1
|
Tatarata QZ, Wang Z, Konopleva M. BCL-2 inhibition in acute myeloid leukemia: resistance and combinations. Expert Rev Hematol 2024; 17:935-946. [PMID: 39552410 DOI: 10.1080/17474086.2024.2429604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
INTRODUCTION The introduction of venetoclax has revolutionized the treatment landscape of acute myeloid leukemia, offering new therapeutic opportunities. However, the clinical response to venetoclax varies significantly between patients, with many experiencing limited duration of response. AREAS COVERED Identified resistance mechanisms include both intrinsic and acquired resistance to VEN. The former is associated with cell lineage and differentiation state. The latter includes dependency on alternative BCL-2 family anti-apoptotic protein(s) mediated by genetic, epigenetic, or post-translational mechanisms, mitochondrial and metabolic involvement, as well as microenvironment. Understanding these mechanisms is crucial for optimizing venetoclax-based therapies and enhancing treatment outcomes for patients with acute myeloid leukemia. This review aims to elucidate the primary mechanisms underlying resistance to venetoclax and explore current therapeutic strategies to overcome this challenge. EXPERT OPINION In patients with venetoclax resistance, alternative options include targeted combination therapies tailored to individual cases based on cytogenetics and prior treatments. Many of these therapies require further clinical investigation to validate their safety and efficacy.
Collapse
Affiliation(s)
- Qi Zhang Tatarata
- The Department of Leukemia, The University of Texas MD, Anderson Cancer Center, Houston, TX, USA
- The Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Zhe Wang
- The Department of Leukemia, The University of Texas MD, Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- The Department of Leukemia, The University of Texas MD, Anderson Cancer Center, Houston, TX, USA
- Department of Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Wu D, Li M, Hong Y, Jin L, Liu Q, Sun C, Li L, Han X, Deng S, Feng Y, Shen Y, Kai G. Integrated stress response activation induced by usnic acid alleviates BCL-2 inhibitor ABT-199 resistance in acute myeloid leukemia. J Adv Res 2024:S2090-1232(24)00436-3. [PMID: 39384125 DOI: 10.1016/j.jare.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024] Open
Abstract
INTRODUCTION ABT-199 (venetoclax) is a BCL-2 suppressor with pronounced effects on acute myeloid leukemia (AML). However, its usefulness as a monotherapy or in combination with hypomethylating medicines like azacitidine is debatable due to acquired resistance. Usnic acid, a dibenzofuran extracted from lichen Usnea diffracta Vain, exhibits anticancer properties and may counteract multidrug resistance in leukemia cells. OBJECTIVE This study investigated whether usnic acid at low-cytotoxicity level could enhance sensitivity of AML cells with acquired resistance to ABT-199 by targeting the integrated stress response pathways. METHODS To investigate the combined effects on AML cells, we used a cell viability test, flow cytometry to quantify apoptosis, cell cycle analysis, and mitochondrial membrane potential measurement. RNA-seq and immunoblot were used to determine the potential mechanisms of ABT-199 + usnic acid combination. RESULTS Usnic acid, at a low cytotoxicity level, successfully restored ABT-199 sensitivity in AML cell lines that had developed ABT-199 resistance and increased ABT-199's antileukemic activity in a xenograft model. Mechanistically, the combination of usnic acid and ABT-199 cooperated to boost the expression of the integrated stress response (ISR)-associated genes ATF4, CHOP, and NOXA through the heme-regulated inhibitor kinase (HRI), while also promoting the degradation of the anti-apoptotic protein MCL-1. ISRIB, a compound that blocks the ISR, was able to reverse the growth suppression and cell death, the increase in expression of genes related with the ISR, and the inhibition of MCL-1 protein caused by combination therapy. Additionally, the downregulation of MCL-1 was linked to an increase in MCL-1 phosphorylation at serine 159 and subsequent destruction by the proteasome. CONCLUSION In summary, usnic acid improves chemosensitivity to ABT-199 by triggering the integrated stress response, leading to decreased levels of MCL-1 protein, suggesting a potential treatment for AML cases resistant to Bcl-2 inhibitors.
Collapse
Affiliation(s)
- Dijiong Wu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Man Li
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yaonan Hong
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Li Jin
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qi Liu
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Chengtao Sun
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Liqin Li
- Key Laboratory of Traditional Chinese Medicine for the Development and Clinical Transformation of Immunomodulatory Traditional Chinese Medicine in Zhejiang Province, Huzhou Central Hospital, the Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China
| | - Xiaoxiao Han
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shengqian Deng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yue Feng
- Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yiping Shen
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Guoyin Kai
- Department of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China; Zhejiang Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Wang W, Brown TJ, Barth BM. Influences on the Hematopoietic Stem Cell Niche. SCIBASE HEMATOLOGY & BLOOD DISORDERS 2024; 1:1002. [PMID: 39429505 PMCID: PMC11486556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Hematopoietic stem cells (HSCs) are supported by the bone marrow microenvironment to maintain normal production of blood cells. The niche may be considered an "ecosystem" that support the function of HSCs and other supportive cells. Alterations in the bone marrow niche are commonly observed in hematologic malignancies. Here, we review recent insights into the location and the molecular and cellular components of the bone marrow niche. Moreover, we discuss how the niche interacts with HSCs to drive the pathogenesis of hematopoietic malignancies. Overall, a better understanding of the influences on the HSC niche may drive therapeutic development targeting defective and aberrant hematopoiesis.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta GA 30322 USA
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham NH 03824 USA
| | - Timothy J. Brown
- Division of Hematology and Oncology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas TX 75390 USA
| | - Brian M. Barth
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham NH 03824 USA
- Department of Natural Sciences, University of Alaska Southeast, Juneau AK 99801 USA
| |
Collapse
|
4
|
Chen X, Lu T, Ding M, Cai Y, Yu Z, Zhou X, Wang X. Targeting YTHDF2 inhibits tumorigenesis of diffuse large B-cell lymphoma through ACER2-mediated ceramide catabolism. J Adv Res 2024; 63:17-33. [PMID: 37865189 PMCID: PMC11379987 DOI: 10.1016/j.jare.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
INTRODUCTION Epigenetic alterations play crucial roles in diffuse large B-cell lymphoma (DLBCL). Disturbances in lipid metabolism contribute to tumor progression. However, studies in epigenetics, especially its critical regulator YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), on lipid metabolism regulation in DLBCL are unidentified. OBJECTIVES Elucidate the prognostic value and biological functions of YTHDF2 in DLBCL and illuminate the underlying epigenetic regulation mechanism of lipid metabolism by YTHDF2 in DLBCL development. METHODS The expression and clinical value of YTHDF2 in DLBCL were performed in public databases and clinical specimens. The biological functions of YTHDF2 in DLBCL were determined in vivo and in vitro through overexpression and CRISPR/Cas9-mediated knockout of YTHDF2. RNA sequencing, lipidomics, methylated RNA immunoprecipitation sequencing, RNA immunoprecipitation-qPCR, luciferase activity assay, and RNA stability experiments were used to explore the potential mechanism by which YTHDF2 contributed to DLBCL progression. RESULTS YTHDF2 was highly expressed in DLBCL, and related to poor prognosis. YTHDF2 overexpression exerted a tumor-promoting effect in DLBCL, and knockdown of YTHDF2 restricted DLBCL cell proliferation, arrested cell cycle in the G2/M phase, facilitated apoptosis, and enhanced drug sensitivity to ibrutinib and venetoclax. In addition, YTHDF2 knockout drastically suppressed tumor growth in xenograft DLBCL models. Furthermore, a regulatory role of YTHDF2 in ceramide metabolism was identified in DLBCL cells. Exogenous ceramide effectively inhibited the malignant phenotype of DLBCL cells in vitro. The binding of YTHDF2 to m6A sites on alkaline ceramidase 2 (ACER2) mRNA promoted its stability and expression. Enhanced ACER2 expression hydrolyzed ceramides, disrupting the balance between ceramide and sphingosine-1-phosphate (S1P), activating the ERK and PI3K/AKT pathways, and leading to DLBCL tumorigenesis. CONCLUSION This study demonstrated that YTHDF2 contributed to the progression of DLBCL by regulating ACER2-mediated ceramide metabolism in an m6A-dependent manner, providing novel insights into targeted therapies.
