1
|
Krishnamoorthy V, Daly J, Kim J, Piatnitca L, Yuen KA, Kumar B, Taherzadeh Ghahfarrokhi M, Bui TQT, Azadi P, Vu LP, Wisnovsky S. The glycosyltransferase ST3GAL4 drives immune evasion in acute myeloid leukemia by synthesizing ligands for the glyco-immune checkpoint receptor Siglec-9. Leukemia 2025; 39:346-359. [PMID: 39551873 PMCID: PMC11794148 DOI: 10.1038/s41375-024-02454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024]
Abstract
Immunotherapy has demonstrated promise as a treatment for acute myeloid leukemia (AML). However, there is still an urgent need to identify new molecules that inhibit the immune response to AML. Most prior research in this area has focused on protein-protein interaction interfaces. While carbohydrates also regulate immune recognition, the role of cell-surface glycans in driving AML immune evasion is comparatively understudied. The Siglecs, for example, are an important family of inhibitory, glycan-binding signaling receptors that have emerged as prime targets for cancer immunotherapy in recent years. In this study, we find that AML cells express ligands for the receptor Siglec-9 at high levels. Integrated CRISPR genomic screening and clinical bioinformatic analysis identified ST3GAL4 as a potential driver of Siglec-9 ligand expression in AML. Depletion of ST3GAL4 by CRISPR-Cas9 knockout (KO) dramatically reduced the expression of Siglec-9 ligands in AML cells. Mass spectrometry analysis of cell-surface glycosylation in ST3GAL4 KO cells revealed that Siglec-9 primarily binds N-linked sialoglycans on these cell types. Finally, we found that ST3GAL4 KO enhanced the sensitivity of AML cells to phagocytosis by Siglec-9-expressing macrophages. This work reveals a novel axis of immune evasion and implicates ST3GAL4 as a possible target for immunotherapy in AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Sialyltransferases/metabolism
- Sialyltransferases/genetics
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Ligands
- Immune Evasion
- Sialic Acid Binding Immunoglobulin-like Lectins/metabolism
- Sialic Acid Binding Immunoglobulin-like Lectins/genetics
- beta-Galactoside alpha-2,3-Sialyltransferase
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- CRISPR-Cas Systems
- Tumor Escape
Collapse
Affiliation(s)
- Vignesh Krishnamoorthy
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - John Daly
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jimmy Kim
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lidia Piatnitca
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Katie A Yuen
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Bhoj Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | - Tom Q T Bui
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Ly P Vu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Institute, Vancouver, BC, Canada
| | - Simon Wisnovsky
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Calvo J, Naguibneva I, Kypraios A, Gilain F, Uzan B, Gaillard B, Bellenger L, Renou L, Antoniewski C, Lapillonne H, Petit A, Ballerini P, Mancini SJ, Marchand T, Peyron JF, Pflumio F. High CD44 expression and enhanced E-selectin binding identified as biomarkers of chemoresistant leukemic cells in human T-ALL. Leukemia 2025; 39:323-336. [PMID: 39580584 PMCID: PMC11794132 DOI: 10.1038/s41375-024-02473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/25/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy characterized by increased proliferation and incomplete maturation of T-cell progenitors, for which relapse is often of poor prognosis. To improve patient outcomes, it is critical to understand the chemoresistance mechanisms arising from cell plasticity induced by the bone marrow (BM) microenvironment. Single-cell RNA sequencing of human T-ALL cells from adipocyte-rich and adipocyte-poor BM revealed a distinct leukemic cell population defined by quiescence and high CD44 expression (Ki67neg/lowCD44high). During in vivo treatment, these cells evaded chemotherapy, and were further called Chemotherapy-resistant Leukemic Cells (CLCs). Patient sample analysis revealed Ki67neg/lowCD44high CLCs at diagnosis and during relapse, with each displaying a specific transcriptomic signature. Interestingly, CD44high expression in T-ALL Ki67neg/low CLCs was associated with E-selectin binding. Analysis of 39 human T-ALL samples revealed significantly enhanced E-selectin binding activity in relapse/refractory samples compared with drug-sensitive samples. These characteristics of chemoresistant T-ALL CLCs provide key insights for prognostic stratification and novel therapeutic options.
Collapse
Affiliation(s)
- Julien Calvo
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France.
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France.
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France.
| | - Irina Naguibneva
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
| | - Anthony Kypraios
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 06204, Nice, France
| | - Florian Gilain
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France
| | - Benjamin Uzan
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
| | - Baptiste Gaillard
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
| | - Lea Bellenger
- ARTbio Bioinformatics Analysis Facility, IBPS, CNRS, Sorbonne Université, Institut Français de Bioinformatique, 75005, Paris, France
| | - Laurent Renou
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, IBPS, CNRS, Sorbonne Université, Institut Français de Bioinformatique, 75005, Paris, France
| | - Helene Lapillonne
- Sorbonne University, AP-HP, Laboratory of Hematology, Armand-Trousseau Hospital, 75012, Paris, France
- Sorbonne Université, Centre de Recherche Saint-Antoine UMR_S938, Pediatric Hematology Oncology Unit, AP-HP, Armand-Trousseau Hospital, 75012, Paris, France
| | - Arnaud Petit
- Sorbonne University, AP-HP, Laboratory of Hematology, Armand-Trousseau Hospital, 75012, Paris, France
- Sorbonne Université, Centre de Recherche Saint-Antoine UMR_S938, Pediatric Hematology Oncology Unit, AP-HP, Armand-Trousseau Hospital, 75012, Paris, France
| | - Paola Ballerini
- Sorbonne University, AP-HP, Laboratory of Hematology, Armand-Trousseau Hospital, 75012, Paris, France
- Sorbonne Université, Centre de Recherche Saint-Antoine UMR_S938, Pediatric Hematology Oncology Unit, AP-HP, Armand-Trousseau Hospital, 75012, Paris, France
| | | | - Tony Marchand
- Université Rennes, EFS, Inserm, MOBIDIC-UMR_S 1236, F-35000, Rennes, France
- Service d'hématologie Clinique, Centre Hospitalier Universitaire de Rennes, 35003, Rennes, France
| | - Jean-François Peyron
- Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), INSERM U1065, 06204, Nice, France
| | - Françoise Pflumio
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/SGCSR/Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), F-92260, Fontenay-aux-Roses, France
- Laboratoire des cellules Souches Hématopoïétiques et des Leucémies, Equipe Niche et Cancer dans l'Hématopoïèse, équipe labellisée Ligue Nationale Contre le Cancer, Unité Mixte de Recherche (UMR) 1274-E008, Inserm, CEA, 92265, Fontenay-aux Roses, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France
| |
Collapse
|
3
|
Ladikou EE, Sharp K, Simoes FA, Jones JR, Burley T, Stott L, Vareli A, Kennedy E, Vause S, Chevassut T, Devi A, Ashworth I, Ross DM, Hartmann TN, Mitchell SA, Pepper CJ, Best G, Pepper AGS. A Novel In Vitro Model of the Bone Marrow Microenvironment in Acute Myeloid Leukemia Identifies CD44 and Focal Adhesion Kinase as Therapeutic Targets to Reverse Cell Adhesion-Mediated Drug Resistance. Cancers (Basel) 2025; 17:135. [PMID: 39796762 PMCID: PMC11719579 DOI: 10.3390/cancers17010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential. METHODS Using both primary donor AML cells and cell lines, we developed an in vitro co-culture model of the AML BMME. We used this model to identify the most effective agent(s) to block AML cell adherence and reverse adhesion-mediated treatment resistance. RESULTS We identified that anti-CD44 treatment significantly increased the efficacy of cytarabine. However, some AML cells remained adhered, and transcriptional analysis identified focal adhesion kinase (FAK) signaling as a contributing factor; the adhered cells showed elevated FAK phosphorylation that was reduced by the FAK inhibitor, defactinib. Importantly, we demonstrated that anti-CD44 and defactinib were highly synergistic at diminishing the adhesion of the most primitive CD34high AML cells in primary autologous co-cultures. CONCLUSIONS Taken together, we identified anti-CD44 and defactinib as a promising therapeutic combination to release AML cells from the chemoprotective AML BMME. As anti-CD44 is already available as a recombinant humanized monoclonal antibody, the combination of this agent with defactinib could be rapidly tested in AML clinical trials.
Collapse
Affiliation(s)
- Eleni E. Ladikou
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Kim Sharp
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Fabio A. Simoes
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - John R. Jones
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Thomas Burley
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Lauren Stott
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Aimilia Vareli
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Emma Kennedy
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Sophie Vause
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Timothy Chevassut
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Amarpreet Devi
- Department of Haematology, Brighton and Sussex University Hospital Trust, Brighton BN2 5BE, UK;
| | - Iona Ashworth
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - David M. Ross
- Department of Haematology, Flinders Medical Centre, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (D.M.R.); (G.B.)
| | - Tanja Nicole Hartmann
- Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany;
| | - Simon A. Mitchell
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Chris J. Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| | - Giles Best
- Department of Haematology, Flinders Medical Centre, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia; (D.M.R.); (G.B.)
| | - Andrea G. S. Pepper
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK; (K.S.); (F.A.S.); (J.R.J.); (T.B.); (L.S.); (A.V.); (E.K.); (S.V.); (T.C.); (I.A.); (S.A.M.); (C.J.P.); (A.G.S.P.)
| |
Collapse
|
4
|
Boueya IL, Sandhow L, Albuquerque JRP, Znaidi R, Passaro D. Endothelial heterogeneity in bone marrow: insights across development, adult life and leukemia. Leukemia 2025; 39:8-24. [PMID: 39528790 PMCID: PMC11717709 DOI: 10.1038/s41375-024-02453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The central role of the endothelial microenvironment in orchestrating bone marrow (BM) homeostasis and hematopoietic support has been confirmed at various developmental stages and in adult life. The BM vasculature is crucial in mediating communication between BM parenchyma and circulating blood, displaying remarkable heterogeneity in structure and function. While vascular cell diversity in other tissues has long been recognized, the molecular basis of this phenomenon in BM is just now emerging. Over the past decade, single-cell approaches and microscopic observations have expanded our understanding of BM vasculature. While solely characterized for their paracrine properties in the past, recent advances have revolutionized our perception of endothelial function, revealing distinct anatomical locations associated with diverse endothelial cell states. The identification of phenotypic differences between normal and pathological conditions has therefore deepened our understanding of vascular dynamics and their impact on hematopoiesis in health and disease. In this review, we highlight key milestones and recent advances in understanding vascular heterogeneity within BM microenvironment during development, adulthood and aging. We also explore how leukemia affects this heterogeneity and how we can take this knowledge forward to improve clinical practices. By synthesizing existing literature, we aim to address unresolved questions and outline future research directions.
