1
|
Zheng XQ, Wang DB, Jiang YR, Song CL. Gut microbiota and microbial metabolites for osteoporosis. Gut Microbes 2025; 17:2437247. [PMID: 39690861 DOI: 10.1080/19490976.2024.2437247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Osteoporosis is an age-related bone metabolic disease. As an essential endocrine organ, the skeletal system is intricately connected with extraosseous organs. The crosstalk between bones and other organs supports this view. In recent years, the link between the gut microecology and bone metabolism has become an important research topic, both in preclinical studies and in clinical trials. Many studies have shown that skeletal changes are accompanied by changes in the composition and structure of the gut microbiota (GM). At the same time, natural or artificial interventions targeting the GM can subsequently affect bone metabolism. Moreover, microbiome-related metabolites may have important effects on bone metabolism. We aim to review the relationships among the GM, microbial metabolites, and bone metabolism and to summarize the potential mechanisms involved and the theory of the gut‒bone axis. We also describe existing bottlenecks in laboratory studies, as well as existing challenges in clinical settings, and propose possible future research directions.
Collapse
Affiliation(s)
- Xuan-Qi Zheng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Ding-Ben Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Yi-Rong Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chun-Li Song
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
2
|
Novelle MG, Naranjo-Martínez B, López-Cánovas JL, Díaz-Ruiz A. Fecal microbiota transplantation, a tool to transfer healthy longevity. Ageing Res Rev 2025; 103:102585. [PMID: 39586550 DOI: 10.1016/j.arr.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
The complex gut microbiome influences host aging and plays an important role in the manifestation of age-related diseases. Restoring a healthy gut microbiome via Fecal Microbiota Transplantation (FMT) is receiving extensive consideration to therapeutically transfer healthy longevity. Herein, we comprehensively review the benefits of gut microbial rejuvenation - via FMT - to promote healthy aging, with few studies documenting life length properties. This review explores how preconditioning donors via standard - lifestyle and pharmacological - antiaging interventions reshape gut microbiome, with the resulting benefits being also FMT-transferable. Finally, we expose the current clinical uses of FMT in the context of aging therapy and address FMT challenges - regulatory landscape, protocol standardization, and health risks - that require refinement to effectively utilize microbiome interventions in the elderly.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain.
| |
Collapse
|
3
|
Fernandez‐Sanchez J, Rodgers R, Maknojia AA, Shaikh N, Yan H, Mejia ME, Hendricks H, Jenq RR, Reddy P, Banerjee R, Schraw JM, Baldridge MT, King KY. Antibiotic-associated neutropenia is marked by the depletion of intestinal Lachnospiraceae and associated metabolites in pediatric patients. Hemasphere 2024; 8:e70038. [PMID: 39525856 PMCID: PMC11543857 DOI: 10.1002/hem3.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Prolonged antibiotic exposure causes dangerous hematologic side effects, including neutropenia, in up to 34% of patients. Murine studies established a link between the intestinal microbiota and hematopoiesis. To identify factors that predispose to neutropenia in pediatric patients, we evaluated changes in microbiota-derived metabolites and intestinal microbiota composition after prolonged courses of antibiotics. In this multi-center study, patients with infections requiring anticipated antibiotic treatment of two or more weeks were enrolled. Stool samples were obtained at the start and completion of antibiotics or at neutropenia onset (prospective arm). Some patients were enrolled in a retrospective arm in which a stool sample was collected at the time of neutropenia during antibiotic therapy and 2-4 weeks after completion of antibiotics with recovery of blood counts. We identified 10 patients who developed neutropenia on antibiotics and 29 controls matched for age, sex, race, and ethnicity. Clinical data demonstrated no association between neutropenia and the type of infection or antibiotic used; however, patients with neutropenia were admitted to the intensive care unit more often and received longer courses of antibiotics. Reduced intestinal microbiome richness and, specifically, decreased abundance of Lachnospiraceae family members correlated with neutropenia. Untargeted stool metabolomic profiling revealed several metabolites that were depleted exclusively in patients with neutropenia, including members of the urea cycle pathway, pyrimidine metabolism, and fatty acid metabolism that are known to be produced by Lachnospiraceae. Our study shows a relationship between intestinal microbiota disruption and abnormal hematopoiesis and identifies taxa and metabolites likely to contribute to microbiota-sustained hematopoiesis.
Collapse
Affiliation(s)
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious DiseasesWashington University School of MedicineSt. LouisMissouriUSA
| | - Arushana A. Maknojia
- Immunology and Microbiology Program, Graduate School of Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
| | - Nusrat Shaikh
- Department of Pediatrics, Center for Research AdvancementBaylor College of MedicineHoustonTexasUSA
| | - Hannah Yan
- Immunology and Microbiology Program, Graduate School of Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
| | - Marlyd E. Mejia
- Immunology and Microbiology Program, Graduate School of Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
| | - Hope Hendricks
- Department of Pediatrics, Division of Infectious DiseasesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Robert R. Jenq
- Departments of Genomic Medicine and Stem Cell Transplantation Cellular TherapyMD Anderson Cancer CenterHoustonTexas
| | - Pavan Reddy
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of MedicineHoustonTexasUSA
| | - Ritu Banerjee
- Department of Pediatrics, Division of Pediatric Infectious DiseasesVanderbilt University Medical Center, Vanderbilt UniversityNashvilleTennesseeUSA
| | - Jeremy M. Schraw
- Department of Pediatrics, Division of Hematology–OncologyBaylor College of MedicineHoustonTexasUSA
- Department of Pediatrics, Center for Epidemiology and Population HealthBaylor College of MedicineHoustonTexasUSA
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious DiseasesWashington University School of MedicineSt. LouisMissouriUSA
| | - Katherine Y. King
- Immunology and Microbiology Program, Graduate School of Biomedical SciencesBaylor College of MedicineHoustonTexasUSA
- Department of Pediatrics, Division of Infectious DiseasesCenter for Cell and Gene Therapy, Baylor College of Medicine and Texas Children's HospitalHoustonTexasUSA
| |
Collapse
|
4
|
Zhang J, He J, Liao Y, Xia X, Yang F. Genetic association between gut microbiome and blood pressure and blood cell count as mediator: A two-step Mendelian randomization analysis. Gene 2024; 925:148573. [PMID: 38762013 DOI: 10.1016/j.gene.2024.148573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Previous studies have established a genetic link between gut microbiota and hypertension, but whether blood cell count plays a mediating role in this remains unknown. This study aims to explore genetic associations and causal factors involving the gut microbiome, peripheral blood cell count, and blood pressure. METHODS We utilized summary statistics derived from genome-wide association studies to conduct a two-sample mediation Mendelian randomization analysis (https://gwas.mrcieu.ac.uk/). We applied inverse variance weighted (IVW) estimation method as the primary method, along with MR Egger, Weighted median, Simple mode and Weighted mode as complementary methods. To ensure the robustness of the results, several sensitivity analyses were conducted. RESULTS Genetic variants significantly associated with the microbiome, blood pressure, or peripheral blood cell counts were selected as instrumental variables. Fourteen microbial taxa were found to have suggestive associations with diastolic blood pressure (DBP), while fifteen microbial taxa showed suggestive associations with systolic blood pressure (SBP). Meanwhile, red blood cell count, lymphocyte count, and platelet count were identified to mediate the influence of the gut microbiome on blood pressure. Specifically, red cell count was identified to mediate the effects of the phylum Cyanobacteria on DBP (mediated proportion: 8.262 %). Lymphocyte count was found mediate the effects of the genus Subdoligranulum (mediated proportion: 2.642 %) and genus Collinsella (mediated proportion: 2.749 %) on SBP. Additionally, platelet count was found to mediate the relationship between the genus Eubacterium ventriosum group and SBP, explaining 3.421 % of the mediated proportion. CONCLUSIONS Our findings highlighted that gut microbiota may have causal influence on the blood pressure by modulating blood cell counts, which sheds new light on the pathogenesis and potential clinical interventions through the intricate axis of gut microbiome, blood cell counts, and blood pressure.
Collapse
Affiliation(s)
- Jiyu Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Junyi He
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xinyi Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fen Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
5
|
Fu ZP, Ying YG, Wang RY, Wang YQ. Aged gut microbiota promotes arrhythmia susceptibility via oxidative stress. iScience 2024; 27:110888. [PMID: 39381749 PMCID: PMC11460473 DOI: 10.1016/j.isci.2024.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
Arrhythmias and sudden cardiac death (SCD) impose a significant burden. Their prevalence rises with age and is linked to gut dysbiosis. Our study aimed to determine whether aged gut microbiota affects arrhythmogenesis. Here, we demonstrated that arrhythmia susceptibility in aged mice could be transmitted to young mice using fecal microbiota transplantation (FMT). Mechanistically, increased intestinal reactive oxygen species (ROS) in aged mice reduced ion channel protein expression and promoted arrhythmias. Gut microbiota depletion by an antibiotic cocktail reduced ROS and arrhythmia in aged mice. Interestingly, oxidative stress in heart induced by hydrogen peroxide (H2O2) increased arrhythmia. Moreover, aged gut microbiota could induce oxidative stress in young mice colon by gut microbiota metabolites transplantation. Vitexin could reduce aging and arrhythmia through OLA1-Nrf2 signaling pathway. Overall, our study demonstrated that the gut microbiota of aged mice reduced cardiac ion channel protein expression through systemic oxidative stress, thereby increased the risk of arrhythmias.
Collapse
Affiliation(s)
- Zhi-ping Fu
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Yi-ge Ying
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Rui-yao Wang
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Yu-qing Wang
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| |
Collapse
|
6
|
Gorelov R, Hochedlinger K. A cellular identity crisis? Plasticity changes during aging and rejuvenation. Genes Dev 2024; 38:823-842. [PMID: 39293862 PMCID: PMC11535162 DOI: 10.1101/gad.351728.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Cellular plasticity in adult multicellular organisms is a protective mechanism that allows certain tissues to regenerate in response to injury. Considering that aging involves exposure to repeated injuries over a lifetime, it is conceivable that cell identity itself is more malleable-and potentially erroneous-with age. In this review, we summarize and critically discuss the available evidence that cells undergo age-related shifts in identity, with an emphasis on those that contribute to age-associated pathologies, including neurodegeneration and cancer. Specifically, we focus on reported instances of programs associated with dedifferentiation, biased differentiation, acquisition of features from alternative lineages, and entry into a preneoplastic state. As some of the most promising approaches to rejuvenate cells reportedly also elicit transient changes to cell identity, we further discuss whether cell state change and rejuvenation can be uncoupled to yield more tractable therapeutic strategies.
