1
|
Avdonin PP, Blinova MS, Serkova AA, Komleva LA, Avdonin PV. Immunity and Coagulation in COVID-19. Int J Mol Sci 2024; 25:11267. [PMID: 39457048 PMCID: PMC11508857 DOI: 10.3390/ijms252011267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Discovered in late 2019, the SARS-CoV-2 coronavirus has caused the largest pandemic of the 21st century, claiming more than seven million lives. In most cases, the COVID-19 disease caused by the SARS-CoV-2 virus is relatively mild and affects only the upper respiratory tract; it most often manifests itself with fever, chills, cough, and sore throat, but also has less-common mild symptoms. In most cases, patients do not require hospitalization, and fully recover. However, in some cases, infection with the SARS-CoV-2 virus leads to the development of a severe form of COVID-19, which is characterized by the development of life-threatening complications affecting not only the lungs, but also other organs and systems. In particular, various forms of thrombotic complications are common among patients with a severe form of COVID-19. The mechanisms for the development of thrombotic complications in COVID-19 remain unclear. Accumulated data indicate that the pathogenesis of severe COVID-19 is based on disruptions in the functioning of various innate immune systems. The key role in the primary response to a viral infection is assigned to two systems. These are the pattern recognition receptors, primarily members of the toll-like receptor (TLR) family, and the complement system. Both systems are the first to engage in the fight against the virus and launch a whole range of mechanisms aimed at its rapid elimination. Normally, their joint activity leads to the destruction of the pathogen and recovery. However, disruptions in the functioning of these innate immune systems in COVID-19 can cause the development of an excessive inflammatory response that is dangerous for the body. In turn, excessive inflammation entails activation of and damage to the vascular endothelium, as well as the development of the hypercoagulable state observed in patients seriously ill with COVID-19. Activation of the endothelium and hypercoagulation lead to the development of thrombosis and, as a result, damage to organs and tissues. Immune-mediated thrombotic complications are termed "immunothrombosis". In this review, we discuss in detail the features of immunothrombosis associated with SARS-CoV-2 infection and its potential underlying mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (P.P.A.)
| |
Collapse
|
2
|
Joosten SCM, Wiersinga WJ, Poll TVD. Dysregulation of Host-Pathogen Interactions in Sepsis: Host-Related Factors. Semin Respir Crit Care Med 2024; 45:469-478. [PMID: 38950605 DOI: 10.1055/s-0044-1787554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Sepsis stands as a prominent contributor to sickness and death on a global scale. The most current consensus definition characterizes sepsis as a life-threatening organ dysfunction stemming from an imbalanced host response to infection. This definition does not capture the intricate array of immune processes at play in sepsis, marked by simultaneous states of heightened inflammation and immune suppression. This overview delves into the immune-related processes of sepsis, elaborating about mechanisms involved in hyperinflammation and immune suppression. Moreover, we discuss stratification of patients with sepsis based on their immune profiles and how this could impact future sepsis management.
Collapse
Affiliation(s)
- Sebastiaan C M Joosten
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Willem J Wiersinga
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tom van der Poll
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Subramaniam S, Kothari H, Bosmann M. Tissue factor in COVID-19-associated coagulopathy. Thromb Res 2022; 220:35-47. [PMID: 36265412 PMCID: PMC9525243 DOI: 10.1016/j.thromres.2022.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
Evidence of micro- and macro-thrombi in the arteries and veins of critically ill COVID-19 patients and in autopsies highlight the occurrence of COVID-19-associated coagulopathy (CAC). Clinical findings of critically ill COVID-19 patients point to various mechanisms for CAC; however, the definitive underlying cause is unclear. Multiple factors may contribute to the prothrombotic state in patients with COVID-19. Aberrant expression of tissue factor (TF), an initiator of the extrinsic coagulation pathway, leads to thrombotic complications during injury, inflammation, and infections. Clinical evidence suggests that TF-dependent coagulation activation likely plays a role in CAC. Multiple factors could trigger abnormal TF expression and coagulation activation in patients with severe COVID-19 infection. Proinflammatory cytokines that are highly elevated in COVID-19 (IL-1β, IL-6 and TNF-α) are known induce TF expression on leukocytes (e.g. monocytes, macrophages) and non-immune cells (e.g. endothelium, epithelium) in other conditions. Antiphospholipid antibodies, TF-positive extracellular vesicles, pattern recognition receptor (PRR) pathways and complement activation are all candidate factors that could trigger TF-dependent procoagulant activity. In addition, coagulation factors, such as thrombin, may further potentiate the induction of TF via protease-activated receptors on cells. In this systematic review, with other viral infections, we discuss potential mechanisms and cell-type-specific expressions of TF during SARS-CoV-2 infection and its role in the development of CAC.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Hema Kothari
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA; Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
4
|
Ansari SA, Keshava S, Pendurthi UR, Rao LVM. Oxidative Stress Product, 4-Hydroxy-2-Nonenal, Induces the Release of Tissue Factor-Positive Microvesicles From Perivascular Cells Into Circulation. Arterioscler Thromb Vasc Biol 2021; 41:250-265. [PMID: 33028097 PMCID: PMC7752210 DOI: 10.1161/atvbaha.120.315187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE TF (Tissue factor) plays a key role in hemostasis, but an aberrant expression of TF leads to thrombosis. The objective of the present study is to investigate the effect of 4-hydroxy-2-nonenal (HNE), the most stable and major oxidant produced in various disease conditions, on the release of TF+ microvesicles into the circulation, identify the source of TF+ microvesicles origin, and assess their effect on intravascular coagulation and inflammation. Approach and Results: C57BL/6J mice were administered with HNE intraperitoneally, and the release of TF+ microvesicles into circulation was evaluated using coagulation assays and nanoparticle tracking analysis. Various cell-specific markers were used to identify the cellular source of TF+ microvesicles. Vascular permeability was analyzed by the extravasation of Evans blue dye or fluorescein dextran. HNE administration to mice markedly increased the levels of TF+ microvesicles and thrombin generation in the circulation. HNE administration also increased the number of neutrophils in the lungs and elevated the levels of inflammatory cytokines in plasma. Administration of an anti-TF antibody blocked not only HNE-induced thrombin generation but also HNE-induced inflammation. Confocal microscopy and immunoblotting studies showed that HNE does not induce TF expression either in vascular endothelium or circulating monocytes. Microvesicles harvested from HNE-administered mice stained positively with CD248 and α-smooth muscle actin, the markers that are specific to perivascular cells. HNE was found to destabilize endothelial cell barrier integrity. CONCLUSIONS HNE promotes the release of TF+ microvesicles from perivascular cells into the circulation. HNE-induced increased TF activity contributes to intravascular coagulation and inflammation.
Collapse
Affiliation(s)
- Shabbir A. Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - Usha R. Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler
| |
Collapse
|
5
|
Monocyte procoagulant responses to anthrax peptidoglycan are reinforced by proinflammatory cytokine signaling. Blood Adv 2020; 3:2436-2447. [PMID: 31416821 DOI: 10.1182/bloodadvances.2019000513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/17/2019] [Indexed: 01/03/2023] Open
Abstract
Disseminated intravascular coagulation is a frequent manifestation during bacterial infections and is associated with negative clinical outcomes. Imbalanced expression and activity of intravascular tissue factor (TF) is central to the development of infection-associated coagulopathies. Recently, we showed that anthrax peptidoglycan (PGN) induces disseminated intravascular coagulation in a nonhuman primate model of anthrax sepsis. We hypothesized that immune recognition of PGN by monocytes is critical for procoagulant responses to PGN and investigated whether and how PGN induces TF expression in primary human monocytes. We found that PGN induced monocyte TF expression in a large cohort of healthy volunteers similar to lipopolysaccharide stimulation. Both immune and procoagulant responses to PGN involve intracellular recognition after PGN internalization, as well as surface signaling through immune Fcγ receptors (FcγRs). In line with our hypothesis, blocking immune receptor function, both signaling and FcγR-mediated phagocytosis, significantly reduced but did not abolish PGN-induced monocyte TF expression, indicating that FcγR-independent internalization contributes to intracellular recognition of PGN. Conversely, when intracellular PGN recognition is abolished, TF expression was sensitive to inhibitors of FcγR signaling, indicating that surface engagement of monocyte immune receptors can promote TF expression. The primary procoagulant responses to PGN were further amplified by proinflammatory cytokines through paracrine and autocrine signaling. Despite intersubject variability in the study cohort, dual neutralization of tumor necrosis factor-α and interleukin-1β provided the most robust inhibition of the procoagulant amplification loop and may prove useful for reducing coagulopathies in gram-positive sepsis.