Collapse
Affiliation(s)
- Xiaomin Chen
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Tiange Lu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Mengfei Ding
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Yiqing Cai
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Zhuoya Yu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong 250021, China; National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 251006, China.
| |
Collapse
|
5
|
Lee J, Mani A, Shin MJ, Krauss RM. Leveraging altered lipid metabolism in treating B cell malignancies. Prog Lipid Res 2024; 95:101288. [PMID: 38964473 PMCID: PMC11347096 DOI: 10.1016/j.plipres.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
B cell malignancies, comprising over 80 heterogeneous blood cancers, pose significant prognostic challenges due to intricate oncogenic signaling. Emerging evidence emphasizes the pivotal role of disrupted lipid metabolism in the development of these malignancies. Variations in lipid species, such as phospholipids, cholesterol, sphingolipids, and fatty acids, are widespread across B cell malignancies, contributing to uncontrolled cell proliferation and survival. Phospholipids play a crucial role in initial signaling cascades leading to B cell activation and malignant transformation through constitutive B cell receptor (BCR) signaling. Dysregulated cholesterol and sphingolipid homeostasis support lipid raft integrity, crucial for propagating oncogenic signals. Sphingolipids impact malignant B cell stemness, proliferation, and survival, while glycosphingolipids in lipid rafts modulate BCR activation. Additionally, cancer cells enhance fatty acid-related processes to meet heightened metabolic demands. In obese individuals, the obesity-derived lipids and adipokines surrounding adipocytes rewire lipid metabolism in malignant B cells, evading cytotoxic therapies. Genetic drivers such as MYC translocations also intrinsically alter lipid metabolism in malignant B cells. In summary, intrinsic and extrinsic factors converge to reprogram lipid metabolism, fostering aggressive phenotypes in B cell malignancies. Therefore, targeting altered lipid metabolism has translational potential for improving risk stratification and clinical management of diverse B cell malignancy subtypes.
Collapse
Affiliation(s)
- Jaewoong Lee
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea; Center of Molecular and Cellular Oncology, Yale University, New Haven, CT 06511, USA.
| | - Arya Mani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT 06511, USA; Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Min-Jeong Shin
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul 02841, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
| | - Ronald M Krauss
- Department of Pediatrics and Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
6
|
Zhu LH, Liang YP, Yang L, Zhu F, Jia LJ, Li HG. Cycloastragenol induces apoptosis and protective autophagy through AMPK/ULK1/mTOR axis in human non-small cell lung cancer cell lines. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:503-514. [PMID: 38849220 DOI: 10.1016/j.joim.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE Studies have demonstrated that cycloastragenol induces antitumor effects in prostate, colorectal and gastric cancers; however, its efficacy for inhibiting the proliferation of lung cancer cells is largely unexplored. This study explores the efficacy of cycloastragenol for inhibiting non-small cell lung cancer (NSCLC) and elucidates the underlying molecular mechanisms. METHODS The effects of cycloastragenol on lung cancer cell proliferation were assessed using an adenosine triphosphate monitoring system based on firefly luciferase and clonogenic formation assays. Cycloastragenol-induced apoptosis in lung cancer cells was evaluated using dual staining flow cytometry with an annexin V-fluorescein isothiocyanate/propidium iodide kit. To elucidate the role of cycloastragenol in the induction of apoptosis, apoptosis-related proteins were examined using Western blots. Immunofluorescence and Western blotting were used to determine whether cycloastragenol could induce autophagy in lung cancer cells. Genetic techniques, including small interfering RNA technology, were used to investigate the underlying mechanisms. The effects against lung cancer and biosafety of cycloastragenol were evaluated using a mouse subcutaneous tumor model. RESULTS Cycloastragenol triggered both autophagy and apoptosis. Specifically, cycloastragenol promoted apoptosis by facilitating the accumulation of phorbol-12-myristate-13-acetate-induced protein 1 (NOXA), a critical apoptosis-related protein. Moreover, cycloastragenol induced a protective autophagy response through modulation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)/unc-51-like autophagy-activating kinase (ULK1)/mammalian target of rapamycin (mTOR) pathway. CONCLUSION Our study sheds new light on the antitumor efficacy and mechanism of action of cycloastragenol in NSCLC. This insight provides a scientific basis for exploring combination therapies that use cycloastragenol and inhibiting the AMPK/ULK1/mTOR pathway as a promising approach to combating lung cancer. Please cite this article as follows: Zhu LH, Liang YP, Yang L, Zhu F, Jia LJ, Li HG. Cycloastragenolinduces apoptosis and protective autophagy through AMPK/ULK1/mTOR axis in human non-small celllung cancer cell lines. J Integr Med. 2024; 22(4): 504-515.
