1
|
Rodriguez-Martinez A, Young-Baird SK. Polysome profiling is an extensible tool for the analysis of bulk protein synthesis, ribosome biogenesis, and the specific steps in translation. Mol Biol Cell 2025; 36:mr2. [PMID: 40042939 PMCID: PMC12005114 DOI: 10.1091/mbc.e24-08-0341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Protein synthesis is an essential and highly regulated cellular process. Here, we demonstrate the versatility of polysome profiling-a methodology traditionally used to assess levels of protein synthesis-to monitor ribosomal integrity and modulation of specific steps in mRNA translation. Using expanded polysome profiling methodologies, we systematically illustrate defects in ribosome biogenesis, translation initiation, and translational elongation in different cellular conditions. We additionally provide instruction for how a modified polysome profiling protocol can be leveraged to identify and characterize the function of factors that regulate protein synthesis. These methodologies are broadly applicable to a range of physiological conditions and human diseases in which ribosome biogenesis or the phases of protein synthesis are distinctly regulated or dysregulated.
Collapse
Affiliation(s)
- Ambar Rodriguez-Martinez
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817
| | - Sara K. Young-Baird
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814
| |
Collapse
|
2
|
Iskander D, Karadimitris A, Roberts I. Harnessing Single-Cell Technologies in the Search for New Therapies for Diamond-Blackfan Anemia Syndrome. Exp Hematol 2024; 135:104235. [PMID: 38740323 DOI: 10.1016/j.exphem.2024.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The emergence of multiomic single-cell technologies over the last decade has led to improved insights into both normal hematopoiesis and its perturbation in a variety of hematological disorders. Diamond-Blackfan anemia (DBA) syndrome is one such disorder where single-cell assays have helped to delineate the cellular and molecular defects underlying the disease. DBA is caused by heterozygous loss-of-function germline variants in genes encoding ribosomal proteins (RPs). Despite the widespread role of ribosomes in hematopoiesis, the most frequent and severe cytopenia in DBA is anemia. In this review we discussed how single-cell studies, including clonogenic cell culture assays, fluorescence-activated cell sorting (FACS) and single-cell RNA sequencing (scRNA-seq), have led to insights into the pathogenesis of DBA. The main therapies are regular blood transfusions, glucocorticoids, or hematopoietic stem cell transplantation (HSCT) but all are associated with significant morbidity and mortality. We will therefore outline how single-cell studies can inform new therapies for DBA. Furthermore, we discussed how DBA serves as a useful model for understanding normal erythropoiesis in terms of its cellular hierarchy, molecular regulation during homeostasis, and response to "stress."
Collapse
Affiliation(s)
- Deena Iskander
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London, United Kingdom; Department of Paediatric Haematology, St Mary's Hospital, Imperial College Healthcare Trust, London, United Kingdom.
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - Irene Roberts
- MRC Molecular Haematology Unit, WIMM, University of Oxford, Oxford, United Kingdom; Department of Paediatrics, Children's Hospital and MHU, WIMM, Oxford University and John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
3
|
Ma JK, Su LD, Feng LL, Li JL, Pan L, Danzeng Q, Li Y, Shang T, Zhan XL, Chen SY, Ying S, Hu JR, Chen XQ, Zhang Q, Liang T, Lu XJ. TFPI from erythroblasts drives heme production in central macrophages promoting erythropoiesis in polycythemia. Nat Commun 2024; 15:3976. [PMID: 38729948 PMCID: PMC11087540 DOI: 10.1038/s41467-024-48328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Bleeding and thrombosis are known as common complications of polycythemia for a long time. However, the role of coagulation system in erythropoiesis is unclear. Here, we discover that an anticoagulant protein tissue factor pathway inhibitor (TFPI) plays an essential role in erythropoiesis via the control of heme biosynthesis in central macrophages. TFPI levels are elevated in erythroblasts of human erythroblastic islands with JAK2V617F mutation and hypoxia condition. Erythroid lineage-specific knockout TFPI results in impaired erythropoiesis through decreasing ferrochelatase expression and heme biosynthesis in central macrophages. Mechanistically, the TFPI interacts with thrombomodulin to promote the downstream ERK1/2-GATA1 signaling pathway to induce heme biosynthesis in central macrophages. Furthermore, TFPI blockade impairs human erythropoiesis in vitro, and normalizes the erythroid compartment in mice with polycythemia. These results show that erythroblast-derived TFPI plays an important role in the regulation of erythropoiesis and reveal an interplay between erythroblasts and central macrophages.
