1
|
Valentino M, Malinverno M, Maderna C, Pham VC, Rödel CJ, Zanardi F, Arce M, Drufuca L, Rossetti G, Magnusson PU, Lampugnani MG, Dejana E, Abdelilah-Seyfried S, Pagani M. BMI1 Inhibition Improves Lesion Burden in Cerebral Cavernous Malformations. Circulation 2024; 150:738-741. [PMID: 39186529 DOI: 10.1161/circulationaha.123.067438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Affiliation(s)
- Mariaelena Valentino
- IFOM ETS, AIRC Institute of Molecular Oncology, Milan, Italy (M.V., M.M., C.M., F.Z., G.R., M.G.L., E.D., M.P.)
| | - Matteo Malinverno
- IFOM ETS, AIRC Institute of Molecular Oncology, Milan, Italy (M.V., M.M., C.M., F.Z., G.R., M.G.L., E.D., M.P.)
| | - Claudio Maderna
- IFOM ETS, AIRC Institute of Molecular Oncology, Milan, Italy (M.V., M.M., C.M., F.Z., G.R., M.G.L., E.D., M.P.)
| | - Van-Cuong Pham
- Institute of Biochemistry and Biology, Potsdam University, Germany (V.-C.P., C.J.R., S.A.-S.)
| | - Claudia Jasmin Rödel
- Institute of Biochemistry and Biology, Potsdam University, Germany (V.-C.P., C.J.R., S.A.-S.)
| | - Federica Zanardi
- IFOM ETS, AIRC Institute of Molecular Oncology, Milan, Italy (M.V., M.M., C.M., F.Z., G.R., M.G.L., E.D., M.P.)
| | - Maximiliano Arce
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (M.A., P.U.M.)
| | - Lorenzo Drufuca
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy (L.D., M.P.)
| | - Grazisa Rossetti
- IFOM ETS, AIRC Institute of Molecular Oncology, Milan, Italy (M.V., M.M., C.M., F.Z., G.R., M.G.L., E.D., M.P.)
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden (M.A., P.U.M.)
| | - Maria Grazia Lampugnani
- IFOM ETS, AIRC Institute of Molecular Oncology, Milan, Italy (M.V., M.M., C.M., F.Z., G.R., M.G.L., E.D., M.P.)
| | - Elisabetta Dejana
- IFOM ETS, AIRC Institute of Molecular Oncology, Milan, Italy (M.V., M.M., C.M., F.Z., G.R., M.G.L., E.D., M.P.)
| | | | - Massimiliano Pagani
- IFOM ETS, AIRC Institute of Molecular Oncology, Milan, Italy (M.V., M.M., C.M., F.Z., G.R., M.G.L., E.D., M.P.)
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Italy (L.D., M.P.)
| |
Collapse
|
2
|
Jauhiainen S, Onyeogaziri FC, Lazzaroni F, Conze LL, Laakkonen JP, Laham-Karam N, Laakso A, Niemelä M, Rezai Jahromi B, Magnusson PU. Proteomics on human cerebral cavernous malformations reveals novel biomarkers in neurovascular dysfunction for the disease pathology. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167139. [PMID: 38537685 DOI: 10.1016/j.bbadis.2024.167139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Cerebral cavernous malformation (CCM) is a disease associated with an elevated risk of focal neurological deficits, seizures, and hemorrhagic stroke. The disease has an inflammatory profile and improved knowledge of CCM pathology mechanisms and exploration of candidate biomarkers will enable new non-invasive treatments. METHODS We analyzed protein signatures in human CCM tissue samples by using a highly specific and sensitive multiplexing technique, proximity extension assay. FINDINGS Data analysis revealed CCM specific proteins involved in endothelial dysfunction/inflammation/activation, leukocyte infiltration/chemotaxis, hemostasis, extracellular matrix dysfunction, astrocyte and microglial cell activation. Biomarker expression profiles matched bleeding status, especially with higher levels of inflammatory markers and activated astrocytes in ruptured than non-ruptured samples, some of these biomarkers are secreted into blood or urine. Furthermore, analysis was also done in a spatially resolving manner by separating the lesion area from the surrounding brain tissue. Our spatial studies revealed that although appearing histologically normal, the CCM border areas were pathological when compared to control brain tissues. Moreover, the functional relevance of CD93, ICAM-1 and MMP9, markers related to endothelial cell activation and extracellular matrix was validated by a murine pre-clinical CCM model. INTERPRETATION Here we present a novel strategy for proteomics analysis on human CCMs, offering a possibility for high-throughput protein screening acquiring data on the local environment in the brain. Our data presented here describe CCM relevant brain proteins and specifically those which are secreted can serve the need of circulating CCM biomarkers to predict cavernoma's risk of bleeding.
