1
|
Jena KK, Mambu J, Boehmer D, Sposito B, Millet V, de Sousa Casal J, Muendlein HI, Spreafico R, Fenouil R, Spinelli L, Wurbel S, Riquier C, Galland F, Naquet P, Chasson L, Elkins M, Mitsialis V, Ketelut-Carneiro N, Bugda Gwilt K, Thiagarajah JR, Ruan HB, Lin Z, Lien E, Shao F, Chou J, Poltorak A, Ordovas-Montanes J, Fitzgerald KA, Snapper SB, Broggi A, Zanoni I. Type III interferons induce pyroptosis in gut epithelial cells and impair mucosal repair. Cell 2024; 187:7533-7550.e23. [PMID: 39500322 DOI: 10.1016/j.cell.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024]
Abstract
Tissue damage and repair are hallmarks of inflammation. Despite a wealth of information on the mechanisms that govern tissue damage, mechanistic insight into how inflammation affects repair is lacking. Here, we investigated how interferons influence tissue repair after damage to the intestinal mucosa. We found that type III, not type I or type II, interferons delay epithelial cell regeneration by inducing the upregulation of Z-DNA-binding protein 1 (ZBP1). Z-nucleic acids formed following intestinal damage are sensed by ZBP1, leading to caspase-8 activation and the cleavage of gasdermin C (GSDMC). Cleaved GSDMC drives epithelial cell death by pyroptosis and delays repair of the large or small intestine after colitis or irradiation, respectively. The type III interferon/ZBP1/caspase-8/GSDMC axis is also active in patients with inflammatory bowel disease (IBD). Our findings highlight the capacity of type III interferons to delay gut repair, which has implications for IBD patients or individuals exposed to radiation therapies.
Collapse
Affiliation(s)
- Kautilya K Jena
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Julien Mambu
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Daniel Boehmer
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Benedetta Sposito
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Virginie Millet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Joshua de Sousa Casal
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hayley I Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Roberto Spreafico
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Romain Fenouil
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Lionel Spinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Sarah Wurbel
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Chloé Riquier
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Franck Galland
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Philippe Naquet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Lionel Chasson
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Megan Elkins
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Vanessa Mitsialis
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Natália Ketelut-Carneiro
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Egil Lien
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Center for Molecular inflammation Research, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Janet Chou
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Scott B Snapper
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Achille Broggi
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France.
| | - Ivan Zanoni
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Liu RJ, Yang GB. Molecular characteristics of rhesus macaque interferon-lambda receptor 1 (mmuIFNLR1): Sequence identity, distribution and alteration after simian-human immunodeficiency virus infection in the skin and buccal mucosa. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105236. [PMID: 39103005 DOI: 10.1016/j.dci.2024.105236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Interferon-lambda receptor 1 (IFNLR1) is the key to interferon-lambda's biological activities. Rhesus macaques (Macaca mulatta) are supposedly more suitable for translational studies on interferon lambda-associated human diseases, yet little is known about their IFNLR1 (mmuIFNLR1). In this study, we cloned the coding sequence of mmuIFNLR1, examined its variants, and determined the distribution of mmuIFNLR1 mRNA and immunoreactivity in the buccal mucosa and arm skin of normal and immunodeficiency virus (SHIV/SIV) infected rhesus macaques. It was found that mmuIFNLR1 has 93.1% amino acid sequence identity to that of humans; all the amino acid residues of mmuIFNLR1 signal peptide, transmembrane region, PxxLxF motif and those essential for ligand binding are identical to that of humans; 6 variants of mmuIFNLR1, including the ones corresponding to that of humans were detected; IFNLR1 immunoreactivity was localized in primarily the epithelia of buccal mucosa and arm skin; SHIV/SIV infection could affect the levels of mmuIFNLR1 mRNA and immunoreactivity. These data expanded our knowledge on mmuIFNLR1 and provided a scientific basis for rational use of rhesus macaques in studies of IFN-λ associated human diseases like AIDS. Future studies testing IFNLR1-targeting therapeutics in rhesus macaques were warranted.
