1
|
Xiong ZY, Shen YJ, Zhang SZ, Zhu HH. A review of immunotargeted therapy for Philadelphia chromosome positive acute lymphoblastic leukaemia: making progress in chemotherapy-free regimens. Hematology 2024; 29:2335856. [PMID: 38581291 DOI: 10.1080/16078454.2024.2335856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/23/2024] [Indexed: 04/08/2024] Open
Abstract
Philadelphia chromosome-positive acute lymphoblastic leukemia (PH + ALL) is the most common cytogenetic abnormality of B-ALL in adults and is associated with poor prognosis. Previously, the only curative treatment option in PH + ALL was allogeneic hematopoietic stem cell transplantation (Allo-HSCT). Since 2000, targeted therapy combined with chemotherapy, represented by the tyrosine kinase inhibitor Imatinib, has become the first-line treatment for PH + ALL. Currently, the remission rate and survival rate of Imatinib are superior to those of simple chemotherapy, and it can also improve the efficacy of transplantation. More recently, some innovative immune-targeted therapy greatly improved the prognosis of PH + ALL, such as Blinatumomab and Inotuzumab Ozogamicin. For patients with ABL1 mutations and those who have relapsed or are refractory to other treatments, targeted oral small molecule drugs, monoclonal antibodies, Bispecific T cell Engagers (BiTE), and chimeric antigen receptor (CAR) T cells immunotherapy are emerging as potential treatment options. These new therapeutic interventions are changing the treatment landscape for PH + ALL. In summary, this review discusses the current advancements in targeted therapeutic agents shift in the treatment strategy of PH + ALL towards using more tolerable chemotherapy-free induction and consolidation regimens confers better disease outcomes and might obviate the need for HSCT.
Collapse
Affiliation(s)
- Zhen-Yu Xiong
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, People's Republic of China
| | - Yao-Jia Shen
- Department of Hematology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Shi-Zhong Zhang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, People's Republic of China
| | - Hong-Hu Zhu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, People's Republic of China
- College of Basic Medical Sciences, China Three Gorges University, Yichang, People's Republic of China
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
- Chinese Institutes for Medical Research, Beijing, People's Republic of China
| |
Collapse
|
2
|
Tachibana T, Tanaka M, Noguchi Y, Najima Y, Sadato D, Harada Y, Tamai Y, Doki N, Nakajima H. Successful treatment of two cases with Philadelphia-chromosome positive acute lymphoblastic leukemia who relapsed after allogeneic stem cell transplantation and the treatments with novel immunotherapies and ponatinib. Hematology 2024; 29:2360843. [PMID: 38828928 DOI: 10.1080/16078454.2024.2360843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The outcomes of relapsed Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL) resistant to new drugs such as tyrosine kinase inhibitors, inotuzumab ozogamicin (InO) and blinatumomab are dismal. We treated two cases of Ph+ALL resistant to these drugs that achieved long-term survival after treatment with chimeric antigen receptor (CAR)-T cell therapy or a second allogeneic hematopoietic stem cell transplantation (HCT) with a sequential conditioning regimen. Case 1: A 15-year-old boy was diagnosed with Ph+ALL. Despite the second HCT after the treatment of ponatinib and blinatumomab, hematological relapse occurred. InO was ineffective and he was transferred to a CAR-T center. After the CAR-T cell therapy, negative measurable residual disease (MRD) was achieved and maintained for 38 months without maintenance therapy. Case 2: A 21-year-old man was diagnosed with Ph+ALL. Hematological relapse occurred after the first HCT. Despite of the treatment with InO, ponatinib, and blinatumomab, hematological remission was not achieved. The second HCT was performed using a sequential conditioning regimen with clofarabine. Negative MRD was subsequently achieved and maintained for 42 months without maintenance therapy. These strategies are suggestive and helpful to treat Ph+ALL resistant to multiple immunotherapies.
Collapse
Affiliation(s)
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Yuma Noguchi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Daichi Sadato
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yuka Harada
- Clinical Research Support Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yotaro Tamai
- Division of Hematology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Hideaki Nakajima
- Department of Hematology and Clinical Immunology, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
3
|
Ogino J, Dou Y. Histone methyltransferase KMT2A: Developmental regulation to oncogenic transformation. J Biol Chem 2024; 300:107791. [PMID: 39303915 DOI: 10.1016/j.jbc.2024.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Our current understanding of epigenetic regulation is deeply rooted in the founding contributions of Dr C. David Allis. In 2002, Allis and colleagues first characterized the lysine methyltransferase activity of the mammalian KMT2A (MLL1), a paradigm-shifting discovery that brings epigenetic dysregulation into focus for many human diseases that carry KMT2A mutations. This review will discuss the current understanding of the multifaceted roles of KMT2A in development and disease, which has paved the way for innovative and upcoming approaches to cancer therapy.
Collapse
Affiliation(s)
- Jayme Ogino
- Division of Pediatric Hematology-Oncology, Children's Hospital Los Angeles, Los Angeles, California, USA; Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Yali Dou
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
4
|
Yin L, Wan L, Zhang Y, Hua S, Shao X. Recent Developments and Evolving Therapeutic Strategies in KMT2A-Rearranged Acute Leukemia. Cancer Med 2024; 13:e70326. [PMID: 39428967 PMCID: PMC11491690 DOI: 10.1002/cam4.70326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Rearrangements of the histone-lysine-N-methyltransferase (KMT2A), previously referred to as mixed-lineage leukemia (MLL), are among the most common chromosomal abnormalities in patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), involving numerous different fusion partners. KMT2A-rearranged (KMT2A-r) leukemia is characterized by a rapid onset, aggressive progression, and significantly worse prognosis compared to non-KMT2A-r leukemias. Even with contemporary chemotherapeutic treatments and hematopoietic stem cell transplantations (HSCT), patients with KMT2A-r leukemia typically experience poor outcomes and limited responses to these therapies. OBJECTIVES This review aims to consolidate recent studies on the general gene characteristics and associated mechanisms of KMT2A-r acute leukemia, as well as the cytogenetics, immunophenotype, clinical presentation, and risk stratification of both KMT2A-r-AML and KMT2A-r-ALL. Particularly, the treatment targets in KMT2A-r acute leukemia are examined. METHODS A comprehensive review was carried out by systematically synthesizing existing literature on PubMed, using the combination of the keywords 'KMT2A-rearranged acute leukemia', 'lymphoblastic leukemia', 'myeloid leukemia', and 'therapy'. The available studies were screened for selection based on quality and relevance. CONCLUSIONS Studies indicate that KMT2A rearrangements are present in over 70% of infant leukemia cases, approximately 10% of adult AML cases, and numerous instances of secondary acute leukemias, making it a disease of critical concern to clinicians and researchers alike. The future of KMT2A-r acute leukemia research is characterized by an expanding knowledge of the disease's biology, with an emphasis on personalized therapies, immunotherapies, genomic advancements, and innovative therapeutic combinations. The overarching aim is to enhance patient outcomes, lessen the disease burden, and elevate the quality of life for those affected. Ongoing research and clinical trials in this area continue to offer promising opportunities for refining treatment strategies and improving patient prognosis.
Collapse
Affiliation(s)
- Lei Yin
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| | - Lin Wan
- Department of PediatricsThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Youjian Zhang
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| | - Shenghao Hua
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| | - Xuejun Shao
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
5
|
Yao Y, Zhou J, Li Y, Shi S, Yu L, Wu D, Wang Y. CD19 CAR T-cell therapy in relapsed TCF3-HLF-positive B-cell acute lymphoblastic leukemia. Ann Hematol 2024:10.1007/s00277-024-05945-z. [PMID: 39145779 DOI: 10.1007/s00277-024-05945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Yao Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jin Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yanting Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Sensen Shi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Yu
- Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Iacobucci I, Papayannidis C. SOHO State of the Art Updates and Next Questions | Approach to BCR::ABL1-Like Acute Lymphoblastic Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024:S2152-2650(24)00296-9. [PMID: 39217000 DOI: 10.1016/j.clml.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Philadelphia-like (Ph-like) or BCR::ABL1-like acute lymphoblastic leukemia (ALL) is a common high-risk subtype of B-cell precursor ALL (B-ALL) characterized by a diverse range of genetic alterations that challenge diagnose and converge on distinct kinase and cytokine receptor-activated gene expression profiles, resembling those from BCR::ABL1-positive ALL from which its nomenclature. The presence of kinase-activating genetic drivers has prompted the investigation in preclinical models and clinical settings of the efficacy of tyrosine kinase inhibitor (TKI)-based treatments. This was further supported by an inadequate response to conventional chemotherapy, high rates of induction failure and persistent measurable residual disease (MRD) positivity, which translate in lower survival rates compared to other B-ALL subtypes. Therefore, innovative approaches are underway, including the integration of TKIs with frontline regimens and the early introduction of immunotherapy strategies (monoclonal antibodies, T-cell engagers, drug-conjugates, and CAR-T cells). Allogeneic hematopoietic cell transplantation (HSCT) is currently recommended for adult BCR::ABL1-like ALL patients in first complete remission. However, the incorporation of novel therapies, a more accurate diagnosis and a more sensitive MRD assessment may modify the risk stratification and the indication for transplant in these patients.
Collapse
Affiliation(s)
- Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Cristina Papayannidis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia Seragnoli, Bologna, Italy
| |
Collapse
|
7
|
Leung AWK, Cai J, Wan Z, Qin J, Fang Y, Sun L, Zhu J, Hu S, Wang N, Gao P, Tian X, Zhu X, Zhou F, Wu X, Ju X, Zhai X, Jiang H, Hu Q, Liang C, Yang L, Zhang H, Tang J, Gao J, Pui CH, Li CK. Outcome of infants with acute lymphoblastic leukemia treated with the Chinese Children's Cancer Group Acute Lymphoblastic Leukemia 2015 study protocol. Haematologica 2024; 109:2726-2731. [PMID: 38634141 PMCID: PMC11290514 DOI: 10.3324/haematol.2024.285201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Alex W K Leung
- Department of Pediatrics, Hong Kong Children's Hospital, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jiaoyang Cai
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology and Oncology of China Ministry of Health, and National Children's Medical Center, Shanghai
| | - Zhi Wan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, Chengdu
| | - Jiefen Qin
- Department of Hematology/Oncology, Chongqing Medical University Affiliated Children's Hospital, Chongqing
| | - Yongjun Fang
- Department of Hematology/Oncology, Children's Hospital of Nanjing Medical University, Nanjing
| | - Lirong Sun
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao
| | - Jiashi Zhu
- Department of Hematology/Oncology, Shanghai Children's Hospital, Shanghai
| | - Shaoyan Hu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou
| | - Ningling Wang
- Department of Pediatrics, Anhui Medical University Second Affiliated Hospital, Anhui
| | - Pan Gao
- Department of Hematology/Oncology, Xi 'an Northwest Women's and Children's Hospital, Xi 'an
| | - Xin Tian
- Department of Hematology/Oncology, KunMing Children's Hospital, Kunming
| | - Xiaofan Zhu
- Department of Pediatrics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Fen Zhou
- Department of Pediatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan
| | - Xiaowen Zhai
- Department of Hematology/Oncology, Children's Hospital of Fudan University, Shanghai
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou
| | - Qun Hu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Changda Liang
- Department of Hematology/Oncology, Jiangxi Provincial Children's Hospital, Nanchang
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital Central South University, Changsha
| | - Hui Zhang
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology and Oncology of China Ministry of Health, and National Children's Medical Center, Shanghai
| | - Jingyan Tang
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology and Oncology of China Ministry of Health, and National Children's Medical Center, Shanghai
| | - Ju Gao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, Chengdu
| | - Ching-Hon Pui
- Departments of Oncology, Pathology, and Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Chi-Kong Li
- Department of Pediatrics, Hong Kong Children's Hospital, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
8
|
Molina JC, Carraway HE. Treatment of Relapsed Acute Lymphocytic Leukemia in Adult Patients. Curr Treat Options Oncol 2024; 25:993-1010. [PMID: 38916714 PMCID: PMC11329612 DOI: 10.1007/s11864-024-01213-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/26/2024]
Abstract
OPINION STATEMENT For adult patients diagnosed with relapsed B cell-ALL (B-ALL), there have been significant improvements in available treatment options following the FDA approval of novel cellular and immunotherapy approaches - blinatumomab, chimeric antigen receptor (CAR) T therapy, and inotuzumab. For the last several years, research has focused on gaining a better understanding of the effects of specific disease and patient characteristics on long-term outcomes with each of the FDA-approved agents. In combination with the better prevention and management of unique, treatment-specific toxicities, providers can now select the best available treatment option for each individual patient diagnosed with relapsed, adult B-ALL needing therapy. This has allowed more patients to proceed to consolidative hematopoietic stem cell transplant (HSCT), and long-term data has even brought into question the need for HSCT for long-term durable remission for all patients. However, with the adoption of blinatumomab, CAR T therapy, and inotuzumab in front-line treatment regimens, it remains unclear what effects this will have on patients with relapsed B-ALL following exposure to these novel cellular and immunotherapy therapies. Unlike B-ALL, similar advances have unfortunately not yet been realized in T cell-ALL (T-ALL). Currently, new therapeutic approaches are underway to utilize similar targeting strategies that have been successful in B-ALL - monoclonal antibodies, bispecific T-cell engagers (BiTE), and CAR T therapy. Like B-ALL, the only existing approved therapy for relapsed T-ALL, nelarabine, is now used in the upfront treatment setting potentially limiting its utility in relapsed disease. Over the next several years, the hope is for patients diagnosed with T-ALL to experience the drastic improvement in outcomes as has been seen for patients diagnosed with B-ALL over the last decade.