Collapse
Affiliation(s)
- Li-Hua Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu-Pei Liang
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lian Yang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital, Fudan University, Shanghai 200237, China
| | - Li-Jun Jia
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - He-Gen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
7
|
Nwosu GO, Ross DM, Powell JA, Pitson SM. Venetoclax therapy and emerging resistance mechanisms in acute myeloid leukaemia. Cell Death Dis 2024; 15:413. [PMID: 38866760 PMCID: PMC11169396 DOI: 10.1038/s41419-024-06810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Acute myeloid leukaemia (AML) is a highly aggressive and devastating malignancy of the bone marrow and blood. For decades, intensive chemotherapy has been the frontline treatment for AML but has yielded only poor patient outcomes as exemplified by a 5-year survival rate of < 30%, even in younger adults. As knowledge of the molecular underpinnings of AML has advanced, so too has the development new strategies with potential to improve the treatment of AML patients. To date the most promising of these targeted agents is the BH3-mimetic venetoclax which in combination with standard of care therapies, has manageable non-haematological toxicity and exhibits impressive efficacy. However, approximately 30% of AML patients fail to respond to venetoclax-based regimens and almost all treatment responders eventually relapse. Here, we review the emerging mechanisms of intrinsic and acquired venetoclax resistance in AML and highlight recent efforts to identify novel strategies to overcome resistance to venetoclax.
Collapse
Affiliation(s)
- Gus O Nwosu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - David M Ross
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
- Department of Haematology, Flinders University and Medical Centre, Adelaide, SA, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
8
|
Iksen, Witayateeraporn W, Hardianti B, Pongrakhananon V. Comprehensive review of Bcl-2 family proteins in cancer apoptosis: Therapeutic strategies and promising updates of natural bioactive compounds and small molecules. Phytother Res 2024; 38:2249-2275. [PMID: 38415799 DOI: 10.1002/ptr.8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Cancer has a considerably higher fatality rate than other diseases globally and is one of the most lethal and profoundly disruptive ailments. The increasing incidence of cancer among humans is one of the greatest challenges in the field of healthcare. A significant factor in the initiation and progression of tumorigenesis is the dysregulation of physiological processes governing cell death, which results in the survival of cancerous cells. B-cell lymphoma 2 (Bcl-2) family members play important roles in several cancer-related processes. Drug research and development have identified various promising natural compounds that demonstrate potent anticancer effects by specifically targeting Bcl-2 family proteins and their associated signaling pathways. This comprehensive review highlights the substantial roles of Bcl-2 family proteins in regulating apoptosis, including the intricate signaling pathways governing the activity of these proteins, the impact of reactive oxygen species, and the crucial involvement of proteasome degradation and the stress response. Furthermore, this review discusses advances in the exploration and potential therapeutic applications of natural compounds and small molecules targeting Bcl-2 family proteins and thus provides substantial scientific information and therapeutic strategies for cancer management.
Collapse
Affiliation(s)
- Iksen
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacy, Sekolah Tinggi Ilmu Kesehatan Senior Medan, Medan, Indonesia
| | - Wasita Witayateeraporn
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Besse Hardianti
- Laboratory of Pharmacology and Clinical Pharmacy, Faculty of Health Sciences, Almarisah Madani University, South Sulawesi, Indonesia
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Wajapeyee N, Beamon TC, Gupta R. Roles and therapeutic targeting of ceramide metabolism in cancer. Mol Metab 2024; 83:101936. [PMID: 38599378 PMCID: PMC11031839 DOI: 10.1016/j.molmet.2024.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Ceramides are sphingolipids that act as signaling molecules involved in regulating cellular processes including apoptosis, proliferation, and metabolism. Deregulation of ceramide metabolism contributes to cancer development and progression. Therefore, regulation of ceramide levels in cancer cells is being explored as a new approach for cancer therapy. SCOPE OF THE REVIEW This review discusses the multiple roles of ceramides in cancer cells and strategies to modulate ceramide levels for cancer therapy. Ceramides attenuate cell survival signaling and metabolic pathways, while activating apoptotic mechanisms, making them tumor-suppressive. Approaches to increase ceramide levels in cancer cells include using synthetic analogs, inhibiting ceramide degradation, and activating ceramide synthesis. We also highlight combination therapies such as use of ceramide modulators with chemotherapies, immunotherapies, apoptosis inducers, and anti-angiogenics, which offer synergistic antitumor effects. Additionally, we also describe ongoing clinical trials evaluating ceramide nanoliposomes and analogs. Finally, we discuss the challenges of these therapeutic approaches including the complexity of ceramide metabolism, targeted delivery, cancer heterogeneity, resistance mechanisms, and long-term safety. MAJOR CONCLUSIONS Ceramide-based therapy is a potentially promising approach for cancer therapy. However, overcoming hurdles in pharmacokinetics, specificity, and resistance is needed to optimize its efficacy and safety. This requires comprehensive preclinical/clinical studies into ceramide signaling, formulations, and combination therapies. Ceramide modulation offers opportunities for developing novel cancer treatments, but a deeper understanding of ceramide biology is vital to advance its clinical applications.
Collapse
Affiliation(s)
- Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - Teresa Chiyanne Beamon
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
10
|
Killarney ST, Tait SWG, Green DR, Wood KC. Sublethal engagement of apoptotic pathways in residual cancer. Trends Cell Biol 2024; 34:225-238. [PMID: 37573235 PMCID: PMC10858294 DOI: 10.1016/j.tcb.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/14/2023]
Abstract
Cytotoxic chemo-, radio-, and targeted therapies frequently elicit apoptotic cancer cell death. Mitochondrial outer membrane permeabilization (MOMP) is a critical, regulated step in this apoptotic pathway. The residual cancer cells that survive treatment serve as the seeds of eventual relapse and are often functionally characterized by their transient tolerance of multiple therapeutic treatments. New studies suggest that, in these cells, a sublethal degree of MOMP, reflective of incomplete apoptotic commitment, is widely observed. Here, we review recent evidence that this sublethal MOMP drives the aggressive features of residual cancer cells while templating a host of unique vulnerabilities, highlighting how failed apoptosis may counterintuitively enable new therapeutic strategies to target residual disease (RD).