Collapse
Affiliation(s)
- Rebecca Gorelov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA;
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
7
|
Zeng X, Shi C, Han Y, Hu K, Li X, Wei C, Ding L, Cui J, Huang S, Xu Y, Zhang M, Shan W, Luo Q, Yu J, Zheng Z, Li X, Qian P, Huang H. A metabolic atlas of blood cells in young and aged mice identifies uridine as a metabolite to rejuvenate aged hematopoietic stem cells. NATURE AGING 2024; 4:1477-1492. [PMID: 39020094 DOI: 10.1038/s43587-024-00669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
Aging of hematopoietic stem cells (HSCs) is accompanied by impaired self-renewal ability, myeloid skewing, immunodeficiencies and increased susceptibility to malignancies. Although previous studies highlighted the pivotal roles of individual metabolites in hematopoiesis, comprehensive and high-resolution metabolomic profiles of different hematopoietic cells across ages are still lacking. In this study, we created a metabolome atlas of different blood cells across ages in mice. We reveal here that purine, pyrimidine and retinol metabolism are enriched in young hematopoietic stem and progenitor cells (HSPCs), whereas glutamate and sphingolipid metabolism are concentrated in aged HSPCs. Through metabolic screening, we identified uridine as a potential regulator to rejuvenate aged HSPCs. Mechanistically, uridine treatment upregulates the FoxO signaling pathway and enhances self-renewal while suppressing inflammation in aged HSCs. Finally, we constructed an open-source platform for public easy access and metabolomic analysis in blood cells. Collectively, we provide a resource for metabolic studies in hematopoiesis that can contribute to future anti-aging metabolite screening.
Collapse
Affiliation(s)
- Xiangjun Zeng
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Ce Shi
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Kejia Hu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xiaoqing Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Cong Wei
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Lijuan Ding
- Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Simao Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yulin Xu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Meng Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wei Shan
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Qian Luo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jian Yu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | | | - Xia Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - He Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University, Hangzhou, China.
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| |
Collapse
|
8
|
Li Y, Zhang B, Jiang L, Cheng T, Cheng H, Qian P. Gut microbiota plays pivotal roles in benign and malignant hematopoiesis. BLOOD SCIENCE 2024; 6:e00200. [PMID: 39027904 PMCID: PMC11257671 DOI: 10.1097/bs9.0000000000000200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/18/2024] [Indexed: 07/20/2024] Open
Abstract
Accumulated evidence emerges that dynamic changes in human gut microbiota and microbial metabolites can alter the ecological balance of symbiotic hosts. The gut microbiota plays a role in various diseases through different mechanisms. More and more attention has been paid to the effects that human microbiota extends beyond the gut. This review summarized the current understanding of the roles that gut microbiota plays in hematopoietic regulation and the occurrence and development of benign and malignant hematologic diseases. The progress of the application of microbiota in treatment was discussed in order to provide new insights into clinical diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Yuxuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Biao Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, China
| |
Collapse
|
9
|
Walrath T, Najarro KM, Giesy LE, Khair S, Orlicky DJ, McMahan RH, Kovacs EJ. Reducing the excessive inflammation after burn injury in aged mice by maintaining a healthier intestinal microbiome. FASEB J 2024; 38:e70065. [PMID: 39305117 PMCID: PMC11465428 DOI: 10.1096/fj.202401020r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
One in six people are projected to be 65 years or older by 2050. As the population ages, better treatments for injuries that disproportionately impact the aged population will be needed. Clinical studies show that people aged 65 and older experience higher rates of morbidity and mortality after burn injury, including a greater incidence of pulmonary complications when compared to younger burn injured adults, which we and others believe is mediated, in part, by inflammation originating in the intestines. Herein, we use our clinically relevant model of scald burn injury in young and aged mice to determine whether cohousing aged mice with young mice or giving aged mice oral gavage of fecal material from young mice is sufficient to alter the microbiome of the aged mice and protect them from inflammation in the ileum and the lungs. Aged burn injured mice have less DNA expression of Bacteroidetes in the feces and an unhealthy Firmicutes/Bacteroidetes ratio. Both Bacteroidetes and the ratio of these two phyla are restored in aged burn injured by prior cohousing for a month with younger mice but not fecal transfer from young mice. This shift in the microbiome coincides with heightened expression of danger-associated molecular patterns (DAMP), and pro-inflammatory cytokine interleukin-6 (il6) in the ileum and lung of aged, burn injured mice, and heightened antimicrobial peptide camp in the lung. Cohousing reverses DAMP expression in the ileum and lung, and cathelicidin-related antimicrobial peptide protein (camp) in the lung, while fecal transfer heightened DAMPs while reducing camp in the lung, and also increased IL-6 protein in the lungs. These results highlight the importance of the intestinal microbiome in mediating inflammation within the gut-lung axis, giving insights into potential future treatments in the clinic.
Collapse
Affiliation(s)
- Travis Walrath
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin M. Najarro
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lauren E. Giesy
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shanawaj Khair
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David J. Orlicky
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel H. McMahan
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Elizabeth J. Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Veterans Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, Colorado, USA
| |
Collapse
|
10
|
Liu Y, Fang M, Tu X, Mo X, Zhang L, Yang B, Wang F, Kim YB, Huang C, Chen L, Fan S. Dietary Polyphenols as Anti-Aging Agents: Targeting the Hallmarks of Aging. Nutrients 2024; 16:3305. [PMID: 39408272 PMCID: PMC11478989 DOI: 10.3390/nu16193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Aging is a natural biological process influenced by multiple factors and is a significant contributor to various chronic diseases. Slowing down the aging process and extending health span have been pursuits of the scientific field. Methods: Examination of the effects of dietary polyphenols on hallmarks of aging such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. Results: Polyphenols, abundant in nature, exhibit numerous biological activities, including antioxidant effects, free radical scavenging, neuroprotection, and anti-aging properties. These compounds are generally safe and effective in potentially slowing aging and preventing age-related disorders. Conclusions: The review encourages the development of novel therapeutic strategies using dietary polyphenols to create holistic anti-aging therapies and nutritional supplements.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xiaohui Tu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Xueying Mo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Lu Zhang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Binrui Yang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Feijie Wang
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation and Science Co., Ltd., Shanghai 201203, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (C.H.)
| |
Collapse
|
11
|
Jin X, Zhang R, Fu Y, Zhu Q, Hong L, Wu A, Wang H. Unveiling aging dynamics in the hematopoietic system insights from single-cell technologies. Brief Funct Genomics 2024; 23:639-650. [PMID: 38688725 DOI: 10.1093/bfgp/elae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
As the demographic structure shifts towards an aging society, strategies aimed at slowing down or reversing the aging process become increasingly essential. Aging is a major predisposing factor for many chronic diseases in humans. The hematopoietic system, comprising blood cells and their associated bone marrow microenvironment, intricately participates in hematopoiesis, coagulation, immune regulation and other physiological phenomena. The aging process triggers various alterations within the hematopoietic system, serving as a spectrum of risk factors for hematopoietic disorders, including clonal hematopoiesis, immune senescence, myeloproliferative neoplasms and leukemia. The emerging single-cell technologies provide novel insights into age-related changes in the hematopoietic system. In this review, we summarize recent studies dissecting hematopoietic system aging using single-cell technologies. We discuss cellular changes occurring during aging in the hematopoietic system at the levels of the genomics, transcriptomics, epigenomics, proteomics, metabolomics and spatial multi-omics. Finally, we contemplate the future prospects of single-cell technologies, emphasizing the impact they may bring to the field of hematopoietic system aging research.
Collapse
Affiliation(s)
- Xinrong Jin
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruohan Zhang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yunqi Fu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Qiunan Zhu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Liquan Hong
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Aiwei Wu
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Hu Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Deqing Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
12
|
Wang S, Yuan Z, Gao X, Wu J, Ren Y, Yu X, Li J, Wei W. Global research trends on the links between gut microbiota and radiotherapy: a bibliometric analysis (2004-2023). Front Cell Infect Microbiol 2024; 14:1414196. [PMID: 39295732 PMCID: PMC11409093 DOI: 10.3389/fcimb.2024.1414196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 09/21/2024] Open
Abstract
Background There is a crosstalk between gut microbiota and radiotherapy. The aim of this study is to use bibliometric analysis to explore the research status and development trends of research on gut microbiota and radiotherapy. Methods A literature search regarding publications on gut microbiota and radiotherapy from 2004 to 2023 was retrieved. CiteSpace and VOSviewer were used to conduct the bibliometric analysis. The growth rate of publications, leading countries and institutions, preferred journals, top authors and co-cited authors, top co-cited references, keywords and citation were analyzed in this study. Results A total of 2821 papers were extracted. The number of papers has increased rapidly over the past decade, especially after 2017. The USA and China had the most publications and made great contributions to this field. The Chinese Academy of Sciences stood out as the institution with the highest number of publications, followed by the Chinese Academy of Medical Sciences & Peking Union Medical College. The most influential authors were Fan Saijun and Li Yuan. PLoS One had the most publications and the most total citations. Highly cited papers and high-frequency keywords illustrated the current status and trends. Furthermore, analysis of keyword with burst revealed that immunotherapy, acid, intestinal barrier, therapy, immunotherapy, fecal microbiota transplantation, etc, are at the forefront of research in this area. Conclusion This study provides an overview of research on gut microbiota and radiotherapy, highlighting influential contributors, impactful publications, and emerging trends. Our finding suggests avenues for further exploration to improve clinical outcomes.
