%; P = .016). The discrepancy in the blast count between the aspirate and trephine biopsy would have led to misclassification of four cases as MDS instead of AML, if diagnosis had based on the bone marrow aspirate blast count alone. CONCLUSION Counting blasts in bone marrow aspirates of CD56-positive AML and MDS may be linked to underestimation, potentially leading to misclassification of these myeloid neoplasms, and should therefore be adjusted considering the results obtained on trephine biopsies for reliable diagnosis.
Collapse
Affiliation(s)
- Beatrice Drexler
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Switzerland
| | - Maria Martinez
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | | | - Jakob R Passweg
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Switzerland
| | | | - Jan Dirks
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
45
|
Arnone M, Konantz M, Hanns P, Paczulla Stanger AM, Bertels S, Godavarthy PS, Christopeit M, Lengerke C. Acute Myeloid Leukemia Stem Cells: The Challenges of Phenotypic Heterogeneity. Cancers (Basel) 2020; 12:E3742. [PMID: 33322769 PMCID: PMC7764578 DOI: 10.3390/cancers12123742] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
Patients suffering from acute myeloid leukemia (AML) show highly heterogeneous clinical outcomes. Next to variabilities in patient-specific parameters influencing treatment decisions and outcome, this is due to differences in AML biology. In fact, different genetic drivers may transform variable cells of origin and co-exist with additional genetic lesions (e.g., as observed in clonal hematopoiesis) in a variety of leukemic (sub)clones. Moreover, AML cells are hierarchically organized and contain subpopulations of more immature cells called leukemic stem cells (LSC), which on the cellular level constitute the driver of the disease and may evolve during therapy. This genetic and hierarchical complexity results in a pronounced phenotypic variability, which is observed among AML cells of different patients as well as among the leukemic blasts of individual patients, at diagnosis and during the course of the disease. Here, we review the current knowledge on the heterogeneous landscape of AML surface markers with particular focus on those identifying LSC, and discuss why identification and targeting of this important cellular subpopulation in AML remains challenging.
Collapse
Affiliation(s)
- Marlon Arnone
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.A.); (M.K.); (P.H.)
| | - Martina Konantz
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.A.); (M.K.); (P.H.)
| | - Pauline Hanns
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.A.); (M.K.); (P.H.)
| | - Anna M. Paczulla Stanger
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| | - Sarah Bertels
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| | - Parimala Sonika Godavarthy
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| | - Maximilian Christopeit
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland; (M.A.); (M.K.); (P.H.)
- Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, Department for Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany; (A.M.P.S.); (S.B.); (P.S.G.); (M.C.)
| |
Collapse
|
46
|
Song T, Zhou H, Wei X, Meng Y, Guo Q. Downregulation of microRNA-324-3p inhibits lung cancer by blocking the NCAM1-MAPK axis through ALX4. Cancer Gene Ther 2020; 28:455-470. [PMID: 33087824 DOI: 10.1038/s41417-020-00231-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer remains the principal cause of cancer-related death worldwide. As microRNAs (miRNAs) are critically involved in lung cancer, we investigated the potential role of miR-324-3p in lung cancer via the ALX4/NCAM1/MAPK axis. The expression of miR-324-3p and ALX4 was detected in clinical samples, and their interaction confirmed by miRNA-targeted luciferase reporter assay. The mechanisms involved in the miR-324-3p-ALX4 interaction in lung cancer cell biological processes were analyzed through gain- and loss-of function approaches. In addition, cultured lung cancer cells were treated with the p38MAPK pathway activator P79350 in order to explore the role of this pathway in the abovementioned axis. Further, a tumor xenograft model in nude mice was constructed to confirm the in vitro findings. miR-324-3p was highly expressed in lung cancer tissues and cells, and inhibited the expression of ALX4 in A549 cells. After confirming the targeted inhibition of ALX4 by miR-324-3p, we showed that this interaction upregulated the expression of NCAM1 and activated the MAPK pathway. The inhibition of miR-324-3p could suppress lung cancer cell invasion, migration, and autophagy, and retarded the growth of subcutaneous tumors in nude mice. Downregulation of ALX4 or NCAM1 overexpression reversed these favorable effects of decreased miR-324-3p. Our study demonstrated the promotive effect of miR-324-3p on the development and progression of lung cancer, thus suggesting a new target for treatment of this devastating disease.