Collapse
Affiliation(s)
- I L Boueya
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - L Sandhow
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - J R P Albuquerque
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - R Znaidi
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France
| | - D Passaro
- Leukemia and Niche Dynamics laboratory, Institut Cochin, Université Paris Cité UMR-S1016, INSERM U1016, CNRS UMR8104, Paris, France.
| |
Collapse
|
5
|
Zhong X, D’Antona AM, Rouse JC. Mechanistic and Therapeutic Implications of Protein and Lipid Sialylation in Human Diseases. Int J Mol Sci 2024; 25:11962. [PMID: 39596031 PMCID: PMC11594235 DOI: 10.3390/ijms252211962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases. The molecular machineries responsible for the biosynthesis of the sialylated glycans, along with their biological interacting partners, are important therapeutic strategies and targets for drug development. The purpose of this article is to comprehensively review the recent literature and provide new scientific insights into the mechanisms and therapeutic implications of sialylation in glycoproteins and glycolipids across various human diseases. Recent advances in the clinical developments of sialic acid-related therapies are also summarized and discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Jason C. Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA;
| |
Collapse
|
6
|
Gołos A, Góra-Tybor J, Robak T. Safety considerations for drugs newly approved for treating acute myeloid leukemia. Expert Opin Drug Saf 2024; 23:1393-1404. [PMID: 39364854 DOI: 10.1080/14740338.2024.2412236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/21/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) is typically characterized by a poor prognosis, mainly due to the median age at diagnosis. Until recently, treatment options were limited to intensive chemotherapy (IC) for young patients or hypomethylating agents for those ineligible for IC. Since 2017, nine molecules were registered for newly-diagnosed AML: midostaurin, gilteritinib, quizartinib, enasidenib, ivosidenib, gemtuzumab ozogamicin, CPX-351, glasdegib, and venetoclax. AREAS COVERED The review examines the safety profile of these drugs and their interactions with other agents used in supportive care. The PubMed and Google Scholar databases were searched for articles in English concerning new agents in AML from 2017 until 2023. Further relevant publications were obtained by reviewing the prescribing information and Food and Drug Administration (FDA) data. EXPERT OPINION The therapeutic spectrum in AML has broadened over several years and can also improve outcomes in older patients. However, in addition to their well-known cytotoxic activity, new molecules cause several unique, off-target toxicities. Also, potential drug-drug interactions (DDI) should be taken into consideration when choosing optimal first-line therapy; this remains a challenge in clinical practice.
Collapse
Affiliation(s)
- Aleksandra Gołos
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Joanna Góra-Tybor
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, Lodz, Poland
| |
Collapse
|
7
|
Xu X, Peng Q, Jiang X, Tan S, Yang W, Han Y, Oyang L, Lin J, Shen M, Wang J, Li H, Xia L, Peng M, Wu N, Tang Y, Wang H, Liao Q, Zhou Y. Altered glycosylation in cancer: molecular functions and therapeutic potential. Cancer Commun (Lond) 2024; 44:1316-1336. [PMID: 39305520 PMCID: PMC11570773 DOI: 10.1002/cac2.12610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 11/19/2024] Open
Abstract
Glycosylation, a key mode of protein modification in living organisms, is critical in regulating various biological functions by influencing protein folding, transportation, and localization. Changes in glycosylation patterns are a significant feature of cancer, are associated with a range of pathological activities in cancer-related processes, and serve as critical biomarkers providing new targets for cancer diagnosis and treatment. Glycoproteins like human epidermal growth factor receptor 2 (HER2) for breast cancer, alpha-fetoprotein (AFP) for liver cancer, carcinoembryonic antigen (CEA) for colon cancer, and prostate-specific antigen (PSA) for prostate cancer are all tumor biomarkers approved for clinical use. Here, we introduce the diversity of glycosylation structures and newly discovered glycosylation substrate-glycosylated RNA (glycoRNA). This article focuses primarily on tumor metastasis, immune evasion, metabolic reprogramming, aberrant ferroptosis responses, and cellular senescence to illustrate the role of glycosylation in cancer. Additionally, we summarize the clinical applications of protein glycosylation in cancer diagnostics, treatment, and multidrug resistance. We envision a promising future for the clinical applications of protein glycosylation.
Collapse
Affiliation(s)
- Xuemeng Xu
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Qiu Peng
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Xianjie Jiang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Shiming Tan
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
| | - Wenjuan Yang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
| | - Yaqian Han
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Linda Oyang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Jinguan Lin
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Mengzhou Shen
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Jiewen Wang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Haofan Li
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
| | - Longzheng Xia
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Mingjing Peng
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Yanyan Tang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
| | - Hui Wang
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Key Laboratory of Translational Radiation OncologyChangshaHunanP. R. China
| | - Qianjin Liao
- Department of OncologyHunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanP. R. China
| | - Yujuan Zhou
- The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South University/Hunan Cancer Hospital, Hunan Key Laboratory of Cancer MetabolismChangshaHunanP. R. China
- Hunan Engineering Research Center of Tumor organoid Technology and application, Public Service Platform of Tumor organoids TechnologyChangshaHunanP. R. China
- Hunan Key Laboratory of Translational Radiation OncologyChangshaHunanP. R. China
| |
Collapse
|
8
|
Murphy PV, Dhara A, Fitzgerald LS, Hever E, Konda S, Mandal K. Small lectin ligands as a basis for applications in glycoscience and glycomedicine. Chem Soc Rev 2024; 53:9428-9445. [PMID: 39162695 DOI: 10.1039/d4cs00642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Glycan recognition by lectins mediates important biological events. This Tutorial Review aims to introduce lectin-ligand interactions and show how these molecular recognition events inspire innovations such as: (i) glycomimetic ligands; (ii) multivalent ligand agonists/antagonists; (iii) ligands for precision delivery of therapies to cells, where therapies include vaccines, siRNA and LYTACs (iv) development of diagnostics. A small number of case studies are selected to demonstrate principles for development of new ligands for applications inspired by knowledge of natural glycan ligand structure and function.
Collapse
Affiliation(s)
- Paul V Murphy
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Ashis Dhara
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
| | - Liam S Fitzgerald
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
- SSPC, SFI Research Centre for Pharmaceuticals, Galway, H91TK33, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, University Road, Galway, H91TK33, Ireland
| | - Eoin Hever
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| | - Saidulu Konda
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| | - Kishan Mandal
- School of Biological and Chemical Sciences, Galway, H91TK33, Ireland.
| |
Collapse
|
9
|
Khattab S, El Sorady M, El-Ghandour A, Visani G, Piccaluga PP. Hematopoietic and leukemic stem cells homeostasis: the role of bone marrow niche. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1027-1055. [PMID: 39351440 PMCID: PMC11438561 DOI: 10.37349/etat.2024.00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/01/2024] [Indexed: 10/04/2024] Open
Abstract
The bone marrow microenvironment (BMM) has highly specialized anatomical characteristics that provide a sanctuary place for hematopoietic stem cells (HSCs) that allow appropriate proliferation, maintenance, and self-renewal capacity. Several cell types contribute to the constitution and function of the bone marrow niche. Interestingly, uncovering the secrets of BMM and its interaction with HSCs in health paved the road for research aiming at better understanding the concept of leukemic stem cells (LSCs) and their altered niche. In fact, they share many signals that are responsible for interactions between LSCs and the bone marrow niche, due to several biological similarities between LSCs and HSCs. On the other hand, LSCs differ from HSCs in their abnormal activation of important signaling pathways that regulate survival, proliferation, drug resistance, invasion, and spread. Targeting these altered niches can help in better treatment choices for hematological malignancies and bone marrow disorders in general and acute myeloid leukemia (AML) in particular. Moreover, targeting those niches may help in decreasing the emergence of drug resistance and lower the relapse rate. In this article, the authors reviewed the most recent literature on bone marrow niches and their relations with either normal HSCs and AML cells/LSC, by focusing on pathogenetic and therapeutic implications.
Collapse
Affiliation(s)
- Shaimaa Khattab
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
- Medical Research Institute, Hematology department, Alexandria University, Alexandria 21561, Egypt
| | - Manal El Sorady
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria 5310002, Egypt
| | - Ashraf El-Ghandour
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria 5310002, Egypt
| | - Giuseppe Visani
- Hematology and Stem Cell Transplant Center, Azienda Ospedaliera Marche Nord, 61121 Pesaro, Italy
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
| |
Collapse
|
10
|
Tufail M, Huang YQ, Hu JJ, Liang J, He CY, Wan WD, Jiang CH, Wu H, Li N. Cellular Aging and Senescence in Cancer: A Holistic Review of Cellular Fate Determinants. Aging Dis 2024:AD.2024.0421. [PMID: 38913050 DOI: 10.14336/ad.2024.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
This comprehensive review navigates the complex relationship between cellular aging, senescence, and cancer, unraveling the determinants of cellular fate. Beginning with an overview of cellular aging's significance in cancer, the review explores processes, changes, and molecular pathways influencing senescence. The review explores senescence as a dual mechanism in cancer, acting as a suppressor and contributor, focusing on its impact on therapy response. This review highlights opportunities for cancer therapies that target cellular senescence. The review further examines the senescence-associated secretory phenotype and strategies to modulate cellular aging to influence tumor behavior. Additionally, the review highlights the mechanisms of senescence escape in aging and cancer cells, emphasizing their impact on cancer prognosis and resistance to therapy. The article addresses current advances, unexplored aspects, and future perspectives in understanding cellular aging and senescence in cancer.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Graff Z, Wachter F, Eapen M, Lehmann L, Cooper T. Navigating Treatment Options and Communication in Relapsed Pediatric AML. Am Soc Clin Oncol Educ Book 2024; 44:e438690. [PMID: 38862135 DOI: 10.1200/edbk_438690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Despite improved outcomes in newly diagnosed pediatric AML, relapsed disease remains a therapeutic challenge. Factors contributing to slow progress in improving outcomes include inherent challenges in pediatric clinical trial accrual and the scarcity of novel targeted/immunotherapy agents available for pediatric development. This paradigm is changing, however, as international collaboration grows in parallel with the development of promising targeted agents. In this review, we discuss the therapeutic landscape of relapsed pediatric AML, including conventional chemotherapy, targeted therapies, and the challenges of drug approvals in this patient population. We highlight current efforts to improve communication among academia, industry, and regulatory authorities and discuss the importance of international collaboration to improve access to new therapies. Among the therapeutic options, we highlight the approach to second hematopoietic stem cell transplant (HSCT) and discuss which patients are most likely to benefit from this potentially curative intervention. Importantly, we acknowledge the challenges in providing these high-risk interventions to our patients and their families and the importance of shared communication and decision making when considering early-phase clinical trials and second HSCT.
Collapse
Affiliation(s)
- Zachary Graff
- Department of Pediatrics, Division of Hematology, Oncology, and BMT, Medical College of Wisconsin, Milwaukee, WI
| | - Franziska Wachter
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Mary Eapen
- Department of Medicine, Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI
| | - Leslie Lehmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Todd Cooper
- Department of Pediatrics, Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA
| |
Collapse
|
12
|
Blijlevens NMA, Reijnders B, Molendijk E. Gastrointestinal mucositis: a sign of a (systemic) inflammatory response. Curr Opin Support Palliat Care 2024; 18:78-85. [PMID: 38652460 DOI: 10.1097/spc.0000000000000701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW Gastrointestinal mucositis (GIM) is a significant complication of cancer therapy. Whilst inflammation is a central feature of GIM, studies attempting to mitigate mucosal damage via this mechanism are scarce. This review describes the relation between GIM, local and systemic inflammation, and the microbiome and its metabolites, and explores recent research on therapeutics that target this relationship. RECENT FINDINGS Recent literature underscores the pivotal role of inflammation in GIM, elucidating its bidirectional relation with disturbance of the gut microbiota composition and intestinal permeability. These events cause a heightened risk of bloodstream infections and lead to systemic inflammation. While studies investigating risk prediction models or therapeutics targeting GIM-related inflammation remain scarce, results have shown promise in finding biomarkers and alleviating GIM and its accompanying clinical symptoms. SUMMARY The findings underscore the important role of inflammation and the microbiome in GIM. Understanding the inflammatory pathways driving GIM is crucial for developing effective treatments. Further research is needed using genomics, epigenomics, and microbiomics to explore better risk prediction models or therapeutic strategies aimed at mitigating GIM-related inflammation.