Collapse
Affiliation(s)
- John C Molina
- Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| | - Hetty E Carraway
- Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| |
Collapse
|
9
|
Dreyzin A, Rankin AW, Luciani K, Gavrilova T, Shah NN. Overcoming the challenges of primary resistance and relapse after CAR-T cell therapy. Expert Rev Clin Immunol 2024; 20:745-763. [PMID: 38739466 PMCID: PMC11180598 DOI: 10.1080/1744666x.2024.2349738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION While CAR T-cell therapy has led to remarkable responses in relapsed B-cell hematologic malignancies, only 50% of patients ultimately have a complete, sustained response. Understanding the mechanisms of resistance and relapse after CAR T-cell therapy is crucial to future development and improving outcomes. AREAS COVERED We review reasons for both primary resistance and relapse after CAR T-cell therapies. Reasons for primary failure include CAR T-cell manufacturing problems, suboptimal fitness of autologous T-cells themselves, and intrinsic features of the underlying cancer and tumor microenvironment. Relapse after initial response to CAR T-cell therapy may be antigen-positive, due to CAR T-cell exhaustion or limited persistence, or antigen-negative, due to antigen-modulation on the target cells. Finally, we discuss ongoing efforts to overcome resistance to CAR T-cell therapy with enhanced CAR constructs, manufacturing methods, alternate cell types, combinatorial strategies, and optimization of both pre-infusion conditioning regimens and post-infusion consolidative strategies. EXPERT OPINION There is a continued need for novel approaches to CAR T-cell therapy for both hematologic and solid malignancies to obtain sustained remissions. Opportunities for improvement include development of new targets, optimally combining existing CAR T-cell therapies, and defining the role for adjunctive immune modulators and stem cell transplant in enhancing long-term survival.
Collapse
Affiliation(s)
- Alexandra Dreyzin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Oncology, Children's National Hospital, Washington DC, USA
| | - Alexander W Rankin
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Katia Luciani
- School of Medicine, University of Limerick, Limerick, Ireland
| | | | - Nirali N Shah
- Pediatric Oncology Branch, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Li Y, Hu GH, Xu LP, Zhang XH, Liu KY, Suo P, Wang Y, Cheng YF, Huang XJ. CAR-T Therapy Followed by Hematopoietic Stem Cell Transplantation Can Improve Survival in Children Relapsed/Refractory Philadelphia Chromosome-positive B-cell Acute Lymphoblastic Leukemia. J Pediatr Hematol Oncol 2024; 46:241-247. [PMID: 38652054 DOI: 10.1097/mph.0000000000002861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Philadelphia chromosome (Ph)-positive B-cell acute lymphoblastic leukemia (ALL) has a high complete remission (CR) rate, but relapse and prolonged measurable residual disease remain serious problems. We sought to describe the CR rate measurable residual disease negative rate and address the results and safety of pediatric patients who underwent after receiving chimeric antigen receptor (CAR) specific for CD19 (CAR-19) followed by hematopoietic stem cell transplantation (HSCT) for the treatment of Ph-positive ALL. METHODS A descriptive study was conducted at Peking University People's Hospital from September 2013 to January 2021. 13 patients with relapsed/refractory Ph-positive B-ALL who received CAR-T therapy followed by allo-HSCT were included. We concentrated on the overall patient survival and CR rate. RESULTS The median time between CAR-T therapy and allo-HSCT was 58 days. Among all the patients, the CR rate was 100%, the flow cytometry negativity rate was 84.62%, and the BCR-ABL negativity rate was 53.85% at 1 month after CAR-T infusion. All the patients achieved a major molecular response in 6 months after HSCT. After a median follow-up of 45 months, the 3-year OS rate was 66.7%, and the 3-year DFS rate was 61.5%. The 3-year OS rate of patients with BCR-ABL-positive pre-HSCT was significantly lower than that in the BCR-ABL-negative group (40.0% vs. 85.7%, P =0.042). Also, the same trend was observed for the 3-year DFS rate but did not differ significantly (40.0% vs. 75.0%, P =0.233). CONCLUSIONS CAR-T therapy followed by allo-HSCT can be a safe and effective treatment for Ph-positive B-ALL pediatric patients.
Collapse
Affiliation(s)
- Yao Li
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Peking-Tsinghua Center for Life Science, Research Unit of Key Technique for Diagnosis and Treatment of Hematologic Malignancies, Chinese Academic of Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhou D, Zhu X, Xiao Y. Advances in research on factors affecting chimeric antigen receptor T-cell efficacy. Cancer Med 2024; 13:e7375. [PMID: 38864474 PMCID: PMC11167615 DOI: 10.1002/cam4.7375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is becoming an effective technique for the treatment of patients with relapsed/refractory hematologic malignancies. After analyzing patients with tumor progression and sustained remission after CAR-T cell therapy, many factors were found to be associated with the efficacy of CAR-T therapy. This paper reviews the factors affecting the effect of CAR-T such as tumor characteristics, tumor microenvironment and immune function of patients, CAR-T cell structure, construction method and in vivo expansion values, lymphodepletion chemotherapy, and previous treatment, and provides a preliminary outlook on the corresponding therapeutic strategies.
Collapse
Affiliation(s)
- Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
12
|
Locatelli F, del Bufalo F, Quintarelli C. Allogeneic chimeric antigen receptor T cells for children with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Haematologica 2024; 109:1689-1699. [PMID: 38832424 PMCID: PMC11141659 DOI: 10.3324/haematol.2023.284604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/01/2024] [Indexed: 06/05/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a breakthrough cancer therapy over the past decade. Remarkable outcomes in B-cell lymphoproliferative disorders and multiple myeloma have been reported in both pivotal trials and real-word studies. Traditionally, the use of a patient's own (autologous) T cells to manufacture CAR products has been the standard practice. Nevertheless, this approach has some drawbacks, including manufacturing delays, dependence on the functional fitness of the patient's T cells, which can be compromised by both the disease and prior therapies, and contamination of the product with blasts. A promising alternative is offered by the development of allogeneic CAR-cell products. This approach has the potential to yield more efficient drug products and enables the use of effector cells with negligible alloreactive potential and a significant CAR-independent antitumor activity through their innate receptors (i.e., natural killer cells, γδ T cells and cytokine induced killer cells). In addition, recent advances in genome editing tools offer the potential to overcome the primary challenges associated with allogeneic CAR T-cell products, namely graft-versus-host disease and host allo-rejection, generating universal, off-the-shelf products. In this review, we summarize the current pre-clinical and clinical approaches based on allogeneic CAR T cells, as well as on alternative effector cells, which represent exciting opportunities for multivalent approaches and optimized antitumor activity.
Collapse
Affiliation(s)
- Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy – IRCCS, Bambino Gesù Children’s Hospital, Rome
- Catholic University of the Sacred Heart, Department of Life Sciences and Public Health, Rome
| | - Francesca del Bufalo
- Department of Hematology/Oncology, Cell and Gene Therapy – IRCCS, Bambino Gesù Children’s Hospital, Rome
| | - Concetta Quintarelli
- Department of Hematology/Oncology, Cell and Gene Therapy – IRCCS, Bambino Gesù Children’s Hospital, Rome
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Huang Z, Zhang L, Gong X, Li J, Deng S, Cai Z, Tang B, Huang K, Li X, Zhao W, Xu Y, Xuan L, Liu Q, Wang Y, Chen S, Zhou H. An integrated classification of tumor suppressor IKZF1 inactivation and oncogenic activation in Philadelphia chromosome-like acute lymphoblastic leukemia. Hemasphere 2024; 8:e82. [PMID: 38774654 PMCID: PMC11106797 DOI: 10.1002/hem3.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
Philadelphia chromosome (Ph)-like acute lymphoblastic leukemia (ALL) is recognized for its genetic and clinical diversity. In this study, we identified a novel high-risk subset of Ph-like ALL, characterized by the activation of oncogenic signaling and the inactivation of the tumor suppressor gene IKZF1, resulting in a dismal outcome. The association between cytogenetic aberrations and clinical features was assessed on a cohort of 191 patients with Ph-like ALL. Our findings revealed that patients with inactivation of IKZF1 combined with activation of oncogenic signaling (CRLF2/EPOR/JAK2 rearrangements or p-CRKL/p-STAT5 high expression) had the worst outcome (3-year overall survival [OS] of 28.8% vs. 80.1% for others, p < 0.001; 2-year event-free survival [EFS] of 6.5% vs. 57.0% for others, p < 0.001). Multivariable analysis demonstrated that this high-risk feature was an independent inferior prognostic factor (adjusted hazard ratio for OS = 4.55, 95% confidence interval [CI]: 2.35-8.81, p < 0.001; adjusted hazard ratio for EFS = 3.27, 95% CI: 1.99-5.39, p < 0.001). Allogeneic hematopoietic stem cell transplantation was associated with improved prognoses in patients within the high-risk subgroup. In conclusion, this study identified a clinically distinct entity that possesses effective prognostic features and provides potential guidance for refining risk stratification in Ph-like ALL.
Collapse
Affiliation(s)
- Zicong Huang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of HematologyGanzhou People's Hospital (Nanfang Hospital Ganzhou Hospital)GanzhouChina
| | - Ling Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaoyuan Gong
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Jia Li
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shiyu Deng
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zihong Cai
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Bingqing Tang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Kangyu Huang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Xin Li
- Department of Hematology, The Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Weihua Zhao
- Department of HematologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Li Xuan
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Qifa Liu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ying Wang
- State Key Laboratory of Experimental HematologyInstitute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Hongsheng Zhou
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Hematologic Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of HematologyGanzhou People's Hospital (Nanfang Hospital Ganzhou Hospital)GanzhouChina
| |
Collapse
|
14
|
van Outersterp I, Boer JM, van de Ven C, Reichert CEJ, Boeree A, Kruisinga B, de Groot-Kruseman HA, Escherich G, Sijs-Szabo A, Rijneveld AW, den Boer ML. Tyrosine kinase inhibitor resistance in de novo BCR::ABL1-positive BCP-ALL beyond kinase domain mutations. Blood Adv 2024; 8:1835-1845. [PMID: 38386975 PMCID: PMC11007435 DOI: 10.1182/bloodadvances.2023012162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
ABSTRACT A better understanding of ABL1 kinase domain mutation-independent causes of tyrosine kinase inhibitor (TKI) resistance is needed for BCR::ABL1-positive B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Although TKIs have dramatically improved outcomes, a subset of patients still experiences relapsed or refractory disease. We aimed to identify potential biomarkers of intrinsic TKI resistance at diagnosis in samples from 32 pediatric and 19 adult patients with BCR::ABL1-positive BCP-ALL. Reduced ex vivo imatinib sensitivity was observed in cells derived from newly diagnosed patients who relapsed after combined TKI and chemotherapy treatment compared with cells derived from patients who remained in continuous complete remission. We observed that ex vivo imatinib resistance was inversely correlated with the amount of (phosphorylated) BCR::ABL1/ABL1 protein present in samples that were taken at diagnosis without prior TKI exposure. This suggests an intrinsic cause of TKI resistance that is independent of functional BCR::ABL1 signaling. Simultaneous deletions of IKZF1 and CDKN2A/B and/or PAX5 (IKZF1plus), as well as deletions of PAX5 alone, were related to ex vivo imatinib resistance. In addition, somatic lesions involving ZEB2, SETD2, SH2B3, and CRLF2 were associated with reduced ex vivo imatinib sensitivity. Our data suggest that the poor prognostic value of IKZF1(plus) deletions is linked to intrinsic mechanisms of TKI resistance other than ABL1 kinase domain mutations in newly diagnosed pediatric and adult BCR::ABL1-positive BCP-ALL.
