1
|
Bibikova E, Parsa S, Floren M, Law B, Clevenger T, Cheung J, De Jesus G, Burke K, Gulrajani M, Yamaguchi K, Do P, Dougherty B, Whitston D, Brock G, Munugalavadla V, Frigault MM, Hartmann TN, Byrd JC, Furman RR, Brown JR, Covey T, Mortlock A. Molecular Profiling Identifies CD49d and CD79b as Predictive Markers for Acquired Acalabrutinib Resistance in Patients With Chronic Lymphocytic Leukemia. Hematol Oncol 2025; 43:e70008. [PMID: 39716442 DOI: 10.1002/hon.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/25/2024] [Accepted: 11/16/2024] [Indexed: 12/25/2024]
Abstract
Contemporary studies of Bruton tyrosine kinase inhibitor (BTKi) resistance focus on mutations in the B-cell receptor (BCR) pathway, but alternative mechanisms of resistance remain undefined. Here, we sought to identify novel predictive markers of acquired resistance to acalabrutinib, a second-generation BTKi, in patients with chronic lymphocytic leukemia (CLL). Clinical samples from 41 patients with relapsed/refractory or treatment-naive CLL receiving acalabrutinib as part of a clinical trial (NCT02029443) were divided into two groups: those who continued to respond to treatment (NP, n = 23) and those who developed progressive disease on acalabrutinib therapy (PD, n = 18). Peripheral blood mononuclear cells (PBMCs) from the two groups of patients were profiled at baseline (BL) and at a second timepoint (T2) by RNA-seq and flow cytometry. Our findings show a correlation between acquired resistance to acalabrutinib and upregulation of integrin alpha-4 (ITGA4; CD49d), the BCR surface receptor CD79B, and oncogenes such as MYC, LAG3, and MCL1 in CLL cells. High surface expression of CD49d and CD79b prior to acalabrutinib therapy was associated with increased risk of disease progression on acalabrutinib in patients with CLL. When stratified by pretreatment CD49d surface expression, the CD49dhi group (defined as ≥ 30% CD49d+ cells at baseline) showed reduced acalabrutinib-induced lymphocytosis and higher levels of tumor proliferation markers such as CD38 and Ki-67 compared with the CD49dlo group (defined as < 30% CD49d+ cells at baseline). In summary, CD49d and CD79b are useful predictive markers for CLL progression on acalabrutinib. Trial Registration: ClinicalTrials.gov identifier: NCT02029443.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Female
- Humans
- Male
- Middle Aged
- Benzamides/therapeutic use
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- CD79 Antigens/genetics
- Drug Resistance, Neoplasm
- Integrin alpha4/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Prognosis
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Pyrazines/therapeutic use
- Pyrazines/pharmacology
- Pyrazines/administration & dosage
Collapse
Affiliation(s)
- Elena Bibikova
- Hematology, Oncology R&D, AstraZeneca, South San Francisco, California, USA
| | - Sara Parsa
- Hematology, Oncology R&D, AstraZeneca, South San Francisco, California, USA
| | - Muskan Floren
- Hematology, Oncology R&D, AstraZeneca, South San Francisco, California, USA
| | - Brian Law
- Hematology, Oncology R&D, AstraZeneca, South San Francisco, California, USA
| | - Tracy Clevenger
- Hematology, Oncology R&D, AstraZeneca, South San Francisco, California, USA
| | - Jean Cheung
- Hematology, Oncology R&D, AstraZeneca, South San Francisco, California, USA
| | - Gary De Jesus
- Hematology, Oncology R&D, AstraZeneca, South San Francisco, California, USA
| | - Kathleen Burke
- Translational Medicine, Oncology R&D, AstraZeneca, Waltham, Massachusetts, USA
| | - Michael Gulrajani
- Hematology, Oncology R&D, AstraZeneca, South San Francisco, California, USA
| | - Kyoko Yamaguchi
- Hematology, Oncology R&D, AstraZeneca, South San Francisco, California, USA
| | - Phuong Do
- Hematology, Oncology R&D, AstraZeneca, South San Francisco, California, USA
| | - Brian Dougherty
- Translational Medicine, Oncology R&D, AstraZeneca, Waltham, Massachusetts, USA
| | - David Whitston
- Translational Medicine, Oncology R&D, AstraZeneca, Waltham, Massachusetts, USA
| | - Graham Brock
- Hematology, Oncology R&D, AstraZeneca, South San Francisco, California, USA
| | | | - Melanie M Frigault
- Hematology, Oncology R&D, AstraZeneca, South San Francisco, California, USA
| | - Tanja N Hartmann
- Faculty of Medicine, Department of Medicine I, Medical Center-University of Freiburg, University of Freiburg, Freiburg, Germany
| | - John C Byrd
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Richard R Furman
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Jennifer R Brown
- Department of Medical Oncology, Dana-Faber Cancer Institute, Boston, Massachusetts, USA
| | - Todd Covey
- Hematology, Oncology R&D, AstraZeneca, South San Francisco, California, USA
| | | |
Collapse
|
2
|
Gardano L, Ferreira J, Le Roy C, Ledoux D, Varin-Blank N. The survival grip-how cell adhesion promotes tumor maintenance within the microenvironment. FEBS Lett 2024. [PMID: 39704141 DOI: 10.1002/1873-3468.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Cell adhesion is warranted by proteins that are crucial for the maintenance of tissue integrity and homeostasis. Most of these proteins behave as receptors to link adhesion to the control of cell survival and their expression or regulation are often altered in cancers. B-cell malignancies do not evade this principle as they are sustained in relapsed niches by interacting with the microenvironment that includes cells and their secreted factors. Focusing on chronic lymphocytic leukemia and mantle cell lymphoma, this Review delves with the molecules involved in the dialog between the adhesion platforms and signaling pathways known to regulate both cell adhesion and survival. Current therapeutic strategies disrupt adhesive structures and compromise the microenvironment support to tumor cells, rendering them sensitive to immune recognition. The development of organ-on-chip and 3D culture systems, such as spheroids, have revealed the importance of mechanical cues in regulating signaling pathways to organize cell adhesion and survival. All these elements contribute to the elaboration of the crosstalk of lymphoma cells with the microenvironment and the education processes that allow the establishment of the supportive niche.
Collapse
Affiliation(s)
- Laura Gardano
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Jordan Ferreira
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Christine Le Roy
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Dominique Ledoux
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Nadine Varin-Blank
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
3
|
Brown FF, Oliver R, Eddy R, Causer AJ, Emery A, Collier-Bain HD, Dutton D, Crowe J, Augustine D, Graby J, Rees D, Rothschild-Rodriguez D, Peacock OJ, Moore S, Murray J, Turner JE, Campbell JP. A 16-week progressive exercise training intervention in treatment-naïve chronic lymphocytic leukaemia: a randomised-controlled pilot study. Front Oncol 2024; 14:1472551. [PMID: 39703835 PMCID: PMC11655450 DOI: 10.3389/fonc.2024.1472551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Background Chronic lymphocytic leukaemia (CLL) typically presents with asymptomatic, early-stage disease that is monitored until disease progression ('treatment-naïve' CLL). The objective of this pilot study was to assess the feasibility and preliminary safety of an exercise program in treatment-naïve CLL. We also sought to preliminarily assess the impact of the exercise program on disease activity, as it has been proposed that exercise training may reduce disease outgrowth in treatment-naïve CLL. Methods A total of 40 treatment-naïve CLL patients were recruited into this randomised-controlled pilot study, and after screening, n = 28 were randomised into a 16-week, home-based, partially supervised, personalised, progressive exercise intervention (n = 14: mean ± SD: age = 62 ± 12 years) or 16 weeks of usual care, control group (n = 14: mean ± SD: age = 61 ± 10 years). The primary outcome measures were safety (number and severity of adverse events) and feasibility (uptake, retention, and adherence to the trial). Disease activity (CD5+/CD19+ CLL cells clonally restricted to kappa or lambda) and other immune cell phenotypes, with a principal focus on T cells, were measured by flow cytometry. Other secondary outcomes included DEXA-derived body composition, cardiorespiratory and functional fitness, resting cardiovascular measures. Results Trial uptake was 40%, and the overall retention rate was 86%, with 79% of the exercise group and 93% of the control group completing the trial. Adherence to the exercise intervention was 92 ± 8%. One serious adverse event was reported unrelated to the trial, and one adverse event related to the trial was reported. The exercise intervention elicited a 2% increase in DEXA-derived lean mass in the exercise group compared with a 0.4% decrease in the control group (p = 0.01). No between-group differences were observed over time for whole-body mass, BMI, bone mineral density, body fat, blood pressure resting heart rate, or measures of cardiorespiratory or functional fitness (all p > 0.05). No between-group differences were observed over time for clonal CLL cells and CD4+ or CD8+ T-cell subsets (all p > 0.05). Conclusion The exercise training program used in this study was feasible in people with treatment-naïve CLL who passed pre-trial screening, and we preliminarily conclude that the exercise training program was safe and also resulted in an increase in lean mass. Clinical trial registration https://doi.org/10.1186/ISRCTN55166064, identifier ISRCTN 55166064.
Collapse
Affiliation(s)
- Frankie F. Brown
- Department for Health, University of Bath, Bath, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Rebecca Oliver
- Department for Health, University of Bath, Bath, United Kingdom
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Rachel Eddy
- Department for Health, University of Bath, Bath, United Kingdom
| | - Adam J. Causer
- Department for Health, University of Bath, Bath, United Kingdom
| | - Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | | | - David Dutton
- Department for Haematology, Great Western Hospitals NHS Foundation Trust, Swindon, United Kingdom
| | - Josephine Crowe
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Daniel Augustine
- Department for Health, University of Bath, Bath, United Kingdom
- Department for Cardiology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - John Graby
- Department for Health, University of Bath, Bath, United Kingdom
- Department for Cardiology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Daniel Rees
- Department for Health, University of Bath, Bath, United Kingdom
| | | | | | - Sally Moore
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James Murray
- Department for Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - John P. Campbell
- Department for Health, University of Bath, Bath, United Kingdom
- School of Medical and Health Science, Edith Cowan University, Perth, WA, Australia
| |
Collapse
|
4
|
Bauvois B, Nguyen-Khac F, Merle-Béral H, Susin SA. CD38/NAD + glycohydrolase and associated antigens in chronic lymphocytic leukaemia: From interconnected signalling pathways to therapeutic strategies. Biochimie 2024; 227:135-151. [PMID: 39009062 DOI: 10.1016/j.biochi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/immunology
- Signal Transduction
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/immunology
- Animals
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France.
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
5
|
Tissino E, Gaglio A, Nicolò A, Pozzo F, Bittolo T, Rossi FM, Bomben R, Nanni P, Cattarossi I, Zaina E, Zimbo AM, Ianna G, Capasso G, Forestieri G, Moia R, Datta M, Härzschel A, Olivieri J, D'Arena G, Laurenti L, Zaja F, Chiarenza A, Palumbo GA, Martino EA, Gentile M, Rossi D, Gaidano G, Del Poeta G, Laureana R, Del Principe MI, Maity PC, Jumaa H, Hartmann TN, Zucchetto A, Gattei V. The VLA-4 integrin is constitutively active in circulating chronic lymphocytic leukemia cells via BCR autonomous signaling: a novel anchor-independent mechanism exploiting soluble blood-borne ligands. Leukemia 2024; 38:2127-2140. [PMID: 39143370 PMCID: PMC11436378 DOI: 10.1038/s41375-024-02376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
In chronic lymphocytic leukemia (CLL), survival of neoplastic cells depends on microenvironmental signals at lymphoid sites where the crosstalk between the integrin VLA-4 (CD49d/CD29), expressed in ~40% of CLL, and the B-cell receptor (BCR) occurs. Here, BCR engagement inside-out activates VLA-4, thus enhancing VLA-4-mediated adhesion of CLL cells, which in turn obtain pro-survival signals from the surrounding microenvironment. We report that the BCR is also able to effectively inside-out activate the VLA-4 integrin in circulating CD49d-expressing CLL cells through an autonomous antigen-independent BCR signaling. As a consequence, circulating CLL cells exhibiting activated VLA-4 express markers of BCR pathway activation (phospho-BTK and phospho-PLC-γ2) along with higher levels of phospho-ERK and phospho-AKT indicating parallel activation of downstream pathways. Moreover, circulating CLL cells expressing activated VLA-4 bind soluble blood-borne VCAM-1 leading to increased VLA-4-dependent actin polymerization/re-organization and ERK phosphorylation. Finally, evidence is provided that ibrutinib treatment, by affecting autonomous BCR signaling, impairs the constitutive VLA-4 activation eventually decreasing soluble VCAM-1 binding and reducing downstream ERK phosphorylation by circulating CLL cells. This study describes a novel anchor-independent mechanism occurring in circulating CLL cells involving the BCR and the VLA-4 integrin, which help to unravel the peculiar biological and clinical features of CD49d+ CLL.