Collapse
|
13
|
Afroz S, Islam N, Habib MA, Reza MS, Ashad Alam M. Multi-omics data integration and drug screening of AML cancer using Generative Adversarial Network. Methods 2024; 226:138-150. [PMID: 38670415 DOI: 10.1016/j.ymeth.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
In the era of precision medicine, accurate disease phenotype prediction for heterogeneous diseases, such as cancer, is emerging due to advanced technologies that link genotypes and phenotypes. However, it is difficult to integrate different types of biological data because they are so varied. In this study, we focused on predicting the traits of a blood cancer called Acute Myeloid Leukemia (AML) by combining different kinds of biological data. We used a recently developed method called Omics Generative Adversarial Network (GAN) to better classify cancer outcomes. The primary advantages of a GAN include its ability to create synthetic data that is nearly indistinguishable from real data, its high flexibility, and its wide range of applications, including multi-omics data analysis. In addition, the GAN was effective at combining two types of biological data. We created synthetic datasets for gene activity and DNA methylation. Our method was more accurate in predicting disease traits than using the original data alone. The experimental results provided evidence that the creation of synthetic data through interacting multi-omics data analysis using GANs improves the overall prediction quality. Furthermore, we identified the top-ranked significant genes through statistical methods and pinpointed potential candidate drug agents through in-silico studies. The proposed drugs, also supported by other independent studies, might play a crucial role in the treatment of AML cancer. The code is available on GitHub; https://github.com/SabrinAfroz/omicsGAN_codes?fbclid=IwAR1-/stuffmlE0hyWgSu2wlXo6dYlKUei3faLdlvpxTOOUPVlmYCloXf4Uk9ejK4I.
Collapse
Affiliation(s)
- Sabrin Afroz
- Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Bangladesh
| | - Nadira Islam
- Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Bangladesh
| | - Md Ahsan Habib
- Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Bangladesh; Statistical Learning Group, Bangladesh
| | - Md Selim Reza
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University, New Orleans, LA 70112, USA; Statistical Learning Group, Bangladesh
| | - Md Ashad Alam
- Ochsner Center for Outcomes Research, Ochsner Research, Ochsner Clinic Foundation, New Orleans, LA 70121, USA; Statistical Learning Group, Bangladesh.
| |
Collapse
|
14
|
Enjeti AK, Fogler WE, Smith TAG, Lincz LF, Bond DR, Magnani JL. Combining 5-azacitidine with the E-selectin antagonist uproleselan is an effective strategy to augment responses in myelodysplasia and acute myeloid leukaemia. Br J Haematol 2024; 204:2264-2274. [PMID: 38659295 DOI: 10.1111/bjh.19466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
The interaction of acute myeloid leukaemic (AML) blasts with the bone marrow (BM) microenvironment is a major determinant governing disease progression and resistance to treatment. The constitutive expression of E-selectin in the vascular compartment of BM, a key endothelial cell factor, directly mediates chemoresistance via E-selectin ligand/receptors. Despite the success of hypomethylating agent (HMA)-containing regimens to induce remissions in older AML patients, the development of primary or secondary resistance is common. We report that following treatment with 5-azacitidine, promoter regions regulating the biosynthesis of the E-selectin ligands, sialyl Lewis X, become further hypomethylated. The resultant upregulation of these gene products, in particular α(1,3)-fucosyltransferase VII (FUT7) and α(2,3)-sialyltransferase IV (ST3GAL4), likely causes functional E-selectin binding. When combined with the E-selectin antagonist uproleselan, the adhesion to E-selectin is reversed and the survival of mice transplanted with AML cells is prolonged. Finally, we present clinical evidence showing that BM myeloid cells from higher risk MDS and AML patients have the potential to bind E-selectin, and these cells are more abundant in 5-azacitidine-non-responsive patients. The collective data provide a strong rationale to evaluate 5-azacitidine in combination with the E-selectin antagonist, uproleselan, in this patient population.
Collapse
Affiliation(s)
- Anoop K Enjeti
- Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia
- NSW Health Pathology, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Precision Medicine Program, Hunter Medical Research Institute and University of Newcastle, New Lambton Heights, New South Wales, Australia
- University of Newcastle, Callagan, NSW, Australia
| | | | | | - Lisa F Lincz
- Calvary Mater Newcastle Hospital, Waratah, New South Wales, Australia
- University of Newcastle, Callagan, NSW, Australia
| | - Danielle R Bond
- Precision Medicine Program, Hunter Medical Research Institute and University of Newcastle, New Lambton Heights, New South Wales, Australia
- University of Newcastle, Callagan, NSW, Australia
| | | |
Collapse
|
15
|
Peterson JM, Smith TA, Rock EP, Magnani JL. Selectins in Biology and Human Disease: Opportunity in E-selectin Antagonism. Cureus 2024; 16:e61996. [PMID: 38983984 PMCID: PMC11232095 DOI: 10.7759/cureus.61996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2024] [Indexed: 07/11/2024] Open
Abstract
Selectins are cell adhesion proteins discovered in the 1980s. As C-type lectins, selectins contain an essential calcium ion in the ligand-binding pocket and recognize the isomeric tetrasaccharides sialyl Lewisx (sLex) and sialyl Lewisa (sLea). Three selectins, E-selectin, P-selectin, and L-selectin, play distinct, complementary roles in inflammation, hematopoiesis, and tumor biology. They have been implicated in the pathology of diverse inflammatory disorders, and several selectin antagonists have been tested clinically. E-selectin plays a unique role in leukocyte activation, making it an attractive target for intervention, for example, in sickle cell disease (SCD). This review summarizes selectin biology and pathology, structure and ligand binding, and selectin antagonists that have reached clinical testing with an emphasis on E-selectin.
Collapse
Affiliation(s)
| | | | - Edwin P Rock
- Development, GlycoMimetics, Inc., Rockville, USA
| | - John L Magnani
- Research and Development, GlycoTech Corporation, Rockville, USA
| |
Collapse
|
16
|
Tricomi J, Aoun M, Xu B, Holmdahl R, Richichi B. Stereoselective Synthesis of the Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc Trisaccharide: a new Ligand for DCAR and Mincle C-Type Lectin Receptors. Chembiochem 2024; 25:e202400026. [PMID: 38506247 DOI: 10.1002/cbic.202400026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
In this work, we have discovered that the Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc trisaccharide, a fragment of the B antigen Type-1, is a new ligand of two C-type lectin receptors (CLRs) i. e. DCAR and Mincle which are key players in different types of autoimmune diseases. Accordingly, we report here on a straightforward methodology to access pure Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc trisaccharide. A spacer with a terminal primary amine group was included at the reducing end of the GlcNAc residue thus ensuring the further functionalization of the trisaccharide Gal-α-(1→3)-Gal-β-(1→3)-GlcNAc.
Collapse
Affiliation(s)
- Jacopo Tricomi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019, Sesto, Fiorentino (Firenze, Italy
| | - Mike Aoun
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Bingze Xu
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Rikard Holmdahl
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Solna, Sweden
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019, Sesto, Fiorentino (Firenze, Italy
| |
Collapse
|
17
|
Uy GL, DeAngelo DJ, Lozier JN, Fisher DM, Jonas BA, Magnani JL, Becker PS, Lazarus HM, Winkler IG. Targeting hematologic malignancies by inhibiting E-selectin: A sweet spot for AML therapy? Blood Rev 2024; 65:101184. [PMID: 38493006 PMCID: PMC11051645 DOI: 10.1016/j.blre.2024.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
E-selectin, a cytoadhesive glycoprotein, is expressed on venular endothelial cells and mediates leukocyte localization to inflamed endothelium, the first step in inflammatory cell extravasation into tissue. Constitutive marrow endothelial E-selectin expression also supports bone marrow hematopoiesis via NF-κB-mediated signaling. Correspondingly, E-selectin interaction with E-selectin ligand (sialyl Lewisx) on acute myeloid leukemia (AML) cells leads to chemotherapy resistance in vivo. Uproleselan (GMI-1271) is a carbohydrate analog of sialyl Lewisx that blocks E-selectin binding. A Phase 2 trial of MEC chemotherapy combined with uproleselan for relapsed/refractory AML showed a median overall survival of 8.8 months and low (2%) rates of severe oral mucositis. Clinical trials seek to confirm activity in AML and mitigation of neutrophil-mediated adverse events (mucositis and diarrhea) after intensive chemotherapy. In this review we summarize E-selectin biology and the rationale for uproleselan in combination with other therapies for hematologic malignancies. We also describe uproleselan pharmacology and ongoing clinical trials.
Collapse
Affiliation(s)
- Geoffrey L Uy
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel J DeAngelo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Brian A Jonas
- Department of Internal Medicine, Division of Malignant Hematology/Cellular Therapy and Transplantation, University of California Davis, Davis, CA, USA
| | | | - Pamela S Becker
- Leukemia Division, Department of Hematology and Hematopoietic Cell Transplantation, Department of Hematologic Malignancies Translational Science, City of Hope National Medical Center, Duarte, CA, USA
| | - Hillard M Lazarus
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ingrid G Winkler
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Woolloongabba, QLD, Australia
| |
Collapse
|
18
|
Miller AB, Rodriguez FH, Langenbucher A, Lin L, Bray C, Duquette S, Zhang Y, Goulet D, Lane AA, Weinstock DM, Hemann MT, Manalis SR. Leukemia circulation kinetics revealed through blood exchange method. Commun Biol 2024; 7:483. [PMID: 38643279 PMCID: PMC11032325 DOI: 10.1038/s42003-024-06181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/10/2024] [Indexed: 04/22/2024] Open
Abstract
Leukemias and their bone marrow microenvironments undergo dynamic changes over the course of disease. However, little is known about the circulation kinetics of leukemia cells, nor the impact of specific factors on the clearance of circulating leukemia cells (CLCs) from the blood. To gain a basic understanding of CLC dynamics over the course of disease progression and therapeutic response, we apply a blood exchange method to mouse models of acute leukemia. We find that CLCs circulate in the blood for 1-2 orders of magnitude longer than solid tumor circulating tumor cells. We further observe that: (i) leukemia presence in the marrow can limit the clearance of CLCs in a model of acute lymphocytic leukemia (ALL), and (ii) CLCs in a model of relapsed acute myeloid leukemia (AML) can clear faster than their untreated counterparts. Our approach can also directly quantify the impact of microenvironmental factors on CLC clearance properties. For example, data from two leukemia models suggest that E-selectin, a vascular adhesion molecule, alters CLC clearance. Our research highlights that clearance rates of CLCs can vary in response to tumor and treatment status and provides a strategy for identifying basic processes and factors that govern the kinetics of circulating cells.