Collapse
Affiliation(s)
| | - Judith M. Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Cesca van de Ven
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Aurelie Boeree
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Brian Kruisinga
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Gabriele Escherich
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Aniko Sijs-Szabo
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anita W. Rijneveld
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Monique L. den Boer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology and Hematology, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Tirtakusuma R, Milne P, Blair HJ, Shi Y, Bomken S, Heidenreich O. Fusion transcripts are present in early progenitor cells in KMT2A-rearranged B-ALL. Leukemia 2024; 38:883-886. [PMID: 38307942 PMCID: PMC10997500 DOI: 10.1038/s41375-024-02164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Affiliation(s)
- Ricky Tirtakusuma
- Wolfson Childhood Cancer Research Centre, Translation and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Paul Milne
- Haematopoiesis and Immunogenomics Laboratory, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, England
| | - Helen J Blair
- Wolfson Childhood Cancer Research Centre, Translation and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Yuzhe Shi
- Center for Cell Engineering and Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon Bomken
- Wolfson Childhood Cancer Research Centre, Translation and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translation and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle Upon Tyne, UK.
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Kulczycka M, Derlatka K, Tasior J, Sygacz M, Lejman M, Zawitkowska J. Infant Acute Lymphoblastic Leukemia-New Therapeutic Opportunities. Int J Mol Sci 2024; 25:3721. [PMID: 38612531 PMCID: PMC11011884 DOI: 10.3390/ijms25073721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Infant acute lymphoblastic leukemia (Infant ALL) is a kind of pediatric ALL, diagnosed in children under 1 year of age and accounts for less than 5% of pediatric ALL. In the infant ALL group, two subtypes can be distinguished: KMT2A-rearranged ALL, known as a more difficult to cure form and KMT2A- non-rearranged ALL with better survival outcomes. As infants with ALL have lesser treatment outcomes compared to older children, it is pivotal to provide novel treatment approaches. Progress in the development of molecularly targeted therapies and immunotherapy presents exciting opportunities for potential improvement. This comprehensive review synthesizes the current literature on the epidemiology, clinical presentation, molecular genetics, and therapeutic approaches specific to ALL in the infant population.
Collapse
Affiliation(s)
- Marika Kulczycka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (K.D.); (J.T.); (M.S.)
| | - Kamila Derlatka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (K.D.); (J.T.); (M.S.)
| | - Justyna Tasior
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (K.D.); (J.T.); (M.S.)
| | - Maja Sygacz
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (K.D.); (J.T.); (M.S.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
17
|
Ligon JA, Ramakrishna S, Ceppi F, Calkoen FGJ, Diorio C, Davis KL, Jacoby E, Gottschalk S, Schultz LM, Capitini CM. INSPIRED Symposium Part 4B: Chimeric Antigen Receptor T Cell Correlative Studies-Established Findings and Future Priorities. Transplant Cell Ther 2024; 30:155-170. [PMID: 37863355 DOI: 10.1016/j.jtct.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of B cell malignancies, with multiple CAR T cell products approved for numerous indications by regulatory agencies worldwide. However, significant work remains to be done to enhance these treatments. In March 2023, a group of experts in CAR T cell therapy assembled at the National Institutes of Health in Bethesda, Maryland at the Insights in Pediatric CAR T Cell Immunotherapy: Recent Advances and Future Directions (INSPIRED) Symposium to identify key areas for research for the coming years. In session 4B, correlative studies to be incorporated into future clinical trials and real-world settings were discussed. Active areas of research identified included (1) optimizing CAR T cell product manufacturing; (2) ensuring adequate lymphodepletion prior to CAR T cell administration; (3) overcoming immunoregulatory cells and tumor stroma present in the tumor microenvironment, particularly in solid tumors; (4) understanding tumor intrinsic properties that lead to CAR T cell immunotherapy resistance; and (5) uncovering biomarkers predictive of treatment resistance, treatment durability, or immune-related adverse events. Here we review the results of previously published clinical trials and real-world studies to summarize what is currently known about each of these topics. We then outline priorities for future research that we believe will be important for improving our understanding of CAR T cell therapy and ultimately leading to better outcomes for patients.
Collapse
Affiliation(s)
- John A Ligon
- Department of Pediatrics, Division of Hematology/Oncology, University of Florida, Gainesville, Florida; University of Florida Health Cancer Center, Gainesville, Florida.
| | - Sneha Ramakrishna
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Francesco Ceppi
- Division of Pediatrics, Department of Woman-Mother-Child, Pediatric Hematology-Oncology Unit, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Friso G J Calkoen
- Division of Pediatric Oncology, Princess Maxima Center, Utrecht, The Netherlands
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kara L Davis
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Elad Jacoby
- Pediatric Hemato-Oncology, Sheba Medical Center and Tel Aviv University, Tel Aviv, Israel
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Liora M Schultz
- Stanford Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, California; Department of Pediatrics, Stanford University, Stanford, California
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| |
Collapse
|
18
|
Agrawal V, Murphy L, Pourhassan H, Pullarkat V, Aldoss I. Optimizing CAR-T cell therapy in adults with B-cell acute lymphoblastic leukemia. Eur J Haematol 2024; 112:236-247. [PMID: 37772976 DOI: 10.1111/ejh.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has demonstrated unprecedented success in the treatment of various hematologic malignancies including relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). Currently, there are two FDA-approved CD19-directed CAR-T cell products for the treatment of adults with R/R B-ALL. Despite high remission rates following CD19 CAR-T cell therapy in R/R B-ALL, remission durability remains limited in most adult patients, with relapse observed frequently in the absence of additional consolidation therapy. Furthermore, the burden of CAR-T cell toxicity remains significant in adults with R/R B-ALL and further limits the wide utilization of this effective therapy. In this review, we discuss patient and disease factors that are linked to CAR-T cell therapy outcomes in R/R B-ALL and strategies to optimize durability of response to reduce relapse and mitigate toxicity in the adult population. We additionally discuss future approaches being explored to maximize the benefit of CAR-T in adults with B-ALL.
Collapse
Affiliation(s)
- Vaibhav Agrawal
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Lindsey Murphy
- Department of Pediatrics, City of Hope National Medical Center, Duarte, California, USA
| | - Hoda Pourhassan
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
19
|
Zhuo YQ, Tu SF, Zhou X, Yang JL, Zhou LJ, Huang R, Huang YX, Li MF, Jin B, Wang B, Li SQ, Yuan ZT, Zhang LH, Liu L, Wang SB, Li YH. [Safety and efficacy of donor-derived chimeric antigen receptor T-cell therapy in patients with relapsed B-cell acute lymphoblastic leukemia after allogeneic hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:74-81. [PMID: 38527842 PMCID: PMC10951125 DOI: 10.3760/cma.j.cn121090-20230815-00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Indexed: 03/27/2024]
Abstract
Objective: To investigated the safety and efficacy of donor-derived CD19+ or sequential CD19+ CD22+ chimeric antigen receptor T-cell (CAR-T) therapy in patients with B-cell acute lymphoblastic leukemia (B-ALL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Methods: The data of 22 patients with B-ALL who relapsed after allo-HSCT and who underwent donor-derived CAR-T therapy at the Zhujiang Hospital of Southern Medical University and the 920th Hospital of Joint Logistics Support Force of the People's Liberation Army of China from September 2015 to December 2022 were retrospectively analyzed. The primary endpoint was overall survival (OS), and the secondary endpoints were event-free survival (EFS), complete remission (CR) rate, and Grade 3-4 adverse events. Results: A total of 81.82% (n=18) of the 22 patients achieved minimal residual disease-negative CR after CAR-T infusion. The median follow-up time was 1037 (95% CI 546-1509) days, and the median OS and EFS were 287 (95% CI 132-441) days and 212 (95% CI 120-303) days, respectively. The 6-month OS and EFS rates were 67.90% (95% CI 48.30%-84.50%) and 58.70% (95% CI 37.92%-79.48%), respectively, and the 1-year OS and EFS rates were 41.10% (95% CI 19.15%-63.05%) and 34.30% (95% CI 13.92%-54.68%), respectively. Grade 1-2 cytokine release syndrome occurred in 36.36% (n=8) of the patients, and grade 3-4 occurred in 13.64% of the patients (n=3). Grade 2 and 4 graft-versus-host disease occurred in two patients. Conclusion: Donor-derived CAR-T therapy is safe and effective in patients with relapsed B-ALL after allo-HSCT.
Collapse
Affiliation(s)
- Y Q Zhuo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - S F Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - X Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - J L Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - L J Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - R Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Y X Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - M F Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - B Jin
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - B Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - S Q Li
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of PLA, Kunming 650118, China
| | - Z T Yuan
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of PLA, Kunming 650118, China
| | - L H Zhang
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of PLA, Kunming 650118, China
| | - L Liu
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of PLA, Kunming 650118, China
| | - S B Wang
- Department of Hematology, 920th Hospital of Joint Logistics Support Force of PLA, Kunming 650118, China
| | - Y H Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
20
|
Dai HP, Shen HJ, Li Z, Cui W, Cui QY, Li MY, Chen SF, Zhu MQ, Wu DP, Tang XW. [Efficacy and safety of chimeric antigen receptor T-cell therapy followed by allogeneic hematopoietic stem cell transplantation in 21 patients with Ph-like acute lymphoblastic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:35-40. [PMID: 38527836 PMCID: PMC10951118 DOI: 10.3760/cma.j.cn121090-20230929-00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 03/27/2024]
Abstract
Objective: To evaluate the efficacy and safety of chimeric antigen receptor T-cell (CAR-T) therapy followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT) in patients with Ph-like acute lymphoblastic leukemia (Ph-ALL) . Methods: Patients with Ph-ALL who underwent CAR-T therapy followed by allo-HSCT from March 2018 to August 2023 at the First Affiliated Hospital of Soochow University were included, and their clinical data were retrospectively analyzed. Results: Of the 21 patients, 14 were male and 7 were female. The median age at the time of CAR-T therapy was 22 (6-50) years. Seven patients had ABL1-like rearrangements, and 14 had JAK-STAT rearrangements. Prior to CAR-T therapy, 12 patients experienced hematologic relapse; 7 were multiparameter flow cytometry minimal residual disease (MFC-MRD) -positive and 2 were MFC-MRD-negative. CAR-T cells were derived from patients' autologous lymphocytes. Nine patients were treated with CD19 CAR-T cells, and 12 were treated with CD19/CD22 CAR-T cells. After assessment on day 28 after CAR-T therapy, 95.2% of the patients achieved complete remission, with an MRD-negative remission rate of 75%. Nineteen patients developed grade 0-2 cytokine release syndrome (CRS) and 2 patients suffered grade 3 CRS, all cases of which resolved after treatment. All patients underwent allo-HSCT after CAR-T therapy. The median time from CAR-T therapy to allo-HSCT was 63 (38-114) days. Five patients experienced relapse after CAR-T therapy, including four with hematologic relapse and one with molecular relapse. The 3-year overall survival (OS) rates in the ABL1 and JAK-STAT groups were (83.3±15.2) % and (66.6±17.2) %, respectively (P=0.68) . The 3-year relapse-free survival (RFS) rates were (50.0±20.4) % and (55.6±15.4) % in the ABL1 and JAK-STAT groups, respectively. There was no significant difference in 3-year OS or RFS between the two groups. Conclusions: CAR-T therapy followed by allo-HSCT leads to rapid remission in most patients with Ph-ALL and prolongs leukemia-free survival.