Collapse
Affiliation(s)
- Suvi Jauhiainen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Favour C Onyeogaziri
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Francesca Lazzaroni
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lei Liu Conze
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nihay Laham-Karam
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Aki Laakso
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Frias-Anaya E, Gallego-Gutierrez H, Gongol B, Weinsheimer S, Lai CC, Orecchioni M, Sriram A, Bui CM, Nelsen B, Hale P, Pham A, Shenkar R, DeBiasse D, Lightle R, Girard R, Li Y, Srinath A, Daneman R, Nudleman E, Sun H, Guma M, Dubrac A, Mesarwi OA, Ley K, Kim H, Awad IA, Ginsberg MH, Lopez-Ramirez MA. Mild Hypoxia Accelerates Cerebral Cavernous Malformation Disease Through CX3CR1-CX3CL1 Signaling. Arterioscler Thromb Vasc Biol 2024; 44:1246-1264. [PMID: 38660801 PMCID: PMC11111348 DOI: 10.1161/atvbaha.123.320367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Chemokine CX3CL1/metabolism
- Chemokine CX3CL1/genetics
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Disease Models, Animal
- Hemangioma, Cavernous, Central Nervous System/genetics
- Hemangioma, Cavernous, Central Nervous System/metabolism
- Hemangioma, Cavernous, Central Nervous System/pathology
- Hypoxia/metabolism
- Hypoxia/complications
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic/metabolism
- Neuroinflammatory Diseases/metabolism
- Neuroinflammatory Diseases/pathology
- Neuroinflammatory Diseases/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Eduardo Frias-Anaya
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Helios Gallego-Gutierrez
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Brendan Gongol
- Department of Health Sciences, Victor Valley College, Victorville, CA (B.G.)
- Institute for Integrative Genome Biology, 1207F Genomics Building, University of California, Riverside (B.G.)
| | - Shantel Weinsheimer
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Catherine Chinhchu Lai
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (M.O., K.L.)
| | - Aditya Sriram
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Cassandra M Bui
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Bliss Nelsen
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Preston Hale
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Angela Pham
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Dorothy DeBiasse
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Ying Li
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Richard Daneman
- Department of Pharmacology (R.D., M.A.L.-R.), University of California San Diego, La Jolla
| | - Eric Nudleman
- Department of Ophthalmology (E.N.), University of California San Diego, La Jolla
| | - Hao Sun
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Monica Guma
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Alexandre Dubrac
- Centre de Recherche, CHU St. Justine, Montréal, Quebec, Canada. Département de Pathologie et Biologie Cellulaire, Université de Montréal, Quebec, Canada (A.D.)
| | - Omar A Mesarwi
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, CA (M.O., K.L.)
| | - Helen Kim
- Department of Anesthesia and Perioperative Care, Institute for Human Genetics, University of California, San Francisco (S.W., A.S., H.K.)
| | - Issam A Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago Medicine and Biological Sciences, IL (R.S., D.D., R.L., R.G., Y.L., A.S., I.A.A.)