Collapse
Affiliation(s)
- Rui-Jie Liu
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing, 102206, PR China
| | - Gui-Bo Yang
- National Center for AIDS/STD Control and Prevention, China-CDC, Beijing, 102206, PR China.
| |
Collapse
|
3
|
Liu YG, Jin SW, Zhang SS, Xia TJ, Liao YH, Pan RL, Yan MZ, Chang Q. Interferon lambda in respiratory viral infection: immunomodulatory functions and antiviral effects in epithelium. Front Immunol 2024; 15:1338096. [PMID: 38495892 PMCID: PMC10940417 DOI: 10.3389/fimmu.2024.1338096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Type III interferon (IFN-λ), a new member of the IFN family, was initially considered to possess antiviral functions similar to those of type I interferon, both of which are induced via the JAK/STAT pathway. Nevertheless, recent findings demonstrated that IFN-λ exerts a nonredundant antiviral function at the mucosal surface, preferentially produced in epithelial cells in contrast to type I interferon, and its function cannot be replaced by type I interferon. This review summarizes recent studies showing that IFN-λ inhibits the spread of viruses from the cell surface to the body. Further studies have found that the role of IFN-λ is not only limited to the abovementioned functions, but it can also can exert direct and/or indirect effects on immune cells in virus-induced inflammation. This review focuses on the antiviral activity of IFN-λ in the mucosal epithelial cells and its action on immune cells and summarizes the pathways by which IFN-λ exerts its action and differentiates it from other interferons in terms of mechanism. Finally, we conclude that IFN-λ is a potent epidermal antiviral factor that enhances the respiratory mucosal immune response and has excellent therapeutic potential in combating respiratory viral infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming-Zhu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Wright AP, Nice TJ. Role of type-I and type-III interferons in gastrointestinal homeostasis and pathogenesis. Curr Opin Immunol 2024; 86:102412. [PMID: 38518661 PMCID: PMC11032256 DOI: 10.1016/j.coi.2024.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Interferon (IFN) was discovered based on interference with virus production, and three types of IFN are now defined. Since its discovery, IFN's roles have expanded beyond viruses to diverse pathogen types, tissue homeostasis, and inflammatory disease. The gastrointestinal (GI) tract is arguably the tissue where the roles of IFN types are most distinct, with a particularly prominent role for type-III IFN in antiviral protection of the intestinal epithelium. Current studies continue to deepen our understanding of the type- and tissue-specific roles of IFN. This review highlights these advances within the GI tract, including discovery of protective roles for type-III IFNs against nonviral GI pathogens, and discovery of an antiviral homeostatic type-III IFN response within the intestinal epithelium.
Collapse
Affiliation(s)
- Austin P Wright
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
5
|
Savan R, Gale M. Innate immunity and interferon in SARS-CoV-2 infection outcome. Immunity 2023; 56:1443-1450. [PMID: 37437537 PMCID: PMC10361255 DOI: 10.1016/j.immuni.2023.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/14/2023]
Abstract
Innate immunity and the actions of type I and III interferons (IFNs) are essential for protection from SARS-CoV-2 and COVID-19. Each is induced in response to infection and serves to restrict viral replication and spread while directing the polarization and modulation of the adaptive immune response. Owing to the distribution of their specific receptors, type I and III IFNs, respectively, impart systemic and local actions. Therapeutic IFN has been administered to combat COVID-19 but with differential outcomes when given early or late in infection. In this perspective, we sort out the role of innate immunity and complex actions of IFNs in the context of SARS-CoV-2 infection and COVID-19. We conclude that IFNs are a beneficial component of innate immunity that has mediated natural clearance of infection in over 700 million people. Therapeutic induction of innate immunity and use of IFN should be featured in strategies to treat acute SARS-CoV-2 infection in people at risk for severe COVID-19.