Collapse
Affiliation(s)
- H P Dai
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - H J Shen
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - Z Li
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - W Cui
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - Q Y Cui
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - M Y Li
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - S F Chen
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - M Q Zhu
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - D P Wu
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| | - X W Tang
- The First Affiliated Hospital of Soochow University; National Clinical Research Center for Hematologic Diseases; Jiangsu Institute of Hematology; Collaborative Innovation Center of Hematology; Institute of Blood and Marrow Transplantation, Soochow University, Suzhou 215006, China
| |
Collapse
|
21
|
Mamo T, Dreyzin A, Stroncek D, McKenna DH. Emerging Biomarkers for Monitoring Chimeric Antigen Receptor T-Cell Therapy. Clin Chem 2024; 70:116-127. [PMID: 38175598 DOI: 10.1093/clinchem/hvad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/02/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy has revolutionized treatment of hematologic malignancies and holds promise for solid tumors. While responses to CAR T-cell therapy have surpassed other available options for patients with refractory malignancies, not all patients respond the same way. The reason for this variability is not currently understood. Therefore, there is a strong need to identify characteristics of patients as well as cellular products that lead to an effective response to CAR T-cell therapy. CONTENT In this review, we discuss potential biomarkers that may predict clinical outcomes of CAR T-cell therapy. Based on correlative findings from clinical trials of both commercially available and early-phase products, we classify biomarkers into categories of pre- and post-infusion as well as patient and product-related markers. Among the biomarkers that have been explored, measures of disease burden both pre- and post-infusion, as well as CAR T-cell persistence post-infusion, are repeatedly identified as predictors of disease response. Higher proportions of early memory T cells at infusion appear to be favorable, and tracking T-cell subsets throughout treatment will likely be critical. SUMMARY There are a growing number of promising biomarkers of CAR T-cell efficacy described in the research setting, however, none of these have been validated for clinical use. Some potentially important predictors of response may be difficult to obtain routinely under the current CAR T-cell therapy workflow. A collaborative approach is needed to select biomarkers that can be validated in large cohorts and incorporated into clinical practice.
Collapse
Affiliation(s)
- Theodros Mamo
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis/St. Paul, MN, United States
| | - Alexandra Dreyzin
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, United States
- Center for Cell Engineering, Department of Transfusion Medicine, National Institute of Health, Bethesda, MD, United States
| | - David Stroncek
- Center for Cell Engineering, Department of Transfusion Medicine, National Institute of Health, Bethesda, MD, United States
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis/St. Paul, MN, United States
| |
Collapse
|
22
|
Gupta S, Kohorst M, Alkhateeb HB. Determinants of outcomes and advances in CD19-directed chimeric antigen receptor therapy for B-cell acute lymphoblastic leukemia. Eur J Haematol 2024; 112:51-63. [PMID: 38105391 DOI: 10.1111/ejh.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023]
Abstract
Relapsed and refractory B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive B-cell neoplasm associated with poor outcomes. Conventional multiagent chemotherapy and bispecific antibody therapy may induce remission; however, relapse rates remain high and overall survival is poor. Chimeric antigen receptor T-cell (CAR-T) therapy provides durable, deep complete remission, and long-term cures in relapsed and refractory B-ALL. However, with this new treatment modality, 10%-30% of patients do not achieve remission, and over 50% experience relapse after therapy. Currently, there are two approved CD19-specific CAR-T cell constructs in B-ALL, Tisagenlecleucel and Brexucabtagene Autoleucel by the United States Food and Drug Administration, and the European Medicines Agency (EMA). In this review, we discuss patients, disease, and CAR-T predictors of outcomes in B-ALL. We describe the two approved CD19-directed CAR-T cell products, review the current literature, and discuss factors associated with high risks of therapy failure and future direction in CAR-T cell therapy for B-ALL.
Collapse
Affiliation(s)
- Supriya Gupta
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mira Kohorst
- Department of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
23
|
Winestone LE, Bhojwani D, Ghorashian S, Muffly L, Leahy AB, Chao K, Steineck A, Rössig C, Lamble A, Maude SL, Myers R, Rheingold SR. INSPIRED Symposium Part 4A: Access to CAR T Cell Therapy in Unique Populations with B Cell Acute Lymphoblastic Leukemia. Transplant Cell Ther 2024; 30:56-70. [PMID: 37821078 DOI: 10.1016/j.jtct.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
The approval of tisagenlecleucel (tisa-cel) for use in children with B cell acute lymphoblastic leukemia (B-ALL) was based on the phase 2 ELIANA trial, a global registration study. However, the ELIANA trial excluded specific subsets of patients facing unique challenges and did not include a sufficient number of patients to adequately evaluate outcomes in rare subpopulations. Since the commercialization of tisa-cel, data have become available that support therapeutic indications beyond the specific cohorts previously eligible for chimeric antigen receptor (CAR) T cells targeted to CD19 (CD19 CAR-T) therapy on the registration clinical trial. Substantial real-world data and aggregate clinical trial data have addressed gaps in our understanding of response rates, longer-term efficacy, and toxicities associated with CD19 CAR-T in special populations and rare clinical scenarios. These include patients with central nervous system relapsed disease, who were excluded from ELIANA and other early CAR-T trials owing to concerns about risk of neurotoxicity that have not been born out. There is also interest in the use of CD19 CAR-T for very-high-risk patients earlier in the course of therapy, such as patients with persistent minimal residual disease after 2 cycles of upfront chemotherapy and patients with first relapse of B-ALL. However, these indications are not specified on the label for tisa-cel and historically were not included in eligibility criteria for most clinical trials; data addressing these populations are needed. Populations at high risk of relapse, including patients with high-risk cytogenetic lesions, infants with B-ALL, patients with trisomy 21, and young adults with B-ALL, also may benefit from earlier treatment with CD19 CAR-T. It is important to prospectively study patient-reported outcomes given the differential toxicity expected between CD19 CAR-T and the historic standard of care, hematopoietic cell transplantation. Now that CD19 CAR-T therapy is commercially available, studies evaluating potential access disparities created by this very expensive novel therapy are increasingly pressing.
Collapse
Affiliation(s)
- Lena E Winestone
- Division of Allergy, Immunology, and BMT, Department of Pediatrics, UCSF Benioff Children's Hospitals, UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California.
| | - Deepa Bhojwani
- Division of Pediatric Hematology-Oncology, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center and Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sara Ghorashian
- Haematology Department, Great Ormond Street Hospital, London UK, Developmental Biology and Cancer, UCL-Great Ormond Street Institute of Child Health, University College London, London United Kingdom
| | - Lori Muffly
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, California
| | - Allison Barz Leahy
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karen Chao
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Angela Steineck
- MACC Fund Center for Cancer and Blood Disorders, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Claudia Rössig
- University Children's Hospital Muenster, Pediatric Hematology and Oncology, Muenster, Germany; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Adam Lamble
- Division of Hematology and Oncology, Seattle Children's Hospital, Department of Pediatrics, University of Washington, Seattle, Washington
| | - Shannon L Maude
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Regina Myers
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan R Rheingold
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
Hoelzer D, Bassan R, Boissel N, Roddie C, Ribera JM, Jerkeman M. ESMO Clinical Practice Guideline interim update on the use of targeted therapy in acute lymphoblastic leukaemia. Ann Oncol 2024; 35:15-28. [PMID: 37832649 DOI: 10.1016/j.annonc.2023.09.3112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Affiliation(s)
- D Hoelzer
- ONKOLOGIKUM Frankfurt am Museumsufer, Frankfurt, Germany
| | - R Bassan
- Hematology Unit, Ospedale dell'Angelo e Ospedale SS, Giovanni e Paolo, Mestre-Venezia, Italy
| | - N Boissel
- Hematology Department, Saint-Louis Hospital, APHP, Institut de Recherche Saint-Louis, Université de Paris Cité, Paris, France
| | - C Roddie
- Research Department of Haematology, UCL Cancer Institute, London, UK
| | - J M Ribera
- Clinical Hematology Department, ICO-Hospital Germans Trias i Pujol, Jose Carreras Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - M Jerkeman
- Department of Oncology, Skåne University Hospital and Lund University, Lund, Sweden
| |
Collapse
|
25
|
McNerney KO, Moskop A, Winestone LE, Baggott C, Talano JA, Schiff D, Rossoff J, Modi A, Verneris MR, Laetsch TW, Schultz L. Practice Preferences for Consolidative Hematopoietic Stem Cell Transplantation Following Tisagenlecleucel in Children and Young Adults with B Cell Acute Lymphoblastic Leukemia. Transplant Cell Ther 2024; 30:75.e1-75.e11. [PMID: 37816472 DOI: 10.1016/j.jtct.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023]
Abstract
Treatment with tisagenlecleucel (tisa-cel) achieves excellent complete remission rates in children and young adults with relapsed or refractory B cell acute lymphoblastic leukemia (B-ALL), but approximately 50% maintain long-term remission. Consolidative hematopoietic stem cell transplantation (cHSCT) is a potential strategy to reduce relapse risk, but it carries substantial short- and long-term toxicities. Additionally, several strategies for management of B cell recovery (BCR) and next-generation sequencing (NGS) positivity post-tisa-cel exist, without an accepted standard. We hypothesized that practice preferences surrounding cHSCT, as well as management of BCR and NGS positivity, varies across tisa-cel-prescribing physicians and sought to characterize current practice preferences. A survey focusing on preferences regarding the use of cHSCT, management of BCR, and NGS positivity was distributed to physicians who prescribe tisa-cel for children and young adults with B-ALL. Responses were collected from August 2022 to April 2023. Fifty-nine unique responses were collected across 43 institutions. All respondents prescribed tisa-cel for children and young adults. The clinical focus of respondents was HSCT in 71%, followed by leukemia/lymphoma in 24%. For HSCT-naive patients receiving tisa-cel, 57% of respondents indicated they made individualized decisions for cHSCT based on patient factors, whereas 22% indicated they would avoid cHSCT and 21% indicated they would pursue cHSCT when feasible. Certain factors influenced >50% of respondents towards recommending cHSCT (either an increased likelihood of recommending or always recommending), including preinfusion disease burden >25%, primary refractory B-ALL, M3 bone marrow following reinduction for relapse, KMT2A-rearranged B-ALL, history of blinatumomab nonresponse, and HSCT-naive status. Most respondents indicated they would pursue HSCT for HSCT-naive, total body irradiation (TBI) recipients with BCR before 6 months post-tisa-cel or with NGS positivity at 1 or 3 months post-tisa-cel, although there was variability in responses regarding whether to proceed to HSCT directly or provide intervening therapy prior to HSCT. Fewer respondents recommended HSCT for BCR or NGS positivity in patients with a history of HSCT, in noncandidates for TBI, and in patients with trisomy 21. The results of this survey indicate there exists significant practice variability regarding the use of cHSCT, as well as interventions for post-tisa-cel BCR or NGS positivity. These results highlight areas in which ongoing clinical trials could inform more standardized practice.
Collapse
Affiliation(s)
- Kevin O McNerney
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.
| | - Amy Moskop
- Division of HematologyOncologyBlood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Lena E Winestone
- Division of Allergy, Immunology, and BMT, Department of Pediatrics, University of California San Francisco Benioff Children's Hospitals, San Francisco, California; UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Christina Baggott
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Julie-An Talano
- Division of HematologyOncologyBlood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin and Children's Wisconsin, Milwaukee, Wisconsin
| | - Deborah Schiff
- Department of Pediatric Hematology and Oncology, Rady Children's Hospital, San Diego, California
| | - Jenna Rossoff
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Arunkumar Modi
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Michael R Verneris
- University of Colorado School of Medicine, Children's Hospital of Colorado, Aurora, Colorado
| | - Theodore W Laetsch
- Department of Pediatrics and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Oncology, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Liora Schultz
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
26
|
Anandappa A, Curran E. Acute lymphoblastic leukemia in young adults: which treatment? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:587-592. [PMID: 38066918 PMCID: PMC10727044 DOI: 10.1182/hematology.2023000512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Despite improvements in survival among pediatric patients with acute lymphoblastic leukemia (ALL), survival outcomes for adolescents and young adults (AYAs) with ALL have lagged. The reasons for the inferior outcomes among AYAs are multifactorial, each presenting unique challenges and requiring novel solutions. First, adverse disease biology is more common among AYAs with ALL. Ongoing trials are investigating novel approaches to treatment, such as incorporating JAK inhibitors for Philadelphia chromosome-like ALL, menin inhibitors for KMT2A-rearranged ALL, and BCL2/BCLXL inhibition for T-cell ALL. Poorer adherence to therapy also impedes improvements in survival outcomes for AYAs with ALL, but early data suggest that technology, both for monitoring and interventions, may be useful in increasing adherence among this population. Finally, better access to clinical trials and collaboration between pediatric and adult centers is critical in advancing the care of AYAs with ALL. Significant improvements have been made over the past decade, but recognizing, understanding, and addressing each of these unique challenges provides hope that the outcomes for AYAs will continue to improve even further.