Collapse
Affiliation(s)
- Shuyuan Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Zhen Yuan
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaohui Gao
- Department of Oncology, The Nuclear Industry 416 Hospital, Chengdu, China
| | - Jiaxing Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Yifan Ren
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Xiufeng Yu
- Tuberculosis Hospital of Shaanxi Province, Xi'an, China
| | - Jianxiong Li
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Wei Wei
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Chen LA, Boyle K. The Role of the Gut Microbiome in Health and Disease in the Elderly. Curr Gastroenterol Rep 2024; 26:217-230. [PMID: 38642272 PMCID: PMC11282161 DOI: 10.1007/s11894-024-00932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW Growing evidence supports the contribution of age in the composition and function of the gut microbiome, with specific findings associated with health in old age and longevity. RECENT FINDINGS Current studies have associated certain microbiota, such as Butyricimonas, Akkermansia, and Odoribacter, with healthy aging and the ability to survive into extreme old age. Furthermore, emerging clinical and pre-clinical research have shown promising mechanisms for restoring a healthy microbiome in elderly populations through various interventions such as fecal microbiota transplant (FMT), dietary interventions, and exercise programs. Despite several conceptually exciting interventional studies, the field of microbiome research in the elderly remains limited. Specifically, large longitudinal studies are needed to better understand causative relationships between the microbiome and healthy aging. Additionally, individualized approaches to microbiome interventions based on patients' co-morbidities and the underlying functional capacity of their microbiomes are needed to achieve optimal results.
Collapse
Affiliation(s)
- Lea Ann Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Rutgers, New Brunswick, NJ, USA.
| | - Kaitlyn Boyle
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
14
|
Wu YQ, Ding KX, Lv ZC, Cao ZY, Zhao K, Gao HY, Sun HY, Li JJ, Li SY, Zhao XW, Xue Y, Xiang SS, Zheng XF, Yang XM, Li CY. Single-Cell Transcriptomics Reveals Early Effects of Ionizing Radiation on Bone Marrow Mononuclear Cells in Mice. Int J Mol Sci 2024; 25:9287. [PMID: 39273235 PMCID: PMC11395520 DOI: 10.3390/ijms25179287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Ionizing radiation exposure can cause damage to diverse tissues and organs, with the hematopoietic system being the most sensitive. However, limited information is available regarding the radiosensitivity of various hematopoietic cell populations in the bone marrow due to the high heterogeneity of the hematopoietic system. In this study, we observed that granulocyte-macrophage progenitors, hematopoietic stem/progenitor cells, and B cells within the bone marrow showed the highest sensitivity, exhibiting a rapid decrease in cell numbers following irradiation. Nonetheless, neutrophils, natural killer (NK) cells, T cells, and dendritic cells demonstrated a certain degree of radioresistance, with neutrophils exhibiting the most pronounced resistance. By employing single-cell transcriptome sequencing, we investigated the early responsive genes in various cell types following irradiation, revealing that distinct gene expression profiles emerged between radiosensitive and radioresistant cells. In B cells, radiation exposure led to a specific upregulation of genes associated with mitochondrial respiratory chain complexes, suggesting a connection between these complexes and cell radiosensitivity. In neutrophils, radiation exposure resulted in fewer gene alterations, indicating their potential for distinct mechanisms in radiation resistance. Collectively, this study provides insights into the molecular mechanism for the heterogeneity of radiosensitivity among the various bone marrow hematopoietic cell populations.
Collapse
Affiliation(s)
- Yun-Qiang Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ke-Xin Ding
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhi-Chun Lv
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zheng-Yue Cao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ke Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hui-Ying Gao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hui-Ying Sun
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jing-Jing Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Si-Yu Li
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiong-Wei Zhao
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yang Xue
- School of Life Sciences, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding 071000, China
| | - Shen-Si Xiang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Fei Zheng
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Ming Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine, Beijing 100850, China
- School of Basic Medicine, Anhui Medical University, Hefei 230032, China
- School of Life Sciences, Hebei University, No. 180 Wusi Dong Road, Lian Chi District, Baoding 071000, China
| |
Collapse
|
15
|
Sun S, Jiang M, Ma S, Ren J, Liu GH. Exploring the heterogeneous targets of metabolic aging at single-cell resolution. Trends Endocrinol Metab 2024:S1043-2760(24)00190-5. [PMID: 39181730 DOI: 10.1016/j.tem.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
Our limited understanding of metabolic aging poses major challenges to comprehending the diverse cellular alterations that contribute to age-related decline, and to devising targeted interventions. This review provides insights into the heterogeneous nature of cellular metabolism during aging and its response to interventions, with a specific focus on cellular heterogeneity and its implications. By synthesizing recent findings using single-cell approaches, we explored the vulnerabilities of distinct cell types and key metabolic pathways. Delving into the cell type-specific alterations underlying the efficacy of systemic interventions, we also discuss the complexity of integrating single-cell data and advocate for leveraging computational tools and artificial intelligence to harness the full potential of these data, develop effective strategies against metabolic aging, and promote healthy aging.
Collapse
Affiliation(s)
- Shuhui Sun
- Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China.
| | - Mengmeng Jiang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium, Beijing 100101, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium, Beijing 100101, China; Key Laboratory of RNA Innovation, Science and Engineering, China National Center for Bioinformation, Beijing 100101, China; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Biomarker Consortium, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
16
|
Nautiyal N, Maheshwari D, Kumar D, Rao EP, Tripathi DM, Kumar S, Diwakar S, Bhardwaj M, Mohanty S, Baligar P, Kumari A, Bihari C, Biswas S, Sarin SK, Kumar A. Rejuvenating bone marrow hematopoietic reserve prevents regeneration failure and hepatic decompensation in animal model of cirrhosis. Front Immunol 2024; 15:1439510. [PMID: 39188716 PMCID: PMC11345600 DOI: 10.3389/fimmu.2024.1439510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Background and aim Bone marrow stem cells (BM-SCs) and their progeny play a central role in tissue repair and regeneration. In patients with chronic liver failure, bone marrow (BM) reserve is severally compromised and they showed marked defects in the resolution of injury and infection, leading to liver failure and the onset of decompensation. Whether BM failure is the cause or consequence of liver failure during cirrhosis is not known. In this study, we aimed to determine the underlying relationship between BM failure and regeneration failure in cirrhosis. Methodology C57Bl/6(J) mice were used to develop chronic liver injury through intra-peritoneal administration of carbon tetrachloride (CCl4) for 15 weeks (0.1-0.5 ml/kg). Animals were sacrificed to study the transition of cirrhosis and BM defects. To restore the BM-SC reserve; healthy BM cells were infused via intra-BM infusion and assessed for changes in liver injury, regeneration, and BM-SC reserve. Results Using a CCl4-induced animal - model of cirrhosis, we showed the loss of BM-SCs reserve occurred before regeneration failure and the onset of non-acute decompensation. Intra-BM infusion of healthy BM cells induced the repopulation of native hematopoietic stem cells (HSCs) in cirrhotic BM. Restoring BM-HSCs reserve augments liver macrophage-mediated clearance of infection and inflammation dampens neutrophil-mediated inflammation, accelerates fibrosis regression, enhances hepatocyte proliferation, and delays the onset of non-acute decompensation. Conclusion These findings suggest that loss of BM-HSCs reserve underlies the compromised innate immune function of the liver, drives regeneration failure, and the onset of non-acute decompensation. We further provide the proof-of-concept that rejuvenating BM-HSC reserve can serve as a potential therapeutic approach for preventing regeneration failure and transition to decompensated cirrhosis.
Collapse
Affiliation(s)
- Nidhi Nautiyal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Deepanshu Maheshwari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Dhananjay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - E. Pranshu Rao
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sandeep Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sunidhi Diwakar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Manisha Bhardwaj
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Prakash Baligar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Anupama Kumari
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Chhagan Bihari
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - S. K. Sarin
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
17
|
Mi B, Xiong Y, Knoedler S, Alfertshofer M, Panayi AC, Wang H, Lin S, Li G, Liu G. Ageing-related bone and immunity changes: insights into the complex interplay between the skeleton and the immune system. Bone Res 2024; 12:42. [PMID: 39103328 DOI: 10.1038/s41413-024-00346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 08/07/2024] Open
Abstract
Ageing as a natural irreversible process inherently results in the functional deterioration of numerous organ systems and tissues, including the skeletal and immune systems. Recent studies have elucidated the intricate bidirectional interactions between these two systems. In this review, we provide a comprehensive synthesis of molecular mechanisms of cell ageing. We further discuss how age-related skeletal changes influence the immune system and the consequent impact of immune system alterations on the skeletal system. Finally, we highlight the clinical implications of these findings and propose potential strategies to promote healthy ageing and reduce pathologic deterioration of both the skeletal and immune systems.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig - Maximilian University Munich, Munich, Germany
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Hand-, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Haixing Wang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, SAR, 999077, P. R. China.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
18
|
Lamba A, Taneja V. Gut microbiota as a sensor of autoimmune response and treatment for rheumatoid arthritis. Immunol Rev 2024; 325:90-106. [PMID: 38867408 PMCID: PMC11338721 DOI: 10.1111/imr.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Rheumatoid arthritis (RA) is considered a multifactorial condition where interaction between the genetic and environmental factors lead to immune dysregulation causing autoreactivity. While among the various genetic factors, HLA-DR4 and DQ8, have been reported to be the strongest risk factors, the role of various environmental factors has been unclear. Though events initiating autoreactivity remain unknown, a mucosal origin of RA has gained attention based on the recent observations with the gut dysbiosis in patients. However, causality of gut dysbiosis has been difficult to prove in humans. Mouse models, especially mice expressing RA-susceptible and -resistant HLA class II genes have helped unravel the complex interactions between genetic factors and gut microbiome. This review describes the interactions between HLA genes and gut dysbiosis in sex-biased preclinical autoreactivity and discusses the potential use of endogenous commensals as indicators of treatment efficacy as well as therapeutic tool to suppress pro-inflammatory response in rheumatoid arthritis.