Collapse
Affiliation(s)
- Ram Savan
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, 750 Republican St., Seattle, WA 98109, USA
| | - Michael Gale
- Department of Immunology and Center for Innate Immunity and Immune Disease, University of Washington, 750 Republican St., Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Pan YY, Wang LC, Yang F, Yu M. Interferon-lambda: New role in intestinal symptoms of COVID-19. World J Gastroenterol 2023; 29:1942-1954. [PMID: 37155525 PMCID: PMC10122791 DOI: 10.3748/wjg.v29.i13.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
The tremendous public health and economic impact of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a huge challenge globally. There is increasing evidence that SARS-CoV-2 induces intestinal infections. Type III interferon (IFN-λ) has an antiviral role in intestinal infection, with focused, long-lasting, and non-inflammatory characteristics. This review presents a summary of the structure of SARS-CoV-2, including its invasion and immune escape mechanisms. Emphasis was placed on the gastrointestinal impact of SARS-CoV-2, including changes to the intestinal microbiome, activation of immune cells, and inflammatory responses. We also describe the comprehensive functions of IFN-λ in anti-enteric SARS-CoV-2 infection, and discuss the potential application of IFN-λ as a therapeutic agent for COVID-19 with intestinal symptoms.
Collapse
Affiliation(s)
- Yi-Yang Pan
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Liu-Can Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Feng Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Min Yu
- Department of General Surgery, Chongqing General Hospital, Chongqing 400013, China
| |
Collapse
|
7
|
Cui C, Wang X, Li L, Wei H, Peng J. Multifaceted involvements of Paneth cells in various diseases within intestine and systemically. Front Immunol 2023; 14:1115552. [PMID: 36993974 PMCID: PMC10040535 DOI: 10.3389/fimmu.2023.1115552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Serving as the guardians of small intestine, Paneth cells (PCs) play an important role in intestinal homeostasis maintenance. Although PCs uniquely exist in intestine under homeostasis, the dysfunction of PCs is involved in various diseases not only in intestine but also in extraintestinal organs, suggesting the systemic importance of PCs. The mechanisms under the participation of PCs in these diseases are multiple as well. The involvements of PCs are mostly characterized by limiting intestinal bacterial translocation in necrotizing enterocolitis, liver disease, acute pancreatitis and graft-vs-host disease. Risk genes in PCs render intestine susceptible to Crohn’s disease. In intestinal infection, different pathogens induce varied responses in PCs, and toll-like receptor ligands on bacterial surface trigger the degranulation of PCs. The increased level of bile acid dramatically impairs PCs in obesity. PCs can inhibit virus entry and promote intestinal regeneration to alleviate COVID-19. On the contrary, abundant IL-17A in PCs aggravates multi-organ injury in ischemia/reperfusion. The pro-angiogenic effect of PCs aggravates the severity of portal hypertension. Therapeutic strategies targeting PCs mainly include PC protection, PC-derived inflammatory cytokine elimination, and substituting AMP treatment. In this review, we discuss the influence and importance of Paneth cells in both intestinal and extraintestinal diseases as reported so far, as well as the potential therapeutic strategies targeting PCs.