Collapse
MESH Headings
- Humans
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Cell Adhesion
- Integrin alpha4beta1/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Ligands
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Pyrazoles/therapeutic use
- Pyrimidines/pharmacology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Vascular Cell Adhesion Molecule-1/metabolism
Collapse
Affiliation(s)
- Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| | - Annalisa Gaglio
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Antonella Nicolò
- Institut für Immunologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Tamara Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Francesca Maria Rossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Paola Nanni
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Ilaria Cattarossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Eva Zaina
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Anna Maria Zimbo
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Haematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Giulia Ianna
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Guido Capasso
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Gabriela Forestieri
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | - Moumita Datta
- Institut für Immunologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Andrea Härzschel
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jacopo Olivieri
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "Carlo Melzi" DISM, Azienda Ospedaliera Universitaria S. Maria Misericordia, Udine, Italy
| | - Giovanni D'Arena
- Hematology, "S. Luca" Hospital, ASL Salerno, Vallo della Lucania, Italy
| | - Luca Laurenti
- Fondazione Policlinico Universitario A Gemelli, IRCCS, Rome, Italy
| | - Francesco Zaja
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Annalisa Chiarenza
- Division of Hematology, Ferrarotto Hospital, University of Catania, Catania, Italy
| | - Giuseppe A Palumbo
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", University of Catania, Catania, Italy
| | | | - Massimo Gentile
- Haematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Amedeo Avogadro University of Eastern Piedmont, Novara, Italy
| | | | | | | | - Palash C Maity
- Institut für Experimentelle Tumorforschung, Universitätsklinikum Ulm, Ulm, Germany
| | - Hassan Jumaa
- Institut für Immunologie, Universitätsklinikum Ulm, Ulm, Germany
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| |
Collapse
|
6
|
Li CMF, Francis J, Climans S, Racosta JM. Multifocal Myelitis Associated with Chronic Lymphocytic Leukemia. Can J Neurol Sci 2024:1-3. [PMID: 39171511 DOI: 10.1017/cjn.2024.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Affiliation(s)
- Cathy Meng Fei Li
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
- London Health Sciences Centre, London, ON, Canada
| | - Jessica Francis
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
- London Health Sciences Centre, London, ON, Canada
| | - Seth Climans
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
- London Health Sciences Centre, London, ON, Canada
- London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada
| | - Juan Manuel Racosta
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada
- London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
7
|
Pozzo F, Forestieri G, Vit F, Ianna G, Tissino E, Bittolo T, Papotti R, Gaglio A, Terzi di Bergamo L, Steffan A, Polesel J, Bulian P, Laureana R, Tafuri A, Chiarenza A, Di Raimondo F, Olivieri J, Zaja F, Laurenti L, Del Principe MI, Postorino M, Del Poeta G, Bomben R, Zucchetto A, Rossi D, Gattei V. Early reappearance of intraclonal proliferative subpopulations in ibrutinib-resistant chronic lymphocytic leukemia. Leukemia 2024; 38:1712-1721. [PMID: 38914716 PMCID: PMC11286529 DOI: 10.1038/s41375-024-02301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/26/2024]
Abstract
The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib represents an effective strategy for treatment of chronic lymphocytic leukemia (CLL), nevertheless about 30% of patients eventually undergo disease progression. Here we investigated by flow cytometry the long-term modulation of the CLL CXCR4dim/CD5bright proliferative fraction (PF), its correlation with therapeutic outcome and emergence of ibrutinib resistance. By longitudinal tracking, the PF, initially suppressed by ibrutinib, reappeared upon early disease progression, without association with lymphocyte count or serum beta-2-microglobulin. Somatic mutations of BTK/PLCG2, detected in 57% of progressing cases, were significantly enriched in PF with a 3-fold greater allele frequency than the non-PF fraction, suggesting a BTK/PLCG2-mutated reservoir resident within the proliferative compartments. PF increase was also present in BTK/PLCG2-unmutated cases at progression, indicating that PF evaluation could represent a marker of CLL progression under ibrutinib. Furthermore, we evidence different transcriptomic profiles of PF at progression in cases with or without BTK/PLCG2 mutations, suggestive of a reactivation of B-cell receptor signaling or the emergence of bypass signaling through MYC and/or Toll-Like-Receptor-9. Clinically, longitudinal monitoring of the CXCR4dim/CD5bright PF by flow cytometry may provide a simple tool helping to intercept CLL progression under ibrutinib therapy.
Collapse
MESH Headings
- Humans
- Adenine/analogs & derivatives
- Piperidines
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Drug Resistance, Neoplasm/genetics
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/genetics
- Pyrimidines/therapeutic use
- Pyrimidines/pharmacology
- Pyrazoles/therapeutic use
- Pyrazoles/pharmacology
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Mutation
- Cell Proliferation/drug effects
- Phospholipase C gamma/genetics
- Disease Progression
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Male
- Aged
- Female
- Middle Aged
- CD5 Antigens/metabolism
- CD5 Antigens/genetics
Collapse
Affiliation(s)
- Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy.
| | - Gabriela Forestieri
- Experimental Hematology, Institute of Oncology Research, Bellinzona, 6500, Switzerland
| | - Filippo Vit
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Giulia Ianna
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Tamara Bittolo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Robel Papotti
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Annalisa Gaglio
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | | | - Agostino Steffan
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, 33081, Italy
| | - Pietro Bulian
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Roberta Laureana
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, 00133, Italy
| | - Agostino Tafuri
- Hematology Unit, Azienda Ospedaliera-Universitaria Sant'Andrea, Rome, 00189, Italy
| | | | | | - Jacopo Olivieri
- Hematology Clinic, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, 33100, Italy
| | - Francesco Zaja
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Luca Laurenti
- Institute of Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, 00168, Italy
| | | | - Massimiliano Postorino
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, 00133, Italy
| | - Giovanni Del Poeta
- Department of Biomedicine and Prevention, Hematology, University Tor Vergata, Rome, 00133, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy
| | - Davide Rossi
- Experimental Hematology, Institute of Oncology Research, Bellinzona, 6500, Switzerland
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, 33081, Italy.
| |
Collapse
|
8
|
Bomben R, Zucchetto A, Laureana R, Chiarenza A, Olivieri J, Tissino E, Rossi FM, Vit F, Bittolo T, Papotti R, Pozzo F, Gaglio A, Degan M, Polesel J, Marasca R, Visentin A, Moia R, Innocenti I, Vitale C, Murru R, Varettoni M, Tafuri A, Zaja F, Postorino M, Martino EA, Condoluci A, Rossi D, Cuneo A, Di Raimondo F, Sportoletti P, Del Giudice I, Foà R, Mauro FR, Coscia M, Laurenti L, Gaidano G, Trentin L, Principe MID, Gentile M, Gattei V. CD49d expression is included in a revised 4-factor model predicting outcome in patients with chronic lymphocytic leukemia treated with ibrutinib: A multicenter real-world experience. Hemasphere 2024; 8:e128. [PMID: 39011128 PMCID: PMC11247362 DOI: 10.1002/hem3.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/09/2024] [Indexed: 07/17/2024] Open
Affiliation(s)
- Riccardo Bomben
- Clinical and Experimental Onco‐Haematology UnitCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Antonella Zucchetto
- Clinical and Experimental Onco‐Haematology UnitCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | | | - Annalisa Chiarenza
- Division of Hematology, Policlinico, Department of Surgery and Medical SpecialtiesUniversity of CataniaCataniaItaly
| | - Jacopo Olivieri
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari “Carlo Melzi” DISMAzienda Ospedaliera Universitaria S. Maria MisericordiaUdineItaly
| | - Erika Tissino
- Clinical and Experimental Onco‐Haematology UnitCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Francesca M. Rossi
- Clinical and Experimental Onco‐Haematology UnitCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Filippo Vit
- Clinical and Experimental Onco‐Haematology UnitCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Tamara Bittolo
- Clinical and Experimental Onco‐Haematology UnitCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Robel Papotti
- Clinical and Experimental Onco‐Haematology UnitCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Federico Pozzo
- Clinical and Experimental Onco‐Haematology UnitCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Annalisa Gaglio
- Clinical and Experimental Onco‐Haematology UnitCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Massimo Degan
- Clinical and Experimental Onco‐Haematology UnitCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Jerry Polesel
- Unit of Cancer EpidemiologyCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Roberto Marasca
- Hematology Unit, Department of Oncology and HematologyAzienda‐Ospedaliero Universitaria (AOU) of Modena, PoliclinicoModenaItaly
- Department of Medical and Surgical SciencesUniversity of Modena e Reggio EmiliaEmilia‐RomagnaItaly
| | - Andrea Visentin
- Hematology unit, Department of MedicineUniversity of PadovaPadovaItaly
| | - Riccardo Moia
- Division of Hematology, Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| | | | - Candida Vitale
- A.O.U. Città della Salute e della Scienza di TorinoTorinoItaly
| | - Roberta Murru
- Hematology and Stem Cell Transplantation Unit, Ospedale A. Businco, ARNAS G. BrotzuCagliariItaly
| | - Marzia Varettoni
- Division of HematologyFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Agostino Tafuri
- Department of Clinical and Molecular Medicine and Hematology, Sant'Andrea ‐ University Hospital ‐ SapienzaUniversity of RomeRomeItaly
| | - Francesco Zaja
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | | | | | - Adalgisa Condoluci
- Oncology Institute of Southern Switzerland and Institute of Oncology ResearchBellinzonaSwitzerland
| | - Davide Rossi
- Oncology Institute of Southern Switzerland and Institute of Oncology ResearchBellinzonaSwitzerland
| | - Antonio Cuneo
- Hematology Section, Department of Medical SciencesUniversity of FerraraFerraraItaly
| | - Francesco Di Raimondo
- Division of Hematology, Policlinico, Department of Surgery and Medical SpecialtiesUniversity of CataniaCataniaItaly
| | - Paolo Sportoletti
- Centro di Ricerca Emato‐Oncologica (CREO), Dipartimento di Medicina e ChirurgiaUniversità di PerugiaPerugiaItaly
| | - Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine‘Sapienza’ UniversityRomeItaly
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine‘Sapienza’ UniversityRomeItaly
| | - Francesca R. Mauro
- Hematology, Department of Translational and Precision Medicine‘Sapienza’ UniversityRomeItaly
| | - Marta Coscia
- A.O.U. Città della Salute e della Scienza di TorinoTorinoItaly
| | - Luca Laurenti
- Fondazione Universitaria Policlinico A Gemelli di RomaRomaItaly
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| | - Livio Trentin
- Hematology unit, Department of MedicineUniversity of PadovaPadovaItaly
| | | | - Massimo Gentile
- Hematology UnitAzienda Ospedaliera AnnunziataCosenzaItaly
- Department of Pharmacy, Health and Nutritional ScienceUniversity of CalabriaRendeItaly
| | - Valter Gattei
- Clinical and Experimental Onco‐Haematology UnitCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| |
Collapse
|
9
|
Nunes J, Tafesse R, Mao C, Purcell M, Mo X, Zhang L, Long M, Cyr MG, Rader C, Muthusamy N. Siglec-6 as a therapeutic target for cell migration and adhesion in chronic lymphocytic leukemia. Nat Commun 2024; 15:5180. [PMID: 38890323 PMCID: PMC11189495 DOI: 10.1038/s41467-024-48678-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/08/2024] [Indexed: 06/20/2024] Open
Abstract
Siglec-6 is a lectin receptor with restricted expression in the placenta, mast cells and memory B-cells. Although Siglec-6 is expressed in patients with chronic lymphocytic leukemia (CLL), its pathophysiological role has not been elucidated. We describe here a role for Siglec-6 in migration and adhesion of CLL B cells to CLL- bone marrow stromal cells (BMSCs) in vitro and compromised migration to bone marrow and spleen in vivo. Mass spectrometry analysis revealed interaction of Siglec-6 with DOCK8, a guanine nucleotide exchange factor. Stimulation of MEC1-002 CLL cells with a Siglec-6 ligand, sTn, results in Cdc42 activation, WASP protein recruitment and F-actin polymerization, which are all associated with cell migration. Therapeutically, a Siglec-6/CD3-bispecific T-cell-recruiting antibody (T-biAb) improves overall survival in an immunocompetent mouse model and eliminates CLL cells in a patient derived xenograft model. Our findings thus reveal a migratory role for Siglec-6 in CLL, which can be therapeutically targeted using a Siglec-6 specific T-biAb.