Collapse
|
6
|
Chen L, Welty-Wolf KE, Kraft BD. Nonhuman primate species as models of human bacterial sepsis. Lab Anim (NY) 2019; 48:57-65. [PMID: 30643274 PMCID: PMC6613635 DOI: 10.1038/s41684-018-0217-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Sepsis involves a disordered host response to systemic infection leading to high morbidity and mortality. Despite intense research, targeted sepsis therapies beyond antibiotics have remained elusive. The cornerstone of sepsis research is the development of animal models to mimic human bacterial infections and test novel pharmacologic targets. Nonhuman primates (NHPs) have served as an attractive, but expensive, animal to model human bacterial infections due to their nearly identical cardiopulmonary anatomy and physiology, as well as host response to infection. Several NHP species have provided substantial insight into sepsis-mediated inflammation, endothelial dysfunction, acute lung injury, and multi-organ failure. The use of NHPs has usually focused on translating therapies from early preclinical models to human clinical trials. However, despite successful sepsis interventions in NHP models, there are still no FDA-approved sepsis therapies. This review highlights major NHP models of bacterial sepsis and their relevance to clinical medicine. Treatment for bacterial sepsis remains limited beyond the use of antibiotics. Lingye Chen, Karen Welty-Wolf, and Bryan Kraft review nonhuman primate models of sepsis and highlight their advantages and limitations compared to other preclinical models.
Collapse
Affiliation(s)
- Lingye Chen
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| | - Karen E Welty-Wolf
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Bryan D Kraft
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
7
|
Scarlatescu E, Tomescu D, Arama SS. Sepsis-Associated Coagulopathy. ACTA ACUST UNITED AC 2016; 2:156-163. [PMID: 29967855 DOI: 10.1515/jccm-2016-0024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/29/2016] [Indexed: 11/15/2022]
Abstract
Systemic inflammatory activation in sepsis often leads to coagulation activation, but the relationship is bilateral, as coagulation also modulates the inflammatory response. This close associate has significant consequences for the pathogenesis of microvascular thrombosis and organ dysfunction in sepsis. While coagulation activation can be beneficial for immune defense, it can also be detrimental once it becomes widespread and uncontrolled. The knowledge of the pathophysiologic mechanisms involved in the interaction between infection and coagulation may lead to the better timing for the administration of targeted antithrombotic therapies in septic patients. This brief review highlights the pathophysiologic pathways leading to the prothrombotic state in sepsis and the mechanisms that play a role in the interaction between infection and coagulation.
Collapse
Affiliation(s)
- Ecaterina Scarlatescu
- Department of Anesthesiology and Intensive Care III, Fundeni Clinical Institute, Bucharest, Romania
| | - Dana Tomescu
- Department of Anesthesiology and Intensive Care III, Fundeni Clinical Institute, Bucharest, Romania
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | | |
Collapse
|
8
|
Ladziata V(U, Glunz PW, Zou Y, Zhang X, Jiang W, Jacutin-Porte S, Cheney DL, Wei A, Luettgen JM, Harper TM, Wong PC, Seiffert D, Wexler RR, Priestley ES. Synthesis and P1′ SAR exploration of potent macrocyclic tissue factor-factor VIIa inhibitors. Bioorg Med Chem Lett 2016; 26:5051-5057. [DOI: 10.1016/j.bmcl.2016.08.088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|
9
|
Abstract
The anti-inflammatory effects of activated protein C (APC) have lead to its recent approval for the treatment of sepsis. Although the endothelial cell protein C receptor (EPCR) plays a crucial role in APC's protective roles in septicemia, the precise signaling mechanism of the protease APC remains unclear. In fibroblast overexpression systems, we find that APC activates protease activated receptors (PAR) 1 and 2 in an EPCR-dependent manner. Human endothelial cells (HUVECs) express PAR1, PAR2 and EPCR. Stimulation of HUVECs with either APC, or specific receptor activating peptides for PAR1 or PAR2, show that all three agonists induce a very similar set of early response genes as assessed by high density microarray analysis. Only the transcript for monocyte chemo-attractant protein-1 (MCP-1) was selectively induced by APC and the PAR1 agonist, but not by the PAR2 agonist. APC-mediated MAP kinase phosphorylation and gene induction were inhibited by cleavage blocking antibodies to PAR1, demonstrating that APC signals exclusively through PAR1 in endothelial cells. MCP-1 is protective in animal models of endotoxemia, suggesting that APC may prevent lethality in sepsis by inducing MCP-1 expression through EPCR-dependent activation of endothelial cell PAR1. These data demonstrate unexpected protective functions of the major thrombin receptor PAR1 in endothelial cells.
Collapse
|
10
|
Abstract
Severe infection induces both activation of the coagulation system and multiple other inflammatory mediator cascades. This concise review summarizes the current knowledge of mechanisms that are considered to contribute to the procoagulant response to sepsis. Furthermore, evidence is discussed that mediators traditionally involved in the regulation of the hemostatic balance may also influence other inflammatory pathways.
Collapse
Affiliation(s)
- Tom van der Poll
- Laboratory of Experimental Internal Medicine, and Department of Infectious Diseases, Tropical Medicine and AIDS, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands,
| |
Collapse
|
11
|
Mooberry MJ, Bradford R, Hobl EL, Lin FC, Jilma B, Key NS. Procoagulant microparticles promote coagulation in a factor XI-dependent manner in human endotoxemia. J Thromb Haemost 2016; 14:1031-42. [PMID: 26857798 PMCID: PMC4870121 DOI: 10.1111/jth.13285] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED Essentials The procoagulant effects of microparticles (MPs) on coagulation in endotoxemia are not known. MPs from endotoxemia volunteers were evaluated for procoagulant activity in a plasma milieu. MPs from endotoxemia volunteers shortened clotting times and enhanced thrombin generation. MP procoagulant effects were mediated in a factor XI-dependent manner. SUMMARY Background Human endotoxemia is characterized by acute inflammation and activation of coagulation, as well as increased numbers of circulating microparticles (MPs). Whether these MPs directly promote coagulation and through which pathway their actions are mediated, however, has not been fully explored. Objectives In this study, we aimed to further characterize endotoxin-induced MPs and their procoagulant properties using several approaches. Methods Enumeration and characterization of MPs were performed using a new-generation flow cytometer. Relative contributions of the extrinsic and intrinsic pathways in MP-mediated procoagulant activity were assessed using plasmas deficient in factor (F) VII or FXI or with blocking antibodies to tissue factor (TF) or FXIa. Results Total MPs and platelet MPs were significantly elevated in plasma at 6 h after infusion of endotoxin in healthy human subjects. MPs isolated from plasma following endotoxin infusion also demonstrated increased TF activity in a reconstituted buffer system. When added to recalcified platelet-poor plasma, these MPs also promoted coagulation, as judged by a decreased clotting time with shortening of the lag time and time to peak thrombin using calibrated automated thrombography (CAT). However, the use of FVII-deficient plasma or blocking antibody to TF did not inhibit these procoagulant effects. In contrast, plasma clotting time was prolonged in FXI-deficient plasma and a blocking antibody to FXIa inhibited all MP-mediated parameters in the CAT assay. Conclusions The initiation of coagulation by cellular TF in endotoxemia is in contrast to (and presumably complemented by) the intrinsic pathway-mediated procoagulant effects of circulating MPs.