Collapse
Affiliation(s)
- Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinru Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lindeng Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- *Correspondence: Jian Peng,
| |
Collapse
|
8
|
Koyama M, Samson L, Ensbey KS, Takahashi S, Clouston AD, Martin PJ, Hill GR. Lithium attenuates graft-versus-host disease via effects on the intestinal stem cell niche. Blood 2023; 141:315-319. [PMID: 36201741 PMCID: PMC10163278 DOI: 10.1182/blood.2022015808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023] Open
Affiliation(s)
- Motoko Koyama
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Luke Samson
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kathleen S. Ensbey
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Shuichiro Takahashi
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Paul J. Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
- Envoi Specialist Pathologists, Brisbane, QLD, Australia
| | - Geoffrey R. Hill
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
- Envoi Specialist Pathologists, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Different Mechanisms Are Utilized by Coronavirus Transmissible Gastroenteritis Virus To Regulate Interferon Lambda 1 and Interferon Lambda 3 Production. J Virol 2022; 96:e0138822. [PMID: 36448799 PMCID: PMC9769389 DOI: 10.1128/jvi.01388-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Type III interferons (IFN-λ) are shown to be preferentially produced by epithelial cells, which provide front-line protection at barrier surfaces. Transmissible gastroenteritis virus (TGEV), belonging to the genus Alphacoronavirus of the family Coronaviridae, can cause severe intestinal injuries in porcine, resulting in enormous economic losses for the swine industry, worldwide. Here, we demonstrated that although IFN-λ1 had a higher basal expression, TGEV infection induced more intense IFN-λ3 production in vitro and in vivo than did IFN-λ1. We explored the underlying mechanism of IFN-λ induction by TGEV and found a distinct regulation mechanism of IFN-λ1 and IFN-λ3. The classical RIG-I-like receptor (RLR) pathway is involved in IFN-λ3 but not IFN-λ1 production. Except for the signaling pathways mediated by RIG-I and MDA5, TGEV nsp1 induces IFN-λ1 and IFN-λ3 by activating NF-κB via the unfolded protein responses (UPR) PERK-eIF2α pathway. Furthermore, functional domain analysis indicated that the induction of IFN-λ by the TGEV nsp1 protein was located at amino acids 85 to 102 and was dependent on the phosphorylation of eIF2α and the nuclear translocation of NF-κB. Moreover, the recombinant TGEV with the altered amino acid motif of nsp1 85-102 was constructed, and the nsp1 (85-102sg) mutant virus significantly reduced the production of IFN-λ, compared with the wild strain. Compared to the antiviral activities of IFN-λ1, the administration of IFN-λ3 showed greater antiviral activity against TGEV infections in IPEC-J2 cells. In summary, our data point to the significant role of IFN-λ in the host innate antiviral responses to coronavirus infections within mucosal organs and in the distinct mechanisms of IFN-λ1 and IFN-λ3 regulation. IMPORTANCE Coronaviruses cause infectious diseases in various mammals and birds and exhibit an epithelial cell tropism in enteric and respiratory tracts. It is critical to explore how coronavirus infections modulate IFN-λ, a key innate cytokine against mucosal viral infection. Our results uncovered the different processes of IFN-λ1 and IFN-λ3 production that are involved in the classical RLR pathway and determined that TGEV nsp1 induces IFN-λ1 and IFN-λ3 production by activating NF-κB via the PERK-eIF2α pathway in UPR. These studies highlight the unique regulation of antiviral defense in the intestine during TGEV infection. We also demonstrated that IFN-λ3 induced greater antiviral activity against TGEV replication than did IFN-λ1 in IPEC-J2 cells, which is helpful in finding a novel strategy for the treatment of coronavirus infections.
Collapse
|
10
|
Erb A, Zissler UM, Oelsner M, Chaker AM, Schmidt-Weber CB, Jakwerth CA. Genome-Wide Gene Expression Analysis Reveals Unique Genes Signatures of Epithelial Reorganization in Primary Airway Epithelium Induced by Type-I, -II and -III Interferons. BIOSENSORS 2022; 12:929. [PMID: 36354438 PMCID: PMC9688329 DOI: 10.3390/bios12110929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Biosensors such as toll-like receptors (TLR) induce the expression of interferons (IFNs) after viral infection that are critical to the first step in cell-intrinsic host defense mechanisms. Their differential influence on epithelial integrity genes, however, remains elusive. A genome-wide gene expression biosensor chip for gene expression sensing was used to examine the effects of type-I, -II, and -III IFN stimulation on the epithelial expression profiles of primary organotypic 3D air-liquid interface airway cultures. All types of IFNs induced similar interferon-stimulated genes (ISGs): OAS1, OAS2, and IFIT2. However, they differentially induced transcription factors, epithelial modulators, and pro-inflammatory genes. Type-I IFN-induced genes were associated with cell-cell adhesion and tight junctions, while type-III IFNs promoted genes important for transepithelial transport. In contrast, type-II IFN stimulated proliferation-triggering genes associated and enhanced pro-inflammatory mediator secretion. In conclusion, with our microarray system, we provide evidence that the three IFN types exceed their antiviral ISG-response by inducing distinct remodeling processes, thereby likely strengthening the epithelial airway barrier by enhancing cross-cell-integrity (I), transepithelial transport (III) and finally reconstruction through proliferation (II).