Collapse
MESH Headings
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Humans
- Animals
- Cell Movement
- Cell Adhesion
- Lectins/metabolism
- Mice
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Female
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Cell Line, Tumor
- Mesenchymal Stem Cells/metabolism
- Male
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Jessica Nunes
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Rakeb Tafesse
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Charlene Mao
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Matthew Purcell
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Liwen Zhang
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, USA
| | - Meixiao Long
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Matthew G Cyr
- UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Christoph Rader
- UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Natarajan Muthusamy
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
10
|
Xue X, Wen Z, Zhang X, Yang Y, Li Y, Liao R, Zheng Q, Fu Y, Liu Y, Liao H. CXCR4 overexpression in chronic lymphocytic leukemia associates with poorer prognosis: A prospective, single-center, observational study. Genes Immun 2024; 25:117-123. [PMID: 38366101 DOI: 10.1038/s41435-024-00258-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Controversial data have been reported on the prognostic value of C-X-C motif chemokine receptor 4 (CXCR4) in chronic lymphocytic leukemia (CLL). This prospective, single-center, observational study aimed to evaluate the role of CXCR4 in the pathophysiology of CLL and its prognostic role. A total of 158 patients of CLL were enrolled, and CXCR4 expression on CLL cells was detected by flow cytometry (FCM) at initial diagnosis. The patients were divided into 2 groups according to the CXCR4 mean fluorescence intensity (MFI) median. Also, four patient specimens from the CXCR4low and CXCR4high groups were selected for RNASeq analysis. The progression-free survival (PFS) of CLL patients in the CXCR4high group was significantly shorter than the CXCR4low group, with a median follow-up time of 27 months (log-rank P < 0.001). Moreover, CXCR4 overexpression (MFI > 3376) was an independent marker of poor PFS in CLL patients (P < 0.001). Analysis of RNASeq results revealed that CXCR4 plays an important role in the migration of CLL. Collectively, CXCR4 expression levels on leukemia cells can be detected rapidly by FCM. CXCR4 overexpression was significantly associated with poorer prognosis in CLL patients within a shorter follow-up time.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Prospective Studies
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Signal Transduction
- Prognosis
Collapse
Affiliation(s)
- Xinran Xue
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihao Wen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yifei Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruoxi Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Zheng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Fu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Pozzo F, Tissino E, Zucchetto A, Gattei V. CD49d in chronic lymphocytic leukemia: a molecule with multiple regulation layers. Comment to "Sialylation regulates migration in chronic lymphocytic leukemia". Haematologica 2024; 109:362-363. [PMID: 37199129 PMCID: PMC10772489 DOI: 10.3324/haematol.2023.283237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Federico Pozzo
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano.
| | - Erika Tissino
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano
| | - Valter Gattei
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano
| |
Collapse
|
12
|
Golyarnik N, Абраменко І, Movchan G, Martina Z, Dyagil I, Chumak A, Bazyka D. IMMUNOPHENOTYPE OF LEUKEMIC CELLS IN CHRONIC LYMPHOCYTIC LEUKEMIA PATIENTS WITH NOTCH1 AND SF3B1 GENE MUTATIONS. Exp Oncol 2023; 45:322-327. [PMID: 38186023 DOI: 10.15407/exp-oncology.2023.03.322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND The typical chronic lymphocytic leukemia (CLL) immunophenotype is vital for diagnosis, but the expression of some antigens varies and has prognostic value. There are data that reduced CD20 expression is associated with NOTCH1 and SF3B1 gene mutations. AIM To determine a high-risk group of CLL patients for prediction of unfavorable NOTCH1 and SF3B1 gene mutations based on immunophenotyping of leukemic cells. MATERIALS AND METHODS Flow cytometric and molecular-genetic analysis (mutations of NOTCH1, SF3B1, and TP53 genes using the polymerase chain reaction followed by direct sequencing) was performed in a group of 86 previously untreated CLL patients. RESULTS The immunophenotype of leukemic cells of all examined patients met the criteria of CLL diagnosis. NOTCH1 gene mutations were found in 21 patients (24.4%), and SF3B1 gene mutations - in 7 patients (8.1%). There were no TP53 gene mutations among the examined patients. A decreased number of CD20+CD5+ cells and a downward trend in the relative index of mean fluorescence intensity (iMFI) of CD20+ cells were found in patients with NOTCH1 and SF3B1 gene mutations. Based on the iMFI level (higher and/or lower than 3.0) and the number of CD20+CD5+ cells among all B-cells (higher and/or lower than 50%), we distinguished CLL cases with low and relatively high levels of CD20 antigen expression. Using ROC analysis and the parameter of low CD20 antigen expression, we could predict the presence of NOTCH1 and SF3B1 gene mutations in 73.3 ± 0.06% of patients (p = 0.001). The risk of NOTCH1 and SF3B1 gene mutations in cases with low CD20 antigen expression was 6.96 (95% CI = 2.53-19.18; p = 0.0001). The revealed regularities were statistically significant for patients in whom the diagnosis was established in all Binet - Rai stages except A0-AI. CONCLUSION Our data confirmed a reduced CD20 expression in CLL patients with NOTCH1 and SF3B1 mutations. In addition, an approach was proposed to identify high-risk CLL patients for prediction of such mutations: previously untreated CLL patients at advanced Binet - Rai stages (BII, CIII, CIV) with a reduced number of double-positive CD20+CD5+ cells in peripheral blood and/or low iMFI of CD20+ cells.
Collapse
Affiliation(s)
- N Golyarnik
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - І Абраменко
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - G Movchan
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - Z Martina
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - I Dyagil
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - A Chumak
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| | - D Bazyka
- State Institution "National Research Center for Radiation Medicine, National Academy of Medical Sciences of Ukraine", Kyiv, Ukraine
| |
Collapse
|
13
|
Cerreto M, Foà R, Natoni A. The Role of the Microenvironment and Cell Adhesion Molecules in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5160. [PMID: 37958334 PMCID: PMC10647257 DOI: 10.3390/cancers15215160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy whose progression largely depends on the lymph node and bone marrow microenvironment. Indeed, CLL cells actively proliferate in specific regions of these anatomical compartments, known as proliferation centers, while being quiescent in the blood stream. Hence, CLL cell adhesion and migration into these protective niches are critical for CLL pathophysiology. CLL cells are lodged in their microenvironment through a series of molecular interactions that are mediated by cellular adhesion molecules and their counter receptors. The importance of these adhesion molecules in the clinic is demonstrated by the correlation between the expression levels of some of them, in particular CD49d, and the prognostic likelihood. Furthermore, novel therapeutic agents, such as ibrutinib, impair the functions of these adhesion molecules, leading to an egress of CLL cells from the lymph nodes and bone marrow into the circulation together with an inhibition of homing into these survival niches, thereby preventing disease progression. Several adhesion molecules have been shown to participate in CLL adhesion and migration. Their importance also stems from the observation that they are involved in promoting, directly or indirectly, survival signals that sustain CLL proliferation and limit the efficacy of standard and novel chemotherapeutic drugs, a process known as cell adhesion-mediated drug resistance. In this respect, many studies have elucidated the molecular mechanisms underlying cell adhesion-mediated drug resistance, which have highlighted different signaling pathways that may represent potential therapeutic targets. Here, we review the role of the microenvironment and the adhesion molecules that have been shown to be important in CLL and their impact on transendothelial migration and cell-mediated drug resistance. We also discuss how novel therapeutic compounds modulate the function of this important class of molecules.
Collapse
Affiliation(s)
| | | | - Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00100 Rome, Italy; (M.C.); (R.F.)
| |
Collapse
|
14
|
Tissino E, Bomben R, Gattei V, Zucchetto A. BCR/Integrin Interaction in CLL: A Physiologic Remnant with Clinical Relevance. Clin Cancer Res 2023; 29:3560-3562. [PMID: 37439706 DOI: 10.1158/1078-0432.ccr-23-1389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
CD49d, the alpha chain of the very late antigen-4 (VLA-4) integrin, has a negative prognostic impact in chronic lymphocytic leukemia treated with the Bruton's tyrosine kinase (BTK) inhibitors, ibrutinib and acalabrutinib. Despite BTK inhibition, VLA-4 remains inside-out activated via B-cell receptor, an activation dampened by phosphoinositide 3-kinase inhibitors. Evaluation of CD49d expression in patients starting BTK inhibitor therapy may improve their prognostic stratification. See related article by Alsadhan et al., p. 3612.
Collapse
Affiliation(s)
- Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Pordenone, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Pordenone, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Pordenone, Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Pordenone, Italy
| |
Collapse
|
15
|
Alsadhan A, Chen J, Gaglione EM, Underbayev C, Tuma PL, Tian X, Freeman LA, Baskar S, Nierman P, Soto S, Itsara A, Ahn IE, Sun C, Bibikova E, Hartmann TN, Mhibik M, Wiestner A. CD49d Expression Identifies a Biologically Distinct Subtype of Chronic Lymphocytic Leukemia with Inferior Progression-Free Survival on BTK Inhibitor Therapy. Clin Cancer Res 2023; 29:3612-3621. [PMID: 37227160 PMCID: PMC10524232 DOI: 10.1158/1078-0432.ccr-22-3217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/14/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE To determine the role of CD49d for response to Bruton's tyrosine kinase inhibitors (BTKi) in patients with chronic lymphocytic leukemia (CLL). PATIENTS AND METHODS In patients treated with acalabrutinib (n = 48), CD49d expression, VLA-4 integrin activation, and tumor transcriptomes of CLL cells were assessed. Clinical responses to BTKis were investigated in acalabrutinib- (n = 48; NCT02337829) and ibrutinib-treated (n = 73; NCT01500733) patients. RESULTS In patients treated with acalabrutinib, treatment-induced lymphocytosis was comparable for both subgroups but resolved more rapidly for CD49d+ cases. Acalabrutinib inhibited constitutive VLA-4 activation but was insufficient to block BCR and CXCR4-mediated inside-out activation. Transcriptomes of CD49d+ and CD49d- cases were compared using RNA sequencing at baseline and at 1 and 6 months on treatment. Gene set enrichment analysis revealed increased constitutive NF-κB and JAK-STAT signaling, enhanced survival, adhesion, and migratory capacity in CD49d+ over CD49d- CLL that was maintained during therapy. In the combined cohorts of 121 BTKi-treated patients, 48 (39.7%) progressed on treatment with BTK and/or PLCG2 mutations detected in 87% of CLL progressions. Consistent with a recent report, homogeneous and bimodal CD49d-positive cases (the latter having concurrent CD49d+ and CD49d- CLL subpopulations, irrespective of the traditional 30% cutoff value) had a shorter time to progression of 6.6 years, whereas 90% of cases homogenously CD49d- were estimated progression-free at 8 years (P = 0.0004). CONCLUSIONS CD49d/VLA-4 emerges as a microenvironmental factor that contributes to BTKi resistance in CLL. The prognostic value of CD49d is improved by considering bimodal CD49d expression. See related commentary by Tissino et al., p. 3560.