Collapse
Affiliation(s)
- M J Mooberry
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - R Bradford
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - E L Hobl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - F C Lin
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - B Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - N S Key
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Abstract
Thrombosis is generally considered harmful because it compromises the blood supply to organs. However, recent studies have suggested that thrombosis under certain circumstances plays a major physiological role in early immune defense against invading pathogens. This defensive role of thrombosis is now referred to as immunothrombosis. Activated monocytes and neutrophils are two major inducers of immunothrombosis. Monocytes and neutrophils are activated when they detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). Detection of PAMPs and DAMPs triggers tissue factor expression on monocytes and neutrophil extracellular trap (NET) release by neutrophils, promoting immunothrombosis. Although tissue factor-mediated and NET-mediated immunothrombosis plays a role in early host defense against bacterial dissemination, uncontrolled immunothrombosis may lead to disseminated intravascular coagulation.
Collapse
Affiliation(s)
- Takashi Ito
- Department of Emergency and Critical Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan ; Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
13
|
Lupu F, Keshari RS, Lambris JD, Coggeshall KM. Crosstalk between the coagulation and complement systems in sepsis. Thromb Res 2014; 133 Suppl 1:S28-31. [PMID: 24759136 DOI: 10.1016/j.thromres.2014.03.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sepsis is a potent activator of the hemostatic and complement systems. While local activation of these proteolytic cascades contributes to the host defense, their uncontrolled systemic activation has major tissue damaging effects that lead to multiple organ failure and death. We have extensively studied the activation of complement and coagulation cascades in experimental sepsis using baboons challenged with live bacteria, such as Gram-negative Escherichia coli or Gram-positive Staphylococcus aureus and Bacillus anthracis, or with the bacterial product peptidoglycan. We observed that these challenges rapidly induce disseminated intravascular coagulation and robust complement activation. We applied a potent C3 convertase inhibitor, compstatin, which prevented sepsis-induced complement activation, reduced thrombocytopenia, decreased the coagulopathic responses, and preserving the endothelial anticoagulant properties. Overall, our work demonstrates that live bacteria and bacterial products activate the complement and coagulation cascades, and that blocking formation of complement activation products, especially during the organ failure stage of severe sepsis could be a potentially important therapeutic strategy.
Collapse
Affiliation(s)
- Florea Lupu
- Cardiovascular Biology, Research Programs, Oklahoma Medical Research Foundation, Oklahoma City, OK.
| | - Ravi S Keshari
- Cardiovascular Biology, Research Programs, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - K Mark Coggeshall
- Immunobiology and Cancer Research Programs, Oklahoma Medical Research Foundation, Oklahoma City, OK
| |
Collapse
|
14
|
Mastrolia SA, Mazor M, Loverro G, Klaitman V, Erez O. Placental vascular pathology and increased thrombin generation as mechanisms of disease in obstetrical syndromes. PeerJ 2014; 2:e653. [PMID: 25426334 PMCID: PMC4243334 DOI: 10.7717/peerj.653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/14/2014] [Indexed: 12/12/2022] Open
Abstract
Obstetrical complications including preeclampsia, fetal growth restriction, preterm labor, preterm prelabor rupture of membranes and fetal demise are all the clinical endpoint of several underlying mechanisms (i.e., infection, inflammation, thrombosis, endocrine disorder, immunologic rejection, genetic, and environmental), therefore, they may be regarded as syndromes. Placental vascular pathology and increased thrombin generation were reported in all of these obstetrical syndromes. Moreover, elevated concentrations of thrombin-anti thrombin III complexes and changes in the coagulation as well as anticoagulation factors can be detected in the maternal circulation prior to the clinical development of the disease in some of these syndromes. In this review, we will assess the changes in the hemostatic system during normal and complicated pregnancy in maternal blood, maternal–fetal interface and amniotic fluid, and describe the contribution of thrombosis and vascular pathology to the development of the great obstetrical syndromes.
Collapse
Affiliation(s)
- Salvatore Andrea Mastrolia
- Department of Obstetrics and Gynecology, Azienda Ospedaliera-Universitaria Policlinico di Bari, School of Medicine, University of Bari "Aldo Moro" , Bari , Italy ; Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Moshe Mazor
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Giuseppe Loverro
- Department of Obstetrics and Gynecology, Azienda Ospedaliera-Universitaria Policlinico di Bari, School of Medicine, University of Bari "Aldo Moro" , Bari , Italy
| | - Vered Klaitman
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Offer Erez
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| |
Collapse
|
15
|
Hyseni A, Kemperman H, de Lange DW, de Groot PG, Linssen M, Kesecioglu J, Lisman T, Roest M. Increased mortality in systemic inflammatory response syndrome patients with high levels of coagulation factor VIIa. J Thromb Haemost 2013; 11:2111-7. [PMID: 24131789 DOI: 10.1111/jth.12427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/10/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND The tissue factor (TF)- Factor VIIa (FVIIa) complex has a pivotal role in inflammatory and coagulation responses in patients with systemic inflammatory response syndrome (SIRS) and sepsis. Because zymogen FVII (FVII) and FVIIa compete for binding to TF, their plasma levels determine if a catalytically active TF-FVIIa complex will be formed. OBJECTIVE To study mortality in SIRS patients as a function of FVIIa and FVII levels in plasma. METHODS This was a cohort study of 275 patients presenting with SIRS, aged 18 years or older and with an anticipated Intensive Care Unit (ICU) stay of at least 24 h. FVIIa was measured using a novel, quantitative assay that recognizes FVIIa, but not FVII. All-cause hospital mortality was followed over a period of 60 days. RESULTS The percentage of FVII measured as FVIIa was higher in non-survivors than survivors (2.8%, IQR = 1-5.5% vs. 1.5%, IQR = 0.6-3.3%; P = 0.034). High levels of FVIIa were associated with decreased 60-day cumulative survival (62% vs. 81%, P = 0.030); the opposite was observed for FVII (84% vs. 76%, P = 0.039). Patients with high-FVIIa and low-FVII levels had a three-fold increased hazard ratio (HR) compared with the patients that had low-FVIIa and high-FVII levels (HR = 3.24, 95% confidence interval [CI] = 1.41-7.36). This association persisted after adjusting for the APACHE IV score (adjusted HR = 2.75, 95% CI = 1.2-6.27). CONCLUSIONS SIRS patients with high-FVIIa and low-FVII on admission have an increased mortality risk, an association that is independent from the parameters included in the APACHE IV score.
Collapse
Affiliation(s)
- A Hyseni
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The immune response to sepsis can be seen as a pattern recognition receptor-mediated dysregulation of the immune system following pathogen invasion in which a careful balance between inflammatory and anti-inflammatory responses is vital. Invasive infection triggers both pro-inflammatory and anti-inflammatory host responses, the magnitude of which depends on multiple factors, including pathogen virulence, site of infection, host genetics, and comorbidities. Toll-like receptors, the inflammasomes, and other pattern recognition receptors initiate the immune response after recognition of danger signals derived from microorganisms, so-called pathogen-associated molecular patterns or derived from the host, so-called danger-associated molecular patterns. Further dissection of the role of host–pathogen interactions, the cytokine response, the coagulation cascade, and their multidirectional interactions in sepsis should lead toward the development of new therapeutic strategies in sepsis.