Collapse
Affiliation(s)
- Alex B Miller
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felicia H Rodriguez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Langenbucher
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Computation and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Bray
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Duquette
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ye Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan Goulet
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Merck and Co., Rahway, NJ, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Scott R Manalis
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
Rabi LT, Valente DZ, de Souza Teixeira E, Peres KC, de Oliveira Almeida M, Bufalo NE, Ward LS. Potential new cancer biomarkers revealed by quantum chemistry associated with bioinformatics in the study of selectin polymorphisms. Heliyon 2024; 10:e28830. [PMID: 38586333 PMCID: PMC10998122 DOI: 10.1016/j.heliyon.2024.e28830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Understanding the complex mechanisms involved in diseases caused by or related to important genetic variants has led to the development of clinically useful biomarkers. However, the increasing number of described variants makes it difficult to identify variants worthy of investigation, and poses challenges to their validation. We combined publicly available datasets and open source robust bioinformatics tools with molecular quantum chemistry methods to investigate the involvement of selectins, important molecules in the cell adhesion process that play a fundamental role in the cancer metastasis process. We applied this strategy to investigate single nucleotide variants (SNPs) in the intronic and UTR regions and missense SNPs with amino acid changes in the SELL, SELP, SELE, and SELPLG genes. We then focused on thyroid cancer, seeking these SNPs potential to identify biomarkers for susceptibility, diagnosis, prognosis, and therapeutic targets. We demonstrated that SELL gene polymorphisms rs2229569, rs1131498, rs4987360, rs4987301 and rs2205849; SELE gene polymorphisms rs1534904 and rs5368; rs3917777, rs2205894 and rs2205893 of SELP gene; and rs7138370, rs7300972 and rs2228315 variants of SELPLG gene may produce important alterations in the DNA structure and consequent changes in the morphology and function of the corresponding proteins. In conclusion, we developed a strategy that may save valuable time and resources in future investigations, as we were able to provide a solid foundation for the selection of selectin gene variants that may become important biomarkers and deserve further investigation in cancer patients. Large-scale clinical studies in different ethnic populations and laboratory experiments are needed to validate our results.
Collapse
Affiliation(s)
- Larissa Teodoro Rabi
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- .Department of Biomedicine, Nossa Senhora do Patrocínio University Center (CEUNSP), Itu, SP, Brazil
- Institute of Health Sciences, Paulista University (UNIP), Campinas, SP, Brazil
| | - Davi Zanoni Valente
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| | - Elisangela de Souza Teixeira
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| | - Karina Colombera Peres
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- Department of Medicine, Max Planck University Center, Campinas, SP, Brazil
| | | | - Natassia Elena Bufalo
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
- Department of Medicine, Max Planck University Center, Campinas, SP, Brazil
- Department of Medicine, São Leopoldo Mandic and Research Center, Campinas, SP, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, State University of Campinas (UNI-CAMP), Campinas, SP, Brazil
| |
Collapse
|
20
|
Zhong S, Kurish H, Walchack R, Li H, Edwards J, Singh A, Advani A. Efficacy and safety of mitoxantrone, etoposide, and cytarabine for treatment of relapsed or refractory acute myeloid leukemia. Leuk Res 2024; 139:107468. [PMID: 38460433 DOI: 10.1016/j.leukres.2024.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND/RATIONALE Most patients with acute myeloid leukemia (AML) develop relapsed or refractory (R/R) disease after receiving initial induction chemotherapy. Salvage chemotherapy followed by allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only curative therapy for R/R AML. Mitoxantrone, etoposide, and cytarabine (MEC) is the current standard of care salvage regimen for R/R AML at Cleveland Clinic. The primary objective was to determine the overall remission rate (ORR: defined as patients achieving complete remission (CR) or complete remission with incomplete hematologic recovery (CRi)) in R/R AML patients who received MEC. METHODS Adult patients with R/R AML treated with MEC between July 1, 2014 and September 30, 2022 were included. ORR and its association with baseline characteristics were determined. Secondary outcomes included overall survival (OS), event-free survival (EFS), relapse-free survival (RFS), and safety. RESULTS Sixty patients were evaluated. The ORR was 51.7% (33.3% CR and 18.3% CRi). The median time from receipt of MEC to CR/CRi was 7.7 weeks. Patients with bone marrow blasts ≤20% and peripheral blood blasts ≤30% at MEC initiation were more than twice as likely to achieve CR/CRi compared to those with a higher blast burden. The median OS was 6.3 months. Twenty-four (40.0%) patients proceeded to alloHSCT. Twenty-one (35.0%) patients were transferred to the intensive care unit (ICU) during their admission. CONCLUSIONS MEC is an effective salvage regimen for patients with R/R AML, especially among those with low disease burden at initiation. Febrile neutropenia, infections, and severe oral mucositis were common with MEC administration.
Collapse
Affiliation(s)
- Sharon Zhong
- Department of Pharmacy, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | - Heena Kurish
- Department of Pharmacy, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Robert Walchack
- Department of Pharmacy, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Hong Li
- Taussig Cancer Institute, Cleveland Clinic, 10201 Carnegie Ave, Cleveland, OH 44106, USA
| | - Jessi Edwards
- Department of Pharmacy, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| | - Abhay Singh
- Taussig Cancer Institute, Cleveland Clinic, 10201 Carnegie Ave, Cleveland, OH 44106, USA
| | - Anjali Advani
- Taussig Cancer Institute, Cleveland Clinic, 10201 Carnegie Ave, Cleveland, OH 44106, USA
| |
Collapse
|
21
|
Gobbo M, Joy J, Guedes H, Shazib MA, Anderson C, Abdalla-Aslan R, Peechatanan K, Lajolo C, Nasir KS, Gueiros LA, Nagarajan N, Hafezi Motlagh K, Kandwal A, Rupe C, Xu Y, Ehrenpreis ED, Tonkaboni A, Epstein JB, Bossi P, Wardill HR, Graff SL. Emerging pharmacotherapy trends in preventing and managing oral mucositis induced by chemoradiotherapy and targeted agents. Expert Opin Pharmacother 2024; 25:727-742. [PMID: 38808634 DOI: 10.1080/14656566.2024.2354451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION The introduction of targeted therapy and immunotherapy has tremendously changed the clinical outcomes and prognosis of cancer patients. Despite innovative pharmacological therapies and improved radiotherapy (RT) techniques, patients continue to suffer from side effects, of which oral mucositis (OM) is still the most impactful, especially for quality of life. AREAS COVERED We provide an overview of current advances in cancer pharmacotherapy and RT, in relation to their potential to cause OM, and of the less explored and more recent literature reports related to the best management of OM. We have analyzed natural/antioxidant agents, probiotics, mucosal protectants and healing coadjuvants, pharmacotherapies, immunomodulatory and anticancer agents, photobiomodulation and the impact of technology. EXPERT OPINION The discovery of more precise pathophysiologic mechanisms of CT and RT-induced OM has outlined that OM has a multifactorial origin, including direct effects, oxidative damage, upregulation of immunologic factors, and effects on oral flora. A persistent upregulated immune response, associated with factors related to patients' characteristics, may contribute to more severe and long-lasting OM. The goal is strategies to conjugate individual patient, disease, and therapy-related factors to guide OM prevention or treatment. Despite further high-quality research is warranted, the issue of prevention is paramount in future strategies.
Collapse
Affiliation(s)
- Margherita Gobbo
- Unit of Oral and Maxillofacial Surgery, Ca' Foncello Hospital, Piazzale Ospedale, Treviso, Italy
| | - Jamie Joy
- Department of Pharmacy, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Helena Guedes
- Medical Oncology Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Porto, Portugal
| | - Muhammad Ali Shazib
- Workman School of Dental Medicine, High Point University, High Point, NC, USA
| | - Carryn Anderson
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, USA
| | - Ragda Abdalla-Aslan
- Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Khunthong Peechatanan
- Supportive and Palliative Care Unit, Monash Health, Clayton, VIC, Australia
- Department of Medicine, Division of Medical Oncology, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - Carlo Lajolo
- Head and Neck Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS, School of Dentistry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Khawaja Shehryar Nasir
- Department of Internal Medicine, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Luiz Alcino Gueiros
- Department of Clinic and Preventive Dentistry & Oral Medicine Unit, Health Sciences Center, Hospital das Clínicas, Federal University of Pernambuco, Recife, Brazil
| | - Nivethitha Nagarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, California, USA
| | - Kimia Hafezi Motlagh
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Abhishek Kandwal
- Himalayan Institute of Medical Sciences Cancer Research Institute Swami Rama Himalayan University, Uttarakhand, India
| | - Cosimo Rupe
- Head and Neck Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS, School of Dentistry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Yuanming Xu
- Department of Diagnostic Sciences, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Eli D Ehrenpreis
- Department of Medicine, Advocate Lutheran General Hospital, Park Ridge, IL, USA
- E2Bio Life Sciences, Skokie, IL, USA
| | - Arghavan Tonkaboni
- Oral Medicine Department, School of Dentistry, Tehran University of Medical Science, Tehran, Iran
| | - Joel B Epstein
- Department of Surgery, City of Hope National Cancer Center, Duarte, CA, USA
| | - Paolo Bossi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Hannah R Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephanie L Graff
- Lifespan Cancer Institute, Providence, RI, USA
- Legorreta Cancer Center, Brown University, Providence, RI, USA
| |
Collapse
|
22
|
Ling RE, Cross JW, Roy A. Aberrant stem cell and developmental programs in pediatric leukemia. Front Cell Dev Biol 2024; 12:1372899. [PMID: 38601080 PMCID: PMC11004259 DOI: 10.3389/fcell.2024.1372899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Hematopoiesis is a finely orchestrated process, whereby hematopoietic stem cells give rise to all mature blood cells. Crucially, they maintain the ability to self-renew and/or differentiate to replenish downstream progeny. This process starts at an embryonic stage and continues throughout the human lifespan. Blood cancers such as leukemia occur when normal hematopoiesis is disrupted, leading to uncontrolled proliferation and a block in differentiation of progenitors of a particular lineage (myeloid or lymphoid). Although normal stem cell programs are crucial for tissue homeostasis, these can be co-opted in many cancers, including leukemia. Myeloid or lymphoid leukemias often display stem cell-like properties that not only allow proliferation and survival of leukemic blasts but also enable them to escape treatments currently employed to treat patients. In addition, some leukemias, especially in children, have a fetal stem cell profile, which may reflect the developmental origins of the disease. Aberrant fetal stem cell programs necessary for leukemia maintenance are particularly attractive therapeutic targets. Understanding how hijacked stem cell programs lead to aberrant gene expression in place and time, and drive the biology of leukemia, will help us develop the best treatment strategies for patients.
Collapse
Affiliation(s)
- Rebecca E. Ling
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Joe W. Cross
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
23
|
Sanz-Ortega L, Andersson A, Carlsten M. Harnessing upregulated E-selectin while enhancing SDF-1α sensing redirects infused NK cells to the AML-perturbed bone marrow. Leukemia 2024; 38:579-589. [PMID: 38182818 PMCID: PMC10912028 DOI: 10.1038/s41375-023-02126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 01/07/2024]
Abstract
Increased bone marrow (BM) homing of NK cells is associated with positive outcome in patients with acute myeloid leukemia (AML) treated within adoptive NK cell transfer trials. While most efforts to further improve the efficacy focus on augmenting NK cell persistence and cytotoxicity, few address their ability to home to the tumor. Here, we decipher how AML growth alters the BM niche to impair NK cell infiltration and how insights can be utilized to resolve this issue. We show that AML development gradually impairs the BM homing capacity of infused NK cells, which was tightly linked to loss of SDF-1α in this environment. AML development also triggered up-regulation of E-selectin on BM endothelial cells. Given the poor E-selectin-binding capacity of NK cells, introduction of fucosyltransferase-7 (FUT7) to the NK cells per mRNA transfection resulted in potent E-selectin binding and stronger adhesion to E-selectin+ endothelial cells. Co-introduction of FUT7 and gain-of-function CXCR4 (CXCR4R334X) redirected NK cell homing to the BM of AML-bearing mice nearly to the levels in AML-free mice. This work shows how impaired NK cell homing caused by AML-induced microenvironmental changes can be overcome by genetic engineering. We speculate our insights can help further advance future NK cell immunotherapies.