Collapse
Affiliation(s)
- Anna Erb
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Ulrich M. Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Madlen Oelsner
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Adam M. Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
- Department of Otorhinolaryngology and Head and Neck Surgery, Medical School, Technical University of Munich, 81675 Munich, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| | - Constanze A. Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Member of the German Center for Lung Research (DZL), CPC-M, Member of the Helmholtz I&I Initiative, 85746 Munich, Germany
| |
Collapse
|
11
|
Ma L, Yu J, Zhang H, Zhao B, Zhang J, Yang D, Luo F, Wang B, Jin B, Liu J. Effects of Immune Cells on Intestinal Stem Cells: Prospects for Therapeutic Targets. Stem Cell Rev Rep 2022; 18:2296-2314. [DOI: 10.1007/s12015-022-10347-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
|
12
|
Song Q, Nasri U, Zeng D. Steroid-Refractory Gut Graft-Versus-Host Disease: What We Have Learned From Basic Immunology and Experimental Mouse Model. Front Immunol 2022; 13:844271. [PMID: 35251043 PMCID: PMC8894323 DOI: 10.3389/fimmu.2022.844271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Intestinal graft-versus-host disease (Gut-GVHD) is one of the major causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). While systemic glucocorticoids (GCs) comprise the first-line treatment option, the response rate for GCs varies from 30% to 50%. The prognosis for patients with steroid-refractory acute Gut-GVHD (SR-Gut-aGVHD) remains dismal. The mechanisms underlying steroid resistance are unclear, and apart from ruxolitinib, there are no approved treatments for SR-Gut-aGVHD. In this review, we provide an overview of the current biological understanding of experimental SR-Gut-aGVHD pathogenesis, the advanced technology that can be applied to the human SR-Gut-aGVHD studies, and the potential novel therapeutic options for patients with SR-Gut-aGVHD.
Collapse
Affiliation(s)
- Qingxiao Song
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Qingxiao Song,
| | - Ubaydah Nasri
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
13
|
Dowling JW, Forero A. Beyond Good and Evil: Molecular Mechanisms of Type I and III IFN Functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:247-256. [PMID: 35017214 DOI: 10.4049/jimmunol.2100707] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
IFNs are comprised of three families of cytokines that confer protection against pathogen infection and uncontrolled cellular proliferation. The broad role IFNs play in innate and adaptive immune regulation has placed them under heavy scrutiny to position them as "friend" or "foe" across pathologies. Genetic lesions in genes involving IFN synthesis and signaling underscore the disparate outcomes of aberrant IFN signaling. Abrogation of the response leads to susceptibility to microbial infections whereas unabated IFN induction underlies a variety of inflammatory diseases and tumor immune evasion. Type I and III IFNs have overlapping roles in antiviral protection, yet the mechanisms by which they are induced and promote the expression of IFN-stimulated genes and inflammation can distinguish their biological functions. In this review, we examine the molecular factors that shape the shared and distinct roles of type I and III IFNs in immunity.
Collapse
Affiliation(s)
- Jack W Dowling
- Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210; and.,Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
14
|
Challenges and opportunities targeting mechanisms of epithelial injury and recovery in acute intestinal graft-versus-host disease. Mucosal Immunol 2022; 15:605-619. [PMID: 35654837 PMCID: PMC9259481 DOI: 10.1038/s41385-022-00527-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
Despite advances in immunosuppressive prophylaxis and overall supportive care, gastrointestinal (GI) graft-versus-host disease (GVHD) remains a major, lethal side effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). It has become increasingly clear that the intestinal epithelium, in addition to being a target of transplant-related toxicity and GVHD, plays an important role in the onset of GVHD. Over the last two decades, increased understanding of the epithelial constituents and their microenvironment has led to the development of novel prophylactic and therapeutic interventions, with the potential to protect the intestinal epithelium from GVHD-associated damage and promote its recovery following insult. In this review, we will discuss intestinal epithelial injury and the role of the intestinal epithelium in GVHD pathogenesis. In addition, we will highlight possible approaches to protect the GI tract from damage posttransplant and to stimulate epithelial regeneration, in order to promote intestinal recovery. Combined treatment modalities integrating immunomodulation, epithelial protection, and induction of regeneration may hold the key to unlocking mucosal recovery and optimizing therapy for acute intestinal GVHD.