Collapse
Affiliation(s)
- Anfal Alsadhan
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Catholic University of America, DC, 20064, USA
- College of applied medical sciences, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Jonathan Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Erika M. Gaglione
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chingiz Underbayev
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Xin Tian
- Office of Biostatistics Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lita A. Freeman
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sivasubramanian Baskar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Pia Nierman
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Susan Soto
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andy Itsara
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Inhye E. Ahn
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Clare Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Tanja Nicole Hartmann
- Department of Medicine I, Medical Center-University, Faculty of Medicine of Freiburg, Freiburg, Germany
| | - Maissa Mhibik
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
16
|
Peragine N, De Propris MS, Intoppa S, Milani ML, Mauro FR, Cuneo A, Rigolin GM, Del Giudice I, Foà R, Guarini A. Early CD49d downmodulation in chronic lymphocytic leukemia patients treated front-line with ibrutinib plus rituximab predicts long-term response. Leuk Lymphoma 2022; 63:2982-2986. [PMID: 35913400 DOI: 10.1080/10428194.2022.2105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nadia Peragine
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | | | - Stefania Intoppa
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Maria Laura Milani
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Antonio Cuneo
- Hematology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gian Matteo Rigolin
- Hematology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Anna Guarini
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
17
|
Elizabeth S, Aidan K, David OB, Deirdre W, Sarah B, Emer A, Kanthi P, Crotty GM, Aileen W, Michelle C, Ruth C, Hilary O, Ashique K, Bacon CL, Emily S, McElligott AM, Fiona Q, Elisabeth V, Carmel W. Low CD49d expression in newly diagnosed chronic lymphocytic leukaemia may be associated with high-risk features and reduced treatment-free-intervals. Eur J Haematol 2022; 109:441-446. [PMID: 35776688 PMCID: PMC9804520 DOI: 10.1111/ejh.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/05/2023]
Abstract
This study was carried out to assess the prognostic power of low CD49d expression (≥10%) in newly diagnosed CLL patients using a previously described cohort. Eighty-five patients were included. Median age at diagnosis; 70 years (43-88); CD49d was expressed in 33/85 (38.8%); 23/33 (69.7%) at ≥30% referred to as 'HiCD49d' and 10/33 (30.3%) between 10 and 30% with a bimodal pattern on scatterplot analysis referred to as 'LoCD49d'. Eleven patients (12.9%) presented as Binet stage B, of whom 8 (72.7%) were CD49d+ (HiCD49d 7/8; LoCD49d 1/8). Seven of 81 patients (8.6%) were NOTCH1 mutated and all were CD49d+ (p ≤ .01). IgVH analysis was performed on 29 (87.8%) of the CD49d+ cases, of whom 21 (72.4%) were unmutated and 8 (27.6%) were mutated. CD38+/CD49d+ accounted for 11/20 (55%) (CD38+/HiCD49D: 9/11; CD38+/LoCD49D: 2/11). At 42 months, treatment had been initiated in 18/85 (21%) patients, of these 10/33 (30.3%) were CD49d+ versus 8/52 (15.4%) of the CD49d- group. The median treatment free interval for the CD49d+ group was 11 months (HiCD49d; 14.5 months, LoCD49d; 11 months) compared to 21.5 months for the CD49d- group. These findings suggest that the predictive value of CD49d expression is retained at expression levels down to 10%.
Collapse
Affiliation(s)
- Smyth Elizabeth
- Department of HaematologyTrinity St. James's Cancer InstituteDublinIreland
| | - Kelly Aidan
- John Durkan Leukaemia LaboratoriesTrinity Translational Medicine Institute, Trinity St. James's Cancer InstituteDublinIreland
| | - O' Brien David
- Flow Cytometry LaboratoryTrinity St. James's Cancer InstituteDublinIreland
| | - Waldron Deirdre
- Flow Cytometry LaboratoryTrinity St. James's Cancer InstituteDublinIreland
| | - Brophy Sarah
- John Durkan Leukaemia LaboratoriesTrinity Translational Medicine Institute, Trinity St. James's Cancer InstituteDublinIreland
| | - Atkinson Emer
- Cancer Molecular Diagnostics LaboratoryTrinity St. James's Cancer InstituteDublinIreland
| | - Perera Kanthi
- Department of HaematologyMidland's Regional HospitalTullamoreIreland
| | - Gerard M. Crotty
- Department of HaematologyMidland's Regional HospitalTullamoreIreland
| | - Walsh Aileen
- Department of HaematologyMidland's Regional HospitalTullamoreIreland
| | - Connolly Michelle
- Department of HaematologyMidland's Regional HospitalTullamoreIreland
| | - Clifford Ruth
- Department of HaematologyUniversity Hospital LimerickLimerickIreland
| | - O'Leary Hilary
- Department of HaematologyUniversity Hospital LimerickLimerickIreland
| | - Khan Ashique
- Department of HaematologyUniversity Hospital LimerickLimerickIreland
| | | | - Smyth Emily
- Department of PhysiotherapySchool of Medicine, Trinity College DublinDublinIreland
| | - Anthony M. McElligott
- John Durkan Leukaemia LaboratoriesTrinity Translational Medicine Institute, Trinity St. James's Cancer InstituteDublinIreland
| | - Quinn Fiona
- Cancer Molecular Diagnostics LaboratoryTrinity St. James's Cancer InstituteDublinIreland
| | | | - Waldron Carmel
- Department of HaematologyTrinity St. James's Cancer InstituteDublinIreland
| |
Collapse
|
18
|
Herbst SA, Vesterlund M, Helmboldt AJ, Jafari R, Siavelis I, Stahl M, Schitter EC, Liebers N, Brinkmann BJ, Czernilofsky F, Roider T, Bruch PM, Iskar M, Kittai A, Huang Y, Lu J, Richter S, Mermelekas G, Umer HM, Knoll M, Kolb C, Lenze A, Cao X, Österholm C, Wahnschaffe L, Herling C, Scheinost S, Ganzinger M, Mansouri L, Kriegsmann K, Kriegsmann M, Anders S, Zapatka M, Del Poeta G, Zucchetto A, Bomben R, Gattei V, Dreger P, Woyach J, Herling M, Müller-Tidow C, Rosenquist R, Stilgenbauer S, Zenz T, Huber W, Tausch E, Lehtiö J, Dietrich S. Proteogenomics refines the molecular classification of chronic lymphocytic leukemia. Nat Commun 2022; 13:6226. [PMID: 36266272 PMCID: PMC9584885 DOI: 10.1038/s41467-022-33385-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the proteome and transcriptome alongside genetic and ex-vivo drug response profiling in a clinically annotated CLL discovery cohort (n = 68). Unsupervised clustering of the proteome data reveals six subgroups. Five of these proteomic groups are associated with genetic features, while one group is only detectable at the proteome level. This new group is characterized by accelerated disease progression, high spliceosomal protein abundances associated with aberrant splicing, and low B cell receptor signaling protein abundances (ASB-CLL). Classifiers developed to identify ASB-CLL based on its characteristic proteome or splicing signature in two independent cohorts (n = 165, n = 169) confirm that ASB-CLL comprises about 20% of CLL patients. The inferior overall survival in ASB-CLL is also independent of both TP53- and IGHV mutation status. Our multi-omics analysis refines the classification of CLL and highlights the potential of proteomics to improve cancer patient stratification beyond genetic and transcriptomic profiling.
Collapse
Affiliation(s)
- Sophie A. Herbst
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Mattias Vesterlund
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Alexander J. Helmboldt
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rozbeh Jafari
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Ioannis Siavelis
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Matthias Stahl
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Eva C. Schitter
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Nora Liebers
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Berit J. Brinkmann
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany ,grid.7497.d0000 0004 0492 0584Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Czernilofsky
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Tobias Roider
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Peter-Martin Bruch
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Murat Iskar
- grid.7497.d0000 0004 0492 0584Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adam Kittai
- grid.261331.40000 0001 2285 7943Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH USA
| | - Ying Huang
- grid.261331.40000 0001 2285 7943Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH USA
| | - Junyan Lu
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Sarah Richter
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Georgios Mermelekas
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Husen Muhammad Umer
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Mareike Knoll
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Carolin Kolb
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Angela Lenze
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Xiaofang Cao
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Cecilia Österholm
- grid.4714.60000 0004 1937 0626Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Linus Wahnschaffe
- grid.6190.e0000 0000 8580 3777Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Carmen Herling
- grid.6190.e0000 0000 8580 3777Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sebastian Scheinost
- grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Ganzinger
- grid.7700.00000 0001 2190 4373Institute of Medical Biometry and Informatics, Heidelberg University, Heidelberg, Germany
| | - Larry Mansouri
- grid.4714.60000 0004 1937 0626Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Katharina Kriegsmann
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Mark Kriegsmann
- grid.7700.00000 0001 2190 4373Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Simon Anders
- grid.7700.00000 0001 2190 4373Center for Molecular Biology of the University of Heidelberg (ZMBH), Heidelberg, Germany
| | - Marc Zapatka
- grid.7497.d0000 0004 0492 0584Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Giovanni Del Poeta
- grid.6530.00000 0001 2300 0941Division of Hematology, University of Tor Vergata, Rome, Italy
| | - Antonella Zucchetto
- grid.418321.d0000 0004 1757 9741Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Riccardo Bomben
- grid.418321.d0000 0004 1757 9741Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Valter Gattei
- grid.418321.d0000 0004 1757 9741Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Peter Dreger
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Jennifer Woyach
- grid.261331.40000 0001 2285 7943Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH USA
| | - Marco Herling
- grid.6190.e0000 0000 8580 3777Department I of Internal Medicine, Center for Integrated Oncology Aachen-Bonn-Cologne-Duesseldorf (CIO ABCD), Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Carsten Müller-Tidow
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Richard Rosenquist
- grid.4714.60000 0004 1937 0626Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Stephan Stilgenbauer
- grid.6582.90000 0004 1936 9748Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Thorsten Zenz
- grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.412004.30000 0004 0478 9977Department of Medical Oncology and Hematology, University Hospital Zürich, Zürich, Switzerland
| | - Wolfgang Huber
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
| | - Eugen Tausch
- grid.6582.90000 0004 1936 9748Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Janne Lehtiö
- grid.452834.c0000 0004 5911 2402Department of Oncology-Pathology, Karolinska Institute and Science for Life Laboratory, Stockholm, Sweden
| | - Sascha Dietrich
- grid.7700.00000 0001 2190 4373Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany ,grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory (EMBL), Heidelberg, Germany ,Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany ,grid.461742.20000 0000 8855 0365Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.14778.3d0000 0000 8922 7789Department of Hematolgy, Oncology and Immunolgy, University Hospital of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
Integrin Signaling Shaping BTK-Inhibitor Resistance. Cells 2022; 11:cells11142235. [PMID: 35883678 PMCID: PMC9322986 DOI: 10.3390/cells11142235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Integrins are adhesion molecules that function as anchors in retaining tumor cells in supportive tissues and facilitating metastasis. Beta1 integrins are known to contribute to cell adhesion-mediated drug resistance in cancer. Very late antigen-4 (VLA-4), a CD49d/CD29 heterodimer, is a beta1 integrin implicated in therapy resistance in both solid tumors and haematological malignancies such as chronic lymphocytic leukemia (CLL). A complex inside-out signaling mechanism activates VLA-4, which might include several therapeutic targets for CLL. Treatment regimens for this disease have recently shifted towards novel agents targeting BCR signaling. Bruton’s tyrosine kinase (BTK) is a component of B cell receptor signaling and BTK inhibitors such as ibrutinib are highly successful; however, their limitations include indefinite drug administration, the development of therapy resistance, and toxicities. VLA-4 might be activated independently of BTK, resulting in an ongoing interaction of CD49d-expressing leukemic cells with their surrounding tissue, which may reduce the success of therapy with BTK inhibitors and increases the need for alternative therapies. In this context, we discuss the inside-out signaling cascade culminating in VLA-4 activation, consider the advantages and disadvantages of BTK inhibitors in CLL and elucidate the mechanisms behind cell adhesion-mediated drug resistance.