Collapse
Affiliation(s)
- Laura Sanz-Ortega
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Andersson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlsten
- Center for Hematology and Regenerative Medicine, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Center for Cell Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
24
|
Daver NG, Montesinos P, DeAngelo DJ, Wang ES, Papadantonakis N, Todisco E, Sweet KL, Pemmaraju N, Lane AA, Torres-Miñana L, Thompson JE, Konopleva MY, Sloss CM, Watkins K, Bedse G, Du Y, Malcolm KE, Zweidler-McKay PA, Kantarjian HM. Pivekimab sunirine (IMGN632), a novel CD123-targeting antibody-drug conjugate, in relapsed or refractory acute myeloid leukaemia: a phase 1/2 study. Lancet Oncol 2024; 25:388-399. [PMID: 38423051 PMCID: PMC11103591 DOI: 10.1016/s1470-2045(23)00674-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Pivekimab sunirine (IMGN632) is a first-in-class antibody-drug conjugate comprising a high-affinity CD123 antibody, cleavable linker, and novel indolinobenzodiazepine pseudodimer payload. CD123 is overexpressed in several haematological malignancies, including acute myeloid leukaemia. We present clinical data on pivekimab sunirine in relapsed or refractory acute myeloid leukaemia. METHODS This first-in-human, phase 1/2 dose-escalation and dose-expansion study enrolled participants aged 18 years or older at nine hospitals in France, Italy, Spain, and the USA with CD123+ haematological malignancies (Eastern Cooperative Oncology Group performance status of 0-1); participants reported here were in a cohort of participants with acute myeloid leukaemia who were refractory to or had relapsed on one or more previous treatments for acute myeloid leukaemia. The 3 + 3 dose-escalation phase evaluated two dosing schedules: schedule A (once every 3 weeks, on day 1 of a 3-week cycle) and fractionated schedule B (days 1, 4, and 8 of a 3-week cycle). The dose-expansion phase evaluated two cohorts: one cohort given 0·045 mg/kg of bodyweight (schedule A) and one cohort given 0·090 mg/kg of bodyweight (schedule A). The primary endpoints were the maximum tolerated dose and the recommended phase 2 dose. Antileukaemia activity (overall response and a composite complete remission assessment) was a secondary endpoint. The study is ongoing and registered with ClinicalTrials.gov, NCT03386513. FINDINGS Between Dec 29, 2017, and May 27, 2020, 91 participants were enrolled (schedule A, n=68; schedule B, n=23). 30 (44%) of schedule A participants were female and 38 (56%) were male; 60 (88%) were White, six (9%) were Black or African American, and two (3%) were other races. Pivekimab sunirine at doses of 0·015 mg/kg to 0·450 mg/kg in schedule A was administered in six escalating doses with no maximum tolerated dose defined; three dose-limiting toxicities were observed (reversible veno-occlusive disease; 0·180 mg/kg, n=1 and 0·450 mg/kg, n=1; and neutropenia; 0·300 mg/kg, n=1). Schedule B was not pursued further on the basis of comparative safety and antileukaemia findings with schedule A. The recommended phase 2 dose was selected as 0·045 mg/kg once every 3 weeks. At the recommended phase 2 dose (n=29), the most common grade 3 or worse treatment-related adverse events were febrile neutropenia (three [10%]), infusion-related reactions (two [7%]), and anaemia (two [7%]). Treatment-related serious adverse events occurring in 5% or more of participants treated at the recommended phase 2 dose were febrile neutropenia (two [7%]) and infusion-related reactions (two [7%]). Among 68 participants who received schedule A, one death (1%) was considered to be treatment-related (cause unknown; 0·300 mg/kg cohort). At the recommended phase 2 dose, the overall response rate was 21% (95% CI 8-40; six of 29) and the composite complete remission rate was 17% (95% CI 6-36; five of 29). INTERPRETATION Pivekimab sunirine showed single-agent activity across multiple doses, with a recommended phase 2 dose of 0·045 mg/kg once every 3 weeks. These findings led to a phase 1b/2 study of pivekimab sunirine plus azacitidine and venetoclax in patients with CD123-positive acute myeloid leukaemia. FUNDING ImmunoGen.
Collapse
Affiliation(s)
| | - Pau Montesinos
- Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | | | - Eunice S Wang
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu CH, Weng TF, Li JP, Wu KH. Biology and Therapeutic Properties of Mesenchymal Stem Cells in Leukemia. Int J Mol Sci 2024; 25:2527. [PMID: 38473775 DOI: 10.3390/ijms25052527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
This comprehensive review delves into the multifaceted roles of mesenchymal stem cells (MSCs) in leukemia, focusing on their interactions within the bone marrow microenvironment and their impact on leukemia pathogenesis, progression, and treatment resistance. MSCs, characterized by their ability to differentiate into various cell types and modulate the immune system, are integral to the BM niche, influencing hematopoietic stem cell maintenance and functionality. This review extensively explores the intricate relationship between MSCs and leukemic cells in acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, and chronic lymphocytic leukemia. This review also addresses the potential clinical applications of MSCs in leukemia treatment. MSCs' role in hematopoietic stem cell transplantation, their antitumor effects, and strategies to disrupt chemo-resistance are discussed. Despite their therapeutic potential, the dual nature of MSCs in promoting and inhibiting tumor growth poses significant challenges. Further research is needed to understand MSCs' biological mechanisms in hematologic malignancies and develop targeted therapeutic strategies. This in-depth exploration of MSCs in leukemia provides crucial insights for advancing treatment modalities and improving patient outcomes in hematologic malignancies.
Collapse
Affiliation(s)
- Cheng-Hsien Wu
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Te-Fu Weng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
26
|
Roman Diaz JL, Vazquez Martinez M, Khimani F. New Approaches for the Treatment of AML beyond the 7+3 Regimen: Current Concepts and New Approaches. Cancers (Basel) 2024; 16:677. [PMID: 38339429 PMCID: PMC10854755 DOI: 10.3390/cancers16030677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Fifty years have passed since the development of the first chemotherapy regimen for treating acute myelogenous leukemia (AML), with the approval in 1973 of the cytarabine daunorubicin (7+3) regimen. Until recently, patients diagnosed with AML had very limited treatment options and depended primarily on chemotherapy in combinations, doses, or schedules of the same drugs. Patients with advanced age, comorbidities, or relapsed or refractory disease were left with no effective options for treatment. New advances in the understanding of the biology and the molecular and genetic changes associated with leukemogenesis, as well as recent advances in drug development, have resulted in the introduction over the last few years of novel therapeutic agents and approaches to the treatment of AML as well as a new classification of the disease. In this article, we will discuss the new classification of AML; the mechanisms, actions, and indications of the new targeted therapies; the chemotherapy combinations; and the potential role of cellular therapies as new treatment options for this terrible disease.
Collapse
Affiliation(s)
| | | | - Farhad Khimani
- Moffitt Cancer Center, Bone Marrow Transplant and Cellular Immunotherapy, Tampa, FL 33612, USA (M.V.M.)
| |
Collapse
|
27
|
Hemsing AL, Førde JL, Reikvam H, Herfindal L. The Rac1-inhibitor EHop-016 attenuates AML cell migration and enhances the efficacy of daunorubicin in MOLM-13 transplanted zebrafish larvae. Transl Oncol 2024; 40:101876. [PMID: 38185059 PMCID: PMC10818244 DOI: 10.1016/j.tranon.2024.101876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024] Open
Abstract
Ras-related C3 botulinum toxin substrate 1 (Rac1) is a GTPase implicated in cell migration and homing of hematopoietic cells to the hematopoietic niche, and is commonly overexpressed in acute myeloid leukemia (AML). This can lead to quiescence of leukemic blasts in the niche and reduced response to therapy. We investigated the Rac1 inhibitor EHop-016 on AML by assessing its effects on MOLM-13 cells in vitro and in zebrafish larvae, regarding cell motility and therapeutic potential in combination with daunorubicin (DNR). In vitro assessment of proliferation and viability was by measurement of 3H-thymidine incorporation and detection of Annexin V/PI positive cells. Cell motility was evaluated by measurement of migration in a transwell system. Fluorescently stained MOLM-13 cells were injected into zebrafish larvae, and individual cells followed by confocal microscopy. Cell accumulation in the caudal hematopoietic tissue (CHT) was studied using a 12-hour timelapse, while in vivo efficacy of DNR, EHop-016 or a combination was investigated over 24 h. The in vitro results showed that EHop-016 acted synergistically in combination with DNR in reducing the viability of MOLM-13 cells (Bliss synergy score above 10 %). Non-toxic concentrations of EHop-016 reduced cell migration. These findings were reproduced in zebrafish larvae: larvae receiving both DNR and EHop-016 had significantly reduced tumor burden compared to the untreated control or single treatments. The accumulation of MOLM-13 cells in the CHT was reduced in larvae receiving EHop-016 treatment. Our findings demonstrate that targeting Rac1 in AML holds promise as a complementary treatment to established chemotherapy and should be further investigated.
Collapse
Affiliation(s)
- Anette Lodvir Hemsing
- Department of Medicine, Haukeland University Hospital, pb 1400, Bergen 5021, Norway; Department of Clinical Science, University of Bergen, Jonas Lies vei 87, Bergen 5021, Norway
| | - Jan-Lukas Førde
- Department of Medicine, Haukeland University Hospital, pb 1400, Bergen 5021, Norway; Centre for Pharmacy, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, Bergen 5021, Norway
| | - Håkon Reikvam
- Department of Medicine, Haukeland University Hospital, pb 1400, Bergen 5021, Norway; Department of Clinical Science, University of Bergen, Jonas Lies vei 87, Bergen 5021, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, Bergen 5021, Norway.
| |
Collapse
|
28
|
O'Dwyer M, Kirkham-McCarthy L, Cerreto M, Foà R, Natoni A. PSGL-1 decorated with sialyl Lewis a/x promotes high affinity binding of myeloma cells to P-selectin but is dispensable for E-selectin engagement. Sci Rep 2024; 14:1756. [PMID: 38243063 PMCID: PMC10798956 DOI: 10.1038/s41598-024-52212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024] Open
Abstract
Dissemination of multiple myeloma into the bone marrow proceeds through sequential steps mediated by a variety of adhesion molecules and chemokines that eventually results in the extravasation of malignant plasma cells into this protective niche. Selectins are a class of C-type lectins that recognize carbohydrate structures exposed on blood borne cells and participate in the first step of the extravasation cascade, serving as brakes to slow down circulating cells enabling them to establish firm adhesion onto the endothelium. Myeloma cells enriched for the expression of selectin ligands present an aggressive disease in vivo that is refractory to bortezomib treatment and can be reverted by small molecules targeting E-selectin. In this study, we have defined the molecular determinants of the selectin ligands expressed on myeloma cells. We show that PSGL-1 is the main protein carrier of sialyl Lewisa/x-related structures in myeloma. PSGL-1 decorated with sialyl Lewisa/x is essential for P-selectin binding but dispensable for E-selectin binding. Moreover, sialylation is required for E-selectin engagement whereas high affinity binding to P-selectin occurs even in the absence of sialic acid. This study provides further knowledge on the biology of selectin ligands in myeloma, opening the way to their clinical application as diagnostic tools and therapeutic targets.
Collapse
Affiliation(s)
- Michael O'Dwyer
- Translational Research Facility, University of Galway, Galway, Ireland
| | - Lucy Kirkham-McCarthy
- Biomedical Sciences, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Marina Cerreto
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.
| |
Collapse
|
29
|
Allert C, Müller-Tidow C, Blank MF. The relevance of the hematopoietic niche for therapy resistance in acute myeloid leukemia. Int J Cancer 2024; 154:197-209. [PMID: 37565773 DOI: 10.1002/ijc.34684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
The expansion of acute myeloid leukemia (AML) blasts not only suppresses normal hematopoiesis, but also alters the microenvironment. The interplay of different components of the bone marrow gives rise to altered metabolic states and activates signaling pathways which lead to resistance and impede effective therapy. Therefore, the underlying processes and mechanisms represent attractive therapeutic leverage points for overcoming therapy resistance in AML. Here, we briefly discuss resistance mechanisms based on cell interactions and secreted soluble factors in the hematopoietic niche and provide an overview of niche-related therapeutic targets currently undergoing preclinical and clinical investigation which may help improve the outcome in AML therapy.