Collapse
Affiliation(s)
| | - Veena Taneja
- Department of Immunology and Division of Rheumatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
19
|
Cai L, Jin D, Lai J, Li L, Luo Y, Shi J, Lai X, Liu L, Zhao Y, Yu J, Qiu Y, Song K, Yu F, Guo Q, Jin A, Huang H, Ding S, Ye Y. Psychological and physical side effects during G-CSF mobilization in related donors of allo-HCT. Ann Hematol 2024; 103:3199-3206. [PMID: 38637333 DOI: 10.1007/s00277-024-05753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024]
Abstract
The psychological side effects of granulocyte colony-stimulating factor mobilization in related donors of allogeneic hematopoietic cell transplantation (allo-HCT) and impacts of psychological/physical side effects on harvest outcomes remain largely unknown. We prospectively analyzed 349 consecutive related peripheral blood stem cell (PBSC) donors for allo-HCT at the First Affiliated Hospital, Zhejiang University, School of Medicine from March 2021 to August 2023. Higher baseline peripheral blood white blood cell counts (p = 0.046), monocyte counts (p < 0.001), platelet counts (p = 0.001), and hemoglobin (p < 0.001) had a positive correlation to CD34+ cell counts in the first leukapheresis, while female donors (male vs. female, p < 0.001) and older age (> 40 vs. < = 40, p = 0.003) were negatively related to CD34+ cell counts. Bone pain was the most observed physical side effect and was more frequent in female donors (p = 0.032). The incidence of fatigue was higher in female donors and older donors (female vs. male, p = 0.016; > 40 vs. < = 40, p = 0.015). Donor depression (pre vs. during mobilization, p < 0.001), anxiety (pre vs. during mobilization, p = 0.043) and insomnia (pre vs. during mobilization, p = 0.011) scores increased during the mobilization period. Donors with higher depression, anxiety and stress scores at admission were more likely to experience nausea. At 1 month after the last leukapheresis, the counts of white blood cell, neutrophil, monocyte and hemoglobin were significant lower than baseline counts, while the platelet counts recovered to baseline. The mobilization and harvest process can increase the depression, anxiety and insomnia scores. Poor psychological status of the donor can aggravate the occurrence of physical side effects.
Collapse
Affiliation(s)
- Lingxia Cai
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Diange Jin
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhen Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Yu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunfei Qiu
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaixia Song
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangquan Yu
- Department of Hematology, Jinhua People's Hospital, Jinhua, China
| | - Qinna Guo
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Aiyun Jin
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shuyi Ding
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Fettig NM, Pu A, Osborne LC, Gommerman JL. The influence of aging and the microbiome in multiple sclerosis and other neurologic diseases. Immunol Rev 2024; 325:166-189. [PMID: 38890777 DOI: 10.1111/imr.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The human gut microbiome is well-recognized as a key player in maintaining health. However, it is a dynamic entity that changes across the lifespan. How the microbial changes that occur in later decades of life shape host health or impact age-associated inflammatory neurological diseases such as multiple sclerosis (MS) is still unclear. Current understanding of the aging gut microbiome is largely limited to cross-sectional observational studies. Moreover, studies in humans are limited by confounding host-intrinsic and extrinsic factors that are not easily disentangled from aging. This review provides a comprehensive summary of existing literature on the aging gut microbiome and its known relationships with neurological diseases, with a specific focus on MS. We will also discuss preclinical animal models and human studies that shed light on the complex microbiota-host interactions that have the potential to influence disease pathology and progression in aging individuals. Lastly, we propose potential avenues of investigation to deconvolute features of an aging microbiota that contribute to disease, or alternatively promote health in advanced age.
Collapse
Affiliation(s)
- Naomi M Fettig
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Annie Pu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
21
|
Liu S, Deng Y, Liu H, Fu Z, Wang Y, Zhou M, Feng Z. Causal Relationship between Meat Intake and Biological Aging: Evidence from Mendelian Randomization Analysis. Nutrients 2024; 16:2433. [PMID: 39125314 PMCID: PMC11313912 DOI: 10.3390/nu16152433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Existing research indicates that different types of meat have varying effects on health and aging, but the specific causal relationships remain unclear. This study aimed to explore the causal relationship between different types of meat intake and aging-related phenotypes. This study employed Mendelian randomization (MR) to select genetic variants associated with meat intake from large genomic databases, ensuring the independence and pleiotropy-free nature of these instrumental variables (IVs), and calculated the F-statistic to evaluate the strength of the IVs. The validity of causal estimates was assessed through sensitivity analyses and various MR methods (MR-Egger, weighted median, inverse-variance weighted (IVW), simple mode, and weighted mode), with the MR-Egger regression intercept used to test for pleiotropy bias and Cochran's Q test employed to evaluate the heterogeneity of the results. The findings reveal a positive causal relationship between meat consumers and DNA methylation PhenoAge acceleration, suggesting that increased meat intake may accelerate the biological aging process. Specifically, lamb intake is found to have a positive causal effect on mitochondrial DNA copy number, while processed meat consumption shows a negative causal effect on telomere length. No significant causal relationships were observed for other types of meat intake. This study highlights the significant impact that processing and cooking methods have on meat's role in health and aging, enhancing our understanding of how specific types of meat and their preparation affect the aging process, providing a theoretical basis for dietary strategies aimed at delaying aging and enhancing quality of life.
Collapse
Affiliation(s)
| | | | | | | | | | - Meijuan Zhou
- Department of Radiation medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.L.); (Y.D.); (H.L.); (Z.F.); (Y.W.)
| | - Zhijun Feng
- Department of Radiation medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.L.); (Y.D.); (H.L.); (Z.F.); (Y.W.)
| |
Collapse
|
22
|
Young KA, Telpoukhovskaia MA, Hofmann J, Mistry JJ, Kokkaliaris KD, Trowbridge JJ. Variation in mesenchymal KITL/SCF and IGF1 expression in middle age underlies steady-state hematopoietic stem cell aging. Blood 2024; 144:378-391. [PMID: 38598841 PMCID: PMC11302459 DOI: 10.1182/blood.2024024275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
ABSTRACT Intrinsic molecular programs and extrinsic factors including proinflammatory molecules are understood to regulate hematopoietic aging. This is based on foundational studies using genetic perturbation to evaluate causality. However, individual organisms exhibit natural variation in the hematopoietic aging phenotypes and the molecular basis of this heterogeneity is poorly understood. Here, we generated individual single-cell transcriptomic profiles of hematopoietic and nonhematopoietic cell types in 5 young adult and 9 middle-aged C57BL/6J female mice, providing a web-accessible transcriptomic resource for the field. Among all assessed cell types, hematopoietic stem cells (HSCs) exhibited the greatest phenotypic variation in expansion among individual middle-aged mice. We computationally pooled samples to define modules representing the molecular signatures of middle-aged HSCs and interrogated, which extrinsic regulatory cell types and factors would predict the variance in these signatures between individual middle-aged mice. Decline in signaling mediated by adiponectin, kit ligand (KITL) and insulin-like growth factor 1 (IGF1) from mesenchymal stromal cells (MSCs) was predicted to have the greatest transcriptional impact on middle-aged HSCs, as opposed to signaling mediated by endothelial cells or mature hematopoietic cell types. In individual middle-aged mice, lower expression of Kitl and Igf1 in MSCs was highly correlated with reduced lymphoid lineage commitment of HSCs and increased signatures of differentiation-inactive HSCs. These signatures were independent of expression of aging-associated proinflammatory cytokines including interleukin-1β (IL-1β), IL-6, tumor necrosis factor α and RANTES. In sum, we find that Kitl and Igf1 expression are coregulated and variable between individual mice at the middle age and expression of these factors is predictive of HSC activation and lymphoid commitment independently of inflammation.
Collapse
Affiliation(s)
| | | | - Johanna Hofmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department 15, Biosciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | | | - Konstantinos D. Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt and German Cancer Consortium, Partner Site Frankfurt/Mainz, Frankfurt am Main, Germany
| | | |
Collapse
|
23
|
Caiado F, Manz MG. IL-1 in aging and pathologies of hematopoietic stem cells. Blood 2024; 144:368-377. [PMID: 38781562 DOI: 10.1182/blood.2023023105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
ABSTRACT Defense-oriented inflammatory reactivity supports survival at younger age but might contribute to health impairments in modern, aging societies. The interleukin-1 (IL-1) cytokines are highly conserved and regulated, pleiotropic mediators of inflammation, essential to respond adequately to infection and tissue damage but also with potential host damaging effects when left unresolved. In this review, we discuss how continuous low-level IL-1 signaling contributes to aging-associated hematopoietic stem and progenitor cell (HSPC) functional impairments and how this inflammatory selective pressure acts as a driver of more profound hematological alterations, such as clonal hematopoiesis of indeterminate potential, and to overt HSPC diseases, like myeloproliferative and myelodysplastic neoplasia as well as acute myeloid leukemia. Based on this, we outline how IL-1 pathway inhibition might be used to prevent or treat inflammaging-associated HSPC pathologies.
Collapse
Affiliation(s)
- Francisco Caiado
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Markus G Manz
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Comprehensive Cancer Center Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Zhang Y, Wang C, Lang H, Yu H, Zhou M, Rao X, Zhang Q, Yi L, Zhu J, Mi M. The Contrasting Effects of Two Distinct Exercise Training Modalities on Exhaustive Exercise-Induced Muscle Damage in Mice May Be Associated with Alterations in the Gut Microbiota. Int J Mol Sci 2024; 25:7837. [PMID: 39063080 PMCID: PMC11277320 DOI: 10.3390/ijms25147837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/30/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Exhaustive exercise is known to induce muscle damage characterized by inflammation and oxidative stress. Although "regular" and "weekend warrior" exercise regimens have been shown to confer comparable health benefits in human studies, such as reduced risks of all-cause, cardiovascular disease (CVD), and cancer mortality, their differential impacts on muscle damage post-exhaustive exercise remain unclear. This study aimed to compare the effects of long-term, moderate-intensity (LTMI) and short-term, high-intensity (STHI) training modalities, matched for total exercise volume, on gut microbiota, short-chain fatty acids (SCFAs), and exhaustive exercise-induced muscle damage in mice, as well as to evaluate the correlation between these factors. LTMI is considered a regular exercise regimen, while STHI shares some similarities with the "weekend warrior" pattern, such as promoting exercise intensity and condensing training sessions into a short period. Our findings indicate that LTMI training significantly enhanced the abundance of SCFA-producing bacteria, including Akkermansia, Prevotellaceae_NK3B31_group, Odoribacter, Alistipes, and Lactobacillus, thereby increasing SCFA levels and attenuating muscle damage following exhaustive swimming. In contrast, STHI training increased the abundance of opportunistic pathogens such as Staphylococcus and Bilophila, without altering SCFA levels, and was associated with exacerbated muscle damage. Moreover, we observed a significant negative correlation between the abundance of SCFA-producing bacteria and SCFA levels with the expression of inflammatory cytokines in the muscle of mice post-exhaustive exercise. Conversely, the abundance of Staphylococcus and Bilophila showed a notable positive correlation with these cytokines. Additionally, the effects of LTMI and STHI on exhaustive exercise-induced muscle damage were transmissible to untrained mice via fecal microbiota transplantation, suggesting that gut microbiota changes induced by these training modalities may contribute to their contrasting impacts on muscle damage. These results underscore the significance of selecting an appropriate training modality prior to engaging in exhaustive exercise, with implications for athletic training and injury prevention.