Collapse
Affiliation(s)
- Annabelle Anandappa
- Department of Internal Medicine, Section of Hematology/Oncology, University of Cincinnati Cancer Center, Cincinnati, OH
| | - Emily Curran
- Department of Internal Medicine, Section of Hematology/Oncology, University of Cincinnati Cancer Center, Cincinnati, OH
| |
Collapse
|
27
|
Talleur AC, Naik S, Gottschalk S. Preventing relapse after CD19 CAR T-cell therapy for pediatric ALL: the role of transplant and enhanced CAR T cells. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:91-96. [PMID: 38066941 PMCID: PMC10727085 DOI: 10.1182/hematology.2023000424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
CD19-specific chimeric antigen receptor (CAR) T-cell therapy has become an integral part of our treatment armamentarium for pediatric patients with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL). However, despite initial remission rates of greater than 80%, durable remission occurs in only 40% to 50% of patients. In this review we summarize our current knowledge of the role of consolidative hematopoietic cell transplantation in the management of pediatric patients who achieved a minimal residual disease-negative complete response post CD19 CAR T-cell therapy. In addition, we review approaches to enhance effector function CD19 CAR T cells, focusing on how to improve persistence and prevent the emergence of CD19- B-ALL blasts.
Collapse
Affiliation(s)
- Aimee C Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN
| | - Swati Naik
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
28
|
Muller BJ, Inaba H. Chimeric antigen receptor T-cells in B-acute lymphoblastic leukemia: history, current situation, and future. Transl Pediatr 2023; 12:1900-1907. [PMID: 37969122 PMCID: PMC10644024 DOI: 10.21037/tp-23-366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Bradley J. Muller
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
29
|
Myers RM, Jacoby E, Pulsipher MA, Pasquini MC, Grupp SA, Shah NN, Laetsch TW, Curran KJ, Schultz LM. INSPIRED Symposium Part 1: Clinical Variables Associated with Improved Outcomes for Children and Young Adults treated with Chimeric Antigen Receptor T cells for B cell Acute Lymphoblastic Leukemia. Transplant Cell Ther 2023; 29:598-607. [PMID: 37481241 PMCID: PMC11031134 DOI: 10.1016/j.jtct.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy (CAR-T) targeting the CD19 antigen on B cell acute lymphoblastic leukemia (B-ALL) has transitioned from a highly investigational therapy with limited access to a commercial therapy with established toxicities, response and survival rates, and access in numerous countries. With more than a decade of clinical study and 5 years of commercial access, data showing associations with success and failure have emerged. To address functional limitations of CAR-T and overcome constrained sample sizes when studying single-trial or single-center data, collaborative groups, including the Pediatric Real World CAR Consortium, the CAR-Multicenter Analysis, the Center for International Blood and Marrow Transplant Research, and the International BFM Study Group, among others, have been retrospectively interrogating the amassed clinical experience. The high patient numbers and varied clinical experiences compiled by these groups have defined clinical variables impacting CAR-T outcomes. Here we review published CAR-T trials and consortium/collaborative outcomes to establish variables associated with optimal response to CAR-T in children and young adults with B-ALL. We focus on findings with clinical relevance that have emerged, including data implicating pretreatment disease burden, presence of extramedullary disease, nonresponse to prior CD19 antigen targeting (blinatumomab therapy), CAR T cell dose, and fludarabine pharmacokinetics as factors impacting post-CAR-T survival. Additionally, we address the role of collaborative efforts going forward in guiding clinical practice evolution and further optimizing post-CAR-T outcomes.
Collapse
Affiliation(s)
- Regina M Myers
- Division of Oncology, Center for Childhood Cancer Research and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elad Jacoby
- Division of Pediatric Hematology, Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Michael A Pulsipher
- Intermountain Primary Children's Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, Utah
| | - Marcelo C Pasquini
- Medical College of Wisconsin/Center for International Blood and Marrow Transplant Research, Milwaukee, Wisconsin
| | - Stephan A Grupp
- Division of Oncology, Center for Childhood Cancer Research and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Theodore W Laetsch
- Division of Oncology, Center for Childhood Cancer Research and Cancer Immunotherapy Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kevin J Curran
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Liora M Schultz
- Department of Pediatrics, Division of Hematology and Oncology, Stanford University School of Medicine, Palo Alto, California, USA.
| |
Collapse
|
30
|
Fong D, Tiwari R, Acker C, Clough L, Willert J. Leukapheresis and Tisagenlecleucel Manufacturing Outcomes in Patients Age <3 Years with Relapsed/Refractory Acute Lymphoblastic Leukemia. Transplant Cell Ther 2023; 29:579.e1-579.e10. [PMID: 37311511 DOI: 10.1016/j.jtct.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/04/2023] [Indexed: 06/15/2023]
Abstract
Tisagenlecleucel is approved for the treatment of relapsed/refractory (r/r) B cell acute lymphoblastic leukemia (B-ALL) in patients up to age 25 years based on the results of a pivotal trial (ELIANA) in pediatric and young adult patients. However, that trial did not include patients age <3 years because of the challenges posed by leukapheresis of very young and low-weight patients. Data on leukapheresis material and manufacturing outcomes among patients age <3 years have been collected since the time of global regulatory approval. Here we report leukapheresis characteristics and manufacturing outcomes for tisagenlecleucel produced for patients age <3 years in US and non-US commercial settings. Qualified patients with r/r B-ALL were age <3 years at the time of request for commercial tisagenlecleucel, with manufacturing data starting after August 30, 2017 (date of first US Food and Drug Administration approval). Leukapheresis and manufacturing outcomes data were stratified by age and weight. CD3+ cell count and CD3+/total nucleated cell (TNC) percentages were obtained from the leukapheresis material; leukocyte subpopulations were obtained via quality control vials. Of the 146 tisagenlecleucel quality control batches analyzed for CD3+ cell count and CD3+/TNC%, 86 batches (84 patients) were from US sites and 60 batches were from non-US sites. The median patient age and weight were 1.2 years and 10.4 kg at US sites and 1.5 years and 10.5 kg at non-US sites. Globally, 137 of 146 batches (94%) were manufactured within specifications across 16 countries. Among tisagenlecleucel batches manufactured in the United States between 2017 and 2021, there was a trend toward increasing CD3+ counts, CD3+/TNC%, and manufactured dose of chimeric antigen receptor (CAR) T cells; there was no difference in median days of collection by patient age or weight. Globally, a trend toward 1 or more potential additional collection days was observed for patients weighing ≤10 kg. Leukapheresis and tisagenlecleucel manufacturing in pediatric patients with r/r B-ALL age <3 years, including infants (<1 year), and low weight are feasible. As global experience with leukapheresis and patient identification for CAR-T cell therapy increased over time, a corresponding improvement in tisagenlecleucel manufacturing success has been observed. Clinical outcome data for these patients are currently being explored.
Collapse
Affiliation(s)
- David Fong
- Novartis Pharmaceuticals Canada Incorporated, Dorval, Quebec, Canada
| | - Ranjan Tiwari
- Novartis Healthcare Private Limited, Hyderabad, India
| | | | - Lee Clough
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey
| | - Jennifer Willert
- Novartis Pharmaceuticals Corporation, One Health Plaza, East Hanover, New Jersey.
| |
Collapse
|
31
|
Prażmo A, Jawoszek P, Styka B, Lejman M, Zaucha-Prażmo A. Relapse/Refractory Paediatric B-ALL Case with CD19 - Phenotype Switching Indicating the Importance of Appropriate Diagnostic Approach and Targeted Treatment Adjustment-Case Report. Int J Mol Sci 2023; 24:13322. [PMID: 37686126 PMCID: PMC10487976 DOI: 10.3390/ijms241713322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The case reported presents a rare CD19- phenotype shift of an acute lymphoblastic leukaemia clone during relapse/refractory ALL in a paediatric patient. We explore possible reasons for the promotion of CD19-negative cell selection, including discrete mutations and anti-CD19 treatment, which is gaining importance as targeted therapies such as blinatumomab enter standard treatment protocols. A 9-year-old male patient was diagnosed with B lymphocyte acute lymphoblastic leukaemia. Initial standard genetic analysis did not show significant chromosomal aberrations, and the patient underwent chemotherapy in line with the intermediate-risk protocol. After initially achieving remission, the disease relapsed, and the patient required hematopoietic stem cell transplantation (HSCT). In-depth retrospective microarray analysis performed at this point revealed additional risk factors, particularly a loss of function TP53 V173L mutation. A second recurrence was diagnosed which prompted targeted treatment application (blinatumomab) and subsequent HSCT. The third leukemic relapse, diagnosed shortly after the second HSCT, limited treatment options to last-resort CAR T-cell therapy in Germany. Subsequent immunophenotyping revealed insufficient CD19 expression by ALL clones and disqualified the patient from treatment. The patient died in October 2019 from disease progression. The case highlights the importance of in-depth molecular diagnostics and monitoring of relapse/recurrent ALL cases to identify and manage risk factors during treatment.
Collapse
Affiliation(s)
- Anna Prażmo
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Patryk Jawoszek
- Doctoral School at Medical University of Lublin, 20-059 Lublin, Poland;
| | - Borys Styka
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland; (B.S.); (M.L.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland; (B.S.); (M.L.)
| | - Agnieszka Zaucha-Prażmo
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-059 Lublin, Poland;
| |
Collapse
|
32
|
Webster JA, Luznik L. This CAR won't start: predicting nonresponse in ALL. Blood Adv 2023; 7:4215-4217. [PMID: 37552511 PMCID: PMC10440401 DOI: 10.1182/bloodadvances.2023009776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023] Open
Affiliation(s)
- Jonathan A Webster
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Leo Luznik
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
33
|
Tasian SK. TCF3::HLF acute lymphoblastic leukemia: still challenging to cure thirty years later. Haematologica 2023; 108:1713-1714. [PMID: 37392046 PMCID: PMC10316242 DOI: 10.3324/haematol.2023.283148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Indexed: 07/02/2023] Open
|
34
|
Schultz L, Mackall CL. The future of CAR T-cell therapy for B-cell acute lymphoblastic leukemia in pediatrics and adolescents. Expert Opin Biol Ther 2023. [PMID: 37326236 DOI: 10.1080/14712598.2023.2227086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Antigen down-regulation and early chimeric antigen receptor (CAR) T cell loss have emerged as 2 major challenges threatening outcomes following CD19-specific CAR T cell therapy for children and young adults with B-cell acute lymphoblastic leukemia (B-ALL). In addressing the future of CAR T cell therapy for B-ALL, innovative strategies to avert antigen downregulation and enhance CAR persistence warrant prioritized focus. AREAS COVERED We describe promising engineering strategies to refine CAR constructs to reverse exhaustion, develop regulatable CARs, optimize manufacturing, enrich for immune memory and disrupt immune inhibition. We additionally focus on alternative targeting to CD19-monospecific targeting and contextualize possibilities for expanded CAR utilization. EXPERT OPINION We describe research advances as they are independently reported, however anticipate an integrative strategy incorporating complementary modifications will be required to effectively address CAR loss, overcome antigen downregulation and enhance reliability and durability of CAR T cell responses for B-ALL.
Collapse
Affiliation(s)
- Liora Schultz
- Department of Pediatrics, Division of Hematology and Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Crystal L Mackall
- Department of Pediatrics, Division of Hematology and Oncology, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Medicine, Division of Blood and Bone Marrow Transplantation 300 Pasteur Drive, Stanford University School of Medicine, Stanford, CA, USA
- Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford Cancer Institute 265 Campus Drive, Stanford, CA, USA
| |
Collapse
|
35
|
Talleur AC, Pui CH, Karol SE. What is Next in Pediatric B-cell Precursor Acute Lymphoblastic Leukemia. LYMPHATICS 2023; 1:34-44. [PMID: 38269058 PMCID: PMC10804398 DOI: 10.3390/lymphatics1010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Cure rates now exceed 90% in many contemporary trials for children with B-cell acute lymphoblastic leukemia (ALL). However, treatment remains suboptimal and therapy is toxic for all patients. New treatment options potentially offer the chance to reduce both treatment resistance and toxicity. Here, we review recent advances in ALL diagnostics, chemotherapy, and immunotherapy. In addition to describing recently published results, we also attempt to project the impact of these new developments into the future to imagine what B-ALL therapy may look like in the next few years.