Collapse
Affiliation(s)
- Jun-Kai Ma
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Li-Da Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lin-Lin Feng
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Jing-Lin Li
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Li Pan
- The General Hospital of Tibet Military Area Command, Lhasa, China
| | - Qupei Danzeng
- Department of Tibetan Medicine; University of Tibetan Medicine, Lhasa, 540100, China
| | - Yanwei Li
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Tongyao Shang
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao-Lin Zhan
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Si-Ying Chen
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Shibo Ying
- School of Public Health, Hangzhou Medical College, Hangzhou, 310013, China
| | - Jian-Rao Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xue Qun Chen
- Zhejiang University, School of Brain Science and Brain Medicine, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Xin-Jiang Lu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Duncan BB, Lotter JL, Superata J, Barranta ME, Machado T, Darden I, Venugopal S, Wu CO, Abkowitz JL, Dunbar CE, Young DJ. Treatment of refractory/relapsed Diamond-Blackfan anaemia with eltrombopag. Br J Haematol 2024; 204:2077-2085. [PMID: 38462764 PMCID: PMC11212774 DOI: 10.1111/bjh.19357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Diamond-Blackfan anaemia (DBA) is a rare, inherited bone marrow failure syndrome with a ribosomal defect causing slowed globin chain production with normal haem synthesis, causing an overabundance of reactive iron/haem and erythroid-specific cellular toxicity. Eltrombopag, a non-peptide thrombopoietin receptor agonist, is a potent intracellular iron chelator and induced a robust durable response in an RPS19-mutated DBA patient on another trial. We hypothesized eltrombopag would improve RBC production in DBA patients. We conducted a single-centre, single-arm pilot study (NCT04269889) assessing safety and erythroid response of 6 months of daily, fixed-dose eltrombopag for DBA patients. Fifteen transfusion-dependent (every 3-5 weeks) patients (median age 18 [range 2-56]) were treated. One responder had sustained haemoglobin improvement and >50% reduction in RBC transfusion frequency. Of note, 7/15 (41%) patients required dose reductions or sustained discontinuation of eltrombopag due to asymptomatic thrombocytosis. Despite the low response rate, eltrombopag has now improved erythropoiesis in several patients with DBA with a favourable safety profile. Dosing restrictions due to thrombocytosis may cause insufficient iron chelation to decrease haem production and improve anaemia in most patients. Future work will focus on erythropoiesis dynamics in patients and use of haem synthesis inhibitors without an impact on other haematopoietic lineages.
Collapse
Affiliation(s)
- Brynn B Duncan
- Translational Stem Cell Biology Branch, NHLBI, Bethesda, Maryland, USA
| | | | | | | | - Tania Machado
- Office of the Clinical Director, NHLBI, Bethesda, Maryland, USA
| | - Ivana Darden
- Office of the Clinical Director, NHLBI, Bethesda, Maryland, USA
| | | | - Colin O Wu
- Office of Biostatistics Research, NHLBI, Bethesda, Maryland, USA
| | - Janis L Abkowitz
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, NHLBI, Bethesda, Maryland, USA
| | - David J Young
- Translational Stem Cell Biology Branch, NHLBI, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Fiorito V, Tolosano E. Unearthing FLVCR1a: tracing the path to a vital cellular transporter. Cell Mol Life Sci 2024; 81:166. [PMID: 38581583 PMCID: PMC10998817 DOI: 10.1007/s00018-024-05205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
The Feline Leukemia Virus Subgroup C Receptor 1a (FLVCR1a) is a member of the SLC49 Major Facilitator Superfamily of transporters. Initially recognized as the receptor for the retrovirus responsible of pure red cell aplasia in cats, nearly two decades since its discovery, FLVCR1a remains a puzzling transporter, with ongoing discussions regarding what it transports and how its expression is regulated. Nonetheless, despite this, the substantial body of evidence accumulated over the years has provided insights into several critical processes in which this transporter plays a complex role, and the health implications stemming from its malfunction. The present review intends to offer a comprehensive overview and a critical analysis of the existing literature on FLVCR1a, with the goal of emphasising the vital importance of this transporter for the organism and elucidating the interconnections among the various functions attributed to this transporter.