Collapse
Affiliation(s)
- Catana Allert
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- University of Heidelberg Medical Faculty, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- University of Heidelberg Medical Faculty, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Maximilian Felix Blank
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Division Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
30
|
Thol F, Döhner H, Ganser A. How I treat refractory and relapsed acute myeloid leukemia. Blood 2024; 143:11-20. [PMID: 37944143 DOI: 10.1182/blood.2023022481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
ABSTRACT Most patients with acute myeloid leukemia (AML) develop refractory/relapsed (R/R) disease even in the presence of novel and targeted therapies. Given the biological complexity of the disease and differences in frontline treatments, there are therapies approved for only subgroups of R/R AML, and enrollment in clinical trials should be first priority. Allogeneic hematopoietic cell transplantation (HCT) is the only potentially curative strategy for most patients. Therapeutic approaches, including allogeneic HCT, triggered by the presence of measurable residual disease (MRD), have recently evolved to prevent overt hematologic relapse. Salvage therapy with chemotherapy or targeted therapy is frequently administered before HCT to reduce the leukemic burden. Gilteritinib is approved by the Food and Drug Administration and European Medicines Agency for patients with relapsed FLT3 mutated AML, whereas targeted therapy for relapsed IDH1/2 mutated AML has only FDA approval. Patients who are R/R after azacitidine and venetoclax (AZA/VEN) have a dismal outcome. In this setting, even available targeted therapies show unsatisfactory results. Examples of ongoing developments include menin inhibitors, a targeted therapy for patients with mutated NPM1 or KMT2A rearrangements, antibodies targeting the macrophage immune checkpoint CD47, and triple combinations involving AZA/VEN. The latter cause significant myelosuppressive effects, which make it challenging to find the right schedule and dose.
Collapse
Affiliation(s)
- Felicitas Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
31
|
Murphy LA, Winters AC. Emerging and Future Targeted Therapies for Pediatric Acute Myeloid Leukemia: Targeting the Leukemia Stem Cells. Biomedicines 2023; 11:3248. [PMID: 38137469 PMCID: PMC10741170 DOI: 10.3390/biomedicines11123248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Acute myeloid leukemia (AML) is a rare subtype of acute leukemia in the pediatric and adolescent population but causes disproportionate morbidity and mortality in this age group. Standard chemotherapeutic regimens for AML have changed very little in the past 3-4 decades, but the addition of targeted agents in recent years has led to improved survival in select subsets of patients as well as a better biological understanding of the disease. Currently, one key paradigm of bench-to-bedside practice in the context of adult AML is the focus on leukemia stem cell (LSC)-targeted therapies. Here, we review current and emerging immunotherapies and other targeted agents that are in clinical use for pediatric AML through the lens of what is known (and not known) about their LSC-targeting capability. Based on a growing understanding of pediatric LSC biology, we also briefly discuss potential future agents on the horizon.
Collapse
Affiliation(s)
- Lindsey A. Murphy
- Department of Pediatrics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Amanda C. Winters
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
32
|
Hernández-Sánchez A, Bullinger L. Recent advances in precision medicine for acute myeloid leukemia. Curr Opin Oncol 2023; 35:581-588. [PMID: 37621173 DOI: 10.1097/cco.0000000000000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) is a heterogeneous disease, in which treatment response and patient survival are highly conditioned by the leukemia biology. The aim of this review is to summarize recent advances in AML classification, risk stratification models, measurable residual disease (MRD) and the increasing number of treatment options that are paving the way towards precision medicine in AML. RECENT FINDINGS AML classification and risk stratification were recently updated by incorporating novel molecular markers that are important for diagnosis and outcome prediction. In addition, the impact of co-mutational patterns is under investigation and novel approaches using machine learning algorithms are starting to be used for individualized risk estimation. Molecular markers are also becoming useful in predicting response to non-intensive treatments. MRD informs of treatment response with high sensitivity, allowing dynamic patient risk assessment and early intervention. Finally, important advances were made in AML therapy, with an increasing number of targeted therapies becoming available and many novel treatment approaches being under development with promising early results. SUMMARY A better understanding of AML biology is leading to improved risk stratification and important advances in treatments, which are allowing the development of precision medicine in AML at an unprecedented pace.
Collapse
Affiliation(s)
- Alberto Hernández-Sánchez
- University Hospital of Salamanca
- Institute of Biomedical Research of Salamanca (IBSAL) , Salamanca, Spain
| | | |
Collapse
|
33
|
Lang TJL, Damm F, Bullinger L, Frick M. Mechanisms of Resistance to Small Molecules in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:4573. [PMID: 37760544 PMCID: PMC10526197 DOI: 10.3390/cancers15184573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, great progress has been made in the therapy of AML by targeting cellular processes associated with specific molecular features of the disease. Various small molecules inhibiting FLT3, IDH1/IDH2, and BCL2 have already gained approval from the respective authorities and are essential parts of personalized therapeutic regimens in modern therapy of AML. Unfortunately, primary and secondary resistance to these inhibitors is a frequent problem. Here, we comprehensively review the current state of knowledge regarding molecular processes involved in primary and secondary resistance to these agents, covering both genetic and nongenetic mechanisms. In addition, we introduce concepts and strategies for how these resistance mechanisms might be overcome.
Collapse
Affiliation(s)
- Tonio Johannes Lukas Lang
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
| | - Frederik Damm
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mareike Frick
- Department of Hematology, Oncology and Cancer Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, 13353 Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Humphries S, Bond DR, Germon ZP, Keely S, Enjeti AK, Dun MD, Lee HJ. Crosstalk between DNA methylation and hypoxia in acute myeloid leukaemia. Clin Epigenetics 2023; 15:150. [PMID: 37705055 PMCID: PMC10500762 DOI: 10.1186/s13148-023-01566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) is a deadly disease characterised by the uncontrolled proliferation of immature myeloid cells within the bone marrow. Altered regulation of DNA methylation is an important epigenetic driver of AML, where the hypoxic bone marrow microenvironment can help facilitate leukaemogenesis. Thus, interactions between epigenetic regulation and hypoxia signalling will have important implications for AML development and treatment. MAIN BODY This review summarises the importance of DNA methylation and the hypoxic bone marrow microenvironment in the development, progression, and treatment of AML. Here, we focus on the role hypoxia plays on signalling and the subsequent regulation of DNA methylation. Hypoxia is likely to influence DNA methylation through altered metabolic pathways, transcriptional control of epigenetic regulators, and direct effects on the enzymatic activity of epigenetic modifiers. DNA methylation may also prevent activation of hypoxia-responsive genes, demonstrating bidirectional crosstalk between epigenetic regulation and the hypoxic microenvironment. Finally, we consider the clinical implications of these interactions, suggesting that reduced cell cycling within the hypoxic bone marrow may decrease the efficacy of hypomethylating agents. CONCLUSION Hypoxia is likely to influence AML progression through complex interactions with DNA methylation, where the therapeutic efficacy of hypomethylating agents may be limited within the hypoxic bone marrow. To achieve optimal outcomes for AML patients, future studies should therefore consider co-treatments that can promote cycling of AML cells within the bone marrow or encourage their dissociation from the bone marrow.
Collapse
Affiliation(s)
- Sam Humphries
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Danielle R Bond
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Zacary P Germon
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Anoop K Enjeti
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, 2298, Australia
- New South Wales Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Heather J Lee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
35
|
Miller AB, Langenbucher A, Rodriguez FH, Lin L, Bray C, Duquette S, Zhang Y, Goulet D, Lane AA, Weinstock DM, Hemann MT, Manalis SR. Leukemia circulation kinetics revealed through blood exchange method. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556043. [PMID: 37732189 PMCID: PMC10508764 DOI: 10.1101/2023.09.03.556043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Leukemias and their bone marrow microenvironment are known to undergo dynamic changes over the course of disease. However, relatively little is known about the circulation kinetics of leukemia cells, nor the impact of specific factors on the clearance of circulating leukemia cells (CLCs) from the blood. To gain a basic understanding of leukemia cell dynamics over the course of disease progression and therapeutic response, we apply a blood exchange method to mouse models of acute leukemia. We find that CLCs circulate in the blood for 1-2 orders of magnitude longer than solid tumor circulating tumor cells. We further observe that: i) leukemia presence in the marrow can limit the clearance of CLCs in a model of acute lymphocytic leukemia (ALL), and ii) CLCs in a model of relapsed acute myeloid leukemia (AML) can clear faster than their untreated counterparts. Our approach can also directly quantify the impact of microenvironmental factors on CLC clearance properties. For example, data from two leukemia models suggest that E-selectin, a vascular adhesion molecule, alters CLC clearance. Our research highlights that clearance rates of CLCs can vary in response to tumor and treatment status and provides a strategy for identifying basic processes and factors that govern the kinetics of circulating cells.
Collapse
Affiliation(s)
- Alex B Miller
- Harvard-MIT Department of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Boston, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam Langenbucher
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Computation and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Felicia H Rodriguez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christina Bray
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah Duquette
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ye Zhang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dan Goulet
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew A Lane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michael T Hemann
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
36
|
Barbosa K, Deshpande AJ. Therapeutic targeting of leukemia stem cells in acute myeloid leukemia. Front Oncol 2023; 13:1204895. [PMID: 37601659 PMCID: PMC10437214 DOI: 10.3389/fonc.2023.1204895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
One of the distinguishing properties of hematopoietic stem cells is their ability to self-renew. Since self-renewal is important for the continuous replenishment of the hematopoietic stem cell pool, this property is often hijacked in blood cancers. Acute myeloid leukemia (AML) is believed to be arranged in a hierarchy, with self-renewing leukemia stem cells (LSCs) giving rise to the bulk tumor. Some of the earliest characterizations of LSCs were made in seminal studies that assessed the ability of prospectively isolated candidate AML stem cells to repopulate the entire heterogeneity of the tumor in mice. Further studies indicated that LSCs may be responsible for chemotherapy resistance and therefore act as a reservoir for secondary disease and leukemia relapse. In recent years, a number of studies have helped illuminate the complexity of clonality in bone marrow pathologies, including leukemias. Many features distinguishing LSCs from normal hematopoietic stem cells have been identified, and these studies have opened up diverse avenues for targeting LSCs, with an impact on the clinical management of AML patients. This review will discuss the role of self-renewal in AML and its implications, distinguishing characteristics between normal and leukemia stem cells, and opportunities for therapeutic targeting of AML LSCs.
Collapse
Affiliation(s)
- Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Aniruddha J. Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
37
|
Demir D. Insights into the New Molecular Updates in Acute Myeloid Leukemia Pathogenesis. Genes (Basel) 2023; 14:1424. [PMID: 37510328 PMCID: PMC10378849 DOI: 10.3390/genes14071424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
As our understanding of the biologic basis of acute myeloid leukemia evolves, so do the classification systems used to describe this group of cancers. Early classification systems focused on the morphologic features of blasts and other cell populations; however, the explosion in genomic technologies has led to rapid growth in our understanding of these diseases and thus the refinement of classification systems. Recently, two new systems, the International Consensus Classification system and the 5th edition of the World Health Organization classification of tumors of hematopoietic and lymphoid tissues, were published to incorporate the latest genomic advances in blood cancer. This article reviews the major updates in acute myeloid leukemia in both systems and highlights the biologic insights that have driven these changes.