Collapse
Affiliation(s)
- Willem Joost Wiersinga
- Center for Infection and Immunity Amsterdam (CINIMA); Center for Experimental and Molecular Medicine (CEMM); Division of Infectious Diseases; Academic Medical Center; University of Amsterdam; Amsterdam, The Netherlands
| | - Stije J Leopold
- Center for Infection and Immunity Amsterdam (CINIMA); Center for Experimental and Molecular Medicine (CEMM); Division of Infectious Diseases; Academic Medical Center; University of Amsterdam; Amsterdam, The Netherlands
| | - Duncan R Cranendonk
- Center for Infection and Immunity Amsterdam (CINIMA); Center for Experimental and Molecular Medicine (CEMM); Division of Infectious Diseases; Academic Medical Center; University of Amsterdam; Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Infection and Immunity Amsterdam (CINIMA); Center for Experimental and Molecular Medicine (CEMM); Division of Infectious Diseases; Academic Medical Center; University of Amsterdam; Amsterdam, The Netherlands
| |
Collapse
|
17
|
Wada H, Matsumoto T, Hatada T. Diagnostic criteria and laboratory tests for disseminated intravascular coagulation. Expert Rev Hematol 2013; 5:643-52. [PMID: 23216594 DOI: 10.1586/ehm.12.57] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three diagnostic criteria for disseminated intravascular coagulation (DIC) have been established by the Japanese Ministry of Health, Labor and Welfare, the International Society on Thrombosis and Hemostasis (ISTH) and the Japanese Association for Acute Medicine. The diagnostic criteria involving global coagulation tests, such as the Japanese Ministry of Health, Labor and Welfare criteria and the ISTH overt diagnostic criteria, are first-generation DIC diagnostic criteria, those involving global coagulation tests and changes in these tests such as the Japanese Association for Acute Medicine criteria, are second-generation DIC diagnostic criteria, and those including non-overt DIC diagnostic criteria involving global coagulation tests, changes in these tests and hemostatic molecular markers will be the future (third-generation) DIC diagnostic criteria. There are no significant differences in the three diagnostic criteria with respect to predicting poor outcomes. Therefore, the third generation of diagnostic criteria including hemostatic molecular markers is expected to be established. Standardization and the determination of adequate cutoff values should be required for each laboratory test.
Collapse
Affiliation(s)
- Hideo Wada
- Department of Molecular and Laboratory Medicine, Mie University Graduate School of Medicine, Tsu, Japan.
| | | | | |
Collapse
|
18
|
Taylor FB, Kinasewitz GT, Lupu F. Pathophysiology, staging and therapy of severe sepsis in baboon models. J Cell Mol Med 2012; 16:672-82. [PMID: 21972970 PMCID: PMC3263329 DOI: 10.1111/j.1582-4934.2011.01454.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We review our baboon models of Escherichia coli sepsis that mimic, respectively, the shock/disseminated intravascular coagulation (DIC) and organ failure variants of severe sepsis, and analyse the pathophysiologic processes that are unique to each. The multi-stage, multi-factorial characteristics of severe sepsis develop as a result of the initial insult, which - depending on its intensity - activates components of the intravascular compartment leading to overwhelming shock/DIC; or initiates a sequence of events involving both the intra- and extravascular (tissues) compartments that lead to organ failure. In the latter case, the disorder passes through two stages: an initial inflammatory/coagulopathic intravascular first stage triggered by E. coli, followed by an extravascular second stage, involving components unique to each organ and triggered by ischemia/reperfusion (oxidative stress and histone release). Although a myriad of overlapping cellular and molecular components are involved, it is the context in which these components are brought into play that determine whether shock/DIC or organ failure predominate. For example, inflammatory and thrombotic responses amplified by thrombin in the first case whereas similar responses are amplified by complement activation products in the second. Rather than blocking specific mediators, we found that attenuation of the thrombin and complement amplification pathways can effectively reverse the shock/DIC and organ failure exhibited by the LD(100) and LD(50) E. coli models of severe sepsis, respectively. Translation of these concepts to successful intervention in the respective baboon models of E. coli sepsis and the application to their clinical counterparts is described.
Collapse
Affiliation(s)
- Fletcher B Taylor
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
19
|
Owens AP, Passam FH, Antoniak S, Marshall SM, McDaniel AL, Rudel L, Williams JC, Hubbard BK, Dutton JA, Wang J, Tobias PS, Curtiss LK, Daugherty A, Kirchhofer D, Luyendyk JP, Moriarty PM, Nagarajan S, Furie BC, Furie B, Johns DG, Temel RE, Mackman N. Monocyte tissue factor-dependent activation of coagulation in hypercholesterolemic mice and monkeys is inhibited by simvastatin. J Clin Invest 2012; 122:558-68. [PMID: 22214850 DOI: 10.1172/jci58969] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 11/09/2011] [Indexed: 11/17/2022] Open
Abstract
Hypercholesterolemia is a major risk factor for atherosclerosis. It also is associated with platelet hyperactivity, which increases morbidity and mortality from cardiovascular disease. However, the mechanisms by which hypercholesterolemia produces a procoagulant state remain undefined. Atherosclerosis is associated with accumulation of oxidized lipoproteins within atherosclerotic lesions. Small quantities of oxidized lipoproteins are also present in the circulation of patients with coronary artery disease. We therefore hypothesized that hypercholesterolemia leads to elevated levels of oxidized LDL (oxLDL) in plasma and that this induces expression of the procoagulant protein tissue factor (TF) in monocytes. In support of this hypothesis, we report here that oxLDL induced TF expression in human monocytic cells and monocytes. In addition, patients with familial hypercholesterolemia had elevated levels of plasma microparticle (MP) TF activity. Furthermore, a high-fat diet induced a time-dependent increase in plasma MP TF activity and activation of coagulation in both LDL receptor-deficient mice and African green monkeys. Genetic deficiency of TF in bone marrow cells reduced coagulation in hypercholesterolemic mice, consistent with a major role for monocyte-derived TF in the activation of coagulation. Similarly, a deficiency of either TLR4 or TLR6 reduced levels of MP TF activity. Simvastatin treatment of hypercholesterolemic mice and monkeys reduced oxLDL, monocyte TF expression, MP TF activity, activation of coagulation, and inflammation, without affecting total cholesterol levels. Our results suggest that the prothrombotic state associated with hypercholesterolemia is caused by oxLDL-mediated induction of TF expression in monocytes via engagement of a TLR4/TLR6 complex.
Collapse
Affiliation(s)
- A Phillip Owens
- Department of Medicine, Division of Hematology and Oncology, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rothmeier AS, Ruf W. Protease-activated receptor 2 signaling in inflammation. Semin Immunopathol 2011; 34:133-49. [PMID: 21971685 DOI: 10.1007/s00281-011-0289-1] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/05/2011] [Indexed: 12/17/2022]
Abstract
Protease-activated receptors (PARs) are G protein-coupled receptors that are activated by proteolytical cleavage of the amino-terminus and thereby act as sensors for extracellular proteases. While coagulation proteases activate PARs to regulate hemostasis, thrombosis, and cardiovascular function, PAR2 is also activated in extravascular locations by a broad array of serine proteases, including trypsin, tissue kallikreins, coagulation factors VIIa and Xa, mast cell tryptase, and transmembrane serine proteases. Administration of PAR2-specific agonistic and antagonistic peptides, as well as studies in PAR2 knockout mice, identified critical functions of PAR2 in development, inflammation, immunity, and angiogenesis. Here, we review these roles of PAR2 with an emphasis on the role of coagulation and other extracellular protease pathways that cleave PAR2 in epithelial, immune, and neuronal cells to regulate physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Andrea S Rothmeier
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
21
|
Chu AJ. Tissue factor, blood coagulation, and beyond: an overview. Int J Inflam 2011; 2011:367284. [PMID: 21941675 PMCID: PMC3176495 DOI: 10.4061/2011/367284] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence shows a broad spectrum of biological functions of tissue factor (TF). TF classical role in initiating the extrinsic blood coagulation and its direct thrombotic action in close relation to cardiovascular risks have long been established. TF overexpression/hypercoagulability often observed in many clinical conditions certainly expands its role in proinflammation, diabetes, obesity, cardiovascular diseases, angiogenesis, tumor metastasis, wound repairs, embryonic development, cell adhesion/migration, innate immunity, infection, pregnancy loss, and many others. This paper broadly covers seminal observations to discuss TF pathogenic roles in relation to diverse disease development or manifestation. Biochemically, extracellular TF signaling interfaced through protease-activated receptors (PARs) elicits cellular activation and inflammatory responses. TF diverse biological roles are associated with either coagulation-dependent or noncoagulation-mediated actions. Apparently, TF hypercoagulability refuels a coagulation-inflammation-thrombosis circuit in “autocrine” or “paracrine” fashions, which triggers a wide spectrum of pathophysiology. Accordingly, TF suppression, anticoagulation, PAR blockade, or general anti-inflammation offers an array of therapeutical benefits for easing diverse pathological conditions.