| | - Mark H Ginsberg
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine (E.F.-A., H.G.-G., C.C.L., C.M.B., B.N., P.H., A.P., H.S., M.G., O.A.M., M.H.G., M.A.L.-R.), University of California San Diego, La Jolla
- Department of Pharmacology (R.D., M.A.L.-R.), University of California San Diego, La Jolla
| |
Collapse
|
4
|
Offenberger J, Chen B, Rossitto LA, Jin I, Conaboy L, Gallego-Gutierrez H, Nelsen B, Frias-Anaya E, Gonzalez DJ, Anagnostaras S, Lopez-Ramirez MA. Behavioral impairments are linked to neuroinflammation in mice with Cerebral Cavernous Malformation disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596485. [PMID: 38853989 PMCID: PMC11160801 DOI: 10.1101/2024.05.29.596485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Cerebral Cavernous Malformations (CCMs) are neurovascular abnormalities in the central nervous system (CNS) caused by loss of function mutations in KRIT1 (CCM1), CCM2, or PDCD10 (CCM3) genes. One of the most common symptoms in CCM patients is associated with motor disability, weakness, seizures, stress, and anxiety, and the extent of the symptom or symptoms may be due to the location of the lesion within the CNS or whether multiple lesions are present. Previous studies have primarily focused on understanding the pathology of CCM using animal models. However, more research has yet to explore the potential impact of CCM lesions on behavioral deficits in animal models, including effects on short-term and long-term memory, motor coordination, and function. Methods We used the accelerating RotaRod test to assess motor and coordination deficits. We also used the open field test to assess locomotor activity and pathology-related behavior and Pavlovian fear conditioning to assess short-and long-term memory deficits. Our behavioral studies were complemented by proteomics, histology, immunofluorescence, and imaging techniques. We found that neuroinflammation is crucial in behavioral deficits in male and female mice with neurovascular CCM lesions (Slco1c1-iCreERT2; Pdcd10 fl/fl ; Pdcd10 BECKO ). Results Functional behavior tests in male and female Pdcd10 BECKO mice revealed that CCM lesions cause sudden motor coordination deficits associated with the manifestation of profound neuroinflammatory lesions. Our findings indicate that maturation of CCM lesions in Pdcd10 BECKO mice also experienced a significant change in short- and long-term memory compared to their littermate controls, Pdcd10 fl/fl mice. Proteomic experiments reveal that as CCM lesions mature, there is an increase in pathways associated with inflammation, coagulation, and angiogenesis, and a decrease in pathways associated with learning and plasticity. Therefore, our study shows that Pdcd10 BECKO mice display a wide range of behavioral deficits due to significant lesion formation in their central nervous system and that signaling pathways associated with neuroinflammation and learning impact behavioral outcomes. Conclusions Our study found that CCM animal models exhibited behavioral impairments such as decreased motor coordination and amnesia. These impairments were associated with the maturation of CCM lesions that displayed a neuroinflammatory pattern.
Collapse
Affiliation(s)
- Joseph Offenberger
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Bianca Chen
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Leigh-Ana Rossitto
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Irisa Jin
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Liam Conaboy
- Department of Psychology, University of California, San Diego, La Jolla, California, USA
| | | | - Bliss Nelsen
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eduardo Frias-Anaya
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - David J. Gonzalez
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Stephan Anagnostaras
- Department of Psychology, University of California, San Diego, La Jolla, California, USA
- Program in Neurosciences, University of California, San Diego, La Jolla, California, USA
| | - Miguel Alejandro Lopez-Ramirez
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Li Y, Girard R, Srinath A, Cruz DV, Ciszewski C, Chen C, Lightle R, Romanos S, Sone JY, Moore T, DeBiasse D, Stadnik A, Lee JJ, Shenkar R, Koskimäki J, Lopez-Ramirez MA, Marchuk DA, Ginsberg MH, Kahn ML, Shi C, Awad IA. Transcriptomic signatures of individual cell types in cerebral cavernous malformation. Cell Commun Signal 2024; 22:23. [PMID: 38195510 PMCID: PMC10775676 DOI: 10.1186/s12964-023-01301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 01/11/2024] Open
Abstract
Cerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear. Herein, RNA-seq was performed on fluorescence-activated cell sorted endothelial cells (ECs), pericytes, and neuroglia from CCM lesions and non-lesional brain tissue controls. Differentially Expressed Gene (DEG), pathway and Ligand-Receptor (LR) analyses were performed to characterize the dysfunctional genes of respective cell types within CCMs. Common DEGs among all three cell types were related to inflammation and endothelial-to-mesenchymal transition (EndMT). DEG and pathway analyses supported a role of lesional ECs in dysregulated angiogenesis and increased permeability. VEGFA was particularly upregulated in pericytes. Further pathway and LR analyses identified vascular endothelial growth factor A/ vascular endothelial growth factor receptor 2 signaling in lesional ECs and pericytes that would result in increased angiogenesis. Moreover, lesional pericytes and neuroglia predominantly showed DEGs and pathways mediating the immune response. Further analyses of cell specific gene alterations in CCM endorsed potential contribution to EndMT, coagulation, and a hypoxic microenvironment. Taken together, these findings motivate mechanistic hypotheses regarding non-endothelial contributions to lesion pathobiology and may lead to novel therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Romuald Girard
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Diana Vera Cruz
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Cezary Ciszewski
- Human Disease and Immune Discovery Core, The University of Chicago, Chicago, IL, USA
| | - Chang Chen
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Sharbel Romanos
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Je Yeong Sone
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Thomas Moore
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Dorothy DeBiasse
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Agnieszka Stadnik
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Justine J Lee
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Janne Koskimäki
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
- Department of Neurosurgery, Oulu University Hospital, Neurocenter, Oulu, Finland
| | - Miguel A Lopez-Ramirez
- Department of Medicine, University of California, La Jolla, San Diego, CA, USA
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Issam A Awad
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA.