Collapse
Affiliation(s)
- Derya Demir
- Department of Pathology, Ege University Faculty of Medicine, Izmir 35100, Turkey
| |
Collapse
|
38
|
Matsumoto Y, Ju T. Aberrant Glycosylation as Immune Therapeutic Targets for Solid Tumors. Cancers (Basel) 2023; 15:3536. [PMID: 37509200 PMCID: PMC10377354 DOI: 10.3390/cancers15143536] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation occurs at all major types of biomolecules, including proteins, lipids, and RNAs to form glycoproteins, glycolipids, and glycoRNAs in mammalian cells, respectively. The carbohydrate moiety, known as glycans on glycoproteins and glycolipids, is diverse in their compositions and structures. Normal cells have their unique array of glycans or glycome which play pivotal roles in many biological processes. The glycan structures in cancer cells, however, are often altered, some having unique structures which are termed as tumor-associated carbohydrate antigens (TACAs). TACAs as tumor biomarkers are glycan epitopes themselves, or glycoconjugates. Some of those TACAs serve as tumor glyco-biomarkers in clinical practice, while others are the immune therapeutic targets for treatment of cancers. A monoclonal antibody (mAb) to GD2, an intermediate of sialic-acid containing glycosphingolipids, is an example of FDA-approved immune therapy for neuroblastoma indication in young adults and many others. Strategies for targeting the aberrant glycans are currently under development, and some have proceeded to clinical trials. In this review, we summarize the currently established and most promising aberrant glycosylation as therapeutic targets for solid tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
39
|
Wang J, Tomlinson B, Lazarus HM. Update on Small Molecule Targeted Therapies for Acute Myeloid Leukemia. Curr Treat Options Oncol 2023; 24:770-801. [PMID: 37195589 DOI: 10.1007/s11864-023-01090-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/18/2023]
Abstract
OPINION STATEMENT The search for effective therapies for the highly heterogenous disease acute myeloid leukemia (AML) has remained elusive. While cytotoxic therapies can induce complete remission and even, at times, long-term survival, this approach is associated with significant toxic effects to visceral organs and worsening of immune dysfunction and marrow suppression leading to death. Sophisticated molecular studies have revealed defects within the AML cell that can be exploited by utilizing small molecule agents to target these defects, often dubbed "target therapy." Several medications have already established new standards of care for many patients with AML, including FDA-approved agents that inhibitor IDH1, IDH2, FLT3, and BCL-2. Emerging small molecules hold additional to add to the armamentarium of AML treatment options including MCL-1 inhibitors, TP53 inhibitors, menin inhibitors, and E-selectin antagonists. Moreover, the increasing options also mean that future combinations of these agents need to be explored, including with cytotoxic drugs and other newer emerging strategies such as immunotherapies for AML. Recent investigations continue to show that overcoming many of the challenges of treating AML finally is on the horizon.
Collapse
Affiliation(s)
- Jiasheng Wang
- Division of Hematology, Department of Medicine, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11000 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Benjamin Tomlinson
- Division of Hematology, Department of Medicine, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11000 Euclid Avenue, Cleveland, OH, 44106, USA.
| | - Hillard M Lazarus
- Division of Hematology, Department of Medicine, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11000 Euclid Avenue, Cleveland, OH, 44106, USA
| |
Collapse
|
40
|
Ennis S, Conforte A, O’Reilly E, Takanlu JS, Cichocka T, Dhami SP, Nicholson P, Krebs P, Ó Broin P, Szegezdi E. Cell-cell interactome of the hematopoietic niche and its changes in acute myeloid leukemia. iScience 2023; 26:106943. [PMID: 37332612 PMCID: PMC10275994 DOI: 10.1016/j.isci.2023.106943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
The bone marrow (BM) is a complex microenvironment, coordinating the production of billions of blood cells every day. Despite its essential role and its relevance to hematopoietic diseases, this environment remains poorly characterized. Here we present a high-resolution characterization of the niche in health and acute myeloid leukemia (AML) by establishing a single-cell gene expression database of 339,381 BM cells. We found significant changes in cell type proportions and gene expression in AML, indicating that the entire niche is disrupted. We then predicted interactions between hematopoietic stem and progenitor cells (HSPCs) and other BM cell types, revealing a remarkable expansion of predicted interactions in AML that promote HSPC-cell adhesion, immunosuppression, and cytokine signaling. In particular, predicted interactions involving transforming growth factor β1 (TGFB1) become widespread, and we show that this can drive AML cell quiescence in vitro. Our results highlight potential mechanisms of enhanced AML-HSPC competitiveness and a skewed microenvironment, fostering AML growth.
Collapse
Affiliation(s)
- Sarah Ennis
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
- Discipline of Bioinformatics, School of Mathematical & Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Alessandra Conforte
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Eimear O’Reilly
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Javid Sabour Takanlu
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Tatiana Cichocka
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Sukhraj Pal Dhami
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Pamela Nicholson
- Next Generation Sequencing Platform, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Pilib Ó Broin
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
- Discipline of Bioinformatics, School of Mathematical & Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Eva Szegezdi
- The SFI Centre for Research Training in Genomics Data Science, Galway, Ireland
- Apoptosis Research Centre, School of Biological & Chemical Sciences, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
41
|
Vlad DB, Dumitrascu DI, Dumitrascu AL. Golgi's Role in the Development of Possible New Therapies in Cancer. Cells 2023; 12:1499. [PMID: 37296620 PMCID: PMC10252985 DOI: 10.3390/cells12111499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The Golgi apparatus is an important organelle found in most eukaryotic cells. It plays a vital role in the processing and sorting of proteins, lipids and other cellular components for delivery to their appropriate destinations within the cell or for secretion outside of the cell. The Golgi complex also plays a role in the regulation of protein trafficking, secretion and post-translational modifications, which are significant in the development and progression of cancer. Abnormalities in this organelle have been observed in various types of cancer, although research into chemotherapies that target the Golgi apparatus is still in its early stages. There are a few promising approaches that are being investigated: (1) Targeting the stimulator of interferon genes protein: The STING pathway senses cytosolic DNA and activates several signaling events. It is regulated by numerous post-translational modifications and relies heavily on vesicular trafficking. Based on some observations which state that a decreased STING expression is present in some cancer cells, agonists for the STING pathway have been developed and are currently being tested in clinical trials, showing encouraging results. (2) Targeting glycosylation: Altered glycosylation, which refers to changes in the carbohydrate molecules that are attached to proteins and lipids in cells, is a common feature of cancer cells, and there are several methods that thwart this process. For example, some inhibitors of glycosylation enzymes have been shown to reduce tumor growth and metastasis in preclinical models of cancer. (3) Targeting Golgi trafficking: The Golgi apparatus is responsible for the sorting and trafficking of proteins within the cell, and disrupting this process may be a potential therapeutic approach for cancer. The unconventional protein secretion is a process that occurs in response to stress and does not require the involvement of the Golgi organelles. P53 is the most frequently altered gene in cancer, dysregulating the normal cellular response to DNA damage. The mutant p53 drives indirectly the upregulation of the Golgi reassembly-stacking protein 55kDa (GRASP55). Through the inhibition of this protein in preclinical models, the reduction of the tumoral growth and metastatic capacity have been obtained successfully. This review supports the hypothesis that the Golgi apparatus may be the target of cytostatic treatment, considering its role in the molecular mechanisms of the neoplastic cells.
Collapse
Affiliation(s)
- Dragos-Bogdan Vlad
- Emergency Clinical Hospital of Saint Pantelimon, 021659 Bucharest, Romania;
| | - David-Ioan Dumitrascu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alina-Laura Dumitrascu
- Emergency Clinical Hospital of Saint Pantelimon, 021659 Bucharest, Romania;
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
42
|
Gao XN, Su YF, Li MY, Jing Y, Wang J, Xu L, Zhang LL, Wang A, Wang YZ, Zheng X, Li YF, Liu DH. Single-center phase 2 study of PD-1 inhibitor combined with DNA hypomethylation agent + CAG regimen in patients with relapsed/refractory acute myeloid leukemia. Cancer Immunol Immunother 2023:10.1007/s00262-023-03454-y. [PMID: 37166484 DOI: 10.1007/s00262-023-03454-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Abstract
Anti-PD-1 monotherapy had limited clinical efficacy in relapsed/refractory (r/r) AML patients with higher PD-1 and PD-L1 expression. Hence, we investigated the efficacy and safety of PD-1 inhibitor with DNA hypomethylating agent (HMA) + CAG regimen in patients who had failed prior AML therapy. In this phase 2, single-arm study, r/r AML patients received azacitidine or decitabine plus CAG regimen with tislelizumab. Primary endpoints were efficacy (objective response rate [ORR]) and safety. Secondary endpoints included overall survival (OS), event-free survival (EFS) and duration of response (DOR). Statistical analyses were performed using Stata 14.0 and SPSS 20.0 software where P < 0.05 denoted significance. Twenty-seven patients were enrolled patients and completed 1 cycle, and 14 (51.9%) and 4 (14.8%) patients completed 2 and 3 cycles, respectively. ORR was 63% (14: complete remission [CR]/CR with incomplete hematologic recovery [CRi], 3: partial remission (PR), 10: no response [NR]). Median OS (mOS) and EFS were 9.7 and 9.2 months, respectively. With a median follow-up of 8.2 months (1.1-26.9), the mOS was not reached in responders (CR/CRi/PR) while it was 2.4 months (0.0-5.4) in nonresponders (P = 0.002). Grade 2-3 immune-related adverse events (irAEs) were observed in 4 (14.8%) patients and 3 nonresponders died of lung infection after treatment. Tislelizumab + HMA + CAG regimen showed improved outcomes in r/r AML patients with lower pretherapy leukemia burden. irAEs were mild and low-grade and higher pretherapy bone marrow CD4+ CD127+ PD-1+ T cells might serve as a predictor of treatment response.ClinicalTrials.gov identifier NCT04541277.