Collapse
Affiliation(s)
- Arthur J Chu
- Division of Biological and Physical Sciences, Delta State University, Cleveland, MS 38733, USA
| |
Collapse
|
22
|
Berthelsen LO, Kristensen AT, Tranholm M. Animal models of DIC and their relevance to human DIC: a systematic review. Thromb Res 2011; 128:103-16. [PMID: 21215993 DOI: 10.1016/j.thromres.2010.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 01/16/2023]
Abstract
Disseminated intravascular coagulation (DIC) is a severe clinical condition with activation of coagulation and fibrinolysis. Its diagnosis is based on the International Society of Thrombosis and Haemostasis (ISTH) scoring system of DIC. Animal models of DIC, used to investigate pathophysiology and evaluate treatments, have not been developed in a standardized way, which impedes comparison between models and translation to the human setting. In the current review of animal models of DIC an overview of species, inducers, and dosing regimens is provided. Diagnostic approaches are compared in the light of the ISTH score and treatments tested in animal models of DIC are summarized. Systematic analysis revealed that the rat is by far the preferred species amongst animal models of DIC and lipopolysaccharides (LPS) the preferred inducer of DIC. An overview of the reporting of ISTH DIC score parameters elucidated that only about 25% of the studies measure all of the four parameters necessary for the implementation the ISTH scoring system. Furthermore, most therapeutic interventions tested in animal models of DIC are administered prophylactically, which may be irrelevant to the clinical setting and could explain why compounds effective in preclinical animal models often fail in clinical trials. It is concluded that Implementation of a scoring system in animal models of DIC may increase the ability to compare DIC amongst animal models and improve the translational aspect of treatment effect.
Collapse
|
23
|
Queiroz KCS, Van 't Veer C, Van Den Berg Y, Duitman J, Versteeg HH, Aberson HL, Groot AP, Verstege MI, Roelofs JJTH, Te Velde AA, Spek CA. Tissue factor-dependent chemokine production aggravates experimental colitis. Mol Med 2011; 17:1119-26. [PMID: 21717035 DOI: 10.2119/molmed.2011.00138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/21/2011] [Indexed: 12/29/2022] Open
Abstract
Tissue factor (TF) is traditionally known as the initiator of blood coagulation, but TF also plays an important role in inflammatory processes. Considering the pivotal role of coagulation in inflammatory bowel disease, we assessed whether genetic ablation of TF limits experimental colitis. To this end, wild-type and TF-deficient (TFlow) mice were treated with 1.5% dextran sulfate sodium (DSS) for 7 d, and effects on disease severity, cytokine production and leukocyte recruitment were examined. Clinical and histological parameters showed that the severity of colitis was reduced in both heterozygous and homozygous TFlow mice compared with controls. Most notably, edema, granulocyte numbers at the site of inflammation and cytokine levels were reduced in TFlow mice. Although anticoagulant treatment with dalteparin of wild-type mice reduced local fibrin production and cytokine levels to a similar extent as in TFlow mice, it did not affect clinical and histological parameters of experimental colitis. Mechanistic studies revealed that TF expression did not influence the intrinsic capacity of granulocytes to migrate. Instead, TF enhanced granulocyte migration into the colon by inducing high levels of the granulocyte chemoattractant keratinocyte-derived chemokine (KC). Taken together, our data indicate that TF plays a detrimental role in experimental colitis by signal transduction-dependent KC production in colon epithelial cells, thereby provoking granulocyte influx with subsequent inflammation and organ damage.
Collapse
Affiliation(s)
- Karla C S Queiroz
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Monteiro RQ. Tissue factor as a target for the treatment of disseminated intravascular coagulation. Thromb Res 2011; 127:495-6. [DOI: 10.1016/j.thromres.2011.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 03/24/2011] [Accepted: 04/02/2011] [Indexed: 11/29/2022]
|
25
|
Abdel-Bakky MS, Hammad MA, Walker LA, Ashfaq MK. Silencing of tissue factor by antisense deoxyoligonucleotide prevents monocrotaline/LPS renal injury in mice. Arch Toxicol 2011; 85:1245-56. [PMID: 21327618 DOI: 10.1007/s00204-011-0663-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 01/31/2011] [Indexed: 12/18/2022]
Abstract
Tissue factor (TF) is involved in monocrotaline (MCT)/lipopolysaccharide (LPS) hepatotoxicity. It is not known whether MCT/LPS can cause renal toxicity and whether TF is involved in this toxicity. Thus, the present study was undertaken to investigate the potential renal toxicity after MCT/LPS co-treatment and the involvement of TF in this toxicity. MCT was delivered to ND4 male mice (200 mg/kg) per os followed 4 h later by treatment with LPS ip (6 mg/kg) to investigate its effect on kidney. We injected TF antisense oligonucleotide (TF-AS) intravenously (i.v) in mice prior to LPS treatment, to block TF, and measured their blood urea nitrogen (BUN), creatinine (CRE), alkaline phosphatase (ALP), and potassium. In MCT/LPS co-treated group, fibrin was detected on the glomerular capillary lumina, distal tubules of renal cortex, and the necrotic tubules of renal medulla. An elevation of BUN, creatinine, and the BUN/creatinine ratio was seen in mice with MCT/LPS co-treatment, compared to animals receiving LPS or MCT alone. Simultaneously, an aggressive tubular necrosis was seen in the medullary tubules in the same group which may account for the oliguria observed in these animals. Fourfold inductions in the plasma TF level was detected at 10 h after MCT/LPS co-treatment which increased to 18-fold at 24 h. Increased blood level of leptin, interleukin-6 (IL-6) and downregulation of tubular chemokine (C-X-C motif) ligand 16 (CXCL16) are characteristic features in MCT/LPS co-treated animal. On the other hand, mice injected with TF-AS in the presence of MCT/LPS co-treatment showed no elevation of the blood BUN, creatinine, potassium, and normal levels of the proinflammatory molecules. TF-AS injection significantly prevented glomerular and tubular fibrin deposition, tubular necrosis, and improvement of the animal survivability. Renal toxicity involving TF can be prevented successfully by the use of TF-AS.
Collapse
Affiliation(s)
- Mohamed Sadek Abdel-Bakky
- National Center For Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | | | | |
Collapse
|
26
|
Mitroulis I, Kambas K, Anyfanti P, Doumas M, Ritis K. The multivalent activity of the tissue factor–thrombin pathway in thrombotic and non-thrombotic disorders as a target for therapeutic intervention. Expert Opin Ther Targets 2010; 15:75-89. [DOI: 10.1517/14728222.2011.532788] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
27
|
Abstract
Antiphospholipid syndrome (APS) is an acquired autoimmune disorder defined by the presence of an antiphospholipid antibody (aPL) and the occurrence of at least one associated clinical condition that includes venous thrombosis, arterial thrombosis or pregnancy morbidity. The aPL detected in APS have long been thought to have a direct prothrombotic effect in vivo. However, the pathophysiology underlying their coagulopathic effect has not been defined. Emerging data suggest a role for the procoagulant protein tissue factor (TF). In this review we provide an overview of TF, describe mouse models used in the evaluation of the role of TF in thrombosis, as well as summarize recent work on TF and APS.