Collapse
Affiliation(s)
- Aimee C Talleur
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Seth E Karol
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
36
|
Yao Z, Gu B, Chen J, Xu Y, Chen F, Xue S, Qiu H, Tang X, Han Y, Chen S, Sun A, Yu L, Zhang Y, Wu D, Wang Y. CD19 chimeric antigen receptor T-cell therapy in adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia without complete molecular response at 3 months. Blood Cancer J 2023; 13:75. [PMID: 37164955 PMCID: PMC10172178 DOI: 10.1038/s41408-023-00848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Affiliation(s)
- Zhenzhen Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Gu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Feng Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengli Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Huiying Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Aining Sun
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lei Yu
- Shanghai Unicar-Therapy Bio-medicine Technology Co., Ltd, Shanghai, China
| | - Yanming Zhang
- Department of Hematology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China.
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China.
| | - Ying Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.
| |
Collapse
|
37
|
Mizuki K, Honda Y, Asai H, Higuchi N, Morita H, Yabe H, Kusuhara K. Successful Retransplantation With Killer Cell Immunoglobulin-like Receptor Ligand-mismatched Cord Blood in Infant Acute Lymphoblastic Leukemia That Relapsed After Transplantation. J Pediatr Hematol Oncol 2023; 45:e547-e550. [PMID: 36706271 DOI: 10.1097/mph.0000000000002614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/05/2022] [Indexed: 01/29/2023]
Abstract
The prognosis of children with KMT2A -rearranged ( KMT2A -r) acute lymphoblastic leukemia (ALL) remains dismal. This report describes the successful retransplantation of a patient with infant ALL who relapsed both bone marrow and central nervous system. The patient received HLA-matched cord blood transplantation (CBT) and relapsed 18 months later. After achieving the second remission, the patient received a killer cell immunoglobulin-like receptor ligand-mismatched CBT with a reduced-intensity conditioning regimen and has been in remission for 52 months. Thus, killer cell immunoglobulin-like receptor ligand-mismatched CBT with reduced-intensity conditioning might be a treatment option for patients with KMT2A- r ALL who relapsed after transplantation, even with extramedullary relapse.
Collapse
Affiliation(s)
- Kazuyoshi Mizuki
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu
| | - Yuko Honda
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu
| | - Hiroshi Asai
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu
| | - Naoko Higuchi
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu
| | - Hiromi Morita
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu
| | - Hiromasa Yabe
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Japan
| | - Koichi Kusuhara
- Department of Pediatrics, University of Occupational and Environmental Health, Kitakyushu
| |
Collapse
|
38
|
Aldoss I, Shah BD, Park JH, Muffly L, Logan AC, Brown P, Stock W, Jabbour EJ. Sequencing antigen-targeting antibodies and cellular therapies in adults with relapsed/refractory B-cell acute lymphoblastic leukemia. Am J Hematol 2023; 98:666-680. [PMID: 36691748 DOI: 10.1002/ajh.26853] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
The recent approvals of four CD19-or CD22-targeted therapies for B-cell acute lymphoblastic leukemia (B-ALL) have transformed the treatment of relapsed/refractory (r/r) disease. Adults with r/r B-ALL are usually eligible for all options, but there are no studies directly comparing these agents, and the treating physician must decide which to select. Each therapy has notable activity as a single agent but has limitations in particular settings, and the optimal choice varies. These therapies can be complementary and used either sequentially or concomitantly. Here, we review the current landscape of antigen-targeted therapies for r/r B-ALL and discuss considerations for their use.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, California, USA
| | - Bijal D Shah
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jae H Park
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lori Muffly
- Division of Blood and Marrow Transplantation and Cellular Therapy, Stanford University, Stanford, California, USA
| | - Aaron C Logan
- Division of Hematology/Oncology, University of California San Francisco Helen Diller Comprehensive Cancer Center, San Francisco, California, USA
| | | | - Wendy Stock
- Comprehensive Cancer Research Center, University of Chicago Medicine, Chicago, Illinois, USA
| | - Elias J Jabbour
- Division of Cancer Medicine, Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
39
|
Badar T, Alkhateeb H, Aljurf M, Kharfan-Dabaja MA. Management of Philadelphia chromosome positive acute lymphoblastic leukemia in the current era. Curr Res Transl Med 2023; 71:103392. [PMID: 37121211 DOI: 10.1016/j.retram.2023.103392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Before the advent of tyrosine kinase inhibitors (TKI) the outcome of Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) was dismal. The TKI combination with induction regimens has greatly improved the long-term outcome of Ph+ ALL, specifically ponatinib a most potent TKI in combination with HyperCVAD (hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone) chemotherapy has demonstrated 5 years overall survival up to 75%. Historically, allogeneic hematopoietic stem cell transplantation (allo-HSCT) used to be the only potential curative option, recent data suggest that patients who achieve complete molecular remission within 3 months of TKI based induction therapies can achieve comparable overall survival with or without allo-HSCT. Intensive cytotoxic chemotherapy may not be the desirable treatment option in elderly Ph+ ALL patients due to anticipated tolerance, recently in a phase II study, "chemotherapy free" combinations such as blinatumomab (bispecific anti-CD3 and anti-CD19 monoclonal antibody) with ponatinib in treatment naïve Ph+ ALL patients have shown a complete response rate of 95% and 2 years overall survival of 93%. In this review we have highlighted the evolving treatment landscape of Ph+ ALL and what to look for in future.
Collapse
Affiliation(s)
- Talha Badar
- Division of Hematology and Oncology, Department of Medicine, Mayo Clinic, FL, USA.
| | - Hassan Alkhateeb
- Division of Hematology, Mayo Clinic, 200 First St SW., Rochester, MN, USA
| | - Mahmoud Aljurf
- Section of Adult Hematology/BMT Department of Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
| | | |
Collapse
|
40
|
Zhang H, Wan Y, Wang H, Cai J, Yu J, Hu S, Fang Y, Gao J, Jiang H, Yang M, Liang C, Jin R, Tian X, Ju X, Hu Q, Jiang H, Li Z, Wang N, Sun L, Leung AWK, Wu X, Qian X, Qian M, Li CK, Yang J, Tang J, Zhu X, Shen S, Zhang L, Pui CH, Zhai X. Prognostic factors of childhood acute lymphoblastic leukemia with TCF3::PBX1 in CCCG-ALL-2015: A multicenter study. Cancer 2023; 129:1691-1703. [PMID: 36943767 DOI: 10.1002/cncr.34741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Contemporary risk-directed treatment has improved the outcome of patients with acute lymphoblastic leukemia (ALL) and TCF3::PBX1 fusion. In this study, the authors seek to identify prognostic factors that can be used to further improve outcome. METHODS The authors studied 384 patients with this genotype treated on Chinese Children's Cancer Group ALL-2015 protocol between January 1, 2015 and December 31, 2019. All patients provisionally received intensified chemotherapy in the intermediate-risk arm without prophylactic cranial irradiation; those with high minimal residual disease (MRD) ≥1% at day 46 (end) of remission induction were candidates for hematopoietic cell transplantation. RESULTS The overall 5-year event-free survival was 84.4% (95% confidence interval [CI], 80.6-88.3) and 5-year overall survival 88.9% (95% CI, 85.5-92.4). Independent factors associated with lower 5-year event-free survival were male sex (80.4%, [95% CI, 74.8-86.4] vs. 88.9%, [95% CI, 84.1-93.9] in female, p = .03) and positive day 46 MRD (≥0.01%) (62.1%, [95% CI, 44.2-87.4] vs. 87.1%, [95% CI, 83.4-90.9] in patients with negative MRD, p < .001). The presence of testicular leukemia at diagnosis (n = 10) was associated with particularly dismal 5-year event-free survival (33.3% [95% CI, 11.6-96.1] vs. 83.0% [95% CI, 77.5-88.9] in the other 192 male patients, p < .001) and was an independent risk factor (hazard ratio [HR], 5.7; [95% CI, 2.2-14.5], p < .001). CONCLUSIONS These data suggest that the presence of positive MRD after intensive remission induction and testicular leukemia at diagnosis are indicators for new molecular therapeutics or immunotherapy in patients with TCF3::PBX1 ALL.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yang Wan
- Department of Pediatrics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongsheng Wang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jiaoyang Cai
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Jie Yu
- Department of Hematology/Oncology, Chongqing Medical University Affiliated Children's Hospital, Chongqing, China
| | - Shaoyan Hu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Yongjun Fang
- Department of Hematology/Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ju Gao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, Chengdu, China
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital Central South University, Changsha, China
| | - Changda Liang
- Department of Hematology/Oncology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tian
- Department of Hematology/Oncology, KunMing Children's Hospital, Kunming, China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Qun Hu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Jiang
- Department of Hematology/Oncology, Children's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zhifan Li
- Department of Hematology/Oncology, Xi'an Northwest Women's and Children's Hospital, Xi'an, China
| | - Ningling Wang
- Department of Pediatrics, Anhui Medical University Second Affiliated Hospital, Hefei, Anhui, China
| | - Lirong Sun
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Alex W K Leung
- Department of Pediatrics, Hong Kong Children's Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaowen Qian
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Maoxiang Qian
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chi-Kong Li
- Department of Pediatrics, Hong Kong Children's Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jun Yang
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jingyan Tang
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Xiaofan Zhu
- Department of Pediatrics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shuhong Shen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Li Zhang
- Department of Pediatrics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Xiaowen Zhai
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
41
|
Myers RM, Shah NN, Pulsipher MA. How I use risk factors for success or failure of CD19 CAR T cells to guide management of children and AYA with B-cell ALL. Blood 2023; 141:1251-1264. [PMID: 36416729 PMCID: PMC10082355 DOI: 10.1182/blood.2022016937] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
By overcoming chemotherapeutic resistance, chimeric antigen receptor (CAR) T cells facilitate deep, complete remissions and offer the potential for long-term cure in a substantial fraction of patients with chemotherapy refractory disease. However, that success is tempered with 10% to 30% of patients not achieving remission and over half of patients treated eventually experiencing relapse. With over a decade of experience using CAR T cells in children, adolescents, and young adults (AYA) to treat relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL) and 5 years since the first US Food and Drug Administration approval, data defining the nuances of patient-specific risk factors are emerging. With the commercial availability of 2 unique CD19 CAR T-cell constructs for B-ALL, in this article, we review the current literature, outline our approach to patients, and discuss how individual factors inform strategies to optimize outcomes in children and AYA receiving CD19 CAR T cells. We include data from both prospective and recent large retrospective studies that offer insight into understanding when the risks of CAR T-cell therapy failure are high and offer perspectives suggesting when consolidative hematopoietic cell transplantation or experimental CAR T-cell and/or alternative immunotherapy should be considered. We also propose areas where prospective trials addressing the optimal use of CAR T-cell therapy are needed.