Collapse
|
25
|
Tao S, Qiu X, Wang Y, Qiu R, Yu C, Sun M, Liu L, Tao Z, Zhang L, Tang D. Effect of Post-transplant Dietary Restriction on Hematopoietic Reconstitution and Maintenance of Reconstitution Capacity of Hematopoietic Stem Cells. Stem Cell Rev Rep 2024:10.1007/s12015-024-10754-y. [PMID: 38965147 DOI: 10.1007/s12015-024-10754-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2024] [Indexed: 07/06/2024]
Abstract
Hematopoietic cell transplantation (HCT) is an important therapy for many hematological malignancies as well as some non-malignant diseases. Post-transplant hematopoiesis is affected by multiple factors, and the mechanisms of delayed post-transplant hematopoiesis remain poorly understood. Patients undergoing HCT often suffer from significantly reduced food intake due to complications induced by preconditioning treatments. Here, we used a dietary restriction (DR) mouse model to study the effect of post-transplant dietary reduction on hematopoiesis and hematopoietic stem cells (HSCs). We found that post-transplant DR significantly inhibited both lymphopoiesis and myelopoiesis in the primary recipient mice. However, when bone marrow cells (BMCs) from the primary recipient mice were serially transplanted into secondary and tertiary recipient mice, the HSCs derived from the primary recipient mice, which were exposed to post-transplant DR, exhibited a much higher reconstitution capacity. Transplantation experiments with purified HSCs showed that post-transplant DR greatly inhibited hematopoietic stem cell (HSC) expansion. Additionally, post-transplant DR reshaped the gut microbiotas of the recipient mice, which inhibited inflammatory responses and thus may have contributed to maintaining HSC function. Our findings may have important implications for clinical work because reduced food intake and problems with digestion and absorption are common in patients undergoing HCT.
Collapse
Affiliation(s)
- Si Tao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Xingxing Qiu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Yiting Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang City, 330006, Jiangxi Province, China
| | - Rongrong Qiu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Chenghui Yu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang City, 330006, Jiangxi Province, China
| | - Man Sun
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Lulu Liu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Duozhuang Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Jiangxi, China.
- Jiangxi Provincial Key Laboratory of Hematological Diseases (2024SSY06052), Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang City, 330006, Jiangxi Province, China.
| |
Collapse
|
26
|
Hofmann J, Kokkaliaris KD. Bone marrow niches for hematopoietic stem cells: life span dynamics and adaptation to acute stress. Blood 2024; 144:21-34. [PMID: 38579285 DOI: 10.1182/blood.2023023788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024] Open
Abstract
ABSTRACT Hematopoietic stem cells (HSCs) are instrumental for organismal survival because they are responsible for lifelong production of mature blood lineages in homeostasis and response to external stress. To fulfill their function, HSCs rely on reciprocal interactions with specialized tissue microenvironments, termed HSC niches. From embryonic development to advanced aging, HSCs transition through several hematopoietic organs in which they are supported by distinct extrinsic cues. Here, we describe recent discoveries on how HSC niches collectively adapt to ensure robust hematopoietic function during biological aging and after exposure to acute stress. We also discuss the latest strategies leveraging niche-derived signals to revert aging-associated phenotypes and enhance hematopoietic recovery after myeloablation.
Collapse
Affiliation(s)
- Johanna Hofmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Department 15, Biosciences, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Quantitative Spatial Cancer Biology Laboratory, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Germany
- University Cancer Center, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Yu Z, Guo M, Yu B, Wang Y, Yan Z, Gao R. Anorexia nervosa and bulimia nervosa: a Mendelian randomization study of gut microbiota. Front Microbiol 2024; 15:1396932. [PMID: 38784806 PMCID: PMC11111991 DOI: 10.3389/fmicb.2024.1396932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Background Anorexia nervosa (AN) and bulimia nervosa (BN) poses a significant challenge to global public health. Despite extensive research, conclusive evidence regarding the association between gut microbes and the risk of AN and BN remains elusive. Mendelian randomization (MR) methods offer a promising avenue for elucidating potential causal relationships. Materials and methods Genome-wide association studies (GWAS) datasets of AN and BN were retrieved from the OpenGWAS database for analysis. Independent single nucleotide polymorphisms closely associated with 196 gut bacterial taxa from the MiBioGen consortium were identified as instrumental variables. MR analysis was conducted utilizing R software, with outlier exclusion performed using the MR-PRESSO method. Causal effect estimation was undertaken employing four methods, including Inverse variance weighted. Sensitivity analysis, heterogeneity analysis, horizontal multivariate analysis, and assessment of causal directionality were carried out to assess the robustness of the findings. Results A total of 196 bacterial taxa spanning six taxonomic levels were subjected to analysis. Nine taxa demonstrating potential causal relationships with AN were identified. Among these, five taxa, including Peptostreptococcaceae, were implicated as exerting a causal effect on AN risk, while four taxa, including Gammaproteobacteria, were associated with a reduced risk of AN. Similarly, nine taxa exhibiting potential causal relationships with BN were identified. Of these, six taxa, including Clostridiales, were identified as risk factors for increased BN risk, while three taxa, including Oxalobacteraceae, were deemed protective factors. Lachnospiraceae emerged as a common influence on both AN and BN, albeit with opposing effects. No evidence of heterogeneity or horizontal pleiotropy was detected for significant estimates. Conclusion Through MR analysis, we revealed the potential causal role of 18 intestinal bacterial taxa in AN and BN, including Lachnospiraceae. It provides new insights into the mechanistic basis and intervention targets of gut microbiota-mediated AN and BN.
Collapse
Affiliation(s)
- Zongliang Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Manping Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Postdoctoral Research Station, China Academy of Chinese Medical Sciences, Beijing, China
- Postdoctoral Works Station, Yabao Pharmaceutical Group Co., Ltd., Yuncheng, China
| | - Binyang Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiming Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zian Yan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Niu Y, Hu X, Song Y, Wang C, Luo P, Ni S, Jiao F, Qiu J, Jiang W, Yang S, Chen J, Huang R, Jiang H, Chen S, Zhai Q, Xiao J, Guo F. Blautia Coccoides is a Newly Identified Bacterium Increased by Leucine Deprivation and has a Novel Function in Improving Metabolic Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309255. [PMID: 38429906 PMCID: PMC11095201 DOI: 10.1002/advs.202309255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/14/2024] [Indexed: 03/03/2024]
Abstract
Gut microbiota is linked to human metabolic diseases. The previous work showed that leucine deprivation improved metabolic dysfunction, but whether leucine deprivation alters certain specific species of bacterium that brings these benefits remains unclear. Here, this work finds that leucine deprivation alters gut microbiota composition, which is sufficient and necessary for the metabolic improvements induced by leucine deprivation. Among all the affected bacteria, B. coccoides is markedly increased in the feces of leucine-deprived mice. Moreover, gavage with B. coccoides improves insulin sensitivity and reduces body fat in high-fat diet (HFD) mice, and singly colonization of B. coccoides increases insulin sensitivity in gnotobiotic mice. The effects of B. coccoides are mediated by metabolizing tryptophan into indole-3-acetic acid (I3AA) that activates the aryl hydrocarbon receptor (AhR) in the liver. Finally, this work reveals that reduced fecal B. coccoides and I3AA levels are associated with the clinical metabolic syndrome. These findings suggest that B. coccoides is a newly identified bacterium increased by leucine deprivation, which improves metabolic disorders via metabolizing tryptophan into I3AA.
Collapse
Affiliation(s)
- Yuguo Niu
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Xiaoming Hu
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Yali Song
- Department of Metabolic and Bariatric Surgery and Clinical Research InstituteFirst Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery and Clinical Research InstituteFirst Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Peixiang Luo
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Shihong Ni
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Fuxin Jiao
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Ju Qiu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Weihong Jiang
- Key Laboratory of Synthetic BiologyInstitute of Plant Physiology and EcologyCAS Center for Excellence in Molecular Plant ScienceShanghai200032China
| | - Sheng Yang
- Key Laboratory of Synthetic BiologyInstitute of Plant Physiology and EcologyCAS Center for Excellence in Molecular Plant ScienceShanghai200032China
| | - Jun Chen
- Key Laboratory of Synthetic BiologyInstitute of Plant Physiology and EcologyCAS Center for Excellence in Molecular Plant ScienceShanghai200032China
| | - Rui Huang
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Haizhou Jiang
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Shanghai Chen
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Qiwei Zhai
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jia Xiao
- Department of Metabolic and Bariatric Surgery and Clinical Research InstituteFirst Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Feifan Guo
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| |
Collapse
|
29
|
Fernandez-Sanchez J, Rodgers R, Maknojia AA, Shaikh N, Yan H, Mejia ME, Hendricks H, Jenq RR, Reddy P, Banerjee R, Schraw JM, Baldridge MT, King KY. Antibiotic-associated neutropenia is marked by depletion of intestinal Lachnospiraceae in pediatric patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.25.24306386. [PMID: 38712139 PMCID: PMC11071563 DOI: 10.1101/2024.04.25.24306386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Hematologic side effects are associated with prolonged antibiotic exposure in up to 34% of patients. Neutropenia, reported in 10-15% of patients, increases the risk of sepsis and death. Murine studies have established a link between the intestinal microbiota and normal hematopoiesis. We sought to identify predisposing factors, presence of microbiota-derived metabolites, and changes in intestinal microbiota composition in otherwise healthy pediatric patients who developed neutropenia after prolonged courses of antibiotics. In this multi-center study, patients with infections requiring anticipated antibiotic treatment of two or more weeks were enrolled. Stool samples were obtained at the start and completion of antibiotics and at the time of neutropenia. We identified 10 patients who developed neutropenia on antibiotics and 29 controls matched for age, sex, race, and ethnicity. Clinical data demonstrated no association between neutropenia and type of infection or type of antibiotic used; however intensive care unit admission and length of therapy were associated with neutropenia. Reduced intestinal microbiome richness and decreased abundance of Lachnospiraceae family members correlated with neutropenia. Untargeted stool metabolomic profiling revealed several metabolites that were depleted exclusively in patients with neutropenia, including members of the urea cycle pathway, pyrimidine metabolism and fatty acid metabolism that are known to be produced by Lachnospiraceae . Our study confirms a relationship between intestinal microbiota disruption and abnormal hematopoiesis and identifies taxa and metabolites likely to contribute to microbiota-sustained hematopoiesis. As the microbiome is a key determinant of stem cell transplant and immunotherapy outcomes, these findings are likely to be of broad significance. Key Points Neutropenia occurred in 17% of patients receiving prolonged antibiotic therapy.We found no association between neutropenia and type of infection or class of antibiotic used. Development of neutropenia after prolonged antibiotic treatment was associated with decreased prevalence of Lachnospiraceae and Lachnospiraceae metabolites such as citrulline.