Collapse
Affiliation(s)
- Veronica Fiorito
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Center (MBC) "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|
6
|
Griffiths EA. Transfusion avoidance in myelodysplastic neoplasms. Curr Opin Hematol 2024; 31:40-46. [PMID: 37982261 PMCID: PMC11006404 DOI: 10.1097/moh.0000000000000794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
PURPOSE OF REVIEW Myelodysplastic neoplasms (MDS) are diseases of stem cell aging associated with complications from inadequate hematopoiesis (red cells, neutrophils and platelets) and variable risk for transformation to acute myeloid leukemia. Those with low-risk disease also suffer and die from MDS-related complications. Among the most challenging is development of anemia and transfusion dependence, which impacts quality of life and is associated with reduced survival. Appreciating and measuring the quality-of-life impact, preventing (if possible), treating, and managing the complications from anemia in MDS are of critical importance. RECENT FINDINGS Recent developments in basic science highlight the potential deleterious impact of iron overload within the developing red cell niche. Iron overload can compromise red cell maturation from healthy as well as malignant clones and produces an environment favoring expansion of mutant clonal cells, potentially driving disease progression. Observational studies in nontransfusion dependent MDS highlight that iron overload occurs even in the nontransfusion dependent. The newly approved (and established) therapies for management of MDS-related anemia work best when begun before patients become heavily transfusion-dependent. SUMMARY Iron overload is detrimental to hematopoiesis. Understanding the benefit afforded by transfusion is critical to optimal application and patient reported outcomes can inform this. Recently developed therapies are active and optimized application may improve response.
Collapse
|
7
|
Bhoopalan SV, Suryaprakash S, Sharma A, Wlodarski MW. Hematopoietic cell transplantation and gene therapy for Diamond-Blackfan anemia: state of the art and science. Front Oncol 2023; 13:1236038. [PMID: 37752993 PMCID: PMC10518466 DOI: 10.3389/fonc.2023.1236038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is one of the most common inherited causes of bone marrow failure in children. DBA typically presents with isolated erythroid hypoplasia and anemia in infants. Congenital anomalies are seen in 50% of the patients. Over time, many patients experience panhematopoietic defects resulting in immunodeficiency and multilineage hematopoietic cytopenias. Additionally, DBA is associated with increased risk of myelodysplastic syndrome, acute myeloid leukemia and solid organ cancers. As a prototypical ribosomopathy, DBA is caused by heterozygous loss-of-function mutations or deletions in over 20 ribosomal protein genes, with RPS19 being involved in 25% of patients. Corticosteroids are the only effective initial pharmacotherapy offered to transfusion-dependent patients aged 1 year or older. However, despite good initial response, only ~20-30% remain steroid-responsive while the majority of the remaining patients will require life-long red blood cell transfusions. Despite continuous chelation, iron overload and related toxicities pose a significant morbidity problem. Allogeneic hematopoietic cell transplantation (HCT) performed to completely replace the dysfunctional hematopoietic stem and progenitor cells is a curative option associated with potentially uncontrollable risks. Advances in HLA-typing, conditioning regimens, infection management, and graft-versus-host-disease prophylaxis have led to improved transplant outcomes in DBA patients, though survival is suboptimal for adolescents and adults with long transfusion-history and patients lacking well-matched donors. Additionally, many patients lack a suitable donor. To address this gap and to mitigate the risk of graft-versus-host disease, several groups are working towards developing autologous genetic therapies to provide another curative option for DBA patients across the whole age spectrum. In this review, we summarize the results of HCT studies and review advances and potential future directions in hematopoietic stem cell-based therapies for DBA.