Collapse
|
20
|
Datta M, Jumaa H. Immunoglobulin Gene Sequence as an Inherited and Acquired Risk Factor for Chronic Lymphocytic Leukemia. Cancers (Basel) 2022; 14:cancers14133045. [PMID: 35804817 PMCID: PMC9264995 DOI: 10.3390/cancers14133045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) is the most prevalent among adult leukemias. Over the years, several research efforts discovered a lot of intricate details about the cause of the disease, its mechanism, and the prognostic factors that help to understand the progression and outcome of the disease. Mutations in the immunoglobulin gene sequences in B cells are the most important prognostic factor for CLL. The cells having no to very less mutations show aggressive disease, while those having more mutations are either fairly indolent or non-aggressive. In this review, we discussed the current gain of knowledge about these mutations and their effects in the overall disease pathology. Abstract Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease characterized by the accumulation of CD5+ CD19+ malignant B cells. Autonomous ligand-independent B-cell signaling is a key process involved in the development of CLL pathogenesis. Together with other cytogenetic alterations, mutations in the immunoglobulin heavy chain variable (IGHV) gene act as a prognostic marker for CLL, with mutated CLL (M-CLL) being far more indolent than unmutated CLL (U-CLL). Recent studies highlight the role of a specific light chain mutation, namely, IGLV3-21R110G, in the development and prognosis of CLL. Such a mutation increases the propensity of homotypic BCR–BCR interaction, leading to cell autonomous signaling. In this article, we review the current findings on immunoglobulin gene sequence mutations as a potential risk factor for developing CLL.
Collapse
|
21
|
Multiple Mechanisms of NOTCH1 Activation in Chronic Lymphocytic Leukemia: NOTCH1 Mutations and Beyond. Cancers (Basel) 2022; 14:cancers14122997. [PMID: 35740661 PMCID: PMC9221163 DOI: 10.3390/cancers14122997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Mutations of the NOTCH1 gene are a validated prognostic marker in chronic lymphocytic leukemia and a potential predictive marker for anti-CD20-based therapies. At present, the most frequent pathological alteration of the NOTCH1 gene is due to somatic genetic mutations, which have a multifaceted functional impact. However, beside NOTCH1 mutations, other factors may lead to activation of the NOTCH1 pathway, and these include mutations of FBXW7, MED12, SPEN, SF3B1 as well as other B-cell pathways. Understanding the preferential strategies though which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL. Abstract The Notch signaling pathway plays a fundamental role for the terminal differentiation of multiple cell types, including B and T lymphocytes. The Notch receptors are transmembrane proteins that, upon ligand engagement, undergo multiple processing steps that ultimately release their intracytoplasmic portion. The activated protein ultimately operates as a nuclear transcriptional co-factor, whose stability is finely regulated. The Notch pathway has gained growing attention in chronic lymphocytic leukemia (CLL) because of the high rate of somatic mutations of the NOTCH1 gene. In CLL, NOTCH1 mutations represent a validated prognostic marker and a potential predictive marker for anti-CD20-based therapies, as pathological alterations of the Notch pathway can provide significant growth and survival advantage to neoplastic clone. However, beside NOTCH1 mutation, other events have been demonstrated to perturb the Notch pathway, namely somatic mutations of upstream, or even apparently unrelated, proteins such as FBXW7, MED12, SPEN, SF3B1, as well as physiological signals from other pathways such as the B-cell receptor. Here we review these mechanisms of activation of the NOTCH1 pathway in the context of CLL; the resulting picture highlights how multiple different mechanisms, that might occur under specific genomic, phenotypic and microenvironmental contexts, ultimately result in the same search for proliferative and survival advantages (through activation of MYC), as well as immune escape and therapy evasion (from anti-CD20 biological therapies). Understanding the preferential strategies through which CLL cells hijack NOTCH1 signaling may present important clues for designing targeted treatment strategies for the management of CLL.
Collapse
|
22
|
[The correlation of CD49d expression pattern with molecular genetics and hotspot gene mutants in patients with chronic lymphocytic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:463-468. [PMID: 35968588 PMCID: PMC9800228 DOI: 10.3760/cma.j.issn.0253-2727.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: To explore the correlation of CD49d expression patterns with molecular genetics and hotspot gene mutants in patients with chronic lymphocytic leukemia. Methods: The expression of CD49d was detected by flow cytometry and grouped into homogeneous, bimodal, negative and positive expression. Panel fluorescence in situ hybridization (FISH) was used for molecular genetics analysis and next-generation sequencing (NGS) was conducted for gene mutation detection. Results: There were 43 patients (23.89% ) with positive CD49d expression, 137 patients (76.11% ) with negative CD49d expression, 96 patients (53.33% ) with homogeneous CD49d expression and 84 patients (46.67% ) with bimodal CD49d expression. Compared with patients in the CD49d negative group, patients in the CD49d positive group had higher Rai stage (P=0.048) and higher proportion of spleen enlargement (P=0.030) . Compared with patients with homogeneous expression of CD49d, patients with bimodal expression of CD49d had a higher proportion of spleen enlargement (P=0.009) . The expression rate of 11q22- in bimodal CD49d(-) group was significantly higher than that in homogeneous CD49d(-) group (24.29% vs 10.45% , P=0.043) . The incidence of +12 in homogeneous CD49d group was higher than that in bimodal CD49d group (16.67% vs 5.95% , P=0.035) . The incidence of +12 in homogeneous CD49d(+) group was higher than that in bimodal CD49d(-) group (17.24% vs 4.29% , P=0.045) . The incidence of +12 in homogeneous CD49d(-) group was higher than that in bimodal CD49d(-) group (16.42% vs 4.29% , P=0.024) . BIRC3 mutation rate in CD49d positive group was higher than that in CD49d negative group (11.63% vs 2.92% , P=0.037) . Conclusion: There were significant correlations between CD49d and 11q22-, +12 and BIRC3 gene mutation. Patients with bimodal CD49d were more correlated with poor prognosis indexes.
Collapse
|
23
|
Rusyn L, Reinartz S, Nikiforov A, Mikhael N, Vom Stein A, Kohlhas V, Bloehdorn J, Stilgenbauer S, Lohneis P, Buettner R, Robrecht S, Fischer K, Pallasch C, Hallek M, Nguyen PH, Seeger-Nukpezah T. The scaffold protein NEDD9 is necessary for leukemia-cell migration and disease progression in a mouse model of chronic lymphocytic leukemia. Leukemia 2022; 36:1794-1805. [PMID: 35523865 PMCID: PMC9252910 DOI: 10.1038/s41375-022-01586-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
The scaffold protein NEDD9 is frequently upregulated and hyperphosphorylated in cancers, and is associated with poor clinical outcome. NEDD9 promotes B-cell adhesion, migration and chemotaxis, pivotal processes for malignant development. We show that global or B-cell-specific deletion of Nedd9 in chronic lymphocytic leukemia (CLL) mouse models delayed CLL development, markedly reduced disease burden and resulted in significant survival benefit. NEDD9 was required for efficient CLL cell homing, chemotaxis, migration and adhesion. In CLL patients, peripheral NEDD9 expression was associated with adhesion and migration signatures as well as leukocyte count. Additionally, CLL lymph nodes frequently expressed high NEDD9 levels, with a subset of patients showing NEDD9 expression enriched in the CLL proliferation centers. Blocking activity of prominent NEDD9 effectors, including AURKA and HDAC6, effectively reduced CLL cell migration and chemotaxis. Collectively, our study provides evidence for a functional role of NEDD9 in CLL pathogenesis that involves intrinsic defects in adhesion, migration and homing.
Collapse
Affiliation(s)
- Lisa Rusyn
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Sebastian Reinartz
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Anastasia Nikiforov
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Nelly Mikhael
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Alexander Vom Stein
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Viktoria Kohlhas
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | | | | | - Philipp Lohneis
- Hämatopathologie Lübeck, Reference Centre for Lymphnode Pathology and Haematopathology, Luebeck, Germany
| | | | - Sandra Robrecht
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Kirsten Fischer
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Christian Pallasch
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Michael Hallek
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Phuong-Hien Nguyen
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany. .,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany.
| | - Tamina Seeger-Nukpezah
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.
| |
Collapse
|
24
|
Kay NE, Hampel PJ, Van Dyke DL, Parikh SA. CLL update 2022: A continuing evolution in care. Blood Rev 2022; 54:100930. [DOI: 10.1016/j.blre.2022.100930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/20/2022]
|
25
|
Del Poeta G, Bomben R, Polesel J, Rossi FM, Pozzo F, Zaina E, Cattarossi I, Varaschin P, Nanni P, Boschian Boschin R, Postorino M, Laureana R, Pasqualone G, Steffan A, Gentile M, Zucchetto A, Gattei V. COVID-19 vaccination: Evaluation of risk for protection failure in chronic lymphocytic leukemia patients. Hematol Oncol 2021; 39:712-714. [PMID: 34462939 PMCID: PMC8652757 DOI: 10.1002/hon.2916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
MESH Headings
- Aged
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibody Formation/drug effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/immunology
- Female
- Follow-Up Studies
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/virology
- Male
- Prognosis
- SARS-CoV-2/immunology
- Vaccination/methods
Collapse
Affiliation(s)
| | - Riccardo Bomben
- Clinical and Experimental Onco‐Hematology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Jerry Polesel
- Unit of Cancer EpidemiologyCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Francesca Maria Rossi
- Clinical and Experimental Onco‐Hematology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Federico Pozzo
- Clinical and Experimental Onco‐Hematology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Eva Zaina
- Clinical and Experimental Onco‐Hematology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Ilaria Cattarossi
- Clinical and Experimental Onco‐Hematology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Paola Varaschin
- Clinical and Experimental Onco‐Hematology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Paola Nanni
- Clinical and Experimental Onco‐Hematology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Romina Boschian Boschin
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | | | | | | | - Agostino Steffan
- Immunopathology and Cancer BiomarkersCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | | | - Antonella Zucchetto
- Clinical and Experimental Onco‐Hematology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| | - Valter Gattei
- Clinical and Experimental Onco‐Hematology UnitCentro di Riferimento Oncologico di Aviano (CRO)IRCCSAvianoItaly
| |
Collapse
|
26
|
Tissino E, Pivetta E, Capuano A, Capasso G, Bomben R, Caldana C, Rossi FM, Pozzo F, Benedetti D, Boldorini R, Gaidano G, Rossi D, Zamò A, Hartmann TN, Doliana R, Colombatti A, Gattei V, Spessotto P, Zucchetto A. Elastin MIcrofibriL INterfacer1 (EMILIN-1) is an alternative prosurvival VLA-4 ligand in chronic lymphocytic leukemia. Hematol Oncol 2021; 40:181-190. [PMID: 34783040 DOI: 10.1002/hon.2947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/11/2022]
Abstract
CD49d, the α4 chain of the VLA-4 integrin, is a negative prognosticator in chronic lymphocytic leukemia (CLL) with a key role in CLL cell-microenvironment interactions mainly occurring via its ligands VCAM-1 and fibronectin. In the present study, we focused on EMILIN-1 (Elastin-MIcrofibriL-INterfacer-1), an alternative VLA-4 ligand whose role has been so far reported only in non-hematological settings, by investigating: i) the distribution of EMILIN-1 in CLL-involved tissues; ii) the capability of EMILIN-1 to operate, via its globular C1q (gC1q) domain, as additional adhesion ligand in CLL; iii) the functional meaning of EMILIN-1 gC1q/VLA-4 interactions in CLL. EMILIN-1 is widely present in the CLL-involved areas of bone marrow biopsies (BMBs) without difference between CD49d negative and positive cases, displaying at least three different expression patterns: "fibrillar", "dot-like" and "mixed". The lack in CLL-BMB of neutrophil elastase, whose proteolytic activity degrades EMILIN-1 and impairs EMILIN-1 function, suggests full functional EMILIN-1 in CLL independently of its expression pattern. Functionally, EMILIN-1 gC1q domain promotes adhesion of CLL cells through specific interaction with VLA-4, and releases pro-survival signals for CLL cells, as demonstrated by enhanced ERK and AKT phosphorylation and impairment of in-vitro-induced apoptosis. EMILIN-1/VLA-4 interaction can efficiently contribute to the maintenance of the neoplastic clone in CLL.