- Department of Neurological Surgery, University of Chicago Medicine, 5841 S Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA.
| |
Collapse
|
6
|
Lazzaroni F, Meessen JMTA, Sun Y, Lanfranconi S, Scola E, D'Alessandris QG, Tassi L, Carriero MR, Castori M, Marino S, Blanda A, Nicolis EB, Novelli D, Calabrese R, Agnelli NM, Bottazzi B, Leone R, Mazzola S, Besana S, Catozzi C, Nezi L, Lampugnani MG, Malinverno M, Grdseloff N, Rödel CJ, Rezai Jahromi B, Bolli N, Passamonti F, Magnusson PU, Abdelilah-Seyfried S, Dejana E, Latini R. Circulating biomarkers in familial cerebral cavernous malformation. EBioMedicine 2024; 99:104914. [PMID: 38113759 PMCID: PMC10767159 DOI: 10.1016/j.ebiom.2023.104914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Cerebral Cavernous Malformation (CCM) is a rare cerebrovascular disease, characterized by the presence of multiple vascular malformations that may result in intracerebral hemorrhages (ICHs), seizure(s), or focal neurological deficits (FND). Familial CCM (fCCM) is due to loss of function mutations in one of the three independent genes KRIT1 (CCM1), Malcavernin (CCM2), or Programmed Cell death 10 (PDCD10/CCM3). The aim of this study was to identify plasma protein biomarkers of fCCM to assess the severity of the disease and predict its progression. METHODS Here, we have investigated plasma samples derived from n = 71 symptomatic fCCM patients (40 female/31 male) and n = 17 healthy donors (HD) (9 female/8 male) of the Phase 1/2 Treat_CCM trial, using multiplexed protein profiling approaches. FINDINGS Biomarkers as sCD14 (p = 0.00409), LBP (p = 0.02911), CXCL4 (p = 0.038), ICAM-1 (p = 0.02013), ANG2 (p = 0.026), CCL5 (p = 0.00403), THBS1 (p = 0.0043), CRP (p = 0.0092), and HDL (p = 0.027), were significantly different in fCCM compared to HDs. Of note, sENG (p = 0.011), THBS1 (p = 0.011) and CXCL4 (p = 0.011), were correlated to CCM genotype. sROBO4 (p = 0.014), TM (p = 0.026) and CRP (p = 0.040) were able to predict incident adverse clinical events, such as ICH, FND or seizure. GDF-15, FLT3L, CXCL9, FGF-21 and CDCP1, were identified as predictors of the formation of new MRI-detectable lesions over 2-year follow-up. Furthermore, the functional relevance of ang2, thbs1, robo4 and cdcp1 markers was validated by zebrafish pre-clinical model of fCCM. INTERPRETATION Overall, our study identifies a set of biochemical parameters to predict CCM progression, suggesting biological interpretations and potential therapeutic approaches to CCM disease. FUNDING Italian Medicines Agency, Associazione Italiana per la Ricerca sul Cancro (AIRC), ERC, Leducq Transatlantic Network of Excellence, Swedish Research Council.