Collapse
Affiliation(s)
- J Boles
- Division of Hematology/Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7005, USA
| | | |
Collapse
|
28
|
Hematopoietic and nonhematopoietic cell tissue factor activates the coagulation cascade in endotoxemic mice. Blood 2010; 116:806-14. [PMID: 20410508 DOI: 10.1182/blood-2009-12-259267] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tissue factor (TF) is the primary activator of the coagulation cascade. During endotoxemia, TF expression leads to disseminated intravascular coagulation. However, the relative contribution of TF expression by different cell types to the activation of coagulation has not been defined. In this study, we investigated the effect of either a selective inhibition of TF expression or cell type-specific deletion of the TF gene (F3) on activation of coagulation in a mouse model of endotoxemia. We found that inhibition of TF on either hematopoietic or nonhematopoietic cells reduced plasma thrombin-antithrombin (TAT) levels 8 hours after administration of bacterial lipopolysaccharide (LPS). In addition, plasma TAT levels were significantly reduced in endotoxemic mice lacking the TF gene in either myeloid cells (TF(flox/flox),LysM(Cre) mice) or in both endothelial cells (ECs) and hematopoietic cells (TF(flox/flox),Tie-2(Cre) mice). However, deletion of the TF gene in ECs alone had no effect on LPS-induced plasma TAT levels. Similar results were observed in mice lacking TF in vascular smooth muscle cells. Finally, we found that mouse platelets do not express TF pre-mRNA or mRNA. Our data demonstrate that in a mouse model of endotoxemia activation of the coagulation cascade is initiated by TF expressed by myeloid cells and an unidentified nonhematopoietic cell type(s).
Collapse
|
29
|
Abstract
Sepsis is a systemic host response to infection by pathogenic microorganisms. Activation of the coagulation cascade during endotoxemia and sepsis leads to disseminated intravascular coagulation. This review focuses on tissue factor expression by hematopoietic and non-hematopoietic cells and its contribution to the activation of coagulation during endotoxemia and sepsis.
Collapse
Affiliation(s)
- Rafal Pawlinski
- Hematology and Oncology Division, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | | |
Collapse
|
30
|
|
31
|
Abstract
Antiphospholipid (aPL) antibodies are clinically important acquired risk factors for thrombosis and pregnancy loss and are thought to have a direct prothrombotic effect in vivo. Data suggest that a major mechanism by which aPL antibodies contribute to thrombophilia is the upregulation of tissue factor (TF) (CD142) on blood cells and vascular endothelium. TF is the physiological trigger of normal blood coagulation and thrombosis in many hypercoagulable conditions. This article reviews the physiology of TF, the molecular regulation of TF expression and the effects of aPL antibodies on intravascular TF regulation and expression. Inhibition of TF and the pathways by which aPL antibodies induce TF expression are potentially attractive therapeutic targets in the antiphospholipid syndrome.
Collapse
Affiliation(s)
- A V Kinev
- Department of Medicine and Thurston Arthritis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7280, USA
| | | |
Collapse
|
32
|
Nien JK, Romero R, Hoppensteadt D, Erez O, Espinoza J, Soto E, Kusanovic JP, Gotsch F, Kim CJ, Mittal P, Fareed J, Santolaya J, Chaiworapongsa T, Edwin S, Pineles B, Hassan S. Pyelonephritis during pregnancy: a cause for an acquired deficiency of protein Z. J Matern Fetal Neonatal Med 2009; 21:629-37. [PMID: 18828054 DOI: 10.1080/14767050802214659] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Pyelonephritis has a more severe course during pregnancy than in the non-pregnant state. This has been attributed to the increased susceptibility of pregnant women to microbial products. An acquired protein Z deficiency has been reported when there is excessive thrombin activity. The aim of this study was to determine whether pyelonephritis during pregnancy is associated with changes in maternal plasma protein Z concentrations. STUDY DESIGN A cross-sectional study was conducted to compare plasma protein Z concentrations between normal pregnant women (N = 71) and pregnant women with pyelonephritis (N = 42). Protein Z concentrations were measured by enzyme-linked immunosorbent assay. Parametric and non-parametric statistics were used for analysis. RESULTS Patients with pyelonephritis had a significantly lower median plasma concentration of protein Z than did patients with normal pregnancies (median 2.14 microg/mL (0.4-3.4) vs. median 2.36 microg/mL (1.09-3.36); p = 0.03). There was no difference in the median plasma concentration of anti-protein Z antibodies between patients with pyelonephritis and those with normal pregnancies. CONCLUSION The median maternal plasma protein Z concentration was significantly lower in patients with pyelonephritis during pregnancy than in patients with normal pregnancies.
Collapse
Affiliation(s)
- Jyh Kae Nien
- Perinatology Research Branch, NICHD, NIH, DHHS, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abdel Gader AGM. Tissue Factor Pathway Inhibitor [Tfpi]: A Natural Coagulation Inhibitor and Potential Therapeutic Agent – A Review. J Taibah Univ Med Sci 2009. [DOI: 10.1016/s1658-3612(09)70076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
34
|
Abstract
For hemophilia patients with inhibitors against FVIII or FIX, the development of recombinant factor VIIa (rFVIIa) raises the possibility of a therapeutic alternative whose availability and convenience of treatment are comparable to those of FVIII or FIX. In support of this new concept for the treatment of bleeding episodes, pharmacological doses of FVIIa have been shown to induce hemostasis. Pharmacological doses of rFVIIa enhance thrombin generation on thrombin-activated platelets, thereby facilitating the formation of strong, well-structured fibrin plugs resistant to premature proteolysis. Modified rFVIIa molecules with a stronger hemostatic potential have been produced. Inhibition of the FVII-TF-dependent pathway (TFPI and rFVIIai) has been tried in attempts to prevent thrombosis, with promising results in animal models so far not confirmed in clinical trials.
Collapse
Affiliation(s)
- Ulla Hedner
- Department of Medicine, University of Lund, Sweden.
| | | |
Collapse
|
35
|
Abstract
Sepsis is a clinical syndrome defined by a systemic response to infection. With progression to sepsis-associated organ failure (ie, severe sepsis) or hypotension (ie, septic shock) mortality increases. Sepsis is a cause of considerable mortality, morbidity, cost, and health care utilization. Abnormalities in the inflammation, immune, coagulation, oxygen delivery, and utilization pathways play a role in organ dysfunction and death. Early identification of septic patients allows for evidence-based interventions, such as prompt antibiotics, goal-directed resuscitation, and activated protein C. Appropriate care for sepsis may be more easily delivered by dividing this clinical entity into various stages and with changes in structures of delivery that extend across traditional boundaries. Better description of the molecular basis of the disease process also will allow for more targeted therapies.
Collapse
|
36
|
Påhlman LI, Malmström E, Mörgelin M, Herwald H. M protein from Streptococcus pyogenes induces tissue factor expression and pro-coagulant activity in human monocytes. MICROBIOLOGY-SGM 2007; 153:2458-2464. [PMID: 17660410 PMCID: PMC2885617 DOI: 10.1099/mic.0.2006/003285-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Invasive infections caused by the important pathogen Streptococcus pyogenes are often associated with disturbed blood coagulation in the human host, and may in severe cases develop into the life-threatening condition disseminated intravascular coagulation. In this study, the addition of M1 protein to human blood or purified peripheral blood mononuclear cells led to a dose-dependent increase of pro-coagulant activity, which was mediated by an upregulation of tissue factor on monocytes. Analysis of the resulting clots by transmission electron microscopy revealed that the cells were covered with a fibrin network that seemed to originate from the cell surface. Taken together, the results imply an important role for M proteins in the induction of haemostatic disorders in invasive streptococcal infectious diseases.