Collapse
Affiliation(s)
- Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Eliana Pivetta
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessandra Capuano
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Guido Capasso
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Chiara Caldana
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Francesca Maria Rossi
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Dania Benedetti
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Renzo Boldorini
- Dipartimento di Scienze della Salute, Scuola di Medicina, University of Eastern Piedmont, Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Rossi
- Department of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Alberto Zamò
- Institute of Pathology, University of Würzburg, Bayern, Germany
| | - Tanja Nicole Hartmann
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Baden-Württemberg, Germany
| | - Roberto Doliana
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alfonso Colombatti
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Paola Spessotto
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
27
|
Chronic Lymphocytic Leukemia (CLL): Biology and Therapy. Cancer Treat Res 2021. [PMID: 34626359 DOI: 10.1007/978-3-030-78311-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Chronic lymphocytic leukemia (CLL), the most common leukemia in the western world, is characterized by the accumulation of monoclonal B-lymphocytes in the bone marrow and lymphoid organs. Signaling via the B-cell receptor and Bruton tyrosine kinase (BTK) as well as resistance to apoptosis mediated by Bcl-2 are hallmarks of CLL biology and have been exploited in recent years to revolutionize management. As a result of the development of novel therapies, most CLL patients now can be spared conventional chemotherapy and can be treated using highly effective regimens consisting of BTK inhibitors, the Bcl-2 inhibitor venetoclax, and anti -CD20 monoclonal antibodies. The impact of novel therapies is particularly pronounced for high-risk cases including those with TP53 deletions/mutations who previously had a dismal outcome with conventional chemoimmunotherapy. Allogeneic HCT is a potentially curative option for selected younger patients with multiply relapsed high-risk disease.
Collapse
|
28
|
Agius R, Parviz M, Niemann CU. Artificial intelligence models in chronic lymphocytic leukemia - recommendations toward state-of-the-art. Leuk Lymphoma 2021; 63:265-278. [PMID: 34612160 DOI: 10.1080/10428194.2021.1973672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Artificial intelligence (AI), machine learning and predictive modeling are becoming enabling technologies in many day-to-day applications. Translation of these advances to the patient's bedside for AI assisted interventions is not yet the norm. With specific emphasis on CLL, here, we review the progress of prognostic models in hematology and highlight sources of stagnation that may be limiting significant improvements in prognostication in the near future. We discuss issues related to performance, trust, modeling simplicity, and prognostic marker robustness and find that the major limiting factor in progressing toward state-of-the-art prognostication within the hematological community, is not the lack of able AI algorithms but rather, the lack of their adoption. Current models in CLL still deal with the 'average' patient while the use of patient-centric approaches remains absent. Using lessons from research areas where machine learning has become an enabling technology, we derive recommendations and propose methods for achieving state-of-the-art predictions in modeling health data, that can be readily adopted by the CLL modeling community.
Collapse
Affiliation(s)
- Rudi Agius
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mehdi Parviz
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Carsten Utoft Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
29
|
Morabito F, Tripepi G, Moia R, Recchia AG, Boggione P, Mauro FR, Bossio S, D'Arrigo G, Martino EA, Vigna E, Storino F, Fronza G, Di Raimondo F, Rossi D, Condoluci A, Colombo M, Fais F, Fabris S, Foa R, Cutrona G, Gentile M, Montserrat E, Gaidano G, Ferrarini M, Neri A. Lymphocyte Doubling Time As A Key Prognostic Factor To Predict Time To First Treatment In Early-Stage Chronic Lymphocytic Leukemia. Front Oncol 2021; 11:684621. [PMID: 34408978 PMCID: PMC8366564 DOI: 10.3389/fonc.2021.684621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
The prognostic role of lymphocyte doubling time (LDT) in chronic lymphocytic leukemia (CLL) was recognized more than three decades ago when the neoplastic clone’s biology was almost unknown. LDT was defined as the time needed for the peripheral blood lymphocyte count to double the of the initial observed value. Herein, the LDT prognostic value for time to first treatment (TTFT) was explored in our prospective O-CLL cohort and validated in in two additional CLL cohorts. Specifically, newly diagnosed Binet stage A CLL patients from 40 Italian Institutions, representative of the whole country, were prospectively enrolled into the O-CLL1-GISL protocol (clinicaltrial.gov identifier: NCT00917540). Two independent cohorts of newly diagnosed CLL patients recruited respectively at the Division of Hematology in Novara, Italy, and at the Hospital Clinic in Barcelona, Spain, were utilized as validation cohorts. In the training cohort, TTFT of patients with LDT >12 months was significantly longer related to those with a shorter LDT. At Cox multivariate regression model, LDT ≤ 12 months maintained a significant independent relationship with shorter TTFT along with IGHV unmutated (IGHVunmut) status, 11q and 17p deletions, elevated β2M, Rai stage I-II, and NOTCH1 mutations. Based on these statistics, two regression models were constructed including the same prognostic factors with or without the LDT. The model with the LTD provided a significantly better data fitting (χ2 = 8.25, P=0.0041). The risk prediction developed including LDT had better prognostic accuracy than those without LDT. Moreover, the Harrell’C index for the scores including LDT were higher than those without LDT, although the accepted 0.70 threshold exceeded in both cases. These findings were also confirmed when the same analysis was carried out according to TTFT’s explained variation. When data were further analyzed based on the combination between LDT and IGHV mutational status in the training and validation cohorts, IGHVunmut and LDT>12months group showed a predominant prognostic role over IGHVmut LTD ≤ 12 months (P=0.006) in the O-CLL validation cohort. However, this predominance was of borden-line significance (P=0.06) in the Barcelona group, while the significant prognostic impact was definitely lost in the Novara group. Overall, in this study, we demonstrated that LDT could be re-utilized together with the more sophisticated prognostic factors to manage the follow-up plans for Binet stage A CLL patients.
Collapse
Affiliation(s)
- Fortunato Morabito
- Department of Onco-Hematology Azienda Ospedaliera (AO) Cosenza, Biotechnology Research Unit, Cosenza, Italy.,Department of Hematology and Bone Marrow Transplant Unit, Augusta Victoria Hospital, Jerusalem, Israel
| | - Giovanni Tripepi
- Centro Nazionale Ricerca Istituto di Fisiologia Clinica (CNR-IFC), Research Unit of Reggio Calabria, Reggio Calabria, Italy
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Anna Grazia Recchia
- Department of Onco-Hematology Azienda Ospedaliera (AO) Cosenza, Biotechnology Research Unit, Cosenza, Italy
| | - Paola Boggione
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Sabrina Bossio
- Department of Onco-Hematology Azienda Ospedaliera (AO) Cosenza, Biotechnology Research Unit, Cosenza, Italy
| | - Graziella D'Arrigo
- Centro Nazionale Ricerca Istituto di Fisiologia Clinica (CNR-IFC), Research Unit of Reggio Calabria, Reggio Calabria, Italy
| | | | - Ernesto Vigna
- Department of Onco-Hematology AO Cosenza, Hematology Unit AO of Cosenza, Cosenza, Italy
| | - Francesca Storino
- Department of Onco-Hematology Azienda Ospedaliera (AO) Cosenza, Biotechnology Research Unit, Cosenza, Italy
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Di Raimondo
- Division of Hematology, Policlinico, Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| | - Davide Rossi
- Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Adalgisa Condoluci
- Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Monica Colombo
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Robin Foa
- Hematology, Department of Translational and Precision Medicine, 'Sapienza' University, Rome, Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Massimo Gentile
- Department of Onco-Hematology AO Cosenza, Hematology Unit AO of Cosenza, Cosenza, Italy
| | - Emili Montserrat
- Department of Hematology, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Antonino Neri
- Hematology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
30
|
Mining the Microenvironment for Therapeutic Targets in Chronic Lymphocytic Leukemia. ACTA ACUST UNITED AC 2021; 27:306-313. [PMID: 34398557 DOI: 10.1097/ppo.0000000000000536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT The leukemia cells of patients with chronic lymphocytic leukemia (CLL) are highly fastidious, requiring stimulation by soluble factors and interactions with accessory cells within the supportive niches of lymphoid tissue that comprise the leukemia microenvironment. The advent of therapies that can disrupt some of the stimulatory signaling afforded by the microenvironment has ushered in a new era of targeted therapy, which has dramatically improved clinical outcome and patient survival. Future advances are required for patients who develop intolerance or resistance to current targeted therapies. These may be found by investigating novel drugs that can inhibit identified targets, such as the pathways involved in B-cell receptor signaling, or by developing agents that inhibit additional targets of the leukemia microenvironment. This review describes some of the molecules involved in promoting the growth and/or survival of CLL cells and discusses targeting strategies that may become tomorrow's therapy for patients with CLL.
Collapse
|
31
|
Norris K, Walne AJ, Ponsford MJ, Cleal K, Grimstead JW, Ellison A, Alnajar J, Dokal I, Vulliamy T, Baird DM. High-throughput STELA provides a rapid test for the diagnosis of telomere biology disorders. Hum Genet 2021; 140:945-955. [PMID: 33709208 PMCID: PMC8099822 DOI: 10.1007/s00439-021-02257-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/13/2021] [Indexed: 12/03/2022]
Abstract
Telomere biology disorders are complex clinical conditions that arise due to mutations in genes required for telomere maintenance. Telomere length has been utilised as part of the diagnostic work-up of patients with these diseases; here, we have tested the utility of high-throughput STELA (HT-STELA) for this purpose. HT-STELA was applied to a cohort of unaffected individuals (n = 171) and a retrospective cohort of mutation carriers (n = 172). HT-STELA displayed a low measurement error with inter- and intra-assay coefficient of variance of 2.3% and 1.8%, respectively. Whilst telomere length in unaffected individuals declined as a function of age, telomere length in mutation carriers appeared to increase due to a preponderance of shorter telomeres detected in younger individuals (< 20 years of age). These individuals were more severely affected, and age-adjusted telomere length differentials could be used to stratify the cohort for overall survival (Hazard Ratio = 5.6 (1.5-20.5); p < 0.0001). Telomere lengths of asymptomatic mutation carriers were shorter than controls (p < 0.0001), but longer than symptomatic mutation carriers (p < 0.0001) and telomere length heterogeneity was dependent on the diagnosis and mutational status. Our data show that the ability of HT-STELA to detect short telomere lengths, that are not readily detected with other methods, means it can provide powerful diagnostic discrimination and prognostic information. The rapid format, with a low measurement error, demonstrates that HT-STELA is a new high-quality laboratory test for the clinical diagnosis of an underlying telomeropathy.
Collapse
Affiliation(s)
- Kevin Norris
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Amanda J Walne
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Mark J Ponsford
- Immunodeficiency Centre for Wales, University Hospital of Wales, Heath Park, Cardiff, CF14 4XW, UK
- Division of Infection, Inflammation and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Julia W Grimstead
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK
| | - Alicia Ellison
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Jenna Alnajar
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Tom Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
32
|
Pérez-Carretero C, González-Gascón-y-Marín I, Rodríguez-Vicente AE, Quijada-Álamo M, Hernández-Rivas JÁ, Hernández-Sánchez M, Hernández-Rivas JM. The Evolving Landscape of Chronic Lymphocytic Leukemia on Diagnosis, Prognosis and Treatment. Diagnostics (Basel) 2021; 11:diagnostics11050853. [PMID: 34068813 PMCID: PMC8151186 DOI: 10.3390/diagnostics11050853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
The knowledge of chronic lymphocytic leukemia (CLL) has progressively deepened during the last forty years. Research activities and clinical studies have been remarkably fruitful in novel findings elucidating multiple aspects of the pathogenesis of the disease, improving CLL diagnosis, prognosis and treatment. Whereas the diagnostic criteria for CLL have not substantially changed over time, prognostication has experienced an expansion with the identification of new biological and genetic biomarkers. Thanks to next-generation sequencing (NGS), an unprecedented number of gene mutations were identified with potential prognostic and predictive value in the 2010s, although significant work on their validation is still required before they can be used in a routine clinical setting. In terms of treatment, there has been an impressive explosion of new approaches based on targeted therapies for CLL patients during the last decade. In this current chemotherapy-free era, BCR and BCL2 inhibitors have changed the management of CLL patients and clearly improved their prognosis and quality of life. In this review, we provide an overview of these novel advances, as well as point out questions that should be further addressed to continue improving the outcomes of patients.