Collapse
Affiliation(s)
- Senthil Velan Bhoopalan
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Shruthi Suryaprakash
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
8
|
Kenny TC, Khan A, Son Y, Yue L, Heissel S, Sharma A, Pasolli HA, Liu Y, Gamazon ER, Alwaseem H, Hite RK, Birsoy K. Integrative genetic analysis identifies FLVCR1 as a plasma-membrane choline transporter in mammals. Cell Metab 2023; 35:1057-1071.e12. [PMID: 37100056 PMCID: PMC10367582 DOI: 10.1016/j.cmet.2023.04.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Genome-wide association studies (GWASs) of serum metabolites have the potential to uncover genes that influence human metabolism. Here, we combined an integrative genetic analysis that associates serum metabolites to membrane transporters with a coessentiality map of metabolic genes. This analysis revealed a connection between feline leukemia virus subgroup C cellular receptor 1 (FLVCR1) and phosphocholine, a downstream metabolite of choline metabolism. Loss of FLVCR1 in human cells strongly impairs choline metabolism due to the inhibition of choline import. Consistently, CRISPR-based genetic screens identified phospholipid synthesis and salvage machinery as synthetic lethal with FLVCR1 loss. Cells and mice lacking FLVCR1 exhibit structural defects in mitochondria and upregulate integrated stress response (ISR) through heme-regulated inhibitor (HRI) kinase. Finally, Flvcr1 knockout mice are embryonic lethal, which is partially rescued by choline supplementation. Altogether, our findings propose FLVCR1 as a major choline transporter in mammals and provide a platform to discover substrates for unknown metabolite transporters.
Collapse
Affiliation(s)
- Timothy C Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Yeeun Son
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lishu Yue
- The David Rockefeller Graduate Program in Bioscience, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
9
|
Bhoopalan SV, Yen JS, Mayuranathan T, Mayberry KD, Yao Y, Lillo Osuna MA, Jang Y, Liyanage JS, Blanc L, Ellis SR, Wlodarski MW, Weiss MJ. An RPS19-edited model for Diamond-Blackfan anemia reveals TP53-dependent impairment of hematopoietic stem cell activity. JCI Insight 2023; 8:e161810. [PMID: 36413407 PMCID: PMC9870085 DOI: 10.1172/jci.insight.161810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is a genetic blood disease caused by heterozygous loss-of-function mutations in ribosomal protein (RP) genes, most commonly RPS19. The signature feature of DBA is hypoplastic anemia occurring in infants, although some older patients develop multilineage cytopenias with bone marrow hypocellularity. The mechanism of anemia in DBA is not fully understood and even less is known about the pancytopenia that occurs later in life, in part because patient hematopoietic stem and progenitor cells (HSPCs) are difficult to obtain, and the current experimental models are suboptimal. We modeled DBA by editing healthy human donor CD34+ HSPCs with CRISPR/Cas9 to create RPS19 haploinsufficiency. In vitro differentiation revealed normal myelopoiesis and impaired erythropoiesis, as observed in DBA. After transplantation into immunodeficient mice, bone marrow repopulation by RPS19+/- HSPCs was profoundly reduced, indicating hematopoietic stem cell (HSC) impairment. The erythroid and HSC defects resulting from RPS19 haploinsufficiency were partially corrected by transduction with an RPS19-expressing lentiviral vector or by Cas9 disruption of TP53. Our results define a tractable, biologically relevant experimental model of DBA based on genome editing of primary human HSPCs and they identify an associated HSC defect that emulates the pan-hematopoietic defect of DBA.
Collapse
Affiliation(s)
| | | | | | | | - Yu Yao
- Department of Hematology, and
| | | | | | - Janaka S.S. Liyanage
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Steven R. Ellis
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky, USA
| | | | | |
Collapse
|
10
|
Defending the island against excess heme. Blood 2022; 139:3359-3360. [PMID: 35679077 PMCID: PMC9185156 DOI: 10.1182/blood.2022016341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/27/2022] [Indexed: 01/23/2023] Open
|