Collapse
Affiliation(s)
- Lisa I Påhlman
- Department of Clinical Sciences, Lund, Section for Clinical and Experimental Infection Medicine, Lund University, SE-22184 Lund, Sweden
| | - Erik Malmström
- Department of Clinical Sciences, Lund, Section for Clinical and Experimental Infection Medicine, Lund University, SE-22184 Lund, Sweden
| | - Matthias Mörgelin
- Department of Clinical Sciences, Lund, Section for Clinical and Experimental Infection Medicine, Lund University, SE-22184 Lund, Sweden
| | - Heiko Herwald
- Department of Clinical Sciences, Lund, Section for Clinical and Experimental Infection Medicine, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
37
|
Jaggers J, Lawson JH. Coagulopathy and inflammation in neonatal heart surgery: mechanisms and strategies. Ann Thorac Surg 2007; 81:S2360-6. [PMID: 16731104 DOI: 10.1016/j.athoracsur.2006.02.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 02/09/2006] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Affiliation(s)
- James Jaggers
- Department of Pediatric Cardiothoracic Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
38
|
Andersson E, Axelsson J, Pedersen LC, Elm T, Andersson R. Treatment with anti-factor VIIa in acute pancreatitis in rats: blocking both coagulation and inflammation? Scand J Gastroenterol 2007; 42:765-70. [PMID: 17506000 DOI: 10.1080/00365520701295632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Acute pancreatitis starts as an autodigestive process restricted to the pancreas and progresses to a systemic inflammation via cytokine release into the blood stream. Several inhibitors of the coagulation cascade, including active-site-inactivated factor VIIa, have shown anti-inflammatory properties in other inflammatory models than acute pancreatitis. Free radical scavengers have proven useful in reducing the oxidative damage during hyperinflammatory conditions. The aim of this study was to investigate whether pretreatment with FVIIai would have any effect on the multiple organ dysfunction syndrome (MODS) in severe acute pancreatitis. MATERIAL AND METHODS Experimental acute pancreatitis was induced by intraductal infusion of taurodeoxycholate in the pancreatic duct. The animals were pretreated with N-acetyl-cysteine and active-site-inactivated factor VIIa. Neutrophil infiltration in the lungs, ileum and colon was quantified by myeloperoxidase activity. Inflammatory markers, IL-6 and MIP-2, were measured using ELISA. RESULTS Tissue infiltration of neutrophils in the lungs, ileum and colon significantly increased during acute pancreatitis as compared to sham operation. These levels were reduced by pretreatment with N-acetylcysteine and active-site-inactivated factor VIIa. Levels of interleukin-6 and macrophage inflammatory protein-2 increased significantly during acute pancreatitis. Pretreatment with NAC and FVIIai reduced these levels. CONCLUSIONS Both N-acetylcysteine and active-site-inactivated factor VIIa showed powerful anti-inflammatory properties in experimental acute pancreatitis. As they exert their effects through different physiological mechanisms, they represent potential candidates for future multimodal treatment of acute pancreatitis.
Collapse
Affiliation(s)
- Ellen Andersson
- Department of Surgery, Lund University Hospital, Lund, Sweden
| | | | | | | | | |
Collapse
|
39
|
Ahamed J, Niessen F, Kurokawa T, Lee YK, Bhattacharjee G, Morrissey JH, Ruf W. Regulation of macrophage procoagulant responses by the tissue factor cytoplasmic domain in endotoxemia. Blood 2007; 109:5251-9. [PMID: 17332247 PMCID: PMC1890821 DOI: 10.1182/blood-2006-10-051334] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tissue factor (TF) is the primary initiator of coagulation, and the TF pathway mediates signaling through protease-activated receptors (PARs). In sepsis, TF is up-regulated as part of the proinflammatory response in lipopolysaccharide (LPS)-stimulated monocytes leading to systemic coagulation activation. Here we demonstrate that TF cytoplasmic domain-deleted (TF(Delta CT)) mice show enhanced and prolonged systemic coagulation activation relative to wild-type upon LPS challenge. However, TF(Delta CT) mice resolve inflammation earlier and are protected from lethality independent of changes in coagulation. Macrophages from LPS-challenged TF(Delta CT) mice or LPS-stimulated, in vitro-differentiated bone marrow-derived macrophages show increased TF mRNA and functional activity relative to wild-type, identifying up-regulation of macrophage TF expression as a possible cause for the increase in coagulation of TF(Delta CT) mice. Increased TF expression of TF(Delta CT) macrophages does not require PAR2 and is specific for toll-like receptor, but not interferon gamma receptor, signaling. The presence of the TF cytoplasmic domain suppresses ERK1/2 phosphorylation that is reversed by p38 inhibition leading to enhanced TF expression specifically in wild-type but not TF(Delta CT) mice. The present study demonstrates a new role of the TF cytoplasmic domain in an autoregulatory pathway that controls LPS-induced TF expression in macrophages and procoagulant responses in endotoxemia.
Collapse
|
40
|
Xu H, Ploplis VA, Castellino FJ. A coagulation factor VII deficiency protects against acute inflammatory responses in mice. J Pathol 2007; 210:488-96. [PMID: 17054310 DOI: 10.1002/path.2073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Upregulation of the activated Factor VII (FVIIa)/Tissue Factor complex, downregulation of natural anticoagulation pathways, and inhibition of fibrinolysis, are major contributors to coagulopathies associated with acute inflammation. Provision of FVIIa, and consequent downstream coagulation-related proteases, also stimulates further inflammatory changes, which can result in disseminated intravascular coagulation. Thus, the potential protective effects in vivo of a genetic-based reduction in FVII levels have been investigated in a murine model of acute inflammation, namely lipopolysaccharide (LPS)-induced lethal endotoxaemia. Mice with a total FVII deficiency do not survive the neonatal period. Therefore mice expressing low levels of FVII (FVII(tTA/tTA)), producing sufficient amounts of FVII for survival (approximately 5% of wild-type (WT) FVII), were employed to investigate in vivo pathways involved in the crosstalk between coagulation, inflammation, and survival, consequent to administration of a lethal dose of LPS. The FVII(tTA/tTA) mice presented with reduced mortality, coagulation, and inflammatory responses in comparison with similarly treated WT mice after administration of LPS. The attenuated inflammatory responses in FVII(tTA/tTA) mice were associated with downregulation of Egr-1 signalling. Administration, in vivo, of specific inhibitors of FXa and thrombin demonstrated that the inflammatory responses were unaltered in WT mice, but further reduced in FVII(tTA/tTA) mice. Therefore, a FVII deficiency enhances survival from lethal endotoxaemia both through attenuation of inflammatory responses that result directly from reduced FVIIa levels, and, indirectly, from downregulation of coagulation proteases downstream of the FVII-dependent cascade.
Collapse
Affiliation(s)
- H Xu
- WM Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | |
Collapse
|
41
|
Gruber A, Carlsson S, Kotzé HF, Marzec U, Sarich TC, Hanson SR. Hemostatic effect of activated factor VII without promotion of thrombus growth in melagatran-anticoagulated primates. Thromb Res 2007; 119:121-7. [PMID: 16448687 DOI: 10.1016/j.thromres.2005.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Revised: 11/27/2005] [Accepted: 12/01/2005] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Pharmacological enhancement of coagulation using activated prothrombin complex concentrate (APCC) or activated factor VII (FVIIa) might be useful hemostatic approaches to bleeding emergencies during anticoagulant therapy. However, any such intervention should not increase thrombotic risk. We therefore investigated their hemostatic and prothrombotic potential during propagation of large arterial-type thrombin in anticoagulated baboons. MATERIALS AND METHODS High dose melagatran, a competitive inhibitor of thrombin (0.6 mg/kg/h), or inactivated FVIIa (FVIIai), a competitive inhibitor of FVIIa (2 mg/kg) were used for anticoagulation. APCC or FVIIa were administered to melagatran-anticoagulated animals only. Primary hemostasis was assessed as template bleeding time (BT). Thrombus formation was quantified as fibrin deposition (FD) and platelet deposition (PLD) in synthetic vascular grafts that were deployed for 40 min into arteriovenous shunts. RESULTS Melagatran (n=11) prolonged BT to 279% (95% CI +/-140%; P<0.019), reduced FD to 33% [+/-8%; P<0.001]; and PLD to 39% [+/-11%; P<0.001] of untreated controls. FVIIai (n=3) prolonged BT (222% [+/-51%; P<0.010]) without inhibiting thrombus propagation. APCC (n=10) reduced the antithrombotic effect of melagatran (FD 52% [+/-9%; P<0.002], PLD 61% [+/-17%; P=0.028] versus melagatran alone) at a dose (250 U/kg) that had no effect on the BT (327% [+/-150%; P=0.607]. Meanwhile, FVIIa (n=12) normalized the BT to 115% (+/-32%; P<0.05) at a dose (270 microg/kg) that was not yet prothrombotic (FD 26% [+/-4%; P<0.001], PLD 39% [+/-9%; P=0.970]). CONCLUSION Administration of FVIIa during antithrombotic treatment with direct thrombin inhibitors might support hemostasis before promoting the intraluminal expansion of thrombi.