Collapse
Affiliation(s)
- Claudia Pérez-Carretero
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | | | - Ana E. Rodríguez-Vicente
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - Miguel Quijada-Álamo
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
| | - José-Ángel Hernández-Rivas
- Department of Hematology, Infanta Leonor University Hospital, 28031 Madrid, Spain; (I.G.-G.-y-M.); (J.-Á.H.-R.)
- Department of Medicine, Complutense University, 28040 Madrid, Spain
| | - María Hernández-Sánchez
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| | - Jesús María Hernández-Rivas
- Cancer Research Center (IBMCC) CSIC-University of Salamanca, 37007 Salamanca, Spain; (C.P.-C.); (A.E.R.-V.); (M.Q.-Á.)
- Instituto de Investigación Biomédica (IBSAL), 37007 Salamanca, Spain
- Department of Hematology, University Hospital of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37008 Salamanca, Spain
- Correspondence: (M.H.-S.); (J.M.H.-R.); Tel.: +34-923-294-812 (M.H.-S. & J.M.H.-R.)
| |
Collapse
|
33
|
Morabito F, Tripepi G, Del Poeta G, Mauro FR, Reda G, Sportoletti P, Laurenti L, Coscia M, Herishanu Y, Varettoni M, Murru R, Chiarenza A, Visentin A, Condoluci A, Moia R, Pietrasanta D, Loseto G, Consoli U, Scortechini I, Rossi FM, Zucchetto A, Vigna E, Martino EA, Mendicino F, Botta C, Caracciolo D, Cassin R, D'Arrigo G, Galimberti S, Rago A, Angeletti I, Biagi A, Del Giudice I, Bomben R, Neri A, Fronza G, Cutrona G, Rossi D, Di Raimondo F, Cuneo A, Gaidano G, Polliack A, Trentin L, Foà R, Ferrarini M, Gattei V, Gentile M. Assessment of the 4-factor score: Retrospective analysis of 586 CLL patients receiving ibrutinib. A campus CLL study. Am J Hematol 2021; 96:E168-E171. [PMID: 33580969 DOI: 10.1002/ajh.26127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Fortunato Morabito
- Department of Onco‐Hematology Biotechnology Research Unit, AO of Cosenza Cosenza Italy
- Hematology and Bone Marrow Transplant Unit Hemato‐Oncology Department, Augusta Victoria Hospital East Jerusalem Israel
| | - Giovanni Tripepi
- Department of Medicine CNR‐IFC, Research Unit of Reggio Calabria Reggio Calabria Italy
| | - Giovanni Del Poeta
- Division of Hematology S. Eugenio Hospital and University of Tor Vergata Rome Italy
| | - Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine ‘Sapienza’ University Rome Italy
| | - Gianluigi Reda
- Department of Onco‐Hematology Ematologia, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico di Milano Milano Italy
| | - Paolo Sportoletti
- Centro di Ricerca Emato‐Oncologica (CREO) University of Perugia Perugia Italy
| | - Luca Laurenti
- Department of Onco‐Hematology Fondazione Universitaria Policlinico A Gemelli di Roma Roma Italy
| | - Marta Coscia
- Division of Hematology A.O.U. Città della Salute e della Scienza di Torino Torino Italy
| | - Yair Herishanu
- Sourasky Medical Center Institute of Hematology, and Sackler Faculty of Medicine, Tel‐Aviv University Tel‐Aviv Israel
| | - Marzia Varettoni
- Division of Haematology Fondazione IRCCS Policlinico San Matteo Pavia Italy
| | - Roberta Murru
- Hematology and Stem Cell Transplantation Unit Ospedale A. Businco Cagliari Italy
| | - Annalisa Chiarenza
- Division of Hematology, Policlinico, Department of Surgery and Medical Specialties University of Catania Italy
| | - Andrea Visentin
- Department of Medicine, Hematology and Clinical Immunology Branch University of Padova Padova Italy
| | - Adalgisa Condoluci
- Department of Onco‐Hematology Hematology, Oncology Institute of Southern Switzerland Bellinzona Switzerland
| | - Riccardo Moia
- Division of Hematology, Department of Translational Medicine University of Eastern Piedmont Novara Italy
| | - Daniela Pietrasanta
- Division of Hematology Azienda Ospedaliera SS Arrigo e Biagio e Cesare Arrigo Alessandria Italy
| | - Giacomo Loseto
- Hematology and Cell Therapy Unit IRCCS‐Istituto Tumori ‘Giovanni Paolo II’ Bari Italy
| | - Ugo Consoli
- Department of Onco‐Hematology Hematology Department, G. Garibaldi Hospital Catania Italy
| | - Ilaria Scortechini
- Department of Onco‐Hematology Clinica di Ematologia Ospedali Riuniti Ancona Italy
| | - Francesca Maria Rossi
- Clinical and Experimental Onco‐Hematology Unit Centro di Riferimento Oncologico di Aviano (CRO) IRCCS Aviano Italy
| | - Antonella Zucchetto
- Clinical and Experimental Onco‐Hematology Unit Centro di Riferimento Oncologico di Aviano (CRO) IRCCS Aviano Italy
| | - Ernesto Vigna
- Department of Onco‐Hematology Biotechnology Research Unit, AO of Cosenza Cosenza Italy
- Department of Onco‐Hematology Hematology Unit AO of Cosenza Cosenza Italy
| | | | | | - Cirino Botta
- Department of Onco‐Hematology Hematology Unit AO of Cosenza Cosenza Italy
| | - Daniele Caracciolo
- Department of Onco‐Hematology Hematology Unit AO of Cosenza Cosenza Italy
| | - Ramona Cassin
- Department of Onco‐Hematology Ematologia, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico di Milano Milano Italy
| | - Graziella D'Arrigo
- Department of Medicine CNR‐IFC, Research Unit of Reggio Calabria Reggio Calabria Italy
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine University of Pisa Pisa Italy
| | - Angela Rago
- Department of Onco‐Hematology UOSD Ematologia ASL Roma 1 Roma Italy
| | - Ilaria Angeletti
- Department of Onco‐Hematology Reparto di Oncoematologia Azienda Ospedaliera Santa Maria di Terni Terni Italy
| | - Annalisa Biagi
- Division of Hematology S. Eugenio Hospital and University of Tor Vergata Rome Italy
| | - Ilaria Del Giudice
- Hematology, Department of Translational and Precision Medicine ‘Sapienza’ University Rome Italy
| | - Riccardo Bomben
- Clinical and Experimental Onco‐Hematology Unit Centro di Riferimento Oncologico di Aviano (CRO) IRCCS Aviano Italy
| | - Antonino Neri
- Department of Onco‐Hematology Ematologia, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico di Milano Milano Italy
| | - Gilberto Fronza
- Mutagenesis and Cancer Prevention Unit IRCCS Ospedale Policlinico San Martino Genoa Italy
| | - Giovanna Cutrona
- Molecular Pathology Unit IRCCS Ospedale Policlinico San Martino Genova Italy
| | - Davide Rossi
- Department of Onco‐Hematology Hematology, Oncology Institute of Southern Switzerland Bellinzona Switzerland
| | - Francesco Di Raimondo
- Division of Hematology, Policlinico, Department of Surgery and Medical Specialties University of Catania Italy
| | - Antonio Cuneo
- Hematology Section, Department of Medical Sciences University of Ferrara Ferrara Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine University of Eastern Piedmont Novara Italy
| | - Aaron Polliack
- Department of Hematology Hadassah‐Hebrew University Medical Center Jerusalem Israel
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch University of Padova Padova Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine ‘Sapienza’ University Rome Italy
| | - Manlio Ferrarini
- Department of Experimental Medicine University of Genoa Genoa Italy
| | - Valter Gattei
- Clinical and Experimental Onco‐Hematology Unit Centro di Riferimento Oncologico di Aviano (CRO) IRCCS Aviano Italy
| | - Massimo Gentile
- Department of Onco‐Hematology Biotechnology Research Unit, AO of Cosenza Cosenza Italy
- Department of Onco‐Hematology Hematology Unit AO of Cosenza Cosenza Italy
| |
Collapse
|
34
|
Attia HRM, Ibrahim MH, El-Aziz SHA, Abdelrahman AH, Sobeih ME, Hagag HAA, Yassa ME, Osman RA, Rawi R, El-Dayem OYA, Elsharkawi N, Abdelfattah R, Hassan NM. Evaluation of prognostic variables in chronic lymphocytic leukemia and association with disease stage. Mol Clin Oncol 2021; 14:100. [PMID: 33796290 PMCID: PMC8010509 DOI: 10.3892/mco.2021.2262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 11/13/2020] [Indexed: 11/15/2022] Open
Abstract
The aim of the present study was to investigate different biological prognostic markers to identify high-risk patients with chronic lymphocytic leukemia (CLL) with a higher tumor burden, in order to ensure appropriate management. A total of 81 Egyptian patients with CLL were enrolled in the present study, with 75 healthy subjects serving as the control group. The expression of CD49d, CD38 and ZAP-70 in CLL cells was assessed using flow cytometry. The fluorescence in situ hybridization technique was employed to evaluate TP53 (del17p), ataxia-telangiectasia (del11q) and 13q14 (del13q14) genes and the presence of trisomy 12. The serological markers β2 microglobulin (B2M) and sCD23 were measured by ELISA. The CD49d gene was highly expressed in 25.9% and cytogenetic aberrations were observed in 66.6% of all recruited CLL patients. The patients were categorized according to the Binet staging system and a significant increase in the expression of sCD23, CD49d and ZAP-70 was detected in group C (P=0.008, 0.034 and 0.017, respectively) when compared to groups A and B. CD49d+ patients exhibited significantly higher expression of CD38 (P=0.002) and trisomy 12 (P=0.015) and lower expression of del13q14 (P=0.001). Patients who were CD49d+ with B2M>3.5 µg/ml exhibited higher total leukocyte count (P=0.048), higher absolute lymphocyte count (P=0.036), higher expression of CD38 (P=0.002) and trisomy 12 (P=0.034) and lower expression of del13q14 (P=0.002). Therefore, sCD23, CD49d and ZAP-70 may be considered as an optimal prognostic marker combination to be evaluated in the early stages of CLL and throughout disease management. Integrating both serological markers and CD49d expression by flow cytometry may add to the prognostic value of each marker alone and help identify high-risk patients with a higher tumor burden.