Collapse
Affiliation(s)
- Tieniu Song
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610000, Chengdu, P.R. China.
| | - Hui Zhou
- Department of Nephrology (2nd Section), Lanzhou University Second Hospital, 730030, Lanzhou, P.R. China
| | - Xiaoping Wei
- Department of Thoracic Surgery, Lanzhou University Second Hospital, 730030, Lanzhou, P.R. China
| | - Yuqi Meng
- Department of Thoracic Surgery, Lanzhou University Second Hospital, 730030, Lanzhou, P.R. China
| | - Quanwei Guo
- Department of Thoracic Surgery, Shenzhen Hospital of Southern Medical University, 518000, Shenzhen, P.R. China
| |
Collapse
|
47
|
Jia R, Li Z, Liang W, Ji Y, Weng Y, Liang Y, Ning P. Identification of key genes unique to the luminal a and basal-like breast cancer subtypes via bioinformatic analysis. World J Surg Oncol 2020; 18:268. [PMID: 33066779 PMCID: PMC7568373 DOI: 10.1186/s12957-020-02042-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023] Open
Abstract
Background Breast cancer subtypes are statistically associated with prognosis. The search for markers of breast tumor heterogeneity and the development of precision medicine for patients are the current focuses of the field. Methods We used a bioinformatic approach to identify key disease-causing genes unique to the luminal A and basal-like subtypes of breast cancer. First, we retrieved gene expression data for luminal A breast cancer, basal-like breast cancer, and normal breast tissue samples from The Cancer Genome Atlas database. The differentially expressed genes unique to the 2 breast cancer subtypes were identified and subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. We constructed protein–protein interaction networks of the differentially expressed genes. Finally, we analyzed the key modules of the networks, which we combined with survival data to identify the unique cancer genes associated with each breast cancer subtype. Results We identified 1114 differentially expressed genes in luminal A breast cancer and 1042 differentially expressed genes in basal-like breast cancer, of which the subtypes shared 500. We observed 614 and 542 differentially expressed genes unique to luminal A and basal-like breast cancer, respectively. Through enrichment analyses, protein–protein interaction network analysis, and module mining, we identified 8 key differentially expressed genes unique to each subtype. Analysis of the gene expression data in the context of the survival data revealed that high expression of NMUR1 and NCAM1 in luminal A breast cancer statistically correlated with poor prognosis, whereas the low expression levels of CDC7, KIF18A, STIL, and CKS2 in basal-like breast cancer statistically correlated with poor prognosis. Conclusions NMUR1 and NCAM1 are novel key disease-causing genes for luminal A breast cancer, and STIL is a novel key disease-causing gene for basal-like breast cancer. These genes are potential targets for clinical treatment.
Collapse
Affiliation(s)
- Rong Jia
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Zhongxian Li
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Wei Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Yucheng Ji
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Yujie Weng
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Ying Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China
| | - Pengfei Ning
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
48
|
Expression Patterns of Coagulation Factor XIII Subunit A on Leukemic Lymphoblasts Correlate with Clinical Outcome and Genetic Subtypes in Childhood B-cell Progenitor Acute Lymphoblastic Leukemia. Cancers (Basel) 2020; 12:cancers12082264. [PMID: 32823516 PMCID: PMC7463512 DOI: 10.3390/cancers12082264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Based on previous retrospective results, we investigated the association of coagulation FXIII subunit A (FXIII-A) expression pattern on survival and correlations with known prognostic factors of B-cell progenitor (BCP) childhood acute lymphoblastic leukemia (ALL) as a pilot study of the prospective multi-center BFM ALL-IC 2009 clinical trial. METHODS The study included four national centers (n = 408). Immunophenotyping by flow cytometry and cytogenetic analysis were performed by standard methods. Copy number alteration was studied in a subset of patients (n = 59). Survival rates were estimated by Kaplan-Meier analysis. Correlations between FXIII-A expression patterns and risk factors were investigated with Cox and logistic regression models. RESULTS Three different patterns of FXIII-A expression were observed: negative (<20%), dim (20-79%), and bright (≥80%). The FXIII-A dim expression group had significantly higher 5-year event-free survival (EFS) (93%) than the FXIII-A negative (70%) and FXIII-A bright (61%) groups. Distribution of intermediate genetic risk categories and the "B-other" genetic subgroup differed significantly between the FXIII-A positive and negative groups. Multivariate logistic regression confirmed independent association between the FXIII-A negative expression characteristics and the prevalence of intermediate genetic risk group. CONCLUSIONS FXIII-A negativity is associated with dismal survival in children with BCP-ALL and is an indicator for the presence of unfavorable genetic alterations.
Collapse
|
49
|
Impact of CD56 Continuously Recognizable as Prognostic Value of Acute Promyelocytic Leukemia: Results of Multivariate Analyses in the Japan Adult Leukemia Study Group (JALSG)-APL204 Study and a Review of the Literature. Cancers (Basel) 2020; 12:cancers12061444. [PMID: 32492981 PMCID: PMC7352829 DOI: 10.3390/cancers12061444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND After long-term analysis of the JALSG-APL204 study we recently reported that maintenance therapy with tamibarotene was more effective than all-trans retinoic acid (ATRA) by reducing relapse in APL patients. Here, the clinical significance of other important prognostic factors was evaluated with multivariate analyses. PATIENTS AND METHODS Newly diagnosed acute promyelocytic leukemia (APL) patients were registered with the study. Induction was composed of ATRA and chemotherapy. Patients who achieved molecular remission after consolidation were randomly assigned to maintenance with tamibarotene or ATRA. RESULTS Of the 344 eligible patients, 319 (93%) achieved complete remission (CR). After completing consolidation, 269 patients underwent maintenance random assignment-135 to ATRA, and 134 to tamibarotene. By multivariate analysis, overexpression of CD56 in blast was an independent unfavorable prognostic factor for relapse-free survival (RFS) (p = 0.006) together with more than 10.0 × 109/L WBC counts (p = 0.001) and the ATRA arm in maintenance (p = 0.028). Of all phenotypes, CD56 was related most clearly to an unfavorable prognosis. The CR rate, mortality rate during induction and overall survival of CD56+ APL were not significantly different compared with CD56- APL. CD56 is continuously an independent unfavorable prognostic factor for RFS in APL patients treated with ATRA and chemotherapy followed by ATRA or tamibarotene maintenance therapy.
Collapse
|
50
|
Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020; 52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy with complex heterogenous genetic and biological nature. Thus, prognostic prediction and targeted therapies might contribute to better chemotherapeutic response. However, the emergence of multidrug resistance (MDR) markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Therefore, prior evaluation of chemoresistance is of great importance in therapeutic decision making and prognosis. In recent years, preclinical studies on chemoresistance have unveiled a compendium of underlying molecular basis, which facilitated the development of targetable small molecules. Furthermore, routing genomic sequencing has identified various genomic aberrations driving cellular response during the course of therapeutic treatment through adaptive mechanisms of drug resistance, some of which serve as prognostic biomarkers in risk stratification. However, the underlying mechanisms of MDR have challenged the certainty of the prognostic significance of some mutations. This review aims to provide a comprehensive understanding of the role of MDR in therapeutic decision making and prognostic prediction in AML. We present an updated genetic landscape of the predominant mechanisms of drug resistance with novel targeted therapies and potential prognostic biomarkers from preclinical and clinical chemoresistance studies in AML. We particularly highlight the unfolded protein response (UPR) that has emerged as a critical regulatory pathway in chemoresistance of AML with promising therapeutic horizon. Futhermore, we outline the most prevalent mutations associated with mechanisms of chemoresistance and delineate the future directions to improve the current prognostic tools. The molecular analysis of chemoresistance integrated with genetic profiling will facilitate decision making towards personalized prognostic prediction and enhanced therapeutic efficacy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Precision Medicine/methods
- Prognosis
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Luyao Long
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hongwei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Lin Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|