Collapse
Affiliation(s)
- Regina M. Myers
- Division of Oncology, Cell Therapy and Transplant Section, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Nirali N. Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael A. Pulsipher
- Division of Hematology and Oncology, Intermountain Primary Children’s Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| |
Collapse
|
42
|
Aldoss I, Afkhami M, Yang D, Gu Z, Mokhtari S, Shahani S, Pourhassan H, Agrawal V, Koller P, Arslan S, Tomasian V, Al Malki MM, Artz A, Salhotra A, Ali H, Aribi A, Sandhu KS, Ball B, Otoukesh S, Amanam I, Becker PS, Stewart FM, Curtin P, Smith E, Telatar M, Stein AS, Marcucci G, Forman SJ, Nakamura R, Pullarkat V. High response rates and transition to transplant after novel targeted and cellular therapies in adults with relapsed/refractory acute lymphoblastic leukemia with Philadelphia-like fusions. Am J Hematol 2023; 98:848-856. [PMID: 36880203 DOI: 10.1002/ajh.26908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Philadelphia (Ph)-like acute lymphoblastic leukemia (ALL) is associated with a poor response to standard chemotherapy. However, outcomes with novel antibody and cellular therapies in relapsed/refractory (r/r) Ph-like ALL are largely unknown. We conducted a single-center retrospective analysis of adult patients (n = 96) with r/r B-ALL and fusions associated with Ph-like who received novel salvage therapies. Patients were treated with 149 individual novel regimens (blinatumomab = 83, inotuzumab ozogamicin [InO] = 36, and CD19CAR T cells = 30). The median age at first novel salvage therapy was 36 years (range; 18-71). Ph-like fusions were IGH::CRLF2 (n = 48), P2RY8::CRLF2 (n = 26), JAK2 (n = 9), ABL-class (n = 8), EPOR::IGH (n = 4) and ETV6::NTRK2 (n = 1). CD19CAR T cells were administered later in the course of therapy compared to blinatumomab and InO (p < .001) and more frequently in recipients who relapsed after allogeneic hematopoietic cell transplantation (alloHCT) (p = .002). Blinatumomab was administered at an older age compared to InO and CAR T-cells (p = .004). The complete remission (CR)/CR with incomplete hematologic recovery (CRi) rates were 63%, 72%, and 90% following blinatumomab, InO and CD19CAR, respectively, among which 50%, 50%, and 44% of responders underwent consolidation with alloHCT, respectively. In multivariable analysis, the type of novel therapy (p = .044) and pretreatment marrow blasts (p = .006) predicted the CR/CRi rate, while the Ph-like fusion subtype (p = .016), pretreatment marrow blasts (p = .022) and post-response consolidation with alloHCT (p < .001) influenced event-free survival. In conclusion, novel therapies are effective in inducing high remission rates in patients with r/r Ph-like ALL and successfully transitioning the responders to alloHCT.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Michelle Afkhami
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Dongyun Yang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Sally Mokhtari
- Department of Clinical and Translational Project Development, City of Hope National Medical Center, Duarte, California, USA
| | - Shilpa Shahani
- Department of Pediatrics, City of Hope National Medical Center, Duarte, California, USA
| | - Hoda Pourhassan
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Vaibhav Agrawal
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Paul Koller
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Shukaib Arslan
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Vanina Tomasian
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Monzr M Al Malki
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Andrew Artz
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Amandeep Salhotra
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Haris Ali
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Ahmed Aribi
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Karamjeet S Sandhu
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Brian Ball
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Salman Otoukesh
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Idoroenyi Amanam
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Pamela S Becker
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Forrest M Stewart
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Peter Curtin
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Eileen Smith
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Milhan Telatar
- Department of Pathology, City of Hope National Medical Center, Duarte, California, USA
| | - Anthony S Stein
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Guido Marcucci
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Ryotaro Nakamura
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| | - Vinod Pullarkat
- Department of Hematology and Hematopoietic Cell Transplantation, Gehr Family Center for Leukemia Research, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
43
|
Aldoss I, Khaled SK, Wang X, Palmer J, Wang Y, Wagner JR, Clark MC, Simpson J, Paul J, Vyas V, Chien SH, Stein A, Pullarkat V, Salhotra A, Al Malki MM, Aribi A, Sandhu K, Thomas SH, Budde LE, Marcucci G, Brown CE, Forman SJ. Favorable Activity and Safety Profile of Memory-Enriched CD19-Targeted Chimeric Antigen Receptor T-Cell Therapy in Adults with High-Risk Relapsed/Refractory ALL. Clin Cancer Res 2023; 29:742-753. [PMID: 36255386 PMCID: PMC10544259 DOI: 10.1158/1078-0432.ccr-22-2038] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE A phase I/II study evaluating the safety and activity of memory-enriched CD19-directed chimeric antigen receptor (CD19-CAR) T cells in adults with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL). PATIENTS AND METHODS In phase I, we tested sequentially two cell populations for CAR transduction: (i) central memory (Tcm) or (ii) naïve, stem, and central memory (Tn/mem) T cells. The study employed an activity constrained for toxicity design to determine the recommended phase II dose (RP2D), which was tested in phase II. RESULTS The Tcm cohort was closed early due to lack of activity. The 200 ×106 Tn/mem-derived CD19-CAR T-cell dose was found to be safe and active, and was declared the RP2D. At RP2D, 58 participants underwent leukapheresis and 46 received CD19-CAR T cells. Median age for treated participants was 38 years (range, 22-72). Twenty-nine (63%) participants had relapsed post-allogeneic hematopoietic cell transplantation (alloHCT), 18 (39%) had Philadelphia-like (Ph-like) genotype, and 16 (35%) had extramedullary disease (EMD) at lymphodepletion (LD). Three (7%) participants had grade 3 cytokine release syndrome (CRS), and none had grade ≥ 4 CRS. Eight (17%) participants had grade ≥ 3 neurotoxicity, including one fatal cerebral edema. Forty (87%) patients achieved complete remission (CR)/CR with incomplete hematologic recovery, 2 (4%) progressed, and 4 (9%) were unevaluable for response. Among 42 response-evaluable participants, 16/17 with Ph-like ALL and 13/15 with EMD at LD responded. Twenty-one (53%) responders underwent alloHCT consolidation, which was associated with improved relapse-free survival (adjusted HR = 0.16; 95% confidence interval, 0.05-0.48; P = 0.001). CONCLUSIONS Tn/mem-derived CD19-CAR T cells were safe and active, including in Ph-like ALL and EMD. See related commentary by El Marabti and Abdel-Wahab, p. 694.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Samer K. Khaled
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Xiuli Wang
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Joycelynne Palmer
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Computational and Quantitative Sciences, Division of Biostatistics, Beckman Research Institute, City of Hope, Duarte, California
| | - Yan Wang
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Computational and Quantitative Sciences, Division of Biostatistics, Beckman Research Institute, City of Hope, Duarte, California
| | - Jamie R. Wagner
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Mary C. Clark
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Clinical and Translational Project Development, City of Hope, Duarte, California
| | - Jennifer Simpson
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Jinny Paul
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Vibhuti Vyas
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Sheng-Hsuan Chien
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Anthony Stein
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Vinod Pullarkat
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Amandeep Salhotra
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Monzr M. Al Malki
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Ahmed Aribi
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Karamjeet Sandhu
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Sandra H. Thomas
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Clinical and Translational Project Development, City of Hope, Duarte, California
| | - Lihua E. Budde
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Guido Marcucci
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Christine E. Brown
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| | - Stephen J. Forman
- Hematological Malignancies Research Institute, City of Hope, Duarte, California
- Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, California
- T Cell Therapeutics Research Laboratories, City of Hope, Duarte, California
| |
Collapse
|
44
|
CAR-T cell therapy followed by allogenic hematopoietic stem cell transplantation yielded comparable outcome between Ph like ALL and other high-risk ALL. Biomark Res 2023; 11:19. [PMID: 36793095 PMCID: PMC9930301 DOI: 10.1186/s40364-023-00451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/11/2023] [Indexed: 02/17/2023] Open
Abstract
It was previously believed that patients with Ph-like ALL had poorer prognosis compared with other B-ALL subgroups due to resistance to conventional chemotherapy and lack of targeted drugs. CAR-T therapy has been successfully applied in the treatment of relapsed and refractory B-ALL. Currently, there are few data on whether CAR-T therapy can alter the outcome of Ph-like ALL. Here we included 17 Ph-like, 23 Ph+ and 51 other B-ALL patients, who received autologous CAR T-cell therapy and subsequently allogenic stem cell transplantation. Patients in the Ph-like group and B-ALL-others group were younger that those in the Ph+ group (P=0.001). Ph-like and Ph+ ALL patients showed higher white blood cell counts at diagnosis (P=0.025). The percentage of patients with active disease before receiving CAR T-cells infusion was 64.7%, 39.1% and 62.7% in the Ph-like, Ph+ and B-ALL-others groups. The response rates to CAR-T therapy were 94.1% (16/17), 95.6% (22/23) and 98.0% (50/51) in the Ph-like, Ph+ and B-ALL-others groups. Measurable residual disease negative CR was achieved in 64.7% (11/17), 60.9% (14/23) and 54.9% (28/51) in the Ph-like, Ph+ and B-ALL-others groups, respectively. The estimated rates of 3-year overall survival (65.9%±16.5%, 59.7%±10.5% and 61.6%±7.3%, P=0.758) and 3-year relapse-free survival (59.8%±14.8%, 63.1%±10.5% and 56.3%±7.1%, P=0.764) were comparable among the Ph-like, Ph+ and B-ALL-others groups. Estimated 3-year cumulative relapse rate was 7.8%±0.6%, 23.4%±0.9% and 29.0%±0.4% (P=0.241). Our findings suggest that CART followed by allo-HSCT results in a comparable prognosis in Ph-like ALL and other high-risk B-ALL.Trial registration ClinicalTrials. gov, NCT03275493, Registered on September 7, 2017, prospectively registered and NCT03614858, Registered on August 3, 2018, prospectively registered.
Collapse
|
45
|
Newman H, Li Y, Liu H, Myers RM, Tam V, DiNofia A, Wray L, Rheingold SR, Callahan C, White C, Baniewicz D, Winestone LE, Kadauke S, Diorio C, June CH, Getz KD, Aplenc R, Teachey DT, Maude SL, Grupp SA, Bona K, Leahy AB. Impact of poverty and neighborhood opportunity on outcomes for children treated with CD19-directed CAR T-cell therapy. Blood 2023; 141:609-619. [PMID: 36351239 PMCID: PMC9979709 DOI: 10.1182/blood.2022017866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/08/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022] Open
Abstract
Children living in poverty experience excessive relapse and death from newly diagnosed acute lymphoblastic leukemia (ALL). The influence of household poverty and neighborhood social determinants on outcomes from chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory (r/r) leukemia is poorly described. We identified patients with r/r CD19+ ALL/lymphoblastic lymphoma treated on CD19-directed CAR T-cell clinical trials or with commercial tisagenlecleucel from 2012 to 2020. Socioeconomic status (SES) was proxied at the household level, with poverty exposure defined as Medicaid-only insurance. Low-neighborhood opportunity was defined by the Childhood Opportunity Index. Among 206 patients aged 1 to 29, 35.9% were exposed to household poverty, and 24.9% had low-neighborhood opportunity. Patients unexposed to household poverty or low-opportunity neighborhoods were more likely to receive CAR T-cell therapy with a high disease burden (>25%), a disease characteristic associated with inferior outcomes, as compared with less advantaged patients (38% vs 30%; 37% vs 26%). Complete remission (CR) rate was 93%, with no significant differences by household poverty (P = .334) or neighborhood opportunity (P = .504). In multivariate analysis, patients from low-opportunity neighborhoods experienced an increased hazard of relapse as compared with others (P = .006; adjusted hazard ratio [HR], 2.3; 95% confidence interval [CI], 1.3-4.1). There was no difference in hazard of death (P = .545; adjusted HR, 1.2; 95% CI, 0.6-2.4). Among children who successfully receive CAR T-cell therapy, CR and overall survival are equitable regardless of proxied SES and neighborhood opportunity. Children from more advantaged households and neighborhoods receive CAR T-cell therapy with a higher disease burden. Investigation of multicenter outcomes and access disparities outside of clinical trial settings is warranted.