Collapse
Affiliation(s)
- Shane T Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
11
|
Hengst JA, Nduwumwami AJ, Sharma A, Yun JK. Fanning the Flames of Endoplasmic Reticulum (ER) Stress: Can Sphingolipid Metabolism Be Targeted to Enhance ER Stress-Associated Immunogenic Cell Death in Cancer? Mol Pharmacol 2024; 105:155-165. [PMID: 38164594 PMCID: PMC10877730 DOI: 10.1124/molpharm.123.000786] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024] Open
Abstract
The three arms of the unfolded protein response (UPR) surveil the luminal environment of the endoplasmic reticulum (ER) and transmit information through the lipid bilayer to the cytoplasm to alert the cell of stress conditions within the ER lumen. That same lipid bilayer is the site of de novo synthesis of phospholipids and sphingolipids. Thus, it is no surprise that lipids are modulated by and are modulators of ER stress. Given that sphingolipids have both prosurvival and proapoptotic effects, they also exert opposing effects on life/death decisions in the face of prolonged ER stress detected by the UPR. In this review, we will focus on several recent studies that demonstrate how sphingolipids affect each arm of the UPR. We will also discuss the role of sphingolipids in the process of immunogenic cell death downstream of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiating factor 2α (eIF2α) arm of the UPR. Furthermore, we will discuss strategies to target the sphingolipid metabolic pathway that could potentially act synergistically with agents that induce ER stress as novel anticancer treatments. SIGNIFICANCE STATEMENT: This review provides the readers with a brief discussion of the sphingolipid metabolic pathway and the unfolded protein response. The primary focus of the review is the mechanism(s) by which sphingolipids modulate the endoplasmic reticulum (ER) stress response pathways and the critical role of sphingolipids in the process of immunogenic cell death associated with the ER stress response.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Asvelt J Nduwumwami
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Arati Sharma
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| | - Jong K Yun
- Departments of Pediatrics (J.A.H.) and Pharmacology (A.S., J.K.Y.), Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Drug Metabolism and Pharmacokinetics, National Center for Advancing Translational Science, Rockville, Maryland (A.J.N.)
| |
Collapse
|
12
|
Nguyen TM, Joyce P, Ross DM, Bremmell K, Jambhrunkar M, Wong SS, Prestidge CA. Combating Acute Myeloid Leukemia via Sphingosine Kinase 1 Inhibitor-Nanomedicine Combination Therapy with Cytarabine or Venetoclax. Pharmaceutics 2024; 16:209. [PMID: 38399263 PMCID: PMC10893145 DOI: 10.3390/pharmaceutics16020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
MP-A08 is a novel sphingosine kinase 1 (SPHK1) inhibitor with activity against acute myeloid leukemia (AML). A rationally designed liposome-based encapsulation and delivery system has been shown to overcome the physicochemical challenges of MP-A08 and enable its effective delivery for improved efficacy and survival of mice engrafted with human AML in preclinical models. To establish therapies that overcome AML's heterogeneous nature, here we explored the combination of MP-A08-loaded liposomes with both the standard chemotherapy, cytarabine, and the targeted therapy, venetoclax, against human AML cell lines. Cytarabine (over the dose range of 0.1-0.5 µM) in combination with MP-A08 liposomes showed significant synergistic effects (as confirmed by the Chou-Talalay Combination Index) against the chemosensitised human AML cell lines MV4-11 and OCI-AML3. Venetoclax (over the dose range of 0.5-250 nM) in combination with MP-A08 liposomes showed significant synergistic effects against the chemosensitised human AML cell lines, particularly in venetoclax-resistant human AML cells. This strong synergistic effect is due to multiple mechanisms of action, i.e., inhibiting MCL-1 through SPHK1 inhibition, leading to ceramide accumulation, activation of protein kinase R, ATF4 upregulation, and NOXA activation, ultimately resulting in MCL-1 degradation. These combination therapies warrant further consideration and investigation in the search for a more comprehensive treatment strategy for AML.
Collapse
Affiliation(s)
- Thao M. Nguyen
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (T.M.N.); (P.J.); (K.B.); (M.J.); (S.S.W.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia;
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (T.M.N.); (P.J.); (K.B.); (M.J.); (S.S.W.)
| | - David M. Ross
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5001, Australia;
- Department of Haematology, Flinders University and Medical Centre, Adelaide, SA 5001, Australia
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, SA 5001, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| | - Kristen Bremmell
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (T.M.N.); (P.J.); (K.B.); (M.J.); (S.S.W.)
| | - Manasi Jambhrunkar
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (T.M.N.); (P.J.); (K.B.); (M.J.); (S.S.W.)
| | - Sook S. Wong
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (T.M.N.); (P.J.); (K.B.); (M.J.); (S.S.W.)
| | - Clive A. Prestidge
- Centre for Pharmaceutical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia; (T.M.N.); (P.J.); (K.B.); (M.J.); (S.S.W.)
| |
Collapse
|
13
|
Jiang B, Qiu M, Qin L, Tang J, Zhan S, Lin Q, Wei J, Liu Y, Zhou Z, Liang X, Cao J, Lian J, Mai Y, Jiang Y, Yu H. Associations between genetic variants in sphingolipid metabolism pathway genes and hepatitis B virus-related hepatocellular carcinoma survival. Front Oncol 2024; 13:1252158. [PMID: 38260847 PMCID: PMC10801735 DOI: 10.3389/fonc.2023.1252158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Background Although the sphingolipid metabolism pathway is known to play a significant role in tumor progression, there have been few studies on how genetic variants in the sphingolipid metabolism pathway genes affect the survival of patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). Methods We utilized available genotyping data to conduct multivariate Cox proportional hazards regression model analysis, examining the associations of 12,188 single nucleotide polymorphisms (SNPs) in 86 sphingolipid metabolism pathway genes on the survival of 866 HBV-HCC patients, and the model was also used in additive interaction analysis. We used bioinformatics functional prediction and expression quantitative trait locus (eQTL) analysis to explore the potential functions of SNPs and to evaluate the association of SNPs with the corresponding mRNA expression, respectively. We also used the online database TIMER2.0 (http://timer.comp-genomics.org/) to analyze the relationship between the corresponding mRNA expression levels and immune cell infiltration. Results Our study found that GBA2 rs1570247 G>A was significantly associated with elevated survival of HBV-HCC patients [(hazards ratio (HR)=0.74, 95% confidence interval (CI)=0.64-0.86, P<0.001)]. And on an additive scale, a synergistic effect was observed between the GG genotype of rs1570247 and advanced BCLC stage. Among HBV-HCC patients with advanced BCLC stage, those carrying the GBA2 rs1570247 GG genotype exhibited a significantly elevated risk of mortality (HR=3.32, 95%CI=2.45-4.50). Further functional prediction and eQTL analysis revealed that rs1570247 were located in the 5' untranslated region of the GBA2, the A allele of SNP rs1570247 was associated with higher mRNA expression levels of GBA2 in normal liver tissues (P=0.009). Moreover, we observed a positive correlation between GBA2 mRNA expression and the infiltration level of B lymphocytes cell (R=0.331, P<0.001), while a negative correlation was noted between GBA2 mRNA expression and the infiltration level of macrophage M2 in HCC (R=-0.383, P<0.001). Conclusion Our findings suggest that GBA2 rs1570247 G>A in sphingolipid metabolism pathway may be a key factor for survival of HBV-HCC patients by regulating the expression of corresponding genes and affecting the infiltration level of immune cells.