Collapse
Affiliation(s)
- Francesca Lazzaroni
- Vascular Biology Unit, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Hematology Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Jennifer M T A Meessen
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Ying Sun
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Silvia Lanfranconi
- Department of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Scola
- Department of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Neuroradiology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Quintino Giorgio D'Alessandris
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Laura Tassi
- Claudio Munari Epilepsy Surgery Centre, ASST Niguarda Hospital, Milan, Italy
| | - Maria Rita Carriero
- Cerebrovascular Disease Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Adriana Blanda
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Enrico B Nicolis
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Deborah Novelli
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Roberta Calabrese
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Nicolò M Agnelli
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | | | | | - Selene Mazzola
- Laboratory Medicine, Desio Hospital, Università Milano Bicocca, Milan, Italy
| | - Silvia Besana
- Laboratory Medicine, Desio Hospital, Università Milano Bicocca, Milan, Italy
| | - Carlotta Catozzi
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | - Maria G Lampugnani
- Vascular Biology Unit, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| | - Matteo Malinverno
- Vascular Biology Unit, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Nastasja Grdseloff
- Department of Zoophysiology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Claudia J Rödel
- Department of Zoophysiology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | | | - Niccolò Bolli
- Hematology Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Francesco Passamonti
- Hematology Department, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Salim Abdelilah-Seyfried
- Department of Zoophysiology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Elisabetta Dejana
- Vascular Biology Unit, IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Roberto Latini
- Department of Acute Brain and Cardiovascular Injury, Institute for Pharmacological Research Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
7
|
Li L, Ren AA, Gao S, Su YS, Yang J, Bockman J, Mericko-Ishizuka P, Griffin J, Shenkar R, Alcazar R, Moore T, Lightle R, DeBiasse D, Awad IA, Marchuk DA, Kahn ML, Burkhardt JK. mTORC1 Inhibitor Rapamycin Inhibits Growth of Cerebral Cavernous Malformation in Adult Mice. Stroke 2023; 54:2906-2917. [PMID: 37746705 PMCID: PMC10599232 DOI: 10.1161/strokeaha.123.044108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Cerebral cavernous malformations (CCMs) are vascular malformations that frequently cause stroke. CCMs arise due to loss of function in one of the genes that encode the CCM complex, a negative regulator of MEKK3-KLF2/4 signaling in vascular endothelial cells. Gain-of-function mutations in PIK3CA (encoding the enzymatic subunit of the PI3K (phosphoinositide 3-kinase) pathway associated with cell growth) synergize with CCM gene loss-of-function to generate rapidly growing lesions. METHODS We recently developed a model of CCM formation that closely reproduces key events in human CCM formation through inducible CCM loss-of-function and PIK3CA gain-of-function in mature mice. In the present study, we use this model to test the ability of rapamycin, a clinically approved inhibitor of the PI3K effector mTORC1, to treat rapidly growing CCMs. RESULTS We show that both intraperitoneal and oral administration of rapamycin arrests CCM growth, reduces perilesional iron deposition, and improves vascular perfusion within CCMs. CONCLUSIONS Our findings further establish this adult CCM model as a valuable preclinical model and support clinical testing of rapamycin to treat rapidly growing human CCMs.
Collapse
Affiliation(s)
- Lun Li
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
- Department of Neurosurgery, Perelman School of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Aileen A. Ren
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Siqi Gao
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Yourong S. Su
- Department of Neurosurgery, Perelman School of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jisheng Yang
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jenna Bockman
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Patricia Mericko-Ishizuka
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Joanna Griffin
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Robert Shenkar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Roberto Alcazar
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Thomas Moore
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Rhonda Lightle
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Dorothy DeBiasse
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Issam A. Awad
- Neurovascular Surgery Program, Section of Neurosurgery, Department of Surgery, The University of Chicago Medicine and Biological Sciences, Chicago, Illinois, USA 60637
| | - Douglas A. Marchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA 27708
| | - Mark L. Kahn
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| | - Jan-Karl Burkhardt
- Department of Neurosurgery, Perelman School of Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104
| |
Collapse
|
8
|
Li Y, Srinath A, Alcazar-Felix RJ, Hage S, Bindal A, Lightle R, Shenkar R, Shi C, Girard R, Awad IA. Inflammatory Mechanisms in a Neurovascular Disease: Cerebral Cavernous Malformation. Brain Sci 2023; 13:1336. [PMID: 37759937 PMCID: PMC10526329 DOI: 10.3390/brainsci13091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Cerebral cavernous malformation (CCM) is a common cerebrovascular malformation causing intracranial hemorrhage, seizures, and focal neurologic deficits. A unique CCM lesional inflammatory microenvironment has been shown to influence the clinical course of the disease. This review addresses the inflammatory cell infiltrate in the CCM lesion and the role of a defined antigen-driven immune response in pathogenicity. We summarize immune mechanisms associated with the loss of the CCM gene and disease progression, including the potential role of immunothrombosis. We also review evidence of circulating inflammatory biomarkers associated with CCM disease and its clinical activity. We articulate future directions for this research, including the role of individual cell type contributions to the immune response in CCM, single cell transcriptomics of inflammatory cells, biomarker development, and therapeutic implications. The concepts are applicable for developing diagnostic and treatment strategies for CCM and for studying other neurovascular diseases.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (Y.L.); (C.S.)