Collapse
|
30
|
Fernandez Sanchez J, Maknojia AA, King KY. Blood and guts: how the intestinal microbiome shapes hematopoiesis and treatment of hematologic disease. Blood 2024; 143:1689-1701. [PMID: 38364184 PMCID: PMC11103099 DOI: 10.1182/blood.2023021174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT Over the past 10 years, there has been a marked increase in recognition of the interplay between the intestinal microbiome and the hematopoietic system. Despite their apparent distance in the body, a large literature now supports the relevance of the normal intestinal microbiota to steady-state blood production, affecting both hematopoietic stem and progenitor cells as well as differentiated immune cells. Microbial metabolites enter the circulation where they can trigger cytokine signaling that influences hematopoiesis. Furthermore, the state of the microbiome is now recognized to affect outcomes from hematopoietic stem cell transplant, immunotherapy, and cellular therapies for hematologic malignancies. Here we review the mechanisms by which microbiotas influence hematopoiesis in development and adulthood as well as the avenues by which microbiotas are thought to impact stem cell transplant engraftment, graft-versus-host disease, and efficacy of cell and immunotherapies. We highlight areas of future research that may lead to reduced adverse effects of antibiotic use and improved outcomes for patients with hematologic conditions.
Collapse
Affiliation(s)
- Josaura Fernandez Sanchez
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Arushana A. Maknojia
- Program in Immunology and Microbiology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX
| | - Katherine Y. King
- Program in Immunology and Microbiology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX
- Division of Infectious Diseases, Department of Pediatrics, and Center for Cell and Gene Therapy, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| |
Collapse
|
31
|
Chen X, Liu C, Wang J, Du C. Hematopoietic Stem Cells as an Integrative Hub Linking Lifestyle to Cardiovascular Health. Cells 2024; 13:712. [PMID: 38667327 PMCID: PMC11049205 DOI: 10.3390/cells13080712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Despite breakthroughs in modern medical care, the incidence of cardiovascular disease (CVD) is even more prevalent globally. Increasing epidemiologic evidence indicates that emerging cardiovascular risk factors arising from the modern lifestyle, including psychosocial stress, sleep problems, unhealthy diet patterns, physical inactivity/sedentary behavior, alcohol consumption, and tobacco smoking, contribute significantly to this worldwide epidemic, while its underpinning mechanisms are enigmatic. Hematological and immune systems were recently demonstrated to play integrative roles in linking lifestyle to cardiovascular health. In particular, alterations in hematopoietic stem cell (HSC) homeostasis, which is usually characterized by proliferation, expansion, mobilization, megakaryocyte/myeloid-biased differentiation, and/or the pro-inflammatory priming of HSCs, have been shown to be involved in the persistent overproduction of pro-inflammatory myeloid leukocytes and platelets, the cellular protagonists of cardiovascular inflammation and thrombosis, respectively. Furthermore, certain lifestyle factors, such as a healthy diet pattern and physical exercise, have been documented to exert cardiovascular protective effects through promoting quiescence, bone marrow retention, balanced differentiation, and/or the anti-inflammatory priming of HSCs. Here, we review the current understanding of and progression in research on the mechanistic interrelationships among lifestyle, HSC homeostasis, and cardiovascular health. Given that adhering to a healthy lifestyle has become a mainstream primary preventative approach to lowering the cardiovascular burden, unmasking the causal links between lifestyle and cardiovascular health from the perspective of hematopoiesis would open new opportunities to prevent and treat CVD in the present age.
Collapse
Affiliation(s)
| | | | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| | - Changhong Du
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China; (X.C.); (C.L.)
| |
Collapse
|
32
|
Renga G, Nunzi E, Stincardini C, Pariano M, Puccetti M, Pieraccini G, Di Serio C, Fraziano M, Poerio N, Oikonomou V, Mosci P, Garaci E, Fianchi L, Pagano L, Romani L. CPX-351 exploits the gut microbiota to promote mucosal barrier function, colonization resistance, and immune homeostasis. Blood 2024; 143:1628-1645. [PMID: 38227935 DOI: 10.1182/blood.2023021380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
ABSTRACT CPX-351, a liposomal combination of cytarabine plus daunorubicin, has been approved for the treatment of adults with newly diagnosed, therapy-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes, because it improves survival and outcome of patients who received hematopoietic stem cell transplant compared with the continuous infusion of cytarabine plus daunorubicin (referred to as "7 + 3" combination). Because gut dysbiosis occurring in patients with AML during induction chemotherapy heavily affects the subsequent phases of therapy, we have assessed whether the superior activity of CPX-351 vs "7 + 3" combination in the real-life setting implicates an action on and by the intestinal microbiota. To this purpose, we have evaluated the impact of CPX-351 and "7 + 3" combination on mucosal barrier function, gut microbial composition and function, and antifungal colonization resistance in preclinical models of intestinal damage in vitro and in vivo and fecal microbiota transplantation. We found that CPX-351, at variance with "7 + 3" combination, protected from gut dysbiosis, mucosal damage, and gut morbidity while increasing antifungal resistance. Mechanistically, the protective effect of CPX-351 occurred through pathways involving both the host and the intestinal microbiota, namely via the activation of the aryl hydrocarbon receptor-interleukin-22 (IL-22)-IL-10 host pathway and the production of immunomodulatory metabolites by anaerobes. This study reveals how the gut microbiota may contribute to the good safety profile, with a low infection-related mortality, of CPX-351 and highlights how a better understanding of the host-microbiota dialogue may contribute to pave the way for precision medicine in AML.
Collapse
Affiliation(s)
- Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Matteo Puccetti
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | | | - Claudia Di Serio
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Maurizio Fraziano
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Noemi Poerio
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | | | - Paolo Mosci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Luana Fianchi
- Division of Hematology, Policlinico Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - Livio Pagano
- Division of Hematology, Policlinico Gemelli, Università Cattolica Sacro Cuore, Rome, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- San Raffaele Sulmona, Sulmona, Italy
| |
Collapse
|
33
|
Herman C, Barker BM, Bartelli TF, Chandra V, Krajmalnik-Brown R, Jewell M, Li L, Liao C, McAllister F, Nirmalkar K, Xavier JB, Gregory Caporaso J. Assessing Engraftment Following Fecal Microbiota Transplant. ARXIV 2024:arXiv:2404.07325v1. [PMID: 38659636 PMCID: PMC11042410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Fecal Microbiota Transplant (FMT) is an FDA approved treatment for recurrent Clostridium difficile infections, and is being explored for other clinical applications, from alleviating digestive and neurological disorders, to priming the microbiome for cancer treatment, and restoring microbiomes impacted by cancer treatment. Quantifying the extent of engraftment following an FMT is important in determining if a recipient didn't respond because the engrafted microbiome didn't produce the desired outcomes (a successful FMT, but negative treatment outcome), or the microbiome didn't engraft (an unsuccessful FMT and negative treatment outcome). The lack of a consistent methodology for quantifying FMT engraftment extent hinders the assessment of FMT success and its relation to clinical outcomes, and presents challenges for comparing FMT results and protocols across studies. Here we review 46 studies of FMT in humans and model organisms and group their approaches for assessing the extent to which an FMT engrafts into three criteria: 1) Chimeric Asymmetric Community Coalescence investigates microbiome shifts following FMT engraftment using methods such as alpha diversity comparisons, beta diversity comparisons, and microbiome source tracking. 2) Donated Microbiome Indicator Features tracks donated microbiome features (e.g., amplicon sequence variants or species of interest) as a signal of engraftment with methods such as differential abundance testing based on the current sample collection, or tracking changes in feature abundances that have been previously identified (e.g., from FMT or disease-relevant literature). 3) Temporal Stability examines how resistant post-FMT recipient's microbiomes are to reverting back to their baseline microbiome. Individually, these criteria each highlight a critical aspect of microbiome engraftment; investigated together, however, they provide a clearer assessment of microbiome engraftment. We discuss the pros and cons of each of these criteria, providing illustrative examples of their application. We also introduce key terminology and recommendations on how FMT studies can be analyzed for rigorous engraftment extent assessment.
Collapse
Affiliation(s)
- Chloe Herman
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Thais F Bartelli
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vidhi Chandra
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, U.S.A
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, U.S.A
| | | | - Le Li
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khemlal Nirmalkar
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, U.S.A
| | - Joao B Xavier
- Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - J Gregory Caporaso
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
34
|
Jiang L, Ye Y, Han Y, Wang Q, Lu H, Li J, Qian W, Zeng X, Zhang Z, Zhao Y, Shi J, Luo Y, Qiu Y, Sun J, Sheng J, Huang H, Qian P. Microplastics dampen the self-renewal of hematopoietic stem cells by disrupting the gut microbiota-hypoxanthine-Wnt axis. Cell Discov 2024; 10:35. [PMID: 38548771 PMCID: PMC10978833 DOI: 10.1038/s41421-024-00665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/01/2024] [Indexed: 04/01/2024] Open
Abstract
Microplastics (MPs) are contaminants ubiquitously found in the global biosphere that enter the body through inhalation or ingestion, posing significant risks to human health. Recent studies emerge that MPs are present in the bone marrow and damage the hematopoietic system. However, it remains largely elusive about the specific mechanisms by which MPs affect hematopoietic stem cells (HSCs) and their clinical relevance in HSC transplantation (HSCT). Here, we established a long-term MPs intake mouse model and found that MPs caused severe damage to the hematopoietic system. Oral gavage administration of MPs or fecal transplantation of microbiota from MPs-treated mice markedly undermined the self-renewal and reconstitution capacities of HSCs. Mechanistically, MPs did not directly kill HSCs but disrupted gut structure and permeability, which eventually ameliorated the abundance of Rikenellaceae and hypoxanthine in the intestine and inactivated the HPRT-Wnt signaling in bone marrow HSCs. Furthermore, administration of Rikenellaceae or hypoxanthine in mice as well as treatment of WNT10A in the culture system substantially rescued the MPs-induced HSC defects. Finally, we validated in a cohort of human patients receiving allogenic HSCT from healthy donors, and revealed that the survival time of patients was negatively correlated with levels of MPs, while positively with the abundance of Rikenellaceae, and hypoxanthine in the HSC donors' feces and blood. Overall, our study unleashes the detrimental roles and mechanisms of MPs in HSCs, which provides potential strategies to prevent hematopoietic damage from MPs and serves as a fundamental critique for selecting suitable donors for HSCT in clinical practice.