Collapse
Affiliation(s)
- Binbin Jiang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Moqin Qiu
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liming Qin
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jingmei Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, China
| | - Shicheng Zhan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, China
| | - Qiuling Lin
- Department of Clinical Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junjie Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yingchun Liu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zihan Zhou
- Department of Cancer Prevention and Control, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiumei Liang
- Department of Disease Process Management, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ji Cao
- Department of Cancer Prevention and Control, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jiawei Lian
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yuejiao Mai
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yanji Jiang
- Department of Scientific Research Dept, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongping Yu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China
- Guangxi Health Commission, Key Cultivated Laboratory of Cancer Molecular Medicine, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
14
|
Ung J, Tan SF, Fox TE, Shaw JJP, Taori M, Horton BJ, Golla U, Sharma A, Szulc ZM, Wang HG, Chalfant CE, Cabot MC, Claxton DF, Loughran TP, Feith DJ. Acid Ceramidase Inhibitor LCL-805 Antagonizes Akt Signaling and Promotes Iron-Dependent Cell Death in Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:5866. [PMID: 38136410 PMCID: PMC10742122 DOI: 10.3390/cancers15245866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy requiring urgent treatment advancements. Ceramide is a cell-death-promoting signaling lipid that plays a central role in therapy-induced cell death. We previously determined that acid ceramidase (AC), a ceramide-depleting enzyme, is overexpressed in AML and promotes leukemic survival and drug resistance. The ceramidase inhibitor B-13 and next-generation lysosomal-localizing derivatives termed dimethylglycine (DMG)-B-13 prodrugs have been developed but remain untested in AML. Here, we report the in vitro anti-leukemic efficacy and mechanism of DMG-B-13 prodrug LCL-805 across AML cell lines and primary patient samples. LCL-805 inhibited AC enzymatic activity, increased total ceramides, and reduced sphingosine levels. A median EC50 value of 11.7 μM was achieved for LCL-805 in cell viability assays across 32 human AML cell lines. As a single agent tested across a panel of 71 primary AML patient samples, a median EC50 value of 15.8 μM was achieved. Exogenous ceramide supplementation with C6-ceramide nanoliposomes, which is entering phase I/II clinical trial for relapsed/refractory AML, significantly enhanced LCL-805 killing. Mechanistically, LCL-805 antagonized Akt signaling and led to iron-dependent cell death distinct from canonical ferroptosis. These findings elucidated key factors involved in LCL-805 cytotoxicity and demonstrated the potency of combining AC inhibition with exogenous ceramide.
Collapse
Affiliation(s)
- Johnson Ung
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Su-Fern Tan
- Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (T.E.F.); (J.J.P.S.); (M.T.); (C.E.C.)
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Todd E. Fox
- Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (T.E.F.); (J.J.P.S.); (M.T.); (C.E.C.)
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeremy J. P. Shaw
- Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (T.E.F.); (J.J.P.S.); (M.T.); (C.E.C.)
| | - Maansi Taori
- Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (T.E.F.); (J.J.P.S.); (M.T.); (C.E.C.)
| | - Bethany J. Horton
- Department of Public Health Sciences, Division of Translational Research and Applied Statistics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | - Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.F.C.)
| | - Arati Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Zdzislaw M. Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina College of Medicine, Charleston, SC 29425, USA;
| | - Hong-Gang Wang
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Charles E. Chalfant
- Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (T.E.F.); (J.J.P.S.); (M.T.); (C.E.C.)
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA 23249, USA
| | - Myles C. Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA;
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - David F. Claxton
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (U.G.); (D.F.C.)
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Thomas P. Loughran
- Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (T.E.F.); (J.J.P.S.); (M.T.); (C.E.C.)
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - David J. Feith
- Department of Medicine, Division of Hematology & Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (T.E.F.); (J.J.P.S.); (M.T.); (C.E.C.)
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
15
|
Ung J, Tan SF, Fox TE, Shaw JJ, Taori M, Horton BJ, Golla U, Sharma A, Szulc ZM, Wang HG, Chalfant CE, Cabot MC, Claxton DF, Loughran TP, Feith DJ. Acid Ceramidase Inhibitor LCL-805 Antagonizes Akt Signaling and Promotes Iron-Dependent Cell Death in Acute Myeloid Leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.21.563437. [PMID: 37961314 PMCID: PMC10634704 DOI: 10.1101/2023.10.21.563437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy requiring urgent treatment advancements. Ceramide is a cell death-promoting signaling lipid that plays a central role in therapy-induced cell death. Acid ceramidase (AC), a ceramide-depleting enzyme, is overexpressed in AML and promotes leukemic survival and drug resistance. The ceramidase inhibitor B-13 and next-generation lysosomal-localizing derivatives termed dimethylglycine (DMG)-B-13 prodrugs have been developed but remain untested in AML. Here, we report the in vitro anti-leukemic efficacy and mechanism of DMG-B-13 prodrug, LCL-805, across AML cell lines and primary patient samples. LCL-805 inhibited AC enzymatic activity, increased total ceramides, and reduced sphingosine levels. A median EC50 value of 11.7 μM was achieved for LCL-805 in cell viability assays across 32 human AML cell lines. As a single agent tested across a panel of 71 primary AML patient samples, a median EC50 value of 15.8 μM was achieved. Exogenous ceramide supplementation with C6-ceramide nanoliposomes, which is entering phase I/II clinical trial for relapsed/refractory AML, significantly enhanced LCL-805 killing. Mechanistically, LCL-805 antagonized Akt signaling and led to iron-dependent cell death distinct from canonical ferroptosis. These findings elucidated key factors involved in LCL-805 cytotoxicity and demonstrated the potency of combining AC inhibition with exogenous ceramide.