Collapse
Affiliation(s)
- Xiao-Ning Gao
- Senior Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, 8 East Main Street, Beijing, 100071, China.
| | - Yong-Feng Su
- Senior Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, 8 East Main Street, Beijing, 100071, China
| | - Meng-Yue Li
- Senior Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, 8 East Main Street, Beijing, 100071, China
- Graduate School, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Jing
- Department of Hematology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jun Wang
- Senior Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, 8 East Main Street, Beijing, 100071, China
| | - Lei Xu
- Senior Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, 8 East Main Street, Beijing, 100071, China
| | - Lin-Lin Zhang
- Department of Hematology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - An Wang
- Senior Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, 8 East Main Street, Beijing, 100071, China
| | - Yi-Zhi Wang
- Senior Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, 8 East Main Street, Beijing, 100071, China
| | - Xuan Zheng
- Senior Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, 8 East Main Street, Beijing, 100071, China
| | - Yan-Fen Li
- Department of Hematology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Dai-Hong Liu
- Senior Department of Hematology, The Fifth Medical Center, Chinese PLA General Hospital, 8 East Main Street, Beijing, 100071, China.
| |
Collapse
|
43
|
Patterson SD, Copland M. The Bone Marrow Immune Microenvironment in CML: Treatment Responses, Treatment-Free Remission, and Therapeutic Vulnerabilities. Curr Hematol Malig Rep 2023; 18:19-32. [PMID: 36780103 PMCID: PMC9995533 DOI: 10.1007/s11899-023-00688-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/14/2023]
Abstract
PURPOSE OF REVIEW Tyrosine kinase inhibitors (TKIs) are very successful for the treatment of chronic myeloid leukaemia (CML) but are not curative in most patients due to persistence of TKI-resistant leukaemia stem cells (LSCs). The bone marrow immune microenvironment (BME) provides protection to the LSC through multidimensional interactions, driving therapy resistance, and highlighting the need to circumvent these protective niches therapeutically. This review updates the evidence for interactions between CML cells and the immune microenvironment with a view to identifying targetable therapeutic vulnerabilities and describes what is known about the role of immune regulation in treatment-free remission (TFR). RECENT FINDINGS Intracellular signalling downstream of the chemotactic CXCL12-CXCR4 axis, responsible for disrupted homing in CML, has been elucidated in LSCs, highlighting novel therapeutic opportunities. In addition, LSCs expressing CXCL12-cleaving surface protein CD26 were highly correlated with CML burden, building on existing evidence. Newer findings implicate the adhesion molecule CD44 in TKI resistance, while JAK/STAT-mediated resistance to TKIs may occur downstream of extrinsic signalling in the BME. Exosomal BME-LSC cross-communication has also been explored. Finally, further detail on the phenotypes of natural killer (NK) cells putatively involved in maintaining successful TFR has been published, and NK-based immunotherapies are discussed. Recent studies highlight and build on our understanding of the BME in CML persistence and TKI resistance, pinpointing therapeutically vulnerable interactions. Repurposing existing drugs and/or the development of novel inhibitors targeting these relationships may help to overcome these issues in TKI-resistant CML and be used as adjuvant therapy for sustained TFR.
Collapse
Affiliation(s)
- Shaun David Patterson
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Paul O'Gorman Leukaemia Research Centre, University of Glasgow, 21 Shelley Road, Glasgow, G12 0ZD, UK.
| | - Mhairi Copland
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, Paul O'Gorman Leukaemia Research Centre, University of Glasgow, 21 Shelley Road, Glasgow, G12 0ZD, UK.
| |
Collapse
|
44
|
Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol 2023; 98:502-526. [PMID: 36594187 DOI: 10.1002/ajh.26822] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023]
Abstract
DISEASE OVERVIEW Acute myeloid leukemia (AML) is a frequently fatal bone marrow stem cell cancer characterized by unbridled proliferation of malignant marrow stem cells with associated infection, anemia, and bleeding. An improved understanding of pathophysiology, improvements in measurement technology and at least 10 recently approved therapies have led to revamping the diagnostic, prognostic, and therapeutic landscape of AML. DIAGNOSIS One updated and one new classification system were published in 2022, both emphasizing the integration of molecular analysis into daily practice. Differences between the International Consensus Classification and major revisions from the previous 2016 WHO system provide both challenges and opportunities for care and clinical research. RISK ASSESSMENT AND MONITORING The European Leukemia Net 2022 risk classification integrates knowledge from novel molecular findings and recent trial results, as well as emphasizing dynamic risk based on serial measurable residual disease assessment. However, how to leverage our burgeoning ability to measure a small number of potentially malignant myeloid cells into therapeutic decision making is controversial. RISK ADAPTED THERAPY The diagnostic and therapeutic complexity plus the availability of newly approved agents requires a nuanced therapeutic algorithm which should integrate patient goals of care, comorbidities, and disease characteristics including the specific mutational profile of the patient's AML. The framework we suggest only represents the beginning of the discussion.
Collapse
Affiliation(s)
- Shai Shimony
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Rabin Medical Center and Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
45
|
Blöchl C, Wang D, Mayboroda OA, Lageveen-Kammeijer GSM, Wuhrer M. Transcriptionally imprinted glycomic signatures of acute myeloid leukemia. Cell Biosci 2023; 13:31. [PMID: 36788594 PMCID: PMC9926860 DOI: 10.1186/s13578-023-00981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a genetically and phenotypically heterogeneous disease that has been suffering from stagnant survival curves for decades. In the endeavor toward improved diagnosis and treatment, cellular glycosylation has emerged as an interesting focus area in AML. While mechanistic insights are still limited, aberrant glycosylation may affect intracellular signaling pathways of AML blasts, their interactions within the microenvironment, and even promote chemoresistance. Here, we performed a meta-omics study to portray the glycomic landscape of AML, thereby screening for potential subtypes and responsible glyco-regulatory networks. RESULTS Initially, by integrating comprehensive N-, O-, and glycosphingolipid (GSL)-glycomics of AML cell lines with transcriptomics from public databases, we were able to pinpoint specific glycosyltransferases (GSTs) and upstream transcription factors (TFs) associated with glycan phenotypes. Intriguingly, subtypes M5 and M6, as classified by the French-American-British (FAB) system, emerged with distinct glycomic features such as high (sialyl) Lewisx/a ((s)Lex/a) and high sialylation, respectively. Exploration of transcriptomics datasets of primary AML cells further substantiated and expanded our findings from cell lines as we observed similar gene expression patterns and regulatory networks that were identified to be involved in shaping AML glycan signatures. CONCLUSIONS Taken together, our data suggest transcriptionally imprinted glycomic signatures of AML, reflecting their differentiation status and FAB classification. This study expands our insights into the emerging field of AML glycosylation and paves the way for studies of FAB class-associated glycan repertoires of AML blasts and their functional implications.
Collapse
Affiliation(s)
- Constantin Blöchl
- grid.10419.3d0000000089452978Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Di Wang
- grid.10419.3d0000000089452978Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Oleg A. Mayboroda
- grid.10419.3d0000000089452978Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Guinevere S. M. Lageveen-Kammeijer
- grid.10419.3d0000000089452978Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
46
|
Abstract
Both the cascade whereby a blood-borne cell enters a tissue and the anchoring of hematopoietic stem/progenitor cells (HSPCs) within bone marrow critically pivots on cell-cell interactions mediated by E-selectin binding to its canonical carbohydrate ligand, the tetrasaccharide termed "sialylated Lewis X" (sLeX). E-selectin, a member of the selectin class of adhesion molecules that is exclusively expressed by vascular endothelium, engages sLeX-bearing glycoconjugates that adorn mature leukocytes and HSPCs, as well as malignant cells, thereby permitting these cells to extravasate into various tissues. E-selectin expression is induced on microvascular endothelial cells within inflammatory loci at all tissues. However, conspicuously, E-selectin is constitutively expressed within microvessels in skin and marrow and, additionally, is inducibly expressed at these sites. Within the marrow, E-selectin receptor/ligand interactions promote lodgment of HSPCs and their malignant counterparts within hematopoietic growth-promoting microenvironments, collectively known as "vascular niches". Indeed, E-selectin receptor/ligand interactions have been reported to regulate both hematopoietic stem, and leukemic, cell proliferative dynamics. As such, signaling induced via engagement of E-selectin ligands is gaining interest as a critical mediator of homeostatic and malignant hematopoiesis, and this review will present current perspectives on the glycoconjugates mediating E-selectin receptor/ligand interactions and their currently defined role(s) in leukemogenesis.
Collapse
Affiliation(s)
- Evan Ales
- Department of Translational Medicine & The Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Robert Sackstein
- Department of Translational Medicine & The Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States.
| |
Collapse
|
47
|
Venugopal S, Xie Z, Zeidan AM. An overview of novel therapies in advanced clinical testing for acute myeloid leukemia. Expert Rev Hematol 2023; 16:109-119. [PMID: 36718500 DOI: 10.1080/17474086.2023.2174521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION The past decade has seen a sea change in the AML landscape with vastly improved cognizance of molecular pathogenesis, clonal evolution, and importance of measurable residual disease. Since 2017, the therapeutic armamentarium of AML has considerably expanded with the approval of midostaurin, enasidenib, ivosidenib, gilteritinib, and venetoclax in combination with hypomethylating agents and others. Nevertheless, relapse and treatment refractoriness remain the insurmountable challenges in AML therapy. This has galvanized the leukemic research community leading to the discovery and development of agents that specifically target gene mutations, molecularly agnostic therapies that exploit immune environment, apoptotic pathways, leukemic cell surface antigens and so forth. AREAS COVERED This article provides an overview of the pathophysiology of AML in the context of non-cellular immune and molecularly targeted and agnostic therapies that are in clinical trial development in AML. EXPERT OPINION Ever growing understanding of the molecular pathogenesis and metabolomics in AML has allowed the researchers to identify targets directed at specific genes and metabolic pathways. As a result, AML therapy is constantly evolving and so are the escape mechanisms leading to disease relapse. Therefore, it is of paramount importance to sequentially evaluate the patient during AML treatment and intervene at the right time.
Collapse
Affiliation(s)
- Sangeetha Venugopal
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Zhuoer Xie
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, FL, USA
| | - Amer M Zeidan
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
48
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022; 24:563. [PMID: 36614005 PMCID: PMC9820412 DOI: 10.3390/ijms24010563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the bone marrow niche has become a promising new source of potential therapeutic targets, particularly for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvironment in AML development and progression, and as a source of novel therapeutic targets for AML. The main focus of this review is on drugs that modulate/target this bone marrow microenvironment and have been examined in in vivo models or clinically.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa F. Lincz
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| |
Collapse
|
49
|
Eulberg D, Frömming A, Lapid K, Mangasarian A, Barak A. The prospect of tumor microenvironment-modulating therapeutical strategies. Front Oncol 2022; 12:1070243. [PMID: 36568151 PMCID: PMC9772844 DOI: 10.3389/fonc.2022.1070243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple mechanisms promote tumor prosperity, which does not only depend on cell-autonomous, inherent abnormal characteristics of the malignant cells that facilitate rapid cell division and tumor expansion. The neoplastic tissue is embedded in a supportive and dynamic tumor microenvironment (TME) that nurtures and protects the malignant cells, maintaining and perpetuating malignant cell expansion. The TME consists of different elements, such as atypical vasculature, various innate and adaptive immune cells with immunosuppressive or pro-inflammatory properties, altered extracellular matrix (ECM), activated stromal cells, and a wide range of secreted/stroma-tethered bioactive molecules that contribute to malignancy, directly or indirectly. In this review, we describe the various TME components and provide examples of anti-cancer therapies and novel drugs under development that aim to target these components rather than the intrinsic processes within the malignant cells. Combinatory TME-modulating therapeutic strategies may be required to overcome the resistance to current treatment options and prevent tumor recurrence.
Collapse
|
50
|
Huerga-Domínguez S, Villar S, Prósper F, Alfonso-Piérola A. Updates on the Management of Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:4756. [PMID: 36230677 PMCID: PMC9563665 DOI: 10.3390/cancers14194756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Acute myeloid leukemia is a heterogeneous disease defined by a large spectrum of genetic aberrations that are potential therapeutic targets. New targeted therapies have changed the landscape for a disease with poor outcomes. They are more effective than standard chemotherapy with a good safety profile. For "fit patients" in first-line, the combination of gemtuzumab ozogamicin or midostaurin with intensive chemotherapy or Vyxeos is now considered the "standard of care" for selected patients. On the other hand, for "unfit patients", azacitidine-venetoclax has been consolidated as a frontline treatment, while other combinations with magrolimab or ivosidenib are in development. Nevertheless, global survival results, especially in relapsed or refractory patients, remain unfavorable. New immunotherapies or targeted therapies, such as Menin inhibitors or sabatolimab, represent an opportunity in this situation. Future directions will probably come from combinations of different targeted therapies ("triplets") and maintenance strategies guided by measurable residual disease.
Collapse
Affiliation(s)
| | | | | | - Ana Alfonso-Piérola
- Hematology and Hemotherapy Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|