Collapse
|
15
|
Manivasagam S, Klein RS. Type III Interferons: Emerging Roles in Autoimmunity. Front Immunol 2021; 12:764062. [PMID: 34899712 PMCID: PMC8660671 DOI: 10.3389/fimmu.2021.764062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Type III interferons (IFNs) or the lambda IFNs (IFNLs or IFN-λs) are antimicrobial cytokines that play key roles in immune host defense at endothelial and epithelial barriers. IFNLs signal via their heterodimeric receptor, comprised of two subunits, IFNLR1 and interleukin (IL)10Rβ, which defines the cellular specificity of the responses to the cytokines. Recent studies show that IFNL signaling regulates CD4+ T cell differentiation, favoring Th1 cells, which has led to the identification of IFNL as a putative therapeutic target for autoimmune diseases. Here, we summarize the IFNL signaling pathways during antimicrobial immunity, IFNL-mediated immunomodulation of both innate and adaptive immune cells, and induction of autoimmunity.
Collapse
Affiliation(s)
- Sindhu Manivasagam
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Robyn S. Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
16
|
Wallace JW, Constant DA, Nice TJ. Interferon Lambda in the Pathogenesis of Inflammatory Bowel Diseases. Front Immunol 2021; 12:767505. [PMID: 34712246 PMCID: PMC8547615 DOI: 10.3389/fimmu.2021.767505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Interferon λ (IFN-λ) is critical for host viral defense at mucosal surfaces and stimulates immunomodulatory signals, acting on epithelial cells and few other cell types due to restricted IFN-λ receptor expression. Epithelial cells of the intestine play a critical role in the pathogenesis of Inflammatory Bowel Disease (IBD), and the related type II interferons (IFN-γ) have been extensively studied in the context of IBD. However, a role for IFN-λ in IBD onset and progression remains unclear. Recent investigations of IFN-λ in IBD are beginning to uncover complex and sometimes opposing actions, including pro-healing roles in colonic epithelial tissues and potentiation of epithelial cell death in the small intestine. Additionally, IFN-λ has been shown to act through non-epithelial cell types, such as neutrophils, to protect against excessive inflammation. In most cases IFN-λ demonstrates an ability to coordinate the host antiviral response without inducing collateral hyperinflammation, suggesting that IFN-λ signaling pathways could be a therapeutic target in IBD. This mini review discusses existing data on the role of IFN-λ in the pathogenesis of inflammatory bowel disease, current gaps in the research, and therapeutic potential of modulating the IFN-λ-stimulated response.
Collapse
Affiliation(s)
- Jonathan W Wallace
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - David A Constant
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
17
|
Ara T, Hashimoto D. Novel Insights Into the Mechanism of GVHD-Induced Tissue Damage. Front Immunol 2021; 12:713631. [PMID: 34512636 PMCID: PMC8429834 DOI: 10.3389/fimmu.2021.713631] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/10/2021] [Indexed: 12/22/2022] Open
Abstract
Prophylaxis for and treatment of graft-versus-host disease (GVHD) are essential for successful allogeneic hematopoietic stem cell transplantation (allo-SCT) and mainly consist of immunosuppressants such as calcineurin inhibitors. However, profound immunosuppression can lead to tumor relapse and infectious complications, which emphasizes the necessity of developing novel management strategies for GVHD. Emerging evidence has revealed that tissue-specific mechanisms maintaining tissue homeostasis and promoting tissue tolerance to combat GVHD are damaged after allo-SCT, resulting in exacerbation and treatment refractoriness of GVHD. In the gastrointestinal tract, epithelial regeneration derived from intestinal stem cells (ISCs), a microenvironment that maintains healthy gut microbiota, and physical and chemical mucosal barrier functions against pathogens are damaged by conditioning regimens and/or GVHD. The administration of growth factors for cells that maintain intestinal homeostasis, such as interleukin-22 (IL-22) for ISCs, R-spondin 1 (R-Spo1) for ISCs and Paneth cells, and interleukin-25 (IL-25) for goblet cells, mitigates murine GVHD. In this review, we summarize recent advances in the understanding of GVHD-induced tissue damage and emerging strategies for the management of GVHD.