Collapse
Affiliation(s)
- Hanaa R M Attia
- Department of Clinical and Chemical Pathology, Medical Division, National Research Centre, Centre of Excellence, 12622 Cairo, Egypt
| | - Mona Hamed Ibrahim
- Department of Clinical and Chemical Pathology, Medical Division, National Research Centre, Centre of Excellence, 12622 Cairo, Egypt
| | - Shereen H Abd El-Aziz
- Department of Clinical and Chemical Pathology, Medical Division, National Research Centre, Centre of Excellence, 12622 Cairo, Egypt
| | - Amany H Abdelrahman
- Department of Clinical and Chemical Pathology, Medical Division, National Research Centre, Centre of Excellence, 12622 Cairo, Egypt
| | - Mohamed Emam Sobeih
- Department of Medical Oncology, National Cancer Institute, 11796 Cairo, Egypt
| | - Heba A A Hagag
- Cytogenetic Unit-Main Laboratory, Kasr Al-Ainy School of Medicine, 11562 Cairo, Egypt
| | - Marianne E Yassa
- Department of Clinical and Chemical Pathology, Kasr Al-Ainy School of Medicine, 11562 Cairo, Egypt
| | - Randa A Osman
- Department of Clinical Pathology, National Cancer Institute, 11796 Cairo, Egypt
| | - Rasha Rawi
- Department of Internal Medicine, Kasr Al-Ainy School of Medicine, Cairo University, 11562 Cairo, Egypt
| | - Omnia Y Abd El-Dayem
- Department of Clinical and Chemical Pathology, Kasr Al-Ainy School of Medicine, 11562 Cairo, Egypt
| | - Nahla Elsharkawi
- Department of Clinical Pathology, National Cancer Institute, 11796 Cairo, Egypt
| | - Raafat Abdelfattah
- Department of Medical Oncology, National Cancer Institute, 11796 Cairo, Egypt
| | - Naglaa M Hassan
- Department of Clinical Pathology, National Cancer Institute, 11796 Cairo, Egypt
| |
Collapse
|
35
|
The future of laboratory testing in chronic lymphocytic leukaemia. Pathology 2021; 53:377-384. [PMID: 33678426 DOI: 10.1016/j.pathol.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 01/24/2023]
Abstract
Chronic lymphocytic leukaemia (CLL) is a malignant lymphoproliferative disorder characterised by the accumulation of dysfunctional B-lymphocytes in the blood and lymphoid tissues. It is a clonally complex disease with a high degree of both intra-tumoural and inter-patient heterogeneity. This variability leads to a wide range of clinical outcomes and highlights the critical need for accurate prognostic tests in CLL. With the advent of a range of new targeted agents for CLL in recent years, there is also a clinical need for improved predictive tests to therapy. This review of laboratory testing in CLL focuses on emerging technologies for prognostication including single nucleotide polymorphism microarray for karyotypic analysis, targeted next generation sequencing analysis of the immunoglobulin heavy chain variable region gene as well as genes recurrently mutated in the disease such as TP53, and detection of minimal residual disease.
Collapse
|
36
|
Fatima N, Shen Y, Crassini K, Iwanowicz EJ, Lang H, Karanewsky DS, Christopherson RI, Mulligan SP, Best OG. The ClpP activator ONC-212 (TR-31) inhibits BCL2 and B-cell receptor signaling in CLL. EJHAEM 2021; 2:81-93. [PMID: 35846080 PMCID: PMC9175891 DOI: 10.1002/jha2.160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 02/05/2023]
Abstract
Despite advances in therapy, a significant proportion of patients with chronic lymphocytic leukemia (CLL) relapse with drug resistant disease. Novel treatment approaches are required, particularly for high risk disease. The imipridones represent a new class of cancer therapy that has been investigated in pre-clinical and clinical trials against a range of different cancers. We investigated the effects of the imipridone, ONC-212, against CLL cells cultured under conditions that mimic aspects of the tumour microenvironment and a TP53ko CLL cell line (OSU-CLL-TP53ko). ONC-212 induced dose-dependent apoptosis, cell cycle arrest and reduced the migration of CLL cells in vitro, including cells from patients with TP53 lesions and OSU-CLL-TP53ko cells. The effects of ONC-212 were associated with protein changes consistent with activation of the mitochondrial protease, CIpP, and the integrated stress response. We also observed inhibition of pathways downstream of the B-cell receptor (BCR) (AKT and MAPK-ERK1/2) and a pro-apoptotic shift in the balance of proteins of the BCL2 family of proteins (BCL2, MCL1, BCLxL, BAX and NOXA). In conclusion, the study suggests ONC-212 may represent an effective treatment for high risk CLL disease by inhibiting multiple facets of the BCR signaling pathway and the pro-survival effects of the BCL2-family proteins.
Collapse
Affiliation(s)
- Narjis Fatima
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Yandong Shen
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Kyle Crassini
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
| | | | - Henk Lang
- Madera TherapeuticsLLCCaryNorth Carolina
| | | | | | - Stephen P. Mulligan
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
| | - Oliver G. Best
- Kolling Institute of Medical ResearchRoyal North Shore HospitalUniversity of SydneySydneyAustralia
- School of Life and Environmental SciencesUniversity of SydneySydneyAustralia
- Department of Molecular Medicine and GeneticsFlinders Health and Medical Research Institute (FHMRI)College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| |
Collapse
|
37
|
Hampel PJ, Parikh SA, Call TG. Incorporating molecular biomarkers into the continuum of care in chronic lymphocytic leukemia. Leuk Lymphoma 2021; 62:1289-1301. [PMID: 33410372 DOI: 10.1080/10428194.2020.1869966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a mature B-cell malignancy characterized by marked heterogeneity. Discoveries in disease biology over the past two decades have helped explain clinical variability and heralded the arrival of the targeted therapy era. In this article, we review improvements in risk stratification which have coincided with this progress, including individual biomarkers and their incorporation into prognostic models. Amidst an ever-expanding list of biomarkers, we seek to bring focus to the essential tests to improve patient care and counseling at particular times in the disease course, beginning with prognosis at diagnosis. The majority of patients do not require treatment at the time of diagnosis, making time-to-first-treatment a key initial prognostic concern. Prognostic and predictive biomarkers are then considered at subsequent major junctures, including at the time of treatment initiation, while on therapy, and at the time of relapse on novel agents.
Collapse
Affiliation(s)
- Paul J Hampel
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sameer A Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Timothy G Call
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
38
|
Hotinski AK, Best OG, Thurgood LA, Lower KM, Kuss BJ. A biclonal case of chronic lymphocytic leukaemia with discordant mutational status of the immunoglobulin heavy chain variable region and bimodal CD49d expression. Br J Haematol 2020; 192:e77-e81. [PMID: 33278845 DOI: 10.1111/bjh.17257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Anya K Hotinski
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia
| | - Oliver G Best
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia
| | - Lauren A Thurgood
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia
| | - Karen M Lower
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia
| | - Bryone J Kuss
- Genetics and Molecular Medicine, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia.,Haematology and Genetic Pathology, Flinders Medical Centre, Bedford Park, South Australia
| |
Collapse
|
39
|
Yun X, Zhang Y, Wang X. Recent progress of prognostic biomarkers and risk scoring systems in chronic lymphocytic leukemia. Biomark Res 2020; 8:40. [PMID: 32939265 PMCID: PMC7487566 DOI: 10.1186/s40364-020-00222-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent adult leukemia with high heterogeneity in the western world. Thus, investigators identified a number of prognostic biomarkers and scoring systems to guide treatment decisions and validated them in the context of immunochemotherapy. A better understanding of prognostic biomarkers, including serum markers, flow cytometry outcomes, IGHV mutation status, microRNAs, chromosome aberrations and gene mutations, have contributed to prognosis in CLL. Del17p/ TP53 mutation, NOTCH1 mutation, CD49d, IGHV mutation status, complex karyotypes and microRNAs were reported to be of predictive values to guide clinical decisions. Based on the biomarkers above, classic prognostic models, such as the Rai and Binet staging systems, MDACC nomogram, GCLLSG model and CLL-IPI, were developed to improve risk stratification and tailor treatment intensity. Considering the presence of novel agents, many investigators validated the conventional prognostic biomarkers in the setting of novel agents and only TP53 mutation status/del 17p and CD49d expression were reported to be of prognostic value. Whether other prognostic indicators and models can be used in the context of novel agents, further studies are required.
Collapse
Affiliation(s)
- Xiaoya Yun
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China
- School of Medicine, Shandong University, Jinan, 250012 Shandong China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China
- National clinical research center for hematologic diseases, Jinan, 250021 Shandong China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China
- School of Medicine, Shandong University, Jinan, 250012 Shandong China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China
- National clinical research center for hematologic diseases, Jinan, 250021 Shandong China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021 Shandong China
- School of Medicine, Shandong University, Jinan, 250012 Shandong China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, 250021 Shandong China
- National clinical research center for hematologic diseases, Jinan, 250021 Shandong China
| |
Collapse
|
40
|
Moia R, Patriarca A, Mahmoud AM, Ferri V, Favini C, Rasi S, Deambrogi C, Gaidano G. Assessing prognosis of chronic lymphocytic leukemia using biomarkers and genetics. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1804860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Riccardo Moia
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Abdurraouf Mokhtar Mahmoud
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Valentina Ferri
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Chiara Favini
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Silvia Rasi
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Clara Deambrogi
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, Novara, Italy
| |
Collapse
|
41
|
Cohen JA, Bomben R, Pozzo F, Tissino E, Härzschel A, Hartmann TN, Zucchetto A, Gattei V. An Updated Perspective on Current Prognostic and Predictive Biomarkers in Chronic Lymphocytic Leukemia in the Context of Chemoimmunotherapy and Novel Targeted Therapy. Cancers (Basel) 2020; 12:cancers12040894. [PMID: 32272636 PMCID: PMC7226446 DOI: 10.3390/cancers12040894] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 01/04/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease with a variable clinical course. Novel biomarkers discovered over the past 20 years have revolutionized the way clinicians approach prognostication and treatment especially in the chemotherapy-free era. Herein, we review the best established prognostic and predictive biomarkers in the setting of chemoimmunotherapy (CIT) and novel targeted therapy. We propose that TP53 disruption (defined as either TP53 mutation or chromosome 17p deletion), unmutated immunoglobulin heavy chain variable region gene status (UM IGHV), NOTCH1 mutation, and CD49d expression are the strongest prognosticators of disease progression and overall survival in the field of novel biomarkers including recurrent gene mutations. We also highlight the predictive role of TP53 disruption, UM IGHV, and NOTCH1 mutation in the setting of CIT and TP53 disruption and CD49d expression in the setting of novel targeted therapy employing B-cell receptor (BCR) and B-cell lymphoma-2 (BCL2) inhibition. Finally, we discuss future directions in the field of biomarker development to identify those with relapsed/refractory disease at risk for progression despite treatment with novel therapies.
Collapse
Affiliation(s)
- Jared A. Cohen
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| | - Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| | - Federico Pozzo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| | - Erika Tissino
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| | - Andrea Härzschel
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (A.H.); (T.N.H.)
| | - Tanja Nicole Hartmann
- Department of Internal Medicine I, Medical Center and Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (A.H.); (T.N.H.)
| | - Antonella Zucchetto
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
- Correspondence: ; Tel.: +39-0434-659720; Fax: +39-0434-659409
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, via Franco Gallini 2, 33081 Aviano, Italy (R.B.); (F.P.); (E.T.); (V.G.)
| |
Collapse
|
42
|
VLA-4 Expression and Activation in B Cell Malignancies: Functional and Clinical Aspects. Int J Mol Sci 2020; 21:ijms21062206. [PMID: 32210016 PMCID: PMC7139737 DOI: 10.3390/ijms21062206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Lineage commitment and differentiation of hematopoietic cells takes place in well-defined microenvironmental surroundings. Communication with other cell types is a vital prerequisite for the normal functions of the immune system, while disturbances in this communication support the development and progression of neoplastic disease. Integrins such as the integrin very late antigen-4 (VLA-4; CD49d/CD29) control the localization of healthy as well as malignant B cells within the tissue, and thus determine the patterns of organ infiltration. Malignant B cells retain some key characteristics of their normal counterparts, with B cell receptor (BCR) signaling and integrin-mediated adhesion being essential mediators of tumor cell homing, survival and proliferation. It is thus not surprising that targeting the BCR pathway using small molecule inhibitors has proved highly effective in the treatment of B cell malignancies. Attenuation of BCR-dependent lymphoma–microenvironment interactions was, in this regard, described as a main mechanism critically contributing to the efficacy of these agents. Here, we review the contribution of VLA-4 to normal B cell differentiation on the one hand, and to the pathophysiology of B cell malignancies on the other hand. We describe its impact as a prognostic marker, its interplay with BCR signaling and its predictive role for novel BCR-targeting therapies, in chronic lymphocytic leukemia and beyond.
Collapse
|