Collapse
|
16
|
Nguyen TM, Jambhrunkar M, Wong SS, Ross DM, Joyce P, Finnie JW, Manavis J, Bremmell K, Pitman MR, Prestidge CA. Targeting Acute Myeloid Leukemia Using Sphingosine Kinase 1 Inhibitor-Loaded Liposomes. Mol Pharm 2023; 20:3937-3946. [PMID: 37463151 DOI: 10.1021/acs.molpharmaceut.3c00078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Acute myeloid leukemia (AML) kills 75% of patients and represents a major clinical challenge with a need to improve on current treatment approaches. Targeting sphingosine kinase 1 with a novel ATP-competitive-inhibitor, MP-A08, induces cell death in AML. However, limitations in MP-A08's "drug-like properties" (solubility, biodistribution, and potency) hinder its pathway to the clinic. This study demonstrates a liposome-based delivery system of MP-A08 that exhibits enhanced MP-A08 potency against AML cells. MP-A08-liposomes increased MP-A08 efficacy against patient AML cells (>140-fold) and significantly prolonged overall survival of mice with human AML disease (P = 0.03). The significant antileukemic property of MP-A08-liposomes could be attributed to its enhanced specificity, bioaccessibility, and delivery to the bone marrow, as demonstrated in the pharmacokinetic and biodistribution studies. Our findings indicate that MP-A08-liposomes have potential as a novel treatment for AML.
Collapse
Affiliation(s)
- Thao M Nguyen
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5001, Australia
| | - Manasi Jambhrunkar
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia5001, Australia
| | - Sook S Wong
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia5001, Australia
| | - David M Ross
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia 5001, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5001, Australia
- Department of Haematology, Flinders University and Medical Centre, Adelaide, South Australia 5001, Australia
- Department of Haematology and Bone Marrow Transplantation, Royal Adelaide Hospital, Adelaide, South Australia 5001, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia5001, Australia
| | - John W Finnie
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5001, Australia
| | - Jim Manavis
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5001, Australia
| | - Kristen Bremmell
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia5001, Australia
| | - Melissa R Pitman
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5001, Australia
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia5001, Australia
| |
Collapse
|
17
|
Letson CT, Balasis ME, Newman H, Binder M, Vedder A, Kinose F, Ball M, Kruer T, Quintana A, Lasho TL, Finke CM, Almada LL, Grants JM, Zhang G, Fernandez-Zapico ME, Gaspar-Maia A, Lancet J, Komrokji R, Haura E, Sallman DA, Reuther GW, Karsan A, Rix U, Patnaik MM, Padron E. Targeting BET Proteins Downregulates miR-33a To Promote Synergy with PIM Inhibitors in CMML. Clin Cancer Res 2023; 29:2919-2932. [PMID: 37223910 PMCID: PMC10524644 DOI: 10.1158/1078-0432.ccr-22-3929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/19/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
PURPOSE Preclinical studies in myeloid neoplasms have demonstrated efficacy of bromodomain and extra-terminal protein inhibitors (BETi). However, BETi demonstrates poor single-agent activity in clinical trials. Several studies suggest that combination with other anticancer inhibitors may enhance the efficacy of BETi. EXPERIMENTAL DESIGN To nominate BETi combination therapies for myeloid neoplasms, we used a chemical screen with therapies currently in clinical cancer development and validated this screen using a panel of myeloid cell line, heterotopic cell line models, and patient-derived xenograft models of disease. We used standard protein and RNA assays to determine the mechanism responsible for synergy in our disease models. RESULTS We identified PIM inhibitors (PIMi) as therapeutically synergistic with BETi in myeloid leukemia models. Mechanistically, we show that PIM kinase is increased after BETi treatment, and that PIM kinase upregulation is sufficient to induce persistence to BETi and sensitize cells to PIMi. Furthermore, we demonstrate that miR-33a downregulation is the underlying mechanism driving PIM1 upregulation. We also show that GM-CSF hypersensitivity, a hallmark of chronic myelomonocytic leukemia (CMML), represents a molecular signature for sensitivity to combination therapy. CONCLUSIONS Inhibition of PIM kinases is a potential novel strategy for overcoming BETi persistence in myeloid neoplasms. Our data support further clinical investigation of this combination.
Collapse
Affiliation(s)
| | | | - Hannah Newman
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Moritz Binder
- Division of Hematology, Mayo Clinic, Rochester, MN
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexis Vedder
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Fumi Kinose
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Markus Ball
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Traci Kruer
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ariel Quintana
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Terra L. Lasho
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Christy M. Finke
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Luciana L. Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN
| | | | - Guolin Zhang
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | - Alexandre Gaspar-Maia
- Division of Hematology, Mayo Clinic, Rochester, MN
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey Lancet
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| | - Rami Komrokji
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| | - Eric Haura
- Department of Drug Discovery, H Lee Moffitt Cancer Center, Tampa, FL
| | - David A. Sallman
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| | - Gary W. Reuther
- Department of Molecular Oncology, H Lee Moffitt Cancer Center, Tampa, FL
| | - Aly Karsan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC
| | - Uwe Rix
- Department of Drug Discovery, H Lee Moffitt Cancer Center, Tampa, FL
| | - Mrinal M. Patnaik
- Division of Hematology, Mayo Clinic, Rochester, MN
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric Padron
- Malignant Hematology Department, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
18
|
Peris I, Romero-Murillo S, Martínez-Balsalobre E, Farrington CC, Arriazu E, Marcotegui N, Jiménez-Muñoz M, Alburquerque-Prieto C, Torres-López A, Fresquet V, Martínez-Climent JA, Mateos MC, Cayuela ML, Narla G, Odero MD, Vicente C. Activation of the PP2A-B56α heterocomplex synergizes with venetoclax therapies in AML through BCL2 and MCL1 modulation. Blood 2023; 141:1047-1059. [PMID: 36455198 PMCID: PMC10023731 DOI: 10.1182/blood.2022016466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022] Open
Abstract
Venetoclax combination therapies are becoming the standard of care in acute myeloid leukemia (AML). However, the therapeutic benefit of these drugs in older/unfit patients is limited to only a few months, highlighting the need for more effective therapies. Protein phosphatase 2A (PP2A) is a tumor suppressor phosphatase with pleiotropic functions that becomes inactivated in ∼70% of AML cases. PP2A promotes cancer cell death by modulating the phosphorylation state in a variety of proteins along the mitochondrial apoptotic pathway. We therefore hypothesized that pharmacological PP2A reactivation could increase BCL2 dependency in AML cells and, thus, potentiate venetoclax-induced cell death. Here, by using 3 structurally distinct PP2A-activating drugs, we show that PP2A reactivation synergistically enhances venetoclax activity in AML cell lines, primary cells, and xenograft models. Through the use of gene editing tools and pharmacological approaches, we demonstrate that the observed therapeutic synergy relies on PP2A complexes containing the B56α regulatory subunit, of which expression dictates response to the combination therapy. Mechanistically, PP2A reactivation enhances venetoclax-driven apoptosis through simultaneous inhibition of antiapoptotic BCL2 and extracellular signal-regulated kinase signaling, with the latter decreasing MCL1 protein stability. Finally, PP2A targeting increases the efficacy of the clinically approved venetoclax and azacitidine combination in vitro, in primary cells, and in an AML patient-derived xenograft model. These preclinical results provide a scientific rationale for testing PP2A-activating drugs with venetoclax combinations in AML.