Collapse
Affiliation(s)
- Haley Newman
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Yimei Li
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Hongyan Liu
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Regina M. Myers
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Vicky Tam
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Amanda DiNofia
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lisa Wray
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Susan R. Rheingold
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Colleen Callahan
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Claire White
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Diane Baniewicz
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lena E. Winestone
- Division of Allergy, Immunology, and Blood & Marrow Transplant, Department of Pediatrics, UCSF Benioff Children’s Hospitals, San Francisco, CA
| | - Stephan Kadauke
- Division of Transfusion Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Caroline Diorio
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Carl H. June
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Kelly D. Getz
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Richard Aplenc
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - David T. Teachey
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Shannon L. Maude
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Stephan A. Grupp
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Kira Bona
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology and Division of Population Sciences, Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Allison Barz Leahy
- Division of Oncology and Cancer Immunotherapy Program, Children’s Hospital of Philadelphia, Philadelphia, PA
- Penn Center for Cancer Care Innovation, University of Pennsylvania, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
46
|
Niswander LM, Graff ZT, Chien CD, Chukinas JA, Meadows CA, Leach LC, Loftus JP, Kohler ME, Tasian SK, Fry TJ. Potent preclinical activity of FLT3-directed chimeric antigen receptor T-cell immunotherapy against FLT3- mutant acute myeloid leukemia and KMT2A-rearranged acute lymphoblastic leukemia. Haematologica 2023; 108:457-471. [PMID: 35950535 PMCID: PMC9890025 DOI: 10.3324/haematol.2022.281456] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/03/2022] [Indexed: 02/03/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell immunotherapies targeting CD19 or CD22 induce remissions in the majority of patients with relapsed/refractory B-cell acute lymphoblastic leukemia (ALL), although relapse due to target antigen loss or downregulation has emerged as a major clinical dilemma. Accordingly, great interest exists in developing CAR T cells directed against alternative leukemia cell surface antigens that may help to overcome immunotherapeutic resistance. The fms-like tyrosine kinase 3 receptor (FLT3) is constitutively activated via FLT3 mutation in acute myeloid leukemia (AML) or wild-type FLT3 overexpression in KMT2A (lysine-specific methyltransferase 2A)-rearranged ALL, which are associated with poor clinical outcomes in children and adults. We developed monovalent FLT3-targeted CAR T cells (FLT3CART) and bispecific CD19xFLT3CART and assessed their anti-leukemia activity in preclinical models of FLT3-mutant AML and KMT2A-rearranged infant ALL. We report robust in vitro FLT3CART-induced cytokine production and cytotoxicity against AML and ALL cell lines with minimal cross-reactivity against normal hematopoietic and non-hematopoietic tissues. We also observed potent in vivo inhibition of leukemia proliferation in xenograft models of both FLT3-mutant AML and KMT2A-rearranged ALL, including a post-tisagenlecleucel ALL-to-AML lineage switch patient-derived xenograft model pairing. We further demonstrate significant in vitro and in vivo activity of bispecific CD19xFLT3CART against KMT2Arearranged ALL and posit that this additional approach might also diminish potential antigen escape in these high-risk leukemias. Our preclinical data credential FLT3CART as a highly effective immunotherapeutic strategy for both FLT3- mutant AML and KMT2A-rearranged ALL which is poised for further investigation and clinical translation.
Collapse
Affiliation(s)
- Lisa M Niswander
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research; Philadelphia PA
| | - Zachary T Graff
- Center for Cancer and Blood Disorders, Children's Hospital Colorado; Aurora, CO, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO
| | - Christopher D Chien
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health; Bethesda, MD
| | - John A Chukinas
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research; Philadelphia PA
| | - Christina A Meadows
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO
| | - Lillie C Leach
- Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO
| | - Joseph P Loftus
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research; Philadelphia, PA
| | - M Eric Kohler
- Center for Cancer and Blood Disorders, Children's Hospital Colorado; Aurora, CO, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO
| | - Sarah K Tasian
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research; Philadelphia PA, USA; University of Pennsylvania Perelman School of Medicine and Abramson Cancer Center; Philadelphia PA.
| | - Terry J Fry
- Center for Cancer and Blood Disorders, Children's Hospital Colorado; Aurora, CO, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus; Aurora, CO.
| |
Collapse
|
47
|
Ceolin V, Brivio E, van Tinteren H, Rheingold SR, Leahy A, Vormoor B, O'Brien MM, Rubinstein JD, Kalwak K, De Moerloose B, Jacoby E, Bader P, López-Duarte M, Goemans BF, Locatelli F, Hoogerbrugge P, Calkoen FG, Zwaan CM. Outcome of chimeric antigen receptor T-cell therapy following treatment with inotuzumab ozogamicin in children with relapsed or refractory acute lymphoblastic leukemia. Leukemia 2023; 37:53-60. [PMID: 36310183 DOI: 10.1038/s41375-022-01740-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 02/01/2023]
Abstract
Chimeric antigen receptor T cells targeting CD19 (CART-19) have shown remarkable efficacy for relapsed/refractory (R/R) B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We investigated whether prior use of inotuzumab ozogamicin (InO), an anti-CD22 antibody conjugated to calicheamicin, may impact CAR T-cell manufacturing or efficacy via pre-CART-19 depletion of the B-cell compartment. In this international, retrospective analysis, 39 children and young adults receiving InO before (n = 12) and/or after (n = 27) T-cell apheresis as bridging therapy to CART-19 treatment were analyzed. Median age at infusion was 13 years (range 1.4-23 years). Thirty-four out of 39 patients (87.2%) obtained complete remission. With a median follow-up of 18.2 months after CART-19 infusion, 12-month event-free survival (EFS) was 53.3% (95% confidence interval (CI): 38.7-73.4) and overall survival (OS) was 77.8% (95% CI: 64.5-93.9). Seventeen patients (44%) relapsed with a median of 159 days (range 28-655) after CART-19 infusion. No difference in day 28 minimal residual disease negative complete response rate, 12-month OS/EFS, or incidence of CD19-positive or -negative relapses was observed among patients receiving InO before or after apheresis. Compared to published data for patients treated with CART-19 therapy without prior InO exposure, response and OS/EFS for patients treated with InO prior to CART-19 are similar.
Collapse
Affiliation(s)
- Valeria Ceolin
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology/Hematology, Regina Margherita Children's Hospital, University of Turin, Turin, Italy
- Department of Pediatric Oncology/Hematology, Erasmus University MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Erica Brivio
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology/Hematology, Erasmus University MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Harm van Tinteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Susan R Rheingold
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | - Allison Leahy
- Division of Pediatric Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | - Britta Vormoor
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Maureen M O'Brien
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeremy D Rubinstein
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Krzysztof Kalwak
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Barbara De Moerloose
- Department of Pediatric Oncology/Hematology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Elad Jacoby
- Division of Pediatric Hematology, Oncology and BMT, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Peter Bader
- Department of Pediatric Oncology/Hematology, Clinic for Children and Youth Medicine, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Mónica López-Duarte
- Pediatric Hematology Unit, Hematology Department, Hospital de Valdecilla, Santander, Spain
| | - Bianca F Goemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Franco Locatelli
- Department of Hematology/Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | | | - Friso G Calkoen
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Christian Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Pediatric Oncology/Hematology, Erasmus University MC-Sophia Children's Hospital, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
CD19 chimeric antigen receptor T-cell therapy as a bridge therapy for allogeneic hematopoietic stem cell transplantation in patients with relapsed Philadelphia chromosome-positive acute lymphoblastic leukemia. Bone Marrow Transplant 2023; 58:103-105. [PMID: 36253466 DOI: 10.1038/s41409-022-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 01/20/2023]
|
49
|
Updates in infant acute lymphoblastic leukemia and the potential for targeted therapy. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2022; 2022:611-617. [PMID: 36485124 PMCID: PMC9821252 DOI: 10.1182/hematology.2022000359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Outcomes for infants diagnosed under 1 year of age with KMT2A-rearranged acute lymphoblastic leukemia (ALL) have remained stagnant over the past 20 years. Successive treatment protocols have previously focused on intensification of conventional chemotherapy, but increased treatment-related toxicity and chemoresistance have led to a plateau in survival. We have now entered an era of immunotherapy with integration of agents, such as blinatumomab or chimeric antigen receptor T-cell therapy, into the standard chemotherapy backbone, showing significant promise for improving the dismal outcomes for this disease. There remains much optimism for the future as a wealth of preclinical studies have identified additional novel targeted agents, such as venetoclax or menin inhibitors, ready for incorporation into treatment, providing further ammunition to combat this aggressive disease. In contrast, infants with KMT2A-germline ALL have demonstrated excellent survival outcomes with current therapy, but there remains a high burden of treatment-related morbidity. Greater understanding of the underlying blast genetics for infants with KMT2A-germline ALL and incorporation of immunotherapeutic approaches may enable a reduction in the intensity of chemotherapy while maintaining the excellent outcomes.
Collapse
|
50
|
Tirtakusuma R, Szoltysek K, Milne P, Grinev VV, Ptasinska A, Chin PS, Meyer C, Nakjang S, Hehir-Kwa JY, Williamson D, Cauchy P, Keane P, Assi SA, Ashtiani M, Kellaway SG, Imperato MR, Vogiatzi F, Schweighart EK, Lin S, Wunderlich M, Stutterheim J, Komkov A, Zerkalenkova E, Evans P, McNeill H, Elder A, Martinez-Soria N, Fordham SE, Shi Y, Russell LJ, Pal D, Smith A, Kingsbury Z, Becq J, Eckert C, Haas OA, Carey P, Bailey S, Skinner R, Miakova N, Collin M, Bigley V, Haniffa M, Marschalek R, Harrison CJ, Cargo CA, Schewe D, Olshanskaya Y, Thirman MJ, Cockerill PN, Mulloy JC, Blair HJ, Vormoor J, Allan JM, Bonifer C, Heidenreich O, Bomken S. Epigenetic regulator genes direct lineage switching in MLL/AF4 leukemia. Blood 2022; 140:1875-1890. [PMID: 35839448 PMCID: PMC10488321 DOI: 10.1182/blood.2021015036] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
The fusion gene MLL/AF4 defines a high-risk subtype of pro-B acute lymphoblastic leukemia. Relapse can be associated with a lineage switch from acute lymphoblastic to acute myeloid leukemia, resulting in poor clinical outcomes caused by resistance to chemotherapies and immunotherapies. In this study, the myeloid relapses shared oncogene fusion breakpoints with their matched lymphoid presentations and originated from various differentiation stages from immature progenitors through to committed B-cell precursors. Lineage switching is linked to substantial changes in chromatin accessibility and rewiring of transcriptional programs, including alternative splicing. These findings indicate that the execution and maintenance of lymphoid lineage differentiation is impaired. The relapsed myeloid phenotype is recurrently associated with the altered expression, splicing, or mutation of chromatin modifiers, including CHD4 coding for the ATPase/helicase of the nucleosome remodelling and deacetylation complex. Perturbation of CHD4 alone or in combination with other mutated epigenetic modifiers induces myeloid gene expression in MLL/AF4+ cell models, indicating that lineage switching in MLL/AF4 leukemia is driven and maintained by disrupted epigenetic regulation.
Collapse
Affiliation(s)
- Ricky Tirtakusuma
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Katarzyna Szoltysek
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Maria Sklodowska-Curie Institute, Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Paul Milne
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Vasily V. Grinev
- Department of Genetics, the Faculty of Biology, Belarusian State University, Minsk, Republic of Belarus
| | - Anetta Ptasinska
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paulynn S. Chin
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Claus Meyer
- Institute of Pharmaceutical Biology/DCAL, Goethe-University, Frankfurt/Main, Germany
| | - Sirintra Nakjang
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Daniel Williamson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Salam A. Assi
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Minoo Ashtiani
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Sophie G. Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria R. Imperato
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Fotini Vogiatzi
- ALL-BFM Study Group, Pediatric Hematology/Oncology, Christian Albrechts University Kiel and University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | | | - Shan Lin
- Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Mark Wunderlich
- Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Alexander Komkov
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Elena Zerkalenkova
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Paul Evans
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Hesta McNeill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Elder
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Natalia Martinez-Soria
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sarah E. Fordham
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yuzhe Shi
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lisa J. Russell
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Deepali Pal
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alex Smith
- Epidemiology and Cancer Statistics Group, University of York, York, United Kingdom
| | | | - Jennifer Becq
- Illumina Cambridge Ltd., Great Abington, United Kingdom
| | - Cornelia Eckert
- Department of Pediatric Oncology/Hematology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oskar A. Haas
- St Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | - Peter Carey
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Roderick Skinner
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| | - Natalia Miakova
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Matthew Collin
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Venetia Bigley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Dermatology and Newcastle National Institute of Health Research (NIHR), Newcastle Biomedical Research Centre, Newcastle Hospitals National Health Service (NHS) Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology/DCAL, Goethe-University, Frankfurt/Main, Germany
| | - Christine J. Harrison
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine A. Cargo
- Haematological Malignancy Diagnostic Service, St James’s University Hospital, Leeds, United Kingdom
| | - Denis Schewe
- Department of Pediatrics, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yulia Olshanskaya
- Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Michael J. Thirman
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL
| | - Peter N. Cockerill
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James C. Mulloy
- Experimental Hematology and Cancer Biology, Cancer and Blood Disease Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Helen J. Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Josef Vormoor
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - James M. Allan
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Simon Bomken
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Paediatric Haematology and Oncology, The Great North Children’s Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|