Collapse
Affiliation(s)
- Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Yishan Ye
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Huan Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Xin Zeng
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Zhaoru Zhang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
| | - Yanmin Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jimin Shi
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Luo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunfei Qiu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Sun
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinghao Sheng
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Ma YY, Li X, Yu JT, Wang YJ. Therapeutics for neurodegenerative diseases by targeting the gut microbiome: from bench to bedside. Transl Neurodegener 2024; 13:12. [PMID: 38414054 PMCID: PMC10898075 DOI: 10.1186/s40035-024-00404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
The aetiologies and origins of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), are complex and multifaceted. A growing body of evidence suggests that the gut microbiome plays crucial roles in the development and progression of neurodegenerative diseases. Clinicians have come to realize that therapeutics targeting the gut microbiome have the potential to halt the progression of neurodegenerative diseases. This narrative review examines the alterations in the gut microbiome in AD, PD, ALS and HD, highlighting the close relationship between the gut microbiome and the brain in neurodegenerative diseases. Processes that mediate the gut microbiome-brain communication in neurodegenerative diseases, including the immunological, vagus nerve and circulatory pathways, are evaluated. Furthermore, we summarize potential therapeutics for neurodegenerative diseases that modify the gut microbiome and its metabolites, including diets, probiotics and prebiotics, microbial metabolites, antibacterials and faecal microbiome transplantation. Finally, current challenges and future directions are discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Ma
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
| | - Xin Li
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University, Shigatse, 857000, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China.
| |
Collapse
|
36
|
Liu X, Zhang H, Shi G, Zheng X, Chang J, Lin Q, Tian Z, Yang H. The impact of gut microbial signals on hematopoietic stem cells and the bone marrow microenvironment. Front Immunol 2024; 15:1338178. [PMID: 38415259 PMCID: PMC10896826 DOI: 10.3389/fimmu.2024.1338178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Hematopoietic stem cells (HSCs) undergo self-renewal and differentiation in the bone marrow, which is tightly regulated by cues from the microenvironment. The gut microbiota, a dynamic community residing on the mucosal surface of vertebrates, plays a crucial role in maintaining host health. Recent evidence suggests that the gut microbiota influences HSCs differentiation by modulating the bone marrow microenvironment through microbial products. This paper comprehensively analyzes the impact of the gut microbiota on hematopoiesis and its effect on HSCs fate and differentiation by modifying the bone marrow microenvironment, including mechanical properties, inflammatory signals, bone marrow stromal cells, and metabolites. Furthermore, we discuss the involvement of the gut microbiota in the development of hematologic malignancies, such as leukemia, multiple myeloma, and lymphoma.
Collapse
Affiliation(s)
- Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Hao Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Guolin Shi
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Xinmin Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Jing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
- Medical Service, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Quande Lin
- Medical Service, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi'an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
37
|
Zhang YW, Wu Y, Liu XF, Chen X, Su JC. Targeting the gut microbiota-related metabolites for osteoporosis: The inextricable connection of gut-bone axis. Ageing Res Rev 2024; 94:102196. [PMID: 38218463 DOI: 10.1016/j.arr.2024.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Osteoporosis is a systemic skeletal disease characterized by decreased bone mass, destruction of bone microstructure, raised bone fragility, and enhanced risk of fractures. The correlation between gut microbiota and bone metabolism has gradually become a widespread research hotspot in recent years, and successive studies have revealed that the alterations of gut microbiota and its-related metabolites are related to the occurrence and progression of osteoporosis. Moreover, several emerging studies on the relationship between gut microbiota-related metabolites and bone metabolism are also underway, and extensive research evidence has indicated an inseparable connection between them. Combined with latest literatures and based on inextricable connection of gut-bone axis, this review is aimed to summarize the relation, potential mechanisms, application strategies, clinical application prospects, and existing challenges of gut microbiota and its-related metabolites on osteoporosis, thus updating the knowledge in this research field and providing certain reference for future researches.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Xiang-Fei Liu
- Department of Orthopaedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Xiao Chen
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China.
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
38
|
Wang W, Cui B, Nie Y, Sun L, Zhang F. Radiation injury and gut microbiota-based treatment. Protein Cell 2024; 15:83-97. [PMID: 37470727 PMCID: PMC10833463 DOI: 10.1093/procel/pwad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
The exposure to either medical sources or accidental radiation can cause varying degrees of radiation injury (RI). RI is a common disease involving multiple human body parts and organs, yet effective treatments are currently limited. Accumulating evidence suggests gut microbiota are closely associated with the development and prevention of various RI. This article summarizes 10 common types of RI and their possible mechanisms. It also highlights the changes and potential microbiota-based treatments for RI, including probiotics, metabolites, and microbiota transplantation. Additionally, a 5P-Framework is proposed to provide a comprehensive strategy for managing RI.
Collapse
Affiliation(s)
- Weihong Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Bota Cui
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Faming Zhang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| |
Collapse
|
39
|
Zheng K, Wei Z, Li W. Ecological insights into hematopoiesis regulation: unraveling the influence of gut microbiota. Gut Microbes 2024; 16:2350784. [PMID: 38727219 PMCID: PMC11093038 DOI: 10.1080/19490976.2024.2350784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota constitutes a vast ecological system within the human body, forming a mutually interdependent entity with the host. In recent years, advancements in molecular biology technologies have provided a clearer understanding of the role of the gut microbiota. They not only influence the local immune status and metabolic functions of the host's intestinal tract but also impact the functional transformation of hematopoietic stem cells (HSCs) through the gut-blood axis. In this review, we will discuss the role of the gut microbiota in influencing hematopoiesis. We analyze the interactions between HSCs and other cellular components, with a particular emphasis on the direct functional regulation of HSCs by the gut microbiota and their indirect influence through cellular components in the bone marrow microenvironment. Additionally, we propose potential control targets for signaling pathways triggered by the gut microbiota to regulate hematopoietic function, filling crucial knowledge gaps in the development of this research field.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| | - Zhifeng Wei
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Cancer Center, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Xu X, Xu T, Wei J, Chen T. Gut microbiota: an ideal biomarker and intervention strategy for aging. MICROBIOME RESEARCH REPORTS 2024; 3:13. [PMID: 38841415 PMCID: PMC11149087 DOI: 10.20517/mrr.2023.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 06/07/2024]
Abstract
Population aging is a substantial challenge for the global sanitation framework. Unhealthy aging tends to be accompanied by chronic diseases such as cardiovascular disease, diabetes, and cancer, which undermine the welfare of the elderly. Based on the fact that aging is inevitable but retarding aging is attainable, flexible aging characterization and efficient anti-aging become imperative for healthy aging. The gut microbiome, as the most dynamic component interacting with the organism, can affect the aging process through its own structure and metabolites, thus holding the potential to become both an ideal aging-related biomarker and an intervention strategy. This review summarizes the value of applying gut microbiota as aging-related microbial biomarkers in diagnosing aging state and monitoring the effect of anti-aging interventions, ultimately pointing to the future prospects of microbial intervention strategies in maintaining healthy aging.
Collapse
Affiliation(s)
- Xuan Xu
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Tangchang Xu
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
- Authors contributed equally
| | - Jing Wei
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tingtao Chen
- Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, Jiangxi, China
| |
Collapse
|
41
|
Greenblatt CL, Lathe R. Vaccines and Dementia: Part II. Efficacy of BCG and Other Vaccines Against Dementia. J Alzheimers Dis 2024; 98:361-372. [PMID: 38393913 PMCID: PMC10977380 DOI: 10.3233/jad-231323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
There is growing awareness that infections may contribute to the development of senile dementia including Alzheimer's disease (AD), and that immunopotentiation is therefore a legitimate target in the management of diseases of the elderly including AD. In Part I of this work, we provided a historical and molecular background to how vaccines, adjuvants, and their component molecules can elicit broad-spectrum protective effects against diverse agents, culminating in the development of the tuberculosis vaccine strain Bacille Calmette-Guérin (BCG) as a treatment for some types of cancer as well as a prophylactic against infections of the elderly such as pneumonia. In Part II, we critically review studies that BCG and other vaccines may offer a measure of protection against dementia development. Five studies to date have determined that intravesicular BCG administration, the standard of care for bladder cancer, is followed by a mean ∼45% reduction in subsequent AD development in these patients. Although this could potentially be ascribed to confounding factors, the finding that other routine vaccines such as against shingles (herpes zoster virus) and influenza (influenza A virus), among others, also offer a degree of protection against AD (mean 29% over multiple studies) underlines the plausibility that the protective effects are real. We highlight clinical trials that are planned or underway and discuss whether BCG could be replaced by key components of the mycobacterial cell wall such as muramyl dipeptide. We conclude that BCG and similar agents merit far wider consideration as prophylactic agents against dementia.
Collapse
Affiliation(s)
- Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel–Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
| |
Collapse
|
42
|
Sun X, Zhou X, He W, Sun W, Xu Z. Co-Housing and Fecal Microbiota Transplantation: Technical Support for TCM Herbal Treatment of Extra-Intestinal Diseases Based on Gut Microbial Ecosystem Remodeling. Drug Des Devel Ther 2023; 17:3803-3831. [PMID: 38155743 PMCID: PMC10753978 DOI: 10.2147/dddt.s443462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023] Open
Abstract
Dysregulation of the gut microbial ecosystem (GME) (eg, alterations in the gut microbiota, gut-derived metabolites, and gut barrier) may contribute to the onset and progression of extra-intestinal diseases. Previous studies have found that Traditional Chinese Medicine herbs (TCMs) play an important role in manipulating the GME, but a prominent obstacle in current TCM research is the causal relationship between GME and disease amelioration. Encouragingly, co-housing and fecal microbiota transplantation (FMT) provide evidence-based support for TCMs to treat extra-intestinal diseases by targeting GME. In this review, we documented the principles, operational procedures, applications and limitations of the key technologies (ie, co-housing and FMT); furthermore, we provided evidence that TCM works through the GME, especially the gut microbiota (eg, SCFA- and BSH-producing bacteria), the gut-derived metabolites (eg, IS, pCS, and SCFAs), and intestinal barrier to alleviate extra-intestinal diseases. This will be beneficial in constructing microecological pathways for TCM treatment of extra-intestinal diseases in the future.