Collapse
Affiliation(s)
- András Gruber
- Department of Biomedical Engineering, OGI School of Science and Engineering, Oregon Health and Science University, 20000 N.W. Walker Road, Beaverton, OR 97006-8921, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Wiersinga WJ, Levi M, van der Poll T. Coagulation in Sepsis. UPDATE IN INTENSIVE CARE AND EMERGENCY MEDICINE 2007. [DOI: 10.1007/3-540-30328-6_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
43
|
Stearns-Kurosawa DJ, Lupu F, Taylor FB, Kinasewitz G, Kurosawa S. Sepsis and pathophysiology of anthrax in a nonhuman primate model. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:433-44. [PMID: 16877346 PMCID: PMC1698797 DOI: 10.2353/ajpath.2006.051330] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2006] [Indexed: 12/22/2022]
Abstract
Studies that define natural responses to bacterial sepsis assumed new relevance after the lethal bioterrorist attacks with Bacillus anthracis (anthrax), a spore-forming, toxigenic gram-positive bacillus. Considerable effort has focused on identifying adjunctive therapeutics and vaccines to prevent future deaths, but translation of promising compounds into the clinical setting necessitates an animal model that recapitulates responses observed in humans. Here we describe a nonhuman primate (Papio c. cynocephalus) model of B. anthracis infection using infusion of toxigenic B. anthracis Sterne 34F2 bacteria (5 x 10(5) to 6.5 x 10(9) CFU/kg). Similar to that seen in human patients, we observed changes in vascular permeability, disseminated intravascular coagulation, and systemic inflammation. The lung was a primary target organ with serosanguinous pleural effusions, intra-alveolar edema, and hemorrhagic lesions. This animal model reveals that a fatal outcome is dominated by the host septic response, thereby providing important insights into approaches for treatment and prevention of anthrax in humans.
Collapse
Affiliation(s)
- Deborah J Stearns-Kurosawa
- Department of Free Radical Biology and Aging Research, Oklahoma Medical Research Foundation, 825 NE 13th St., Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
44
|
Rijneveld AW, Weijer S, Bresser P, Florquin S, Vlasuk GP, Rote WE, Spek CA, Reitsma PH, van der Zee JS, Levi M, van der Poll T. Local activation of the tissue factor-factor VIIa pathway in patients with pneumonia and the effect of inhibition of this pathway in murine pneumococcal pneumonia. Crit Care Med 2006; 34:1725-30. [PMID: 16625114 DOI: 10.1097/01.ccm.0000218807.20570.c2] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The tissue factor (TF)-factor VIIa (FVIIa) complex not only is essential for activation of blood coagulation but also affect the inflammatory response during sepsis. The objective of this study was to determine the role of TF-FVIIa in pneumonia caused by Streptococcus pneumoniae, the most important causative organism in community-acquired pneumonia and a major cause of sepsis. DESIGN A controlled, in vivo laboratory study. SETTING Research laboratory of a health sciences university. PATIENTS AND SUBJECTS Patients with unilateral community-acquired pneumonia and female BALB/c mice. INTERVENTIONS Bilateral bronchoalveolar lavage was performed in patients with community-acquired pneumonia. In mice, pneumonia was induced by intranasal inoculation with S. pneumoniae with or without concurrent inhibition of TF-FVIIa by subcutaneous injections of recombinant nematode anticoagulant protein (rNAPc2). MEASUREMENTS AND MAIN RESULTS Patients with unilateral community-acquired pneumonia demonstrated elevated concentrations of FVIIa, soluble TF, and thrombin-antithrombin complexes in bronchoalveolar lavage fluid obtained from the infected site compared with the uninfected site. Mice with S. pneumoniae pneumonia displayed increased TF expression and fibrin deposits in lungs together with elevated thrombin-antithrombin complex levels in bronchoalveolar lavage fluid; inhibition of TF-FVIIa by rNAPc2 attenuated the procoagulant response in the lung but did not affect host defense, as reflected by an unaltered outgrowth of pneumococci and an unchanged survival. CONCLUSIONS These data suggest that TF-FVIIa activity contributes to activation of coagulation in the lung during pneumococcal pneumonia but does not play an important role in the antibacterial host defense in this murine model.
Collapse
Affiliation(s)
- Anita W Rijneveld
- Center of Infection and Immunity Amsterdam, Laboratory of Experimental Internal Medicine, Department of Pulmonology, University of Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Arnold CS, Parker C, Upshaw R, Prydz H, Chand P, Kotian P, Bantia S, Babu YS. The antithrombotic and anti-inflammatory effects of BCX-3607, a small molecule tissue factor/factor VIIa inhibitor. Thromb Res 2006; 117:343-9. [PMID: 16378835 DOI: 10.1016/j.thromres.2005.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 02/28/2005] [Accepted: 03/11/2005] [Indexed: 11/21/2022]
Abstract
Tissue factor (TF) is a transmembrane glycoprotein that binds its zymogen cofactor, Factor VIIa (FVIIa) on the cell surface. Together (TF/FVIIa) they activate Factor X (FX) and Factor IX (FIX) and start the extrinsic pathway of blood coagulation. As such, the TF/FVIIa complex plays an important role in normal physiology as well as in thrombotic diseases such as unstable angina (UA), disseminated intravascular coagulation (DIC), and deep vein thrombosis (DVT). In addition to its function as an initiator of coagulation, TF/FVIIa plays an important role in inflammation. Expression of TF on the cell surface and its appearance as a soluble molecule are characteristic features of acute and chronic inflammation in conditions such as sepsis and atherosclerosis. Here we demonstrate that BCX-3607, a small molecule potent inhibitor of TF/FVIIa, reduces thrombus weight in an animal model of DVT. BCX-3607 also decreases the level of interleukin-6 (IL-6) in a LPS-stimulated mouse model of endotoxemia. Additionally, in vitro studies indicate that BCX-3607 blocks the generation of TF/FVIIa-induced IL-8 mRNA in human keratinocytes and reduces the TF/FVIIa-mediated generation of IL-6 and IL-8 in human umbilical vein endothelial cells (HUVEC). Therefore, BCX-3607 might block the TF/FVIIa-mediated coagulation and inflammation associated with pathological conditions.
Collapse
Affiliation(s)
- C Shane Arnold
- BioCryst Pharmaceuticals, Inc., 2190 Parkway Lake Drive, Birmingham, AL 35244, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chu AJ. Tissue factor upregulation drives a thrombosis-inflammation circuit in relation to cardiovascular complications. Cell Biochem Funct 2006; 24:173-92. [PMID: 15617024 DOI: 10.1002/cbf.1200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extrinsic coagulation is recognized as an 'inducible' signalling cascade resulting from tissue factor (TF) upregulation by exposure to clotting zymogen FVII upon inflammation or tissue injury. Following the substantial initiation, an array of proteolytic activation generates mediating signals (active serine proteases: FVIIa, FXa and FIIa) that lead to hypercoagulation with fibrin overproduction manifesting thrombosis. In addition, TF upregulation plays a central role in driving a thrombosis-inflammation circuit. Coagulant mediators (FVIIa, FXa and FIIa) and endproduct (fibrin) are proinflammatory, eliciting tissue necrosis factor, interleukins, adhesion molecules and many other intracellular signals in different cell types. Such resulting inflammation could ensure 'fibrin' thrombosis via feedback upregulation of TF. Alternatively, the resulting inflammation triggers platelet/leukocyte/polymononuclear cell activation thus contributing to 'cellular' thrombosis. TF is very vulnerable to upregulation resulting in hypercoagulability and subsequent thrombosis and inflammation, either of which presents cardiovascular risks. The prevention and intervention of TF hypercoagulability are of importance in cardioprotection. Blockade of inflammation reception and its intracellular signalling prevents TF expression from upregulation. Natural (activated protein C, tissue factor