Collapse
Affiliation(s)
- Irene Peris
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Silvia Romero-Murillo
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Elena Martínez-Balsalobre
- Cancer and Aging Group, Hospital Universitario Virgen de la Arrixaca, and Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Caroline C. Farrington
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI
| | - Elena Arriazu
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Nerea Marcotegui
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| | - Marta Jiménez-Muñoz
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| | | | | | - Vicente Fresquet
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose A. Martínez-Climent
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria C. Mateos
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Hematology Service, Hospital Universitario de Navarra, Pamplona, Spain
| | - Maria L. Cayuela
- Cancer and Aging Group, Hospital Universitario Virgen de la Arrixaca, and Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Goutham Narla
- Division of Genetic Medicine, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI
| | - Maria D. Odero
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Vicente
- Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
19
|
Nwosu GO, Powell JA, Pitson SM. Targeting the integrated stress response in hematologic malignancies. Exp Hematol Oncol 2022; 11:94. [DOI: 10.1186/s40164-022-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWhile numerous targeted therapies have been recently adopted to improve the treatment of hematologic malignancies, acquired or intrinsic resistance poses a significant obstacle to their efficacy. Thus, there is increasing need to identify novel, targetable pathways to further improve therapy for these diseases. The integrated stress response is a signaling pathway activated in cancer cells in response to both dysregulated growth and metabolism, and also following exposure to many therapies that appears one such targetable pathway for improved treatment of these diseases. In this review, we discuss the role of the integrated stress response in the biology of hematologic malignancies, its critical involvement in the mechanism of action of targeted therapies, and as a target for pharmacologic modulation as a novel strategy for the treatment of hematologic malignancies.
Collapse
|
20
|
Raza Y, Atallah J, Luberto C. Advancements on the Multifaceted Roles of Sphingolipids in Hematological Malignancies. Int J Mol Sci 2022; 23:12745. [PMID: 36361536 PMCID: PMC9654982 DOI: 10.3390/ijms232112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2023] Open
Abstract
Dysregulation of sphingolipid metabolism plays a complex role in hematological malignancies, beginning with the first historical link between sphingolipids and apoptosis discovered in HL-60 leukemic cells. Numerous manuscripts have reviewed the field including the early discoveries that jumpstarted the studies. Many studies discussed here support a role for sphingolipids, such as ceramide, in combinatorial therapeutic regimens to enhance anti-leukemic effects and reduce resistance to standard therapies. Additionally, inhibitors of specific nodes of the sphingolipid pathway, such as sphingosine kinase inhibitors, significantly reduce leukemic cell survival in various types of leukemias. Acid ceramidase inhibitors have also shown promising results in acute myeloid leukemia. As the field moves rapidly, here we aim to expand the body of literature discussed in previously published reviews by focusing on advances reported in the latter part of the last decade.
Collapse
Affiliation(s)
- Yasharah Raza
- Department of Pharmacological Sciences, Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Jane Atallah
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
21
|
Liu J, Chen Y, Yu L, Yang L. Mechanisms of venetoclax resistance and solutions. Front Oncol 2022; 12:1005659. [PMID: 36313732 PMCID: PMC9597307 DOI: 10.3389/fonc.2022.1005659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
The BCL-2 inhibitor venetoclax is currently approved for treatment of hematologic diseases and is widely used either as monotherapy or in combination strategies. It has produced promising results in the treatment of refractory or relapsed (R/R) and aged malignant hematologic diseases. However, with clinical use, resistance to venetoclax has emerged. We review the mechanism of reduced dependence on BCL-2 mediated by the upregulation of antiapoptotic proteins other than BCL-2, such as MCL-1 and BCL-XL, which is the primary mechanism of venetoclax resistance, and find that this mechanism is achieved through different pathways in different hematologic diseases. Additionally, this paper also summarizes the current investigations of the mechanisms of venetoclax resistance in terms of altered cellular metabolism, changes in the mitochondrial structure, altered or modified BCL-2 binding domains, and some other aspects; this article also reviews relevant strategies to address these resistance mechanisms.
Collapse
Affiliation(s)
- Jiachen Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yidong Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lihua Yu
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lihua Yang
- Department of Pediatric Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Khokhlatchev AV, Sharma A, Deering TG, Shaw JJP, Costa‐Pinheiro P, Golla U, Annageldiyev C, Cabot MC, Conaway MR, Tan S, Ung J, Feith DJ, Loughran TP, Claxton DF, Fox TE, Kester M. Ceramide nanoliposomes augment the efficacy of venetoclax and cytarabine in models of acute myeloid leukemia. FASEB J 2022; 36:e22514. [PMID: 36106439 PMCID: PMC9544744 DOI: 10.1096/fj.202200765r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/12/2022]
Abstract
Despite several new therapeutic options for acute myeloid leukemia (AML), disease relapse remains a significant challenge. We have previously demonstrated that augmenting ceramides can counter various drug-resistance mechanisms, leading to enhanced cell death in cancer cells and extended survival in animal models. Using a nanoscale delivery system for ceramide (ceramide nanoliposomes, CNL), we investigated the effect of CNL within a standard of care venetoclax/cytarabine (Ara-C) regimen. We demonstrate that CNL augmented the efficacy of venetoclax/cytarabine in in vitro, ex vivo, and in vivo models of AML. CNL treatment induced non-apoptotic cytotoxicity, and augmented cell death induced by Ara-C and venetoclax. Mechanistically, CNL reduced both venetoclax (Mcl-1) and cytarabine (Chk1) drug-resistant signaling pathways. Moreover, venetoclax and Ara-C augmented the generation of endogenous pro-death ceramide species, which was intensified with CNL. Taken together, CNL has the potential to be utilized as an adjuvant therapy to improve outcomes, potentially extending survival, in patients with AML.