Collapse
Affiliation(s)
- Xian Sun
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Xi Zhou
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Weiming He
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Wei Sun
- Department of Nephrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People’s Republic of China
| | - Zheng Xu
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| |
Collapse
|
43
|
Zhong HJ, Chen WR, Lu XJ, Hu DX, Lin DJ, Liu T, Wu L, Wu LH, He XX. Washed microbiota transplantation improves haemoglobin levels in anaemia of chronic disease. Eur J Clin Invest 2023; 53:e14072. [PMID: 37507843 DOI: 10.1111/eci.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/20/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Anaemia of chronic disease (ACD) is the second most common type of anaemia and lacks an effective treatment. Patients with anaemia are reported to have altered gut microbial profiles, which may affect erythropoiesis. Here, we investigated the gut microbial features of patients with ACD and determined whether regulating gut microbiota using washed microbiota transplantation (WMT) was effective in treating ACD. METHODS We compared the gut microbiota profile of patients with ACD and healthy controls, evaluated the efficacy of WMT on haematological parameters in the patients, and analysed the alterations in gut microbiota after WMT treatment. RESULTS Patients with ACD had lower gut microbial richness, and differences in microbial composition and function, relative to healthy controls. Additionally, the relative abundances of two butyrate-producing genera Lachnospiraceae NK4A136 group and Butyricicoccus, were positively correlated with the haemoglobin (HGB) level and lower in patients with ACD than controls. WMT significantly increased HGB levels in patients with ACD. After the first, second and third WMT rounds, normal HGB levels were restored in 27.02%, 27.78% and 36.37% (all p < .05) of patients with ACD, respectively. Moreover, WMT significantly increased the abundance of butyrate-producing genera and downregulated gut microbial functions that were upregulated in patients with ACD. CONCLUSIONS Patients with ACD exhibited differences in gut microbial composition and function relative to healthy controls. WMT is an effective treatment for ACD that reshapes gut microbial composition, restores butyrate-producing bacteria and regulates the functions of gut microbiota.
Collapse
Affiliation(s)
- Hao-Jie Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei-Ran Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin-Jian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Dong-Xia Hu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - De-Jiang Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tao Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Li-Hao Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xing-Xiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
44
|
Karimnia N, Harris J, Heazlewood SY, Cao B, Nilsson SK. Metabolic regulation of aged hematopoietic stem cells: key players and mechanisms. Exp Hematol 2023; 128:2-9. [PMID: 37778498 DOI: 10.1016/j.exphem.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Nazanin Karimnia
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - James Harris
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia; School of Clinical Sciences, Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Shen Y Heazlewood
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia
| | - Benjamin Cao
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.
| | - Susan K Nilsson
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, Australia.
| |
Collapse
|
45
|
Jayachandran M, Qu S. Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies. Rev Endocr Metab Disord 2023; 24:1189-1204. [PMID: 37840104 DOI: 10.1007/s11154-023-09843-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is by far the most prevalent form of liver disease worldwide. It's also the leading cause of liver-related hospitalizations and deaths. Furthermore, there is a link between obesity and NAFLD risk. A projected 25% of the world's population grieves from NAFLD, making it the most common chronic liver disorder. Several factors, such as obesity, oxidative stress, and insulin resistance, typically accompany NAFLD. Weight loss, lipid-lowering agents, thiazolidinediones, and metformin help prominently control NAFLD. Interestingly, pre-clinical studies demonstrate gut microbiota's potential causal role in NAFLD. Increased intestinal permeability and unhindered transport of microbial metabolites into the liver are the major disruptions due to gut microbiome dysbiosis, contributing to the development of NAFLD by dysregulating the gut-liver axis. Hence, altering the pathogenic bacterial population using probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) could benefit patients with NAFLD. Therefore, it is crucial to acknowledge the importance of microbiota-mediated therapeutic approaches for NAFLD and comprehend the underlying mechanisms that establish a connection between NAFLD and gut microbiota. This review provides a comprehensive overview of the affiliation between dysbiosis of gut microbiota and the progress of NAFLD, as well as the potential benefits of prebiotic, probiotic, synbiotic supplementation, and FMT in obese individuals with NAFLD.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai center of Thyroid diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
46
|
Zhang L, Kang H, Zhang W, Wang J, Liu Z, Jing J, Han L, Gao A. Probiotics ameliorate benzene-induced systemic inflammation and hematopoietic toxicity by inhibiting Bacteroidaceae-mediated ferroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165678. [PMID: 37478946 DOI: 10.1016/j.scitotenv.2023.165678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The intestinal microbiota is associated with the development of benzene-induced hematopoietic toxicity. Modulation of intestinal homeostasis by probiotic supplementation has been considered an effective strategy to prevent adverse health effects. However, the role and mechanism of probiotics in benzene-induced hematopoietic toxicity are unclear. After 45 days of exposure, benzene caused bone marrow hematopoietic toxicity in mice. Furthermore, we found that benzene altered the intestinal barrier in mice, leading to an increase in the abundance of Bacteroidaceae and the activation of systemic inflammation. Interestingly, Fe2+ accumulation, lipid peroxidation, and differential expression of ferroptosis proteins were observed in the intestinal tissues of benzene-exposed mice. After fecal microbiota transplantation, stool microbes from benzene-exposed mice led to the development of intestinal ferroptosis in recipient mice. In particular, oral probiotics significantly reversed elevated Bacteroidaceae and intestinal ferroptosis, ultimately improving benzene-induced hematopoietic damage. We further used the benzene metabolite 1,4-BQ to treat human normal colonic epithelial cells (NCM460) and intervened with the ferroptosis inhibitor liproxstatin-1 (Lip-1) to validate the relationship between intestinal ferroptosis and inflammation. The results showed that 1,4-BQ treatment resulted in increased intracellular ROS levels and abnormal expression of ferroptosis proteins and the inflammatory factors IL-5 and IL-13. However, the use of Lip-1 significantly inhibited oxidative stress, ferroptosis, and inflammation in NCM460 cells. This result suggested that ferroptosis might be involved in benzene-induced hematopoietic toxicity by mediating Th2-type systemic inflammation. Overall, these findings revealed a role for Bacteroidaceae-intestinal ferroptosis-inflammation in benzene-induced hematopoietic toxicity and highlighted that probiotics could be a promising strategy to prevent adverse hematologic outcomes.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Huiwen Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - JingYu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyan Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jiaru Jing
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lin Han
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
47
|
Kasbekar M, Mitchell CA, Proven MA, Passegué E. Hematopoietic stem cells through the ages: A lifetime of adaptation to organismal demands. Cell Stem Cell 2023; 30:1403-1420. [PMID: 37865087 PMCID: PMC10842631 DOI: 10.1016/j.stem.2023.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Hematopoietic stem cells (HSCs), which govern the production of all blood lineages, transition through a series of functional states characterized by expansion during fetal development, functional quiescence in adulthood, and decline upon aging. We describe central features of HSC regulation during ontogeny to contextualize how adaptive responses over the life of the organism ultimately form the basis for HSC functional degradation with age. We particularly focus on the role of cell cycle regulation, inflammatory response pathways, epigenetic changes, and metabolic regulation. We then explore how the knowledge of age-related changes in HSC regulation can inform strategies for the rejuvenation of old HSCs.
Collapse
Affiliation(s)
- Monica Kasbekar
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA; Division of Hematology and Medical Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Carl A Mitchell
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Melissa A Proven
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Emmanuelle Passegué
- Columbia Stem Cell Initiative, Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
48
|
Li J, Malouf C, Miles LA, Willis MB, Pietras EM, King KY. Chronic inflammation can transform the fate of normal and mutant hematopoietic stem cells. Exp Hematol 2023; 127:8-13. [PMID: 37647982 DOI: 10.1016/j.exphem.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Chronic inflammation, although subtle, puts the body in a constant state of alertness and is associated with many diseases, including cancer and cardiovascular diseases. It leads hematopoietic cells to produce and release proinflammatory cytokines, which trigger specific signaling pathways in hematopoietic stem cells (HSCs) that cause changes in proliferation, differentiation, and migration. This response is essential when HSCs are needed to produce specific blood cells to eliminate an intruder, such as a pathogenic virus, but mutant HSCs can use these proinflammatory signals to their advantage and accelerate the development of hematologic disease or malignancy. Understanding this complex process is vital for monitoring and controlling disease progression in patients. In the 2023 International Society for Experimental Hematology winter webinar, Dr. Eric Pietras (University of Colorado Anschutz Medical Campus, United States) and Dr. Katherine Y. King (Baylor College of Medicine, United States) gave a presentation on this topic, which is summarized in this review article.
Collapse
Affiliation(s)
- Jingjing Li
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia.
| | | | - Linde A Miles
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH; Division of Experimental Hematology & Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Mara B Willis
- Center for Cell and Gene Therapy and Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX
| | - Eric M Pietras
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Katherine Y King
- Center for Cell and Gene Therapy and Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX
| |
Collapse
|
49
|
Colom Díaz PA, Mistry JJ, Trowbridge JJ. Hematopoietic stem cell aging and leukemia transformation. Blood 2023; 142:533-542. [PMID: 36800569 PMCID: PMC10447482 DOI: 10.1182/blood.2022017933] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
With aging, hematopoietic stem cells (HSCs) have an impaired ability to regenerate, differentiate, and produce an entire repertoire of mature blood and immune cells. Owing to dysfunctional hematopoiesis, the incidence of hematologic malignancies increases among elderly individuals. Here, we provide an update on HSC-intrinsic and -extrinsic factors and processes that were recently discovered to contribute to the functional decline of HSCs during aging. In addition, we discuss the targets and timing of intervention approaches to maintain HSC function during aging and the extent to which these same targets may prevent or delay transformation to hematologic malignancies.
Collapse
|
50
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|