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Abhinav Srinath
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Roberto J. Alcazar-Felix
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Stephanie Hage
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Akash Bindal
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Rhonda Lightle
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Robert Shenkar
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; (Y.L.); (C.S.)
| | - Romuald Girard
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
| | - Issam A. Awad
- Neurovascular Surgery Program, Department of Neurological Surgery, The University of Chicago, Chicago, IL 60637, USA; (A.S.); (R.J.A.-F.); (S.H.); (A.B.); (R.L.); (R.S.); (R.G.)
- Department of Neurological Surgery, University of Chicago Medicine, 5841 S Maryland, MC3026/Neurosurgery J341, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Scimone C, Alibrandi S, Donato L, De Gaetano GV, Fusco C, Nardella G, Castori M, Rinaldi C, Alafaci C, Germanò A, D'Angelo R, Sidoti A. Amplification of protease-activated receptors signaling in sporadic cerebral cavernous malformation endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119474. [PMID: 37030452 DOI: 10.1016/j.bbamcr.2023.119474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 04/10/2023]
Abstract
In the central nervous system, thrombin-mediated activation of protease-activated receptors (PARs) results in neuroinflammation and increased vascular permeability. These events have been linked to cancer and neurodegeneration. Endothelial cells (ECs) isolated from sporadic cerebral cavernous malformation (CCM) specimens showed dysregulation of genes involved in "thrombin-mediated PAR-1 activation" signaling. CCM is a vascular disease involving brain capillaries. In CCM, ECs show defective cell junctions. Oxidative stress and neuroinflammation play a key role in disease onset and progression. In order to confirm the possible role of thrombin pathway in sporadic CCM pathogenesis, we evaluated PARs expression in CCM-ECs. We found that sporadic CCM-ECs overexpress PAR1, PAR3 and PAR4, together with other coagulation factor encoding genes. Moreover, we investigated about expression of the three familial CCM genes (KRIT1, CCM2 and PDCD10) in human cerebral microvascular ECs, following thrombin exposure, as well as protein level. Thrombin exposure affects EC viability and results in dysregulation of CCM gene expression and, then, in decreased protein level. Our results confirm amplification of PAR pathway in CCM suggesting, for the first time, the possible role of PAR1-mediated thrombin signaling in sporadic CCM. Thrombin-mediated PARs over activation results in increased blood-brain barrier permeability due to loss of cell junction integrity and, in this context, also the three familial CCM genes may be involved.
Collapse
Affiliation(s)
- Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, C.da Papardo-Sperone 31, 98100 Messina, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy
| | | | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013 Foggia, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy.
| | - Concetta Alafaci
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy
| | - Antonino Germanò
- Neurosurgery Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria 1, 98125 Messina, Italy; Department of Biomolecular Strategies, Genetics, Cutting-edge Therapies, I.E.ME.S.T., via Michele Miraglia 20, Palermo 90139, Italy
| |
Collapse
|
10
|
Dysregulated Hemostasis and Immunothrombosis in Cerebral Cavernous Malformations. Int J Mol Sci 2022; 23:ijms232012575. [PMID: 36293431 PMCID: PMC9604397 DOI: 10.3390/ijms232012575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Cerebral cavernous malformation (CCM) is a neurovascular disease that affects 0.5% of the general population. For a long time, CCM research focused on genetic mutations, endothelial junctions and proliferation, but recently, transcriptome and proteome studies have revealed that the hemostatic system and neuroinflammation play a crucial role in the development and severity of cavernomas, with some of these publications coming from our group. The aim of this review is to give an overview of the latest molecular insights into the interaction between CCM-deficient endothelial cells with blood components and the neurovascular unit. Specifically, we underscore how endothelial dysfunction can result in dysregulated hemostasis, bleeding, hypoxia and neurological symptoms. We conducted a thorough review of the literature and found a field that is increasingly poised to regard CCM as a hemostatic disease, which may have implications for therapy.
Collapse
|