Collapse
Affiliation(s)
| | - Arati Sharma
- Division of Hematology and Oncology, Department of MedicinePenn State University College of MedicineHersheyPennsylvaniaUSA
- Department of PharmacologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Penn State Cancer InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Tye G. Deering
- Department of PharmacologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Jeremy J. P. Shaw
- Department of Experimental PathologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pedro Costa‐Pinheiro
- Department of Experimental PathologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Upendarrao Golla
- Division of Hematology and Oncology, Department of MedicinePenn State University College of MedicineHersheyPennsylvaniaUSA
- Penn State Cancer InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Charyguly Annageldiyev
- Division of Hematology and Oncology, Department of MedicinePenn State University College of MedicineHersheyPennsylvaniaUSA
- Penn State Cancer InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Myles C. Cabot
- Department of Biochemistry and Molecular Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Mark R. Conaway
- University of Virginia School of MedicinePublic Health SciencesCharlottesvilleVirginiaUSA
| | - Su‐Fern Tan
- Division of Hematology and Oncology, Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- University of Virginia Cancer CenterCharlottesvilleVirginiaUSA
| | - Johnson Ung
- Division of Hematology and Oncology, Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- Department of Microbiology, Immunology and Cancer BiologyUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - David J. Feith
- Division of Hematology and Oncology, Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- University of Virginia Cancer CenterCharlottesvilleVirginiaUSA
| | - Thomas P. Loughran
- Division of Hematology and Oncology, Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
- University of Virginia Cancer CenterCharlottesvilleVirginiaUSA
| | - David F. Claxton
- Division of Hematology and Oncology, Department of MedicinePenn State University College of MedicineHersheyPennsylvaniaUSA
- Penn State Cancer InstitutePennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Todd E. Fox
- Department of PharmacologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Mark Kester
- Department of PharmacologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- University of Virginia Cancer CenterCharlottesvilleVirginiaUSA
- NanoSTAR InstituteCharlottesvilleVirginiaUSA
| |
Collapse
|
23
|
Hua L, Lei P, Hu Y. Construction and validation model of necroptosis-related gene signature associates with immunity for osteosarcoma patients. Sci Rep 2022; 12:15893. [PMID: 36151259 PMCID: PMC9508147 DOI: 10.1038/s41598-022-20217-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Osteosarcoma is the most common malignant tumor in children and adolescents and its diagnosis and treatment still need to be improved. Necroptosis has been associated with many malignancies, but its significance in diagnosing and treating osteosarcoma remains unclear. The objective is to establish a predictive model of necroptosis-related genes (NRGs) in osteosarcoma for evaluating the tumor microenvironment and new targets for immunotherapy. In this study, we download the osteosarcoma data from the TARGET and GEO websites and the average muscle tissue data from GTEx. NRGs were screened by Cox regression analysis. We constructed a prediction model through nonnegative matrix factorization (NMF) clustering and the least absolute shrinkage and selection operator (LASSO) algorithm and verified it with a validation cohort. Kaplan–Meier survival time, ROC curve, tumor invasion microenvironment and CIBERSORT were assessed. In addition, we establish nomograms for clinical indicators and verify them by calibration evaluation. The underlying mechanism was explored through the functional enrichment analysis. Eight NRGs were screened for predictive model modeling. NRGs prediction model through NMF clustering and LASSO algorithm was established. The survival, ROC and tumor microenvironment scores showed significant statistical differences among subgroups (P < 0.05). The validation model further verifies it. By nomogram and calibration, we found that metastasis and risk score were independent risk factors for the poor prognosis of osteosarcoma. GO and KEGG analyses demonstrate that the genes of osteosarcoma cluster in inflammatory, apoptotic and necroptosis signaling pathways. The significant role of the correlation between necroptosis and immunity in promoting osteosarcoma may provide a novel insight into detecting molecular mechanisms and targeted therapy.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People's Republic of China.,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, People's Republic of China.,Department of Orthopedics, The Sixth Affiliated Hospital, Xinjiang Medical University, Ürümqi, People's Republic of China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People's Republic of China. .,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, People's Republic of China.
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital Central South University, Changsha, Hunan, People's Republic of China. .,Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, People's Republic of China.
| |
Collapse
|
24
|
Sanchez-Burgos L, Navarro-González B, García-Martín S, Sirozh O, Mota-Pino J, Fueyo-Marcos E, Tejero H, Antón ME, Murga M, Al-Shahrour F, Fernandez-Capetillo O. Activation of the integrated stress response is a vulnerability for multidrug-resistant FBXW7-deficient cells. EMBO Mol Med 2022; 14:e15855. [PMID: 35861150 PMCID: PMC9449593 DOI: 10.15252/emmm.202215855] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
FBXW7 is one of the most frequently mutated tumor suppressors, deficiency of which has been associated with resistance to some anticancer therapies. Through bioinformatics and genome‐wide CRISPR screens, we here reveal that FBXW7 deficiency leads to multidrug resistance (MDR). Proteomic analyses found an upregulation of mitochondrial factors as a hallmark of FBXW7 deficiency, which has been previously linked to chemotherapy resistance. Despite this increased expression of mitochondrial factors, functional analyses revealed that mitochondria are under stress, and genetic or chemical targeting of mitochondria is preferentially toxic for FBXW7‐deficient cells. Mechanistically, the toxicity of therapies targeting mitochondrial translation such as the antibiotic tigecycline relates to the activation of the integrated stress response (ISR) in a GCN2 kinase‐dependent manner. Furthermore, the discovery of additional drugs that are toxic for FBXW7‐deficient cells showed that all of them unexpectedly activate a GCN2‐dependent ISR regardless of their accepted mechanism of action. Our study reveals that while one of the most frequent mutations in cancer reduces the sensitivity to the vast majority of available therapies, it renders cells vulnerable to ISR‐activating drugs.
Collapse
Affiliation(s)
- Laura Sanchez-Burgos
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Belén Navarro-González
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Oleksandra Sirozh
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jorge Mota-Pino
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Fueyo-Marcos
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Héctor Tejero
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Marta Elena Antón
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
25
|
Ceramide: improving Bcl-2 inhibitor therapy. Blood 2022; 139:3676-3678. [PMID: 35771560 PMCID: PMC9247366 DOI: 10.1182/blood.2022016608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
|