Collapse
Affiliation(s)
- Takahide Ara
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Daigo Hashimoto
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|
18
|
IFN-λ: paving the road toward tissue protection in GVHD. Blood 2021; 138:596-597. [PMID: 34436528 DOI: 10.1182/blood.2021012348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
|
19
|
Hess NJ, Brown ME, Capitini CM. GVHD Pathogenesis, Prevention and Treatment: Lessons From Humanized Mouse Transplant Models. Front Immunol 2021; 12:723544. [PMID: 34394131 PMCID: PMC8358790 DOI: 10.3389/fimmu.2021.723544] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 01/14/2023] Open
Abstract
Graft-vs-host disease (GVHD) is the most common cause of non-relapse mortality following allogeneic hematopoietic stem cell transplantation (HSCT) despite advances in conditioning regimens, HLA genotyping and immune suppression. While murine studies have yielded important insights into the cellular responses of GVHD, differences between murine and human biology has hindered the translation of novel therapies into the clinic. Recently, the field has expanded the ability to investigate primary human T cell responses through the transplantation of human T cells into immunodeficient mice. These xenogeneic HSCT models benefit from the human T cell receptors, CD4 and CD8 proteins having cross-reactivity to murine MHC in addition to several cytokines and co-stimulatory proteins. This has allowed for the direct assessment of key factors in GVHD pathogenesis to be investigated prior to entering clinical trials. In this review, we will summarize the current state of clinical GVHD research and discuss how xenogeneic HSCT models will aid in advancing the current pipeline of novel GVHD prophylaxis therapies into the clinic.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Matthew E. Brown
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Christian M. Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
20
|
Zhao C, Zhang Y, Zheng H. The Effects of Interferons on Allogeneic T Cell Response in GVHD: The Multifaced Biology and Epigenetic Regulations. Front Immunol 2021; 12:717540. [PMID: 34305954 PMCID: PMC8297501 DOI: 10.3389/fimmu.2021.717540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. This beneficial effect is derived mainly from graft-versus-leukemia (GVL) effects mediated by alloreactive T cells. However, these alloreactive T cells can also induce graft-versus-host disease (GVHD), a life-threatening complication after allo-HSCT. Significant progress has been made in the dissociation of GVL effects from GVHD by modulating alloreactive T cell immunity. However, many factors may influence alloreactive T cell responses in the host undergoing allo-HSCT, including the interaction of alloreactive T cells with both donor and recipient hematopoietic cells and host non-hematopoietic tissues, cytokines, chemokines and inflammatory mediators. Interferons (IFNs), including type I IFNs and IFN-γ, primarily produced by monocytes, dendritic cells and T cells, play essential roles in regulating alloreactive T cell differentiation and function. Many studies have shown pleiotropic effects of IFNs on allogeneic T cell responses during GVH reaction. Epigenetic mechanisms, such as DNA methylation and histone modifications, are important to regulate IFNs’ production and function during GVHD. In this review, we discuss recent findings from preclinical models and clinical studies that characterize T cell responses regulated by IFNs and epigenetic mechanisms, and further discuss pharmacological approaches that modulate epigenetic effects in the setting of allo-HSCT.
Collapse
Affiliation(s)
- Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, United States
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA, United States
| |
Collapse
|