1
|
Ranjan G, Scaria V, Sivasubbu S. Syntenic lncRNA locus exhibits DNA regulatory functions with sequence evolution. Gene 2024; 933:148988. [PMID: 39378975 DOI: 10.1016/j.gene.2024.148988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Syntenic long non-coding RNAs (lncRNAs) often show limited sequence conservation across species, prompting concern in the field. This study delves into functional signatures of syntenic lncRNAs between humans and zebrafish. Syntenic lncRNAs are highly expressed in zebrafish, with ∼90 % located near protein-coding genes, either in sense or antisense orientation. During early zebrafish development and in human embryonic stem cells (H1-hESC), syntenic lncRNA loci are enriched with cis-regulatory repressor signatures, influencing the expression of development-associated genes. In later zebrafish developmental stages and specific human cell lines, these syntenic lncRNA loci function as enhancers or transcription start sites (TSS) for protein-coding genes. Analysis of transposable elements (TEs) in syntenic lncRNA sequences revealed intriguing patterns: human lncRNAs are enriched in simple repeat elements, while their zebrafish counterparts show enrichment in LTR elements. This sequence evolution likely arises from post-rearrangement mutations that enhance DNA elements or cis-regulatory functions. It may also contribute to vertebrate innovation by creating novel transcription factor binding sites within the locus. This study highlights the conserved functionality of syntenic lncRNA loci through DNA elements, emphasizing their conserved roles across species despite sequence divergence.
Collapse
Affiliation(s)
- Gyan Ranjan
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110024, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vinod Scaria
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110024, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Vishwanath Cancer Care Foundation, Mumbai, India.; Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology, Mathura Road, Delhi 110024, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Vishwanath Cancer Care Foundation, Mumbai, India.; Dr. D. Y Patil Medical College, Hospital and Research Centre, Pune, India.
| |
Collapse
|
2
|
Kiri S, Ryba T. Cancer, metastasis, and the epigenome. Mol Cancer 2024; 23:154. [PMID: 39095874 PMCID: PMC11295362 DOI: 10.1186/s12943-024-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.
Collapse
Affiliation(s)
- Saurav Kiri
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd., Orlando, 32827, Florida, USA.
| | - Tyrone Ryba
- Department of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, 34243, Florida, USA.
| |
Collapse
|
3
|
Bu X, Liu S, Zhang Z, Wu J, Pan S, Hu Y. Comprehensive profiling of enhancer RNA in stage II/III colorectal cancer defines two prognostic subtypes with implications for immunotherapy. Clin Transl Oncol 2024; 26:891-904. [PMID: 37697139 DOI: 10.1007/s12094-023-03319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Recently, enhancer RNAs (eRNAs) have garnered attention as pivotal biomarkers for the onset and progression of cancer. However, the landscape of eRNAs and the implications of eRNA-based molecular subtypes in stage II/III colorectal cancer (CRC) remain largely unexplored. METHODS Comprehensive profiling of eRNAs was conducted on a public stage II/III CRC cohort with total RNA-seq data. We used unsupervised clustering of prognostic eRNAs to establish an eRNA-based subtyping system. Further evaluations included molecular characteristics, immune infiltration, clinical outcomes, and drug responses. Finally, we validated the eRNA-based subtyping system in The Cancer Genome Atlas (TCGA) CRC cohort. RESULTS We identified a total of 6453 expressed eRNAs, among which 237 were prognostic. A global upregulation of eRNAs was observed in microsatellite-stable (MSS) CRCs when compared to microsatellite instability-high (MSI-H) CRCs. Through consensus clustering, two novel molecular subtypes, termed Cluster 1(C1) and Cluster 2(C2), were further identified. C1, associated with the activation of epithelial-mesenchymal transition (EMT), hypoxia, and KRAS signaling pathways, showed poorer prognosis. C2, correlated with the canonical CRC subtype, exhibited superior survival outcomes. In addition, C1 showed enrichment with immune infiltration and more sensitivity to immune checkpoint inhibitors. CONCLUSION Our study unravels the molecular heterogeneity of stage II/III CRC at the eRNA level and highlights the potential applications of the novel eRNA-based subtyping system in predicting prognosis and guiding immunotherapy.
Collapse
Affiliation(s)
- Xiaoyun Bu
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Shuang Liu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhiqing Zhang
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Jie Wu
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Shuguang Pan
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China
| | - Yingbin Hu
- Department of Colorectal Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Katsushima K, Joshi K, Yuan M, Romero B, Batish M, Stapleton S, Jallo G, Kolanthai E, Seal S, Saulnier O, Taylor MD, Wechsler-Reya RJ, Eberhart CG, Perera RJ. A therapeutically targetable positive feedback loop between lnc-HLX-2-7, HLX, and MYC that promotes group 3 medulloblastoma. Cell Rep 2024; 43:113938. [PMID: 38460130 PMCID: PMC11372658 DOI: 10.1016/j.celrep.2024.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/11/2024] Open
Abstract
Recent studies suggest that long non-coding RNAs (lncRNAs) contribute to medulloblastoma (MB) formation and progression. We have identified an lncRNA, lnc-HLX-2-7, as a potential therapeutic target in group 3 (G3) MBs. lnc-HLX-2-7 RNA specifically accumulates in the promoter region of HLX, a sense-overlapping gene of lnc-HLX-2-7, which activates HLX expression by recruiting multiple factors, including enhancer elements. RNA sequencing and chromatin immunoprecipitation reveal that HLX binds to and activates the promoters of several oncogenes, including TBX2, LIN9, HOXM1, and MYC. Intravenous treatment with cerium-oxide-nanoparticle-coated antisense oligonucleotides targeting lnc-HLX-2-7 (CNP-lnc-HLX-2-7) inhibits tumor growth by 40%-50% in an intracranial MB xenograft mouse model. Combining CNP-lnc-HLX-2-7 with standard-of-care cisplatin further inhibits tumor growth and significantly prolongs mouse survival compared with CNP-lnc-HLX-2-7 monotherapy. Thus, the lnc-HLX-2-7-HLX-MYC axis is important for regulating G3 MB progression, providing a strong rationale for using lnc-HLX-2-7 as a therapeutic target for G3 MBs.
Collapse
Affiliation(s)
- Keisuke Katsushima
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Kandarp Joshi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Menglang Yuan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Brigette Romero
- Department of Medical and Molecular Sciences, University of Delaware, 15 Innovation Way, Newark, DE 19701, USA
| | - Mona Batish
- Department of Medical and Molecular Sciences, University of Delaware, 15 Innovation Way, Newark, DE 19701, USA
| | - Stacie Stapleton
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL 32816, USA
| | - Olivier Saulnier
- Genomics and Development of Childhood Cancers, Institut Curie, PSL University, 75005 Paris, France; INSERM U830, Cancer Heterogeneity Instability and Plasticity, Institut Curie, PSL University, 75005 Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, 75005 Paris, France
| | - Michael D Taylor
- Texas Children's Cancer Center, Hematology-Oncology Section, Houston, TX 77004, USA; Department of Pediatrics - Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX 77004, USA
| | - Robert J Wechsler-Reya
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross Bldg. 558, Baltimore, MD 21205, USA
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD 21231, USA; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA.
| |
Collapse
|
5
|
Li X, Zeng S, Chen L, Zhang Y, Li X, Zhang B, Su D, Du Q, Zhang J, Wang H, Zhong Z, Zhang J, Li P, Jiang A, Long K, Li M, Ge L. An intronic enhancer of Cebpa regulates adipocyte differentiation and adipose tissue development via long-range loop formation. Cell Prolif 2024; 57:e13552. [PMID: 37905345 PMCID: PMC10905358 DOI: 10.1111/cpr.13552] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 11/02/2023] Open
Abstract
Cebpa is a master transcription factor gene for adipogenesis. However, the mechanisms of enhancer-promoter chromatin interactions controlling Cebpa transcriptional regulation during adipogenic differentiation remain largely unknown. To reveal how the three-dimensional structure of Cebpa changes during adipogenesis, we generated high-resolution chromatin interactions of Cebpa in 3T3-L1 preadipocytes and 3T3-L1 adipocytes using circularized chromosome conformation capture sequencing (4C-seq). We revealed dramatic changes in chromatin interactions and chromatin status at interaction sites during adipogenic differentiation. Based on this, we identified five active enhancers of Cebpa in 3T3-L1 adipocytes through epigenomic data and luciferase reporter assays. Next, epigenetic repression of Cebpa-L1-AD-En2 or -En3 by the dCas9-KRAB system significantly down-regulated Cebpa expression and inhibited adipocyte differentiation. Furthermore, experimental depletion of cohesin decreased the interaction intensity between Cebpa-L1-AD-En2 and the Cebpa promoter and down-regulated Cebpa expression, indicating that long-range chromatin loop formation was mediated by cohesin. Two transcription factors, RXRA and PPARG, synergistically regulate the activity of Cebpa-L1-AD-En2. To test whether Cebpa-L1-AD-En2 plays a role in adipose tissue development, we injected dCas9-KRAB-En2 lentivirus into the inguinal white adipose tissue (iWAT) of mice to suppress the activity of Cebpa-L1-AD-En2. Repression of Cebpa-L1-AD-En2 significantly decreased Cebpa expression and adipocyte size, altered iWAT transcriptome, and affected iWAT development. We identified functional enhancers regulating Cebpa expression and clarified the crucial roles of Cebpa-L1-AD-En2 and Cebpa promoter interaction in adipocyte differentiation and adipose tissue development.
Collapse
Affiliation(s)
- Xiaokai Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Sha Zeng
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Li Chen
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
- Key Laboratory of Pig Industry ScienceMinistry of AgricultureChongqingChina
| | - Yu Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Xuemin Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Biwei Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Duo Su
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Qinjiao Du
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Haoming Wang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Zhining Zhong
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Jinwei Zhang
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
- Key Laboratory of Pig Industry ScienceMinistry of AgricultureChongqingChina
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and GeneticsSichuan Jinxin Xi'nan Women's and Children's HospitalChengduChina
| | - Anan Jiang
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Chongqing Academy of Animal SciencesChongqingChina
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustrySichuan Agricultural UniversityChengduChina
- Livestock and Poultry Multi‐omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Liangpeng Ge
- Chongqing Academy of Animal SciencesChongqingChina
- National Center of Technology Innovation for PigsChongqingChina
- Key Laboratory of Pig Industry ScienceMinistry of AgricultureChongqingChina
| |
Collapse
|
6
|
Sharma P, Kaur P, Bhatia P, Trehan A, Sreedharanunni S, Singh M. Novel lncRNAs LINC01221, RP11-472G21.2 and CRNDE are markers of differential expression in pediatric patients with T cell acute lymphoblastic leukemia. Cancer Cell Int 2024; 24:65. [PMID: 38336706 PMCID: PMC10858595 DOI: 10.1186/s12935-024-03255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Pediatric T-cell acute lymphoblastic leukemia (T-ALL) poses significant challenges due to its aggressive nature and resistance to standard treatments. Long non-coding RNAs (lncRNAs) have emerged as potential biomarkers and therapeutic targets in leukemia. This study aims to characterize the lncRNA landscape in pediatric T-ALL, identify specific lncRNAs signatures, and assess their clinical relevance. METHODS RNA sequencing was performed on T-ALL patient and control samples. Differential expression analysis identified dysregulated lncRNAs and mRNAs. Functional enrichment analysis revealed potential roles of these lncRNAs in cancer pathogenesis. Validation of candidate lncRNAs was conducted using real-time PCR. Clinical correlations were assessed, including associations with patients' clinical characteristics and survival outcomes. RESULTS Analysis identified 674 dysregulated lncRNAs in pediatric T-ALL, with LINC01221 and CRNDE showing the most interactions in cancer progression pathways. Functional enrichment indicated involvement in apoptosis, survival, proliferation, and metastasis. Top 10 lncRNAs based on adjusted p value < 0.05 and Fold Change > 2 were selected for validation. Seven lncRNAs LINC01221, PCAT18, LINC00977, RP11-620J15.3, RP11-472G21.2, CTD-2291D10.4, and CRNDE showed correlation with RNA sequencing data. RP11-472G21.2 and CTD-2291D10.4 were highly expressed in T-ALL patients, with RP11-620J15.3 correlating significantly with better overall survival (p = 0.0007) at a median follow up of 32 months. The identified lncRNAs were further analysed in B-ALL patients. Distinct lncRNAs signatures were noted, distinguishing T-ALL from B-ALL and healthy controls, with lineage-specific overexpression of LINC01221 (p < 0.0001), RP11-472G21.2 (p < 0.001) and CRNDE (p = 0.04) in T-ALL. CONCLUSION This study provides insights into the lncRNA landscape of pediatric T-ALL, offering potential diagnostic and prognostic markers. RP11-620J15.3 emerges as a promising prognostic marker, and distinct lncRNAs signatures may aid in the differentiation of T-ALL subtypes. Further research with larger cohorts is warranted to validate these findings and advance personalized treatment strategies for pediatric T-ALL patients.
Collapse
Affiliation(s)
- Pankaj Sharma
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parminder Kaur
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amita Trehan
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Minu Singh
- Hematology-Oncology Unit, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
7
|
Lv Y, Niu L, Li Q, Shao W, Yan X, Li Y, Yue Y, Chen H. Identification of an immune-related eRNA prognostic signature for clear cell renal cell carcinoma. Aging (Albany NY) 2024; 16:2232-2248. [PMID: 38289619 PMCID: PMC10911372 DOI: 10.18632/aging.205479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Immune-related enhancer RNAs (eRNAs) have garnered significant attention in cancer metabolism research, yet their specific roles in ccRCC have remained elusive. METHODS We retrieved eRNA expression profiles from TCGA database and identified immune-related eRNAs (IREs) by assessing their co-expression with immune genes. Utilizing consensus clustering, we organized these IREs into two distinct clusters. The construction of an IREs signature was accomplished through the LASSO and multivariate Cox analysis. Furthermore, we performed Cell Counting Kit-8 and clonogenic assays to assess changes in the proliferative capacity of Caki-1 and 769-P cells. RESULTS The existence of two clusters of immune-related eRNAs in ccRCC, each with distinctive prognostic and immunological attributes. Cluster B exhibited immunosuppressive properties and displayed a positive correlation with immunosuppressive cells. Functional enrichment analysis unveiled their involvement in several tumor-promoting pathways, metabolic pathways and immune pathways. The IREs signature demonstrated its potential to accurately predict patient immune and prognostic characteristics. AC003092.1, an eRNA strongly associated with patient survival, emerged as a potential oncogene significantly linked to adverse prognosis and the presence of immunosuppressive cells and checkpoints in ccRCC patients. Notably, AC003092.1 displayed marked upregulation in ccRCC tissues and cell lines, and its knockdown substantially inhibited the proliferation of Caki-1 and 769-P cells. CONCLUSION We established a robust predictive model that played a vital role in determining the prognosis, clinicopathological characteristics and immune cell infiltration patterns of ccRCC patients. IRE, particularly AC003092.1, which was strongly associated with survival, hold promise as novel immunotherapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Yang Lv
- Department of Urology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Lili Niu
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Qiang Li
- Department of Urology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenchuan Shao
- Department of Urology, The State Key Lab of Reproductive, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinghan Yan
- Department of Urology, The State Key Lab of Reproductive, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yang Li
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yulin Yue
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hongqi Chen
- Department of Urology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| |
Collapse
|
8
|
Shi T, Guo D, Zheng Y, Wang W, Bi J, He A, Fan S, Su G, Zhao X, Zhao Z, Song Y, Sun S, Li P, Zhao Z, Shi J, Lu W, Zhang L. Bivalent activity of super-enhancer RNA LINC02454 controls 3D chromatin structure and regulates glioma sensitivity to temozolomide. Cell Death Dis 2024; 15:6. [PMID: 38177123 PMCID: PMC10766990 DOI: 10.1038/s41419-023-06392-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Glioma cell sensitivity to temozolomide (TMZ) is critical for effective treatment and correlates with patient survival, although mechanisms underlying this activity are unclear. Here, we reveal a new mechanism used by glioma cells to modulate TMZ sensitivity via regulation of SORBS2 and DDR1 genes by super-enhancer RNA LINC02454. We report that LINC02454 activity increases glioma cell TMZ sensitivity by maintaining long-range chromatin interactions between SORBS2 and the LINC02454 enhancer. By contrast, LINC02454 activity also decreased glioma cell TMZ sensitivity by promoting DDR1 expression. Our study suggests a bivalent function for super-enhancer RNA LINC02454 in regulating glioma cell sensitivity to TMZ.
Collapse
Affiliation(s)
- Tengfei Shi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Dianhao Guo
- Department of Molecular Biology and Biochemistry, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 250021, Jinan, shandong, China
| | - Yaoqiang Zheng
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Wenbin Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jinfang Bi
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 510030, Guangzhou, China
| | - Anshun He
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Sibo Fan
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Guangsong Su
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, 510030, Guangzhou, China
| | - Xueyuan Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Zhenhao Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yingjie Song
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Shupeng Sun
- Department of Neurosurgery, Tianjin Huanhu Hospital, School of Medicine, Nankai University, 6 Jizhao Road, 300350, Tianjin, China
| | - Peng Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Zhongfang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jiandang Shi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Wange Lu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| | - Lei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, 300071, Tianjin, China.
| |
Collapse
|
9
|
Tan SH, Tan TK, Yokomori R, Liao M, Huang XZ, Yeoh AEJ, Sanda T. TAL1 hijacks MYCN enhancer that induces MYCN expression and dependence on mevalonate pathway in T-cell acute lymphoblastic leukemia. Leukemia 2023; 37:1969-1981. [PMID: 37591943 DOI: 10.1038/s41375-023-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
A hallmark of T-cell acute lymphoblastic leukemia (T-ALL) is the dysregulated expression of oncogenic transcription factors (TFs), including TAL1, NOTCH1 and MYC. Rewiring of the transcriptional program disrupts the tightly controlled spatiotemporal expression of downstream target genes, thereby contributing to leukemogenesis. In this study, we first identify an evolutionarily conserved enhancer element controlling the MYCN oncogene (named enhMYCN) that is aberrantly activated by the TAL1 complex in T-ALL cells. TAL1-positive T-ALL cells are highly dependent on MYCN expression for their maintenance in vitro and in xenograft models. Interestingly, MYCN drives the expression of multiple genes involved in the mevalonate pathway, and T-ALL cells are sensitive to inhibition of HMG-CoA reductase (HMGCR), a rate-limiting enzyme of this pathway. Importantly, MYC and MYCN regulate the same targets and compensate for each other. Thus, MYCN-positive T-ALL cells display a dual dependence on the TAL1-MYCN and NOTCH1-MYC pathways. Together, our results demonstrate that enhMYCN-mediated MYCN expression is required for human T-ALL cells and implicate the TAL1-MYCN-HMGCR axis as a potential therapeutic target in T-ALL.
Collapse
Affiliation(s)
- Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Rui Yokomori
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Minghui Liao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Allen Eng Juh Yeoh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Paediatrics, National University of Singapore, Singapore, 119228, Singapore.
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
10
|
Camera F, Romero-Camarero I, Revell BH, Amaral FM, Sinclair OJ, Simeoni F, Wiseman DH, Stojic L, Somervaille TC. Differentiation block in acute myeloid leukemia regulated by intronic sequences of FTO. iScience 2023; 26:107319. [PMID: 37539037 PMCID: PMC10393733 DOI: 10.1016/j.isci.2023.107319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/23/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023] Open
Abstract
Iroquois transcription factor gene IRX3 is highly expressed in 20-30% of acute myeloid leukemia (AML) and contributes to the pathognomonic differentiation block. Intron 8 FTO sequences ∼220kB downstream of IRX3 exhibit histone acetylation, DNA methylation, and contacts with the IRX3 promoter, which correlate with IRX3 expression. Deletion of these intronic elements confirms a role in positively regulating IRX3. RNAseq revealed long non-coding (lnc) transcripts arising from this locus. FTO-lncAML knockdown (KD) induced differentiation of AML cells, loss of clonogenic activity, and reduced FTO intron 8:IRX3 promoter contacts. While both FTO-lncAML KD and IRX3 KD induced differentiation, FTO-lncAML but not IRX3 KD led to HOXA downregulation suggesting transcript activity in trans. FTO-lncAMLhigh AML samples expressed higher levels of HOXA and lower levels of differentiation genes. Thus, a regulatory module in FTO intron 8 consisting of clustered enhancer elements and a long non-coding RNA is active in human AML, impeding myeloid differentiation.
Collapse
Affiliation(s)
- Francesco Camera
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Isabel Romero-Camarero
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Bradley H. Revell
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Fabio M.R. Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Oliver J. Sinclair
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Fabrizio Simeoni
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| | - Daniel H. Wiseman
- Epigenetics of Haematopoiesis Group, Oglesby Cancer Research Building, The University of Manchester, M20 4GJ Manchester, UK
| | - Lovorka Stojic
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, EC1M 6BQ London, UK
| | - Tim C.P. Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, The Oglesby Cancer Research Centre Building, 555 Wilmslow Road, M20 4GJ Manchester, UK
| |
Collapse
|
11
|
Baghdadi H, Heidari R, Zavvar M, Ahmadi N, Shakouri Khomartash M, Vahidi M, Mohammadimehr M, Bashash D, Ghorbani M. Long Non-Coding RNA Signatures in Lymphopoiesis and Lymphoid Malignancies. Noncoding RNA 2023; 9:44. [PMID: 37624036 PMCID: PMC10458434 DOI: 10.3390/ncrna9040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Lymphoid cells play a critical role in the immune system, which includes three subgroups of T, B, and NK cells. Recognition of the complexity of the human genetics transcriptome in lymphopoiesis has revolutionized our understanding of the regulatory potential of RNA in normal lymphopoiesis and lymphoid malignancies. Long non-coding RNAs (lncRNAs) are a class of RNA molecules greater than 200 nucleotides in length. LncRNAs have recently attracted much attention due to their critical roles in various biological processes, including gene regulation, chromatin organization, and cell cycle control. LncRNAs can also be used for cell differentiation and cell fate, as their expression patterns are often specific to particular cell types or developmental stages. Additionally, lncRNAs have been implicated in lymphoid differentiation, such as regulating T-cell and B-cell development, and their expression has been linked to immune-associated diseases such as leukemia and lymphoma. In addition, lncRNAs have been investigated as potential biomarkers for diagnosis, prognosis, and therapeutic response to disease management. In this review, we provide an overview of the current knowledge about the regulatory role of lncRNAs in physiopathology processes during normal lymphopoiesis and lymphoid leukemia.
Collapse
Affiliation(s)
- Hamed Baghdadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
| | - Reza Heidari
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran 1411718541, Iran;
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran 443614177, Iran;
| | - Nazanin Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | | | - Mahmoud Vahidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Mojgan Mohammadimehr
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Mahdi Ghorbani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| |
Collapse
|
12
|
Chen Q, Zeng Y, Kang J, Hu M, Li N, Sun K, Zhao Y. Enhancer RNAs in transcriptional regulation: recent insights. Front Cell Dev Biol 2023; 11:1205540. [PMID: 37266452 PMCID: PMC10229774 DOI: 10.3389/fcell.2023.1205540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Enhancers are a class of cis-regulatory elements in the genome that instruct the spatiotemporal transcriptional program. Last decade has witnessed an exploration of non-coding transcripts pervasively transcribed from active enhancers in diverse contexts, referred to as enhancer RNAs (eRNAs). Emerging evidence unequivocally suggests eRNAs are an important layer in transcriptional regulation. In this mini-review, we summarize the well-established regulatory models for eRNA actions and highlight the recent insights into the structure and chemical modifications of eRNAs underlying their functions. We also explore the potential roles of eRNAs in transcriptional condensates.
Collapse
Affiliation(s)
- Qi Chen
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yaxin Zeng
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jinjin Kang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Minghui Hu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Nianle Li
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
13
|
Yeo SJ, Ying C, Fullwood MJ, Tergaonkar V. Emerging regulatory mechanisms of noncoding RNAs in topologically associating domains. Trends Genet 2023; 39:217-232. [PMID: 36642680 DOI: 10.1016/j.tig.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023]
Abstract
Topologically associating domains (TADs) are integral to spatial genome organization, instructing gene expression, and cell fate. Recently, several advances have uncovered roles for noncoding RNAs (ncRNAs) in the regulation of the form and function of mammalian TADs. Phase separation has also emerged as a potential arbiter of ncRNAs in the regulation of TADs. In this review we discuss the implications of these novel findings in relation to how ncRNAs might structurally and functionally regulate TADs from two perspectives: moderating loop extrusion through interactions with architectural proteins, and facilitating TAD phase separation. Additionally, we propose future studies and directions to investigate these phenomena.
Collapse
Affiliation(s)
- Samuel Jianjie Yeo
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University (NTU), Singapore 308232, Singapore
| | - Chen Ying
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Melissa Jane Fullwood
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, Singapore 117599, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Vinay Tergaonkar
- Laboratory of NFκB Signaling, Institute of Molecular Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore; Department of Pathology and the Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore.
| |
Collapse
|
14
|
Zeng X, Lei Y, Pan S, Sun J, He H, Xiao D, Jamal M, Shen H, Zhou F, Shao L, Zhang Q. LncRNA15691 promotes T-ALL infiltration by upregulating CCR9 via increased MATR3 stability. J Leukoc Biol 2023; 113:203-215. [PMID: 36822174 DOI: 10.1093/jleuko/qiac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 01/18/2023] Open
Abstract
Our previous studies demonstrated that CCR9 plays an important role in several aspects of T-cell acute lymphoblastic leukemia progression and that CCR9 is a potential therapeutic target. However, the underlying mechanism that regulates CCR9 expression remains incompletely understood. In this study, bioinformatics analysis and validation in clinical samples revealed the lncRNA15691 to be positively correlated with CCR9 mRNA expression and significantly upregulated in T-cell acute lymphoblastic leukemia samples and CCR9high T-cell acute lymphoblastic leukemia cell lines. LncRNA15691, a previously uncharacterized lncRNA, was found to be located in both the cytoplasm and the nucleus via fluorescence in situ hybridization assay. In addition, lncRNA15691 upregulated the expression of CCR9 and was involved in T-cell acute lymphoblastic leukemia cell invasion. In vivo experiments showed that lncRNA15691 promoted leukemia cell homing/infiltration into the bone marrow, blood, and spleen, whereas the CCR9 ligand, CCL25, augmented the extramedullary infiltration of CCR9low leukemia cells overexpressing lncRNA15691 into blood, spleen, and liver. Subsequently, RNA protein pull-down assays, coupled with liquid chromatography-tandem mass spectrometry, were used to uncover potential lncRNA15691-interacting proteins, which were then validated by RNA immunoprecipitation. These mechanistic studies revealed that lncRNA15691 upregulated CCR9 expression via directly binding to and stabilizing MATR3 by inhibiting its nuclear degradation mediated by PKA. Collectively, our study revealed a novel mechanism of regulating CCR9 expression and implicated lncRNA15691 as a potential novel biomarker for T-cell acute lymphoblastic leukemia infiltration.
Collapse
Affiliation(s)
- Xingruo Zeng
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Yufei Lei
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Shan Pan
- School of Medicine, Wuhan University of Science and Technology, 947 Heping Avenue, Qingshan District, Wuhan, Hubei 430071, China
| | - Jiaxing Sun
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Hengjing He
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Di Xiao
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Muhammad Jamal
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Hui Shen
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Liang Shao
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| | - Quiping Zhang
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, Hubei 430071, China
| |
Collapse
|
15
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
16
|
Lu J, Zhu D, Zhang X, Wang J, Cao H, Li L. The crucial role of LncRNA MIR210HG involved in the regulation of human cancer and other disease. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:137-150. [PMID: 36088513 DOI: 10.1007/s12094-022-02943-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have evoked considerable interest in recent years due to their critical functions in the regulation of disease processes. Abnormal expression of lncRNAs is found in multiple diseases, and lncRNAs have been exploited for diverse medical applications. The lncRNA MIR210HG is a recently discovered lncRNA that is widely dysregulated in human disease. MIR210HG was described to have biological functions with potential roles in disease development, including cell proliferation, invasion, migration, and energy metabolism. And MIR210HG dysregulation was confirmed to have promising clinical values in disease diagnosis, treatment, and prognosis. In this review, we systematically summarize the expression profiles, roles, underlying mechanisms, and clinical applications of MIR210HG in human disease.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Shangcheng District, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
17
|
Panahi-Moghadam S, Hassani S, Farivar S, Vakhshiteh F. Emerging Role of Enhancer RNAs as Potential Diagnostic and Prognostic Biomarkers in Cancer. Noncoding RNA 2022; 8:ncrna8050066. [PMID: 36287118 PMCID: PMC9607539 DOI: 10.3390/ncrna8050066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Enhancers are distal cis-acting elements that are commonly recognized to regulate gene expression via cooperation with promoters. Along with regulating gene expression, enhancers can be transcribed and generate a class of non-coding RNAs called enhancer RNAs (eRNAs). The current discovery of abundant tissue-specific transcription of enhancers in various diseases such as cancers raises questions about the potential role of eRNAs in disease diagnosis and therapy. This review aimed to demonstrate the current understanding of eRNAs in cancer research with a focus on the potential roles of eRNAs as prognostic and diagnostic biomarkers in cancers.
Collapse
Affiliation(s)
- Somayeh Panahi-Moghadam
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran 1417614411, Iran
| | - Shirin Farivar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
- Correspondence:
| |
Collapse
|
18
|
Typical Enhancers, Super-Enhancers, and Cancers. Cancers (Basel) 2022; 14:cancers14184375. [PMID: 36139535 PMCID: PMC9496678 DOI: 10.3390/cancers14184375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The cancer genome has been exhaustively studied upon the advent of Next-Generation Sequencing technologies. Coding and non-coding sequences have been defined as hotspots of genomic variations that affect the naïve gene expression programs established in normal cells, thus working as endogenous drivers of carcinogenesis. In this review, we comprehensively summarize fundamental aspects of gene expression regulation, with emphasis on the impact of sequence and structural variations mapped across non-coding cis-acting elements of genes encoding for tumor-related transcription factors. Chromatin architecture, epigenome reprogramming, transcriptional enhancers and Super-enhancers, oncogene regulation, cutting-edge technologies, and pharmacological treatment are substantially highlighted. Abstract Non-coding segments of the human genome are enriched in cis-regulatory modules that constitute functional elements, such as transcriptional enhancers and Super-enhancers. A hallmark of cancer pathogenesis is the dramatic dysregulation of the “archetype” gene expression profiles of normal human cells. Genomic variations can promote such deficiencies when occurring across enhancers and Super-enhancers, since they affect their mechanistic principles, their functional capacity and specificity, and the epigenomic features of the chromatin microenvironment across which these regulatory elements reside. Here, we comprehensively describe: fundamental mechanisms of gene expression dysregulation in cancers that involve genomic abnormalities within enhancers’ and Super-enhancers’ (SEs) sequences, which alter the expression of oncogenic transcription factors (TFs); cutting-edge technologies applied for the analysis of variation-enriched hotspots of the cancer genome; and pharmacological approaches for the treatment of Super-enhancers’ aberrant function. Finally, we provide an intratumor meta-analysis, which highlights that genomic variations in transcription-factor-driven tumors are accompanied overexpression of genes, a portion of which encodes for additional cancer-related transcription factors.
Collapse
|
19
|
Bu X, Liu S, Wen D, Kan A, Xu Y, Lin X, Shi M. Comprehensive characterization of enhancer RNA in hepatocellular carcinoma reveals three immune subtypes with implications for immunotherapy. Mol Ther Oncolytics 2022; 26:226-244. [PMID: 35919459 PMCID: PMC9310078 DOI: 10.1016/j.omto.2022.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/03/2022] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is highly heterogeneous. Molecular subtyping for guiding immunotherapy is warranted. Previous studies have indicated that enhancer RNAs (eRNAs) are involved in tumor heterogeneity and immune infiltration. However, the eRNA landscape and its correlation with immune infiltration in HCC remain unknown. Here we first revealed the genome-wide eRNA landscape in two HCC cohorts. Then we divided individuals with HCC into three immune-related clusters (C1, C2, and C3) based on eRNA expression profiles. The prognosis, biological properties, immune infiltration, clinical features, genomic features, and drug response were analyzed. C1 was enriched in immune infiltration and potentially sensitive to immune checkpoint inhibitors (ICIs). C2 displayed features of immune depletion, high proliferation activity, malignant clinical features, and the worst prognosis. C2 may benefit from targeted therapy. C3 presented moderate immune infiltration, metabolism-related signatures, and the best prognosis. Transarterial chemoembolization (TACE) may be effective for C3. Finally, we constructed a 51-eRNA classifier for subtype prediction and validated its efficacy in The Cancer Genome Atlas (TCGA) cohort and Sun Yat-sen University Cancer Center (SYSUCC) cohort. Our results provide a novel method for immune classification of HCC, shed new light on tumor heterogeneity, and may aid in HCC immunotherapy.
Collapse
Affiliation(s)
- Xiaoyun Bu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuang Liu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Dongsheng Wen
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Anna Kan
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yujie Xu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xuanjia Lin
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ming Shi
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
20
|
Deng S, Feng Y, Pauklin S. 3D chromatin architecture and transcription regulation in cancer. J Hematol Oncol 2022; 15:49. [PMID: 35509102 PMCID: PMC9069733 DOI: 10.1186/s13045-022-01271-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/21/2022] [Indexed: 12/18/2022] Open
Abstract
Chromatin has distinct three-dimensional (3D) architectures important in key biological processes, such as cell cycle, replication, differentiation, and transcription regulation. In turn, aberrant 3D structures play a vital role in developing abnormalities and diseases such as cancer. This review discusses key 3D chromatin structures (topologically associating domain, lamina-associated domain, and enhancer-promoter interactions) and corresponding structural protein elements mediating 3D chromatin interactions [CCCTC-binding factor, polycomb group protein, cohesin, and Brother of the Regulator of Imprinted Sites (BORIS) protein] with a highlight of their associations with cancer. We also summarise the recent development of technologies and bioinformatics approaches to study the 3D chromatin interactions in gene expression regulation, including crosslinking and proximity ligation methods in the bulk cell population (ChIA-PET and HiChIP) or single-molecule resolution (ChIA-drop), and methods other than proximity ligation, such as GAM, SPRITE, and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Siwei Deng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Siim Pauklin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, UK.
| |
Collapse
|
21
|
Wan L, Li W, Meng Y, Hou Y, Chen M, Xu B. Inflammatory Immune-Associated eRNA: Mechanisms, Functions and Therapeutic Prospects. Front Immunol 2022; 13:849451. [PMID: 35514959 PMCID: PMC9063412 DOI: 10.3389/fimmu.2022.849451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid development of multiple high-throughput sequencing technologies has made it possible to explore the critical roles and mechanisms of functional enhancers and enhancer RNAs (eRNAs). The inflammatory immune response, as a fundamental pathological process in infectious diseases, cancers and immune disorders, coordinates the balance between the internal and external environment of the organism. It has been shown that both active enhancers and intranuclear eRNAs are preferentially expressed over inflammation-related genes in response to inflammatory stimuli, suggesting that enhancer transcription events and their products influence the expression and function of inflammatory genes. Therefore, in this review, we summarize and discuss the relevant inflammatory roles and regulatory mechanisms of eRNAs in inflammatory immune cells, non-inflammatory immune cells, inflammatory immune diseases and tumors, and explore the potential therapeutic effects of enhancer inhibitors affecting eRNA production for diseases with inflammatory immune responses.
Collapse
Affiliation(s)
- Lilin Wan
- Medical School, Southeast University, Nanjing, China
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Wenchao Li
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yuan Meng
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yue Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics and Genomics Center, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Department of Urology, Nanjing Lishui District People’s Hospital, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
22
|
Maimaitiyiming Y, Ye L, Yang T, Yu W, Naranmandura H. Linear and Circular Long Non-Coding RNAs in Acute Lymphoblastic Leukemia: From Pathogenesis to Classification and Treatment. Int J Mol Sci 2022; 23:ijms23084442. [PMID: 35457264 PMCID: PMC9033105 DOI: 10.3390/ijms23084442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023] Open
Abstract
The coding regions account for only a small part of the human genome, and the remaining vast majority of the regions generate large amounts of non-coding RNAs. Although non-coding RNAs do not code for any protein, they are suggested to work as either tumor suppressers or oncogenes through modulating the expression of genes and functions of proteins at transcriptional, posttranscriptional and post-translational levels. Acute Lymphoblastic Leukemia (ALL) originates from malignant transformed B/T-precursor-stage lymphoid progenitors in the bone marrow (BM). The pathogenesis of ALL is closely associated with aberrant genetic alterations that block lymphoid differentiation and drive abnormal cell proliferation as well as survival. While treatment of pediatric ALL represents a major success story in chemotherapy-based elimination of a malignancy, adult ALL remains a devastating disease with relatively poor prognosis. Thus, novel aspects in the pathogenesis and progression of ALL, especially in the adult population, need to be further explored. Accumulating evidence indicated that genetic changes alone are rarely sufficient for development of ALL. Recent advances in cytogenic and sequencing technologies revealed epigenetic alterations including that of non-coding RNAs as cooperating events in ALL etiology and progression. While the role of micro RNAs in ALL has been extensively reviewed, less attention, relatively, has been paid to other non-coding RNAs. Herein, we review the involvement of linear and circular long non-coding RNAs in the etiology, maintenance, and progression of ALL, highlighting the contribution of these non-coding RNAs in ALL classification and diagnosis, risk stratification as well as treatment.
Collapse
Affiliation(s)
- Yasen Maimaitiyiming
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Linyan Ye
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tao Yang
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Wenjuan Yu
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Correspondence: (W.Y.); (H.N.)
| | - Hua Naranmandura
- The Affiliated Sir Run Run Shaw Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China; (Y.M.); (L.Y.); (T.Y.)
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Department of Hematology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
- Correspondence: (W.Y.); (H.N.)
| |
Collapse
|
23
|
García-Padilla C, Dueñas Á, García-López V, Aránega A, Franco D, Garcia-Martínez V, López-Sánchez C. Molecular Mechanisms of lncRNAs in the Dependent Regulation of Cancer and Their Potential Therapeutic Use. Int J Mol Sci 2022; 23:764. [PMID: 35054945 PMCID: PMC8776057 DOI: 10.3390/ijms23020764] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 12/16/2022] Open
Abstract
Deep whole genome and transcriptome sequencing have highlighted the importance of an emerging class of non-coding RNA longer than 200 nucleotides (i.e., long non-coding RNAs (lncRNAs)) that are involved in multiple cellular processes such as cell differentiation, embryonic development, and tissue homeostasis. Cancer is a prime example derived from a loss of homeostasis, primarily caused by genetic alterations both in the genomic and epigenetic landscape, which results in deregulation of the gene networks. Deregulation of the expression of many lncRNAs in samples, tissues or patients has been pointed out as a molecular regulator in carcinogenesis, with them acting as oncogenes or tumor suppressor genes. Herein, we summarize the distinct molecular regulatory mechanisms described in literature in which lncRNAs modulate carcinogenesis, emphasizing epigenetic and genetic alterations in particular. Furthermore, we also reviewed the current strategies used to block lncRNA oncogenic functions and their usefulness as potential therapeutic targets in several carcinomas.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Ángel Dueñas
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-López
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Amelia Aránega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (Á.D.); (A.A.); (D.F.)
- Fundación Medina, 18016 Granada, Spain
| | - Virginio Garcia-Martínez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, University of Extremadura, 06006 Badajoz, Spain; (V.G.-L.); (V.G.-M.)
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
24
|
Long noncoding RNAs: Emerging regulators of normal and malignant hematopoiesis. Blood 2021; 138:2327-2336. [PMID: 34482397 DOI: 10.1182/blood.2021011992] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 11/20/2022] Open
Abstract
Genome wide analyses have revealed that long-noncoding RNAs (lncRNAs) are not only passive transcription products, but also major regulators of genome structure and transcription. In particular, lncRNAs exert profound effects on various biological processes, such as chromatin structure, transcription, RNA stability and translation, and protein degradation and localization, which depend on their localization and interacting partners. Recent studies have revealed that thousands of lncRNAs are aberrantly expressed in various cancer types and some of them are associated with malignant transformation. Despite extensive efforts, the diverse functions of lncRNAs and molecular mechanisms in which they act remain elusive. Many hematological disorders and malignancies are primarily resulted from genetic alterations that lead to the dysregulation of gene regulatory networks required for cellular proliferation and differentiation. Consequently, a growing list of lncRNAs has been reported for their involvement in the modulation of hematopoietic gene expression networks and hematopoietic stem and progenitor cell (HS/PC) function. Dysregulation of some of these lncRNAs has been attributed to pathogenesis of hematological malignancies. In this review, we will summarize current advances and knowledge of lncRNAs in gene regulation, focusing on the recent progresses on the role of lncRNAs in CTCF/cohesin mediated three-dimensional (3D) genome organization, and how such genome folding signals in turn regulate transcription, HS/PC function and transformation. The knowledge will provide mechanistic and translational insights into HS/PC biology and myeloid malignancy pathophysiology.
Collapse
|
25
|
Iacobucci I, Kimura S, Mullighan CG. Biologic and Therapeutic Implications of Genomic Alterations in Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:3792. [PMID: 34501239 PMCID: PMC8432032 DOI: 10.3390/jcm10173792] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most successful paradigm of how risk-adapted therapy and detailed understanding of the genetic alterations driving leukemogenesis and therapeutic response may dramatically improve treatment outcomes, with cure rates now exceeding 90% in children. However, ALL still represents a leading cause of cancer-related death in the young, and the outcome for older adolescents and young adults with ALL remains poor. In the past decade, next generation sequencing has enabled critical advances in our understanding of leukemogenesis. These include the identification of risk-associated ALL subtypes (e.g., those with rearrangements of MEF2D, DUX4, NUTM1, ZNF384 and BCL11B; the PAX5 P80R and IKZF1 N159Y mutations; and genomic phenocopies such as Ph-like ALL) and the genomic basis of disease evolution. These advances have been complemented by the development of novel therapeutic approaches, including those that are of mutation-specific, such as tyrosine kinase inhibitors, and those that are mutation-agnostic, including antibody and cellular immunotherapies, and protein degradation strategies such as proteolysis-targeting chimeras. Herein, we review the genetic taxonomy of ALL with a focus on clinical implications and the implementation of genomic diagnostic approaches.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Shunsuke Kimura
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
| | - Charles G. Mullighan
- Department of Pathology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA;
- Comprehensive Cancer Center, Hematological Malignancies Program, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
26
|
Sexton CE, Tillett RL, Han MV. The essential but enigmatic regulatory role of HERVH in pluripotency. Trends Genet 2021; 38:12-21. [PMID: 34340871 DOI: 10.1016/j.tig.2021.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/09/2023]
Abstract
Human specific endogenous retrovirus H (HERVH) is highly expressed in both naive and primed stem cells and is essential for pluripotency. Despite the proven relationship between HERVH expression and pluripotency, there is no single definitive model for the function of HERVH. Instead, several hypotheses of a regulatory function have been put forward including HERVH acting as enhancers, long noncoding RNAs (lncRNAs), and most recently as markers of topologically associating domain (TAD) boundaries. Recently several enhancer-associated lncRNAs have been characterized, which bind to Mediator and are necessary for promoter-enhancer folding interactions. We propose a synergistic model of HERVH function combining relevant findings and discuss the current limitations for its role in regulation, including the lack of evidence for a pluripotency-associated target gene.
Collapse
Affiliation(s)
- Corinne E Sexton
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | | | - Mira V Han
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, Las Vegas, NV 89154, USA.
| |
Collapse
|
27
|
Cheng L, Han T, Chen B, Nie K, Peng W. TBX5-AS1, an enhancer RNA, is a potential novel prognostic biomarker for lung adenocarcinoma. BMC Cancer 2021; 21:794. [PMID: 34238250 PMCID: PMC8268367 DOI: 10.1186/s12885-021-08517-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Enhancer RNAs (eRNAs) are demonstrated to be closely associated with tumourigenesis and cancer progression. However, the role of eRNAs in lung adenocarcinoma (LUAD) remains largely unclear. Thus, a comprehensive analysis was constructed to identify the key eRNAs, and to explore the clinical utility of the identified eRNAs in LUAD. METHODS First, LUAD expression profile data from the Cancer Genome Atlas (TCGA) dataset and eRNA-relevant information were integrated for Kaplan-Meier survival analysis and Spearman's correlation analysis to filtered the key candidate eRNAs that was associated with survival rate and their target genes in LUAD. Then, the key eRNA was selected for subsequent clinical correlation analysis. KEGG pathway enrichment analyses were undertaken to explore the potential signaling pathways of the key eRNA. Data from the human protein atlas (HPA) database were used to validate the outcomes and the quantitative real time-polymerase chain reaction (qRT-PCR) analysis was conducted to measure eRNA expression levels in tumor tissues and paired normal adjacent tissues from LUAD patients. Finally, the eRNAs were validated in pan-cancer. RESULTS As a result, TBX5-AS1 was identified as the key eRNA, which has T-box transcription factor 5 (TBX5) as its regulatory target. KEGG analysis indicated that TBX5-AS1 may exert a vital role via the PI3K/AKT pathway, Ras signaling pathway, etc. Additionally, the qRT-PCR results and the HPA database indicated that TBX5-AS1 and TBX5 were significantly downregulated in tumour samples compared to matched-adjacent pairs. The pan-cancer validation results showed that TBX5-AS1 was associated with survival in four tumors, namely, adrenocortical carcinoma (ACC), LUAD, lung squamous cell carcinoma (LUSC), and uterine corpus endometrial carcinoma (UCEC). Correlations were found between TBX5-AS1 and its target gene, TBX5, in 26 tumor types. CONCLUSION Collectively, our results indicated that TBX5-AS1 may be a potential prognostic biomarker for LUAD patients and promote the targeted therapy of LUAD.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011 People’s Republic of China
| | - Tong Han
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Bolin Chen
- Department of Thoracic Medical Oncology, Hunan Cancer Hospital/the affiliated Cancer Hospital of Xiangya school of Medicine, Central South University, Changsha, 410013 Hunan China
| | - Kechao Nie
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011 People’s Republic of China
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405 Guangdong China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan 410011 People’s Republic of China
| |
Collapse
|
28
|
Napoli S, Cascione L, Rinaldi A, Spriano F, Guidetti F, Zhang F, Cacciapuoti MT, Mensah AA, Sartori G, Munz N, Forcato M, Bicciato S, Chiappella A, Ghione P, Elemento O, Cerchietti L, Inghirami G, Bertoni F. Characterization of GECPAR, a noncoding RNA that regulates the transcriptional program of diffuse large B-cell lymphoma. Haematologica 2021; 107:1131-1143. [PMID: 34162177 PMCID: PMC9052922 DOI: 10.3324/haematol.2020.267096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
Enhancers are regulatory regions of DNA, which play a key role in cell-type specific differentiation and development. Most active enhancers are transcribed into enhancer RNA (eRNA) that can regulate transcription of target genes by means of in cis as well as in trans action. eRNA stabilize contacts between distal genomic regions and mediate the interaction of DNA with master transcription factors. Here, we characterized an enhancer eRNA, GECPAR (germinal center proliferative adapter RNA), which is specifically transcribed in normal and neoplastic germinal center B cells from the super-enhancer of POU2AF1, a key regulatory gene of the germinal center reaction. Using diffuse large B-cell lymphoma cell line models, we demonstrated the tumor suppressor activity of GECPAR, which is mediated via its transcriptional regulation of proliferation and differentiation genes, particularly MYC and the Wnt pathway.
Collapse
Affiliation(s)
- Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland,SARA NAPOLI
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Francesca Guidetti
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Fangwen Zhang
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | | | - Afua Adjeiwaa Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Nicolas Munz
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Mattia Forcato
- Center for Genome Research, Department of Life Sciences University of Modena and Reggio, Modena, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences University of Modena and Reggio, Modena, Italy
| | - Annalisa Chiappella
- Ematologia, A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
| | - Paola Ghione
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Leandro Cerchietti
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine Department, Weill Cornell Medicine, New York, NY, USA
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland,Oncology Institute of Southern Switzerland, Bellinzona, Switzerland,FRANCESCO BERTONI
| |
Collapse
|
29
|
Chen Z, Yang F, Liu H, Fan F, Lin Y, Zhou J, Cai Y, Zhang X, Wu Y, Mao R, Zhang T. Identification of a nomogram based on an 8-lncRNA signature as a novel diagnostic biomarker for childhood acute lymphoblastic leukemia. Aging (Albany NY) 2021; 13:15548-15568. [PMID: 34106877 PMCID: PMC8221355 DOI: 10.18632/aging.203116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
Childhood acute lymphoblastic leukemia (cALL) still represents a major cause of disease-related death in children. This study aimed to explore the prognostic value of long non-coding RNAs (lncRNAs) in cALL. We downloaded lncRNA expression profiles from the TARGET and GEO databases. Univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses were applied to identify lncRNA-based signatures. We identified an eight-lncRNA signature (LINC00630, HDAC2-AS2, LINC01278, AL356599.1, AC114490.1, AL132639.3, FUT8.AS1, and TTC28.AS1), which separated the patients into two groups with significantly different overall survival rates. A nomogram based on the signature, BCR ABL1 status and white blood cell count at diagnosis was developed and showed good accuracy for predicting the 3-, 5- and 7-year survival probability of cALL patients. The C-index values of the nomogram in the training and internal validation set reached 0.8 (95% CI, 0.757 to 0.843) and 0.806 (95% CI, 0.728 to 0.884), respectively. The nomogram proposed in this study objectively and accurately predicted the prognosis of cALL. In vitro experiments suggested that LINC01278 promoted the proliferation of leukemic cells and inhibited leukemic cell apoptosis by targeting the inhibition of miR-500b-3p in cALL, and LINC01278 may be a biological target for the treatment of cALL in the future.
Collapse
Affiliation(s)
- Zhang Chen
- Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China
| | - Fan Yang
- Emergency Department, Peking University Third Hospital, Peking University School of Medicine, Beijing 100083, China
| | - Hui Liu
- Department of Neurology, General Hospital of Western Theater Command, Chengdu 610500, China
| | - Fan Fan
- Department of Neurology, General Hospital of Western Theater Command, Chengdu 610500, China
| | - Yanggang Lin
- Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China
| | - Jinhua Zhou
- Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China
| | - Yun Cai
- Department of Orthopedics, General Hospital of Western Theater Command, Chengdu 610083, China
| | - Xiaoxiao Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yingxin Wu
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China
| | - Rui Mao
- Affiliated Hospital of Southwest Jiaotong University, Chengdu 610036, China.,Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University and The Second Affiliated Hospital of Chengdu, Chongqing Medical University, Chengdu 610031, China
| | - Tongtong Zhang
- Medical Research Center, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| |
Collapse
|
30
|
Huang Z, Yu H, Du G, Han L, Huang X, Wu D, Han X, Xia Y, Wang X, Lu C. Enhancer RNA lnc-CES1-1 inhibits decidual cell migration by interacting with RNA-binding protein FUS and activating PPARγ in URPL. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:104-112. [PMID: 33738142 PMCID: PMC7941017 DOI: 10.1016/j.omtn.2021.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/14/2021] [Indexed: 12/15/2022]
Abstract
Unexplained recurrent pregnancy loss (URPL) is a significant reproductive health issue, affecting approximately 5% of pregnancies. Enhancer RNAs (eRNAs) have been reported to play important roles during embryo development and may be related to URPL. To investigate whether and how eRNAs are involved in URPL, we performed RNA sequencing in decidual tissue. Through comprehensive screening and validation, we identified a decidua-enriched eRNA long noncoding-CES1-1 (lnc-CES1-1) enriched in URPL patients and studied its function in decidua-associated cell lines (DACs). Higher expression of lnc-CES1-1 increased the level of inflammatory factors tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) and impaired the cell migration ability, which was attenuated by downregulating peroxisome proliferators-activated receptor γ (PPARγ). Upon activation by signal transduction and activation of transcription 4 (STAT4), lnc-CES1-1 interacted with the transcription factor fused in sarcoma (FUS) to upregulate the expression of PPARγ and affected cell migration. Taken together, these findings provide novel insights into the biological functions of decidua-associated lnc-CES1-1 and the molecular mechanisms underlying URPL. Our findings indicated that lnc-CES1-1 might be a potential candidate biomarker for URPL diagnosis and treatment.
Collapse
Affiliation(s)
- Zhenyao Huang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Hao Yu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Li Han
- Department of Obstetrics, Huai-An First Affiliated Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Xiaomin Huang
- Department of Cardio-Cerebrovascular Disease and Diabetes Prevention, Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen 518000, China
| | - Dan Wu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chuncheng Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
31
|
Adhikary S, Roy S, Chacon J, Gadad SS, Das C. Implications of Enhancer Transcription and eRNAs in Cancer. Cancer Res 2021; 81:4174-4182. [PMID: 34016622 DOI: 10.1158/0008-5472.can-20-4010] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/03/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Despite extensive progress in developing anticancer therapies, therapy resistance remains a major challenge that promotes disease relapse. The changes that lead to therapy resistance can be intrinsically present or may be initiated during treatment. Genetic and epigenetic heterogeneity in tumors make it more challenging to deal with therapy resistance. Recent advances in genome-wide analyses have revealed that the deregulation of distal gene regulatory elements, such as enhancers, appears in several pathophysiological conditions, including cancer. Beyond the conventional function of enhancers in recruiting transcription factors to gene promoters, enhancer elements are also transcribed into noncoding RNAs known as enhancer RNAs (eRNA). Accumulating evidence suggests that uncontrolled enhancer activity with aberrant eRNA expression promotes oncogenesis. Interestingly, tissue-specific, transcribed eRNAs from active enhancers can serve as potential therapeutic targets or biomarkers in several cancer types. This review provides a comprehensive overview of the mechanisms of enhancer transcription and eRNAs as well as their potential roles in cancer and drug resistance.
Collapse
Affiliation(s)
- Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India.,Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jessica Chacon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas
| | - Shrikanth S Gadad
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas. .,Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, Texas.,Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, Texas.,Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynaecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India. .,Homi Bhaba National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
32
|
Belver L, Albero R, Ferrando AA. Deregulation of enhancer structure, function, and dynamics in acute lymphoblastic leukemia. Trends Immunol 2021; 42:418-431. [PMID: 33858773 PMCID: PMC8091164 DOI: 10.1016/j.it.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Enhancers control dynamic changes in gene expression and orchestrate the tightly controlled transcriptional circuitries that direct and coordinate cell growth, proliferation, survival, lineage commitment, and differentiation during lymphoid development. Enhancer hijacking and neoenhancer formation at oncogene loci, as well as aberrant activation of oncogene-associated enhancers, can induce constitutive activation of self-perpetuating oncogenic transcriptional circuitries, and contribute to the malignant transformation of immature lymphoid progenitors in acute lymphoblastic leukemia (ALL). In this review, we present recent discoveries of the role of enhancer dynamics in mouse and human lymphoid development, and discuss how genetic and epigenetic alterations of enhancer function can promote leukemogenesis, and potential strategies for targeting the enhancer machinery in the treatment of ALL.
Collapse
Affiliation(s)
- Laura Belver
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA; Josep Carreras Leukaemia Research Institute, Badalona, Barcelona, 08916, Spain
| | - Robert Albero
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA; Department of Systems Biology, Columbia University, New York, NY, 10032, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY, 10032, USA; Department of Pathology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
33
|
Smyth LJ, Kilner J, Nair V, Liu H, Brennan E, Kerr K, Sandholm N, Cole J, Dahlström E, Syreeni A, Salem RM, Nelson RG, Looker HC, Wooster C, Anderson K, McKay GJ, Kee F, Young I, Andrews D, Forsblom C, Hirschhorn JN, Godson C, Groop PH, Maxwell AP, Susztak K, Kretzler M, Florez JC, McKnight AJ. Assessment of differentially methylated loci in individuals with end-stage kidney disease attributed to diabetic kidney disease: an exploratory study. Clin Epigenetics 2021; 13:99. [PMID: 33933144 PMCID: PMC8088646 DOI: 10.1186/s13148-021-01081-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A subset of individuals with type 1 diabetes mellitus (T1DM) are predisposed to developing diabetic kidney disease (DKD), the most common cause globally of end-stage kidney disease (ESKD). Emerging evidence suggests epigenetic changes in DNA methylation may have a causal role in both T1DM and DKD. The aim of this exploratory investigation was to assess differences in blood-derived DNA methylation patterns between individuals with T1DM-ESKD and individuals with long-duration T1DM but no evidence of kidney disease upon repeated testing to identify potential blood-based biomarkers. Blood-derived DNA from individuals (107 cases, 253 controls and 14 experimental controls) were bisulphite treated before DNA methylation patterns from both groups were generated and analysed using Illumina's Infinium MethylationEPIC BeadChip arrays (n = 862,927 sites). Differentially methylated CpG sites (dmCpGs) were identified (false discovery rate adjusted p ≤ × 10-8 and fold change ± 2) by comparing methylation levels between ESKD cases and T1DM controls at single site resolution. Gene annotation and functionality was investigated to enrich and rank methylated regions associated with ESKD in T1DM. RESULTS Top-ranked genes within which several dmCpGs were located and supported by functional data with methylation look-ups in other cohorts include: AFF3, ARID5B, CUX1, ELMO1, FKBP5, HDAC4, ITGAL, LY9, PIM1, RUNX3, SEPTIN9 and UPF3A. Top-ranked enrichment pathways included pathways in cancer, TGF-β signalling and Th17 cell differentiation. CONCLUSIONS Epigenetic alterations provide a dynamic link between an individual's genetic background and their environmental exposures. This robust evaluation of DNA methylation in carefully phenotyped individuals has identified biomarkers associated with ESKD, revealing several genes and implicated key pathways associated with ESKD in individuals with T1DM.
Collapse
Affiliation(s)
- L J Smyth
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK.
| | - J Kilner
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - V Nair
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - H Liu
- Department of Department of Medicine/ Nephrology, Department of Genetics, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E Brennan
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - K Kerr
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - N Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Cole
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA.,Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - E Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - A Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R M Salem
- Department of Family Medicine and Public Health, UC San Diego, San Diego, CA, USA
| | - R G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - H C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - C Wooster
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - K Anderson
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - G J McKay
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - F Kee
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - I Young
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - D Andrews
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - C Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J N Hirschhorn
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - C Godson
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - P H Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - A P Maxwell
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK.,Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - K Susztak
- Department of Department of Medicine/ Nephrology, Department of Genetics, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - M Kretzler
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - J C Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - A J McKnight
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
34
|
LINC00221 suppresses the malignancy of children acute lymphoblastic leukemia. Biosci Rep 2021; 40:222665. [PMID: 32297639 PMCID: PMC7199449 DOI: 10.1042/bsr20194070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 11/21/2022] Open
Abstract
As the most common malignant disease in childhood, children acute lymphoblastic leukemia (ALL) is a heterogeneous disease caused by the accumulated genetic alterations. Long non-coding RNAs (lncRNAs) are reported as critical regulators in diseases. GEPIA database indicated that long intergenic non-protein coding RNA 221 (LINC00221) was conspicuously down-regulated in acute myeloid leukemia. However, its expression pattern in ALL has not been revealed. This work was carried out to study the role of LINC00221 in ALL cells. Quantitative real-time PCR (qRT-PCR) quantified LINC00221 expression in ALL cells. The function of LINC00221 in ALL was determined by ki-67 immunofluorescence staining, EdU, TUNEL, JC-1, and caspase-3/8/9 activity assays. RNA pull down and Ago2-RNA immunoprecipitation (RIP) assays investigated the interaction between miR-152-3p and LINC00221 or ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2 (ATP2A2). Our study revealed the low expression of LINC00221 in ALL cells. Subsequently, LINC00221 was verified to bind with miR-152-3p. Moreover, functional assays pointed out that LINC00221 overexpression posed anti-proliferation and pro-apoptosis effects in ALL cells, and these effects could be separately reversed by miR-152-3p up-regulation. Afterward, LINC00221 was revealed to regulate ATP2A2 expression via sponging miR-152-3p. Additionally, ATP2A2 was verified to involve in regulating LINC00221-mediated ALL cell proliferation and apoptosis. In conclusion, LINC00221 suppressed ALL cell proliferation and boosted ALL cell apoptosis via sponging miR-152-3p to up-regulate ATP2A2.
Collapse
|
35
|
Plasek LM, Valadkhan S. lncRNAs in T lymphocytes: RNA regulation at the heart of the immune response. Am J Physiol Cell Physiol 2021; 320:C415-C427. [PMID: 33296288 PMCID: PMC8294623 DOI: 10.1152/ajpcell.00069.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genome-wide analyses in the last decade have uncovered the presence of a large number of long non-protein-coding transcripts that show highly tissue- and state-specific expression patterns. High-throughput sequencing analyses in diverse subsets of immune cells have revealed a complex and dynamic expression pattern for these long noncoding RNAs (lncRNAs) that correlate with the functional states of immune cells. Although the vast majority of lncRNAs expressed in immune cells remain unstudied, functional studies performed on a small subset have indicated that their state-specific expressions pattern frequently has a regulatory impact on the function of immune cells. In vivo and in vitro studies have pointed to the involvement of lncRNAs in a wide variety of cellular processes, including both the innate and adaptive immune response through mechanisms ranging from epigenetic and transcriptional regulation to sequestration of functional molecules in subcellular compartments. This review will focus mainly on the role of lncRNAs in CD4+ and CD8+ T cells, which play pivotal roles in adaptive immunity. Recent studies have pointed to key physiological functions for lncRNAs during several developmental and functional stages of the life cycle of lymphocytes. Although lncRNAs play important physiological roles in lymphocytic response to antigenic stimulation, differentiation into effector cells, and secretion of cytokines, their dysregulated expression can promote or sustain pathological states such as autoimmunity, chronic inflammation, cancer, and viremia. This, together with their highly cell type-specific expression patterns, makes lncRNAs ideal therapeutic targets and underscores the need for additional studies into the role of these understudied transcripts in adaptive immune response.
Collapse
|
36
|
Hosoi H, Niibori-Nambu A, Nah GSS, Bahirvani AG, Mok MMH, Sanda T, Kumar AP, Tenen DG, Ito Y, Sonoki T, Osato M. Super-enhancers for RUNX3 are required for cell proliferation in EBV-infected B cell lines. Gene 2021; 774:145421. [PMID: 33444684 DOI: 10.1016/j.gene.2021.145421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/30/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus nuclear antigens 2 (EBNA2) mediated super-enhancers, defined by in silico data, localize near genes associated with B cell transcription factors including RUNX3. However, the biological function of super-enhancer for RUNX3 gene (seR3) remains unclear. Here, we show that two seR3s, tandemly-located at 59- and 70-kb upstream of RUNX3 transcription start site, named seR3 -59h and seR3 -70h, are required for RUNX3 expression and cell proliferation in Epstein-Barr virus (EBV)-positive malignant B cells. A BET bromodomain inhibitor, JQ1, potently suppressed EBV-positive B cell growth through the reduction of RUNX3 and MYC expression. Excision of either or both seR3s by employing CRISPR/Cas9 system resulted in the decrease in RUNX3 expression and the subsequent suppression of cell proliferation and colony forming capability. The expression of MYC was also reduced when seR3s were deleted, probably due to the loss of trans effect of seR3s on the super-enhancers for MYC. These findings suggest that seR3s play a pivotal role in expression and biological function of both RUNX3 and MYC. seR3s would serve as a potential therapeutic target in EBV-related widespread tumors.
Collapse
Affiliation(s)
- Hiroki Hosoi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Akiko Niibori-Nambu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Institute of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Giselle Sek Suan Nah
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshiaki Ito
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan.
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; International Research Center for Medical Sciences, Kumamoto University, Japan.
| |
Collapse
|
37
|
Elcheva IA, Spiegelman VS. The Role of cis- and trans-Acting RNA Regulatory Elements in Leukemia. Cancers (Basel) 2020; 12:E3854. [PMID: 33419342 PMCID: PMC7766907 DOI: 10.3390/cancers12123854] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
RNA molecules are a source of phenotypic diversity and an operating system that connects multiple genetic and metabolic processes in the cell. A dysregulated RNA network is a common feature of cancer. Aberrant expression of long non-coding RNA (lncRNA), micro RNA (miRNA), and circular RNA (circRNA) in tumors compared to their normal counterparts, as well as the recurrent mutations in functional regulatory cis-acting RNA motifs have emerged as biomarkers of disease development and progression, opening avenues for the design of novel therapeutic approaches. This review looks at the progress, challenges and future prospects of targeting cis-acting and trans-acting RNA elements for leukemia diagnosis and treatment.
Collapse
Affiliation(s)
- Irina A. Elcheva
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, P.O. Box 850, MC H085, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
38
|
Aprile M, Katopodi V, Leucci E, Costa V. LncRNAs in Cancer: From garbage to Junk. Cancers (Basel) 2020; 12:E3220. [PMID: 33142861 PMCID: PMC7692075 DOI: 10.3390/cancers12113220] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing-based transcriptomics has significantly redefined the concept of genome complexity, leading to the identification of thousands of lncRNA genes identification of thousands of lncRNA genes whose products possess transcriptional and/or post-transcriptional regulatory functions that help to shape cell functionality and fate. Indeed, it is well-established now that lncRNAs play a key role in the regulation of gene expression through epigenetic and posttranscriptional mechanims. The rapid increase of studies reporting lncRNAs alteration in cancers has also highlighted their relevance for tumorigenesis. Herein we describe the most prominent examples of well-established lncRNAs having oncogenic and/or tumor suppressive activity. We also discuss how technical advances have provided new therapeutic strategies based on their targeting, and also report the challenges towards their use in the clinical settings.
Collapse
Affiliation(s)
- Marianna Aprile
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| | - Vicky Katopodi
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Valerio Costa
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| |
Collapse
|
39
|
Mousavi Z, Ghorbian S, Rezamand A, Roshangar L, Jafari B. Expression Profile of LncRNAs in Childhood Acute Lymphoblastic Leukemia: A Pilot Study. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Childhood acute lymphoblastic leukemia (ALL) explains 26% of pediatricmalignancies and is one of the leading causes of disease-related deaths in children. A novelmolecular class of non-coding genes, long non-coding RNAs (lncRNAs) having over 200nucleotides, have been defined as regulators of different cellular processes including pluripotency,oncogenesis, and transcription. It has been demonstrated that lncRNA transcription profilescan distinguish pre B-cell subtype of ALL accurately and act as early diagnostic and prognosticbiomarkers. Hence, the aim of this pilot study was the prior evaluation of expression profileof several lncRNA candidates including RP11-68I18.10, RP11-624C23.1, RP11-446E9, RP11-137H2.4, and RP11-203E8 in patients with ALL. Methods: In this study, 80 blood samples were obtained from patients, definitely diagnosed bypathologists with ALL, and from healthy subjects. Total RNA was extracted from blood samples,and cDNA was synthesized. Real-time PCR was applied to determine the expression of lncRNAs.A P-value of 0.010 was considered statistically significant. Results: Our findings revealed that the expression levels of lncRNAs RP11-624C23.1, RP11-446E9, RP11-137H2.4, RP11-68I18.10, and RP11-203E8 were significantly decreased in ALLsamples compared to those of healthy samples (P<0.0001, P =0.0616, P =0.0292, P<0.0001, andP = 0.0007). Moreover, the relationship between these five lncRNA expression changes and theimmunophenotype in ALL patients was not significant. Conclusion: The dysregulation of lncRNAs in ALL samples could provide a novel and interestingpossibility for early diagnosis and prognosis, as well as mastering the treatment of ALL.
Collapse
Affiliation(s)
- Zohreh Mousavi
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Azim Rezamand
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leyla Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behboud Jafari
- Department of Microbiology, Ahar Branch, Islamic Azad University, Ahar, Iran
| |
Collapse
|
40
|
Wu Y, Yang Y, Gu H, Tao B, Zhang E, Wei J, Wang Z, Liu A, Sun R, Chen M, Fan Y, Mao R. Multi-omics analysis reveals the functional transcription and potential translation of enhancers. Int J Cancer 2020; 147:2210-2224. [PMID: 32573785 DOI: 10.1002/ijc.33132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Abstract
Enhancer can transcribe RNAs, however, most of them were neglected in traditional RNA-seq analysis workflow. Here, we developed a Pipeline for Enhancer Transcription (PET, http://fun-science.club/PET) for quantifying enhancer RNAs (eRNAs) from RNA-seq. By applying this pipeline on lung cancer samples and cell lines, we showed that the transcribed enhancers are enriched with histone marks and transcription factor motifs (JUNB, Hand1-Tcf3 and GATA4). By training a machine learning model, we demonstrate that enhancers can predict prognosis better than their nearby genes. Integrating the Hi-C, ChIP-seq and RNA-seq data, we observe that transcribed enhancers associate with cancer hallmarks or oncogenes, among which LcsMYC-1 (Lung cancer-specific MYC eRNA-1) potentially supports MYC expression. Surprisingly, a significant proportion of transcribed enhancers contain small protein-coding open reading frames (sORFs) and can be translated into microproteins. Our study provides a computational method for eRNA quantification and deepens our understandings of the DNA, RNA and protein nature of enhancers.
Collapse
Affiliation(s)
- Yingcheng Wu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, Jiangsu, China.,Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yang Yang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyan Gu
- Department of Respiratory Medicine, Nantong Sixth People's Hospital, Nantong, Jiangsu, China
| | - Baorui Tao
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Erhao Zhang
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jinhuan Wei
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zhou Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Aifen Liu
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Rong Sun
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Chen
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yihui Fan
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, Jiangsu, China.,Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Renfang Mao
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, Jiangsu, China.,Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
41
|
Ibragimov AN, Bylino OV, Shidlovskii YV. Molecular Basis of the Function of Transcriptional Enhancers. Cells 2020; 9:E1620. [PMID: 32635644 PMCID: PMC7407508 DOI: 10.3390/cells9071620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional enhancers are major genomic elements that control gene activity in eukaryotes. Recent studies provided deeper insight into the temporal and spatial organization of transcription in the nucleus, the role of non-coding RNAs in the process, and the epigenetic control of gene expression. Thus, multiple molecular details of enhancer functioning were revealed. Here, we describe the recent data and models of molecular organization of enhancer-driven transcription.
Collapse
Affiliation(s)
- Airat N. Ibragimov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (A.N.I.); (O.V.B.)
- I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
42
|
Wang P, Deng Y, Yan X, Zhu J, Yin Y, Shu Y, Bai D, Zhang S, Xu H, Lu X. The Role of ARID5B in Acute Lymphoblastic Leukemia and Beyond. Front Genet 2020; 11:598. [PMID: 32595701 PMCID: PMC7303299 DOI: 10.3389/fgene.2020.00598] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/18/2020] [Indexed: 02/05/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children with distinct characteristics among different subtypes. Although the etiology of ALL has not been fully unveiled, initiation of ALL has been demonstrated to partly depend on genetic factors. As indicated by several genome wide association studies (GWASs) and candidate gene analyses, ARID5B, a member of AT-rich interactive domain (ARID) protein family, is associated with the occurrence and prognosis of ALL. However, the mechanisms by which ARID5B genotype impact on the susceptibility and treatment outcome remain vague. In this review, we outline developments in the understanding of ARID5B in the susceptibility of ALL and its therapeutic perspectives, and summarize the underlying mechanisms based on the limited functional studies, hoping to illustrate the possible mechanisms of ARID5B impact and highlight the potential treatment regimens.
Collapse
Affiliation(s)
- Peiqi Wang
- Department of Pediatric Hematology/Oncology, West China Second University Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun Deng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xinyu Yan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianhui Zhu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuanyuan Yin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Shu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shouyue Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.,Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.,Precision Medicine Center, State Key Laboratory of Biotherapy and Precision Medicine, Key Laboratory of Sichuan Province, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Xiaoxi Lu
- Department of Pediatric Hematology/Oncology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Enhancer RNAs are an important regulatory layer of the epigenome. Nat Struct Mol Biol 2020; 27:521-528. [PMID: 32514177 DOI: 10.1038/s41594-020-0446-0] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 05/07/2020] [Indexed: 12/20/2022]
Abstract
Noncoding RNAs (ncRNAs) direct a remarkable number of diverse functions in development and disease through their regulation of transcription, RNA processing and translation. Leading the charge in the RNA revolution is a class of ncRNAs that are synthesized at active enhancers, called enhancer RNAs (eRNAs). Here, we review recent insights into the biogenesis of eRNAs and the mechanisms underlying their multifaceted functions and consider how these findings could inform future investigations into enhancer transcription and eRNA function.
Collapse
|
44
|
Gao J, Wang F, Wu P, Chen Y, Jia Y. Aberrant LncRNA Expression in Leukemia. J Cancer 2020; 11:4284-4296. [PMID: 32368311 PMCID: PMC7196264 DOI: 10.7150/jca.42093] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Leukemia is a common malignant cancer of the hematopoietic system, whose pathogenesis has not been fully elucidated. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides without protein-coding function. Recent studies report their role in cellular processes such as the regulation of gene expression, as well as in the carcinogenesis, occurrence, development, and prognosis of various tumors. Evidence indicating relationships between a variety of lncRNAs and leukemia pathophysiology has increased dramatically in the previous decade, with specific lncRNAs expected to serve as diagnostic biomarkers, novel therapeutic targets, and predictors of clinical outcomes. Furthermore, these lncRNAs might offer insight into disease pathogenesis and novel treatment options. This review summarizes progress in studies on the role(s) of lncRNAs in leukemia.
Collapse
Affiliation(s)
- Jie Gao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fujue Wang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Pengqiang Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingying Chen
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yongqian Jia
- Department of Hematology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
45
|
RNA-Binding Proteins as Important Regulators of Long Non-Coding RNAs in Cancer. Int J Mol Sci 2020; 21:ijms21082969. [PMID: 32340118 PMCID: PMC7215867 DOI: 10.3390/ijms21082969] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
The majority of the genome is transcribed into pieces of non-(protein) coding RNA, among which long non-coding RNAs (lncRNAs) constitute a large group of particularly versatile molecules that govern basic cellular processes including transcription, splicing, RNA stability, and translation. The frequent deregulation of numerous lncRNAs in cancer is known to contribute to virtually all hallmarks of cancer. An important regulatory mechanism of lncRNAs is the post-transcriptional regulation mediated by RNA-binding proteins (RBPs). So far, however, only a small number of known cancer-associated lncRNAs have been found to be regulated by the interaction with RBPs like human antigen R (HuR), ARE/poly(U)-binding/degradation factor 1 (AUF1), insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), and tristetraprolin (TTP). These RBPs regulate, by various means, two aspects in particular, namely the stability and the localization of lncRNAs. Importantly, these RBPs themselves are commonly deregulated in cancer and might thus play a major role in the deregulation of cancer-related lncRNAs. There are, however, still many open questions, for example regarding the context specificity of these regulatory mechanisms that, in part, is based on the synergistic or competitive interaction between different RBPs. There is also a lack of knowledge on how RBPs facilitate the transport of lncRNAs between different cellular compartments.
Collapse
|
46
|
Lee JH, Xiong F, Li W. Enhancer RNAs in cancer: regulation, mechanisms and therapeutic potential. RNA Biol 2020; 17:1550-1559. [PMID: 31916476 DOI: 10.1080/15476286.2020.1712895] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enhancers are distal genomic elements critical for gene regulation and cell identify control during development and diseases. Many human cancers were found to associate with enhancer malfunction, due to genetic and epigenetic alterations, which in some cases directly drive tumour growth. Conventionally, enhancers are known to provide DNA binding motifs to recruit transcription factors (TFs) and to control target genes. However, recent progress found that most, if not all, active enhancers pervasively transcribe noncoding RNAs that are referred to as enhancer RNAs (eRNAs). Increasing evidence points to functional roles of at least a subset of eRNAs in gene regulation in both normal and cancer cells, adding new insights into the action mechanisms of enhancers. eRNA expression was observed to be widespread but also specific to tumour types and individual patients, serving as opportunities to exploit them as potential diagnosis markers or therapeutic targets. In this review, we discuss the brief history of eRNA research, their functional mechanisms and importance in cancer gene regulation, as well as their therapeutic and diagnostic values in cancer. We propose that further studies of eRNAs in cancer will offer a promising 'eRNA targeted therapy' for human cancer intervention.
Collapse
Affiliation(s)
- Joo-Hyung Lee
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center , Houston, TX, USA
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center , Houston, TX, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center , Houston, TX, USA.,Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center and UTHealth , Houston, TX, USA
| |
Collapse
|
47
|
Arnold PR, Wells AD, Li XC. Diversity and Emerging Roles of Enhancer RNA in Regulation of Gene Expression and Cell Fate. Front Cell Dev Biol 2020; 7:377. [PMID: 31993419 PMCID: PMC6971116 DOI: 10.3389/fcell.2019.00377] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022] Open
Abstract
Enhancers are cis-regulatory elements in the genome that cooperate with promoters to control target gene transcription. Unlike promoters, enhancers are not necessarily adjacent to target genes and can exert their functions regardless of enhancer orientations, positions and spatial segregations from target genes. Thus, for a long time, the question as to how enhancers act in a temporal and spatial manner attracted considerable attention. The recent discovery that enhancers are also abundantly transcribed raises interesting questions about the exact roles of enhancer RNA (eRNA) in gene regulation. In this review, we highlight the process of enhancer transcription and the diverse features of eRNA. We review eRNA functions, which include enhancer-promoter looping, chromatin modifying, and transcription regulating. As eRNA are transcribed from active enhancers, they exhibit tissue and lineage specificity, and serve as markers of cell state and function. Finally, we discuss the unique relationship between eRNA and super enhancers in phase separation wherein eRNA may contribute significantly to cell fate decisions.
Collapse
Affiliation(s)
- Preston R Arnold
- Texas A&M Health Science Center, College of Medicine, Bryan, TX, United States.,Immunobiology and Transplant Sciences, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xian C Li
- Immunobiology and Transplant Sciences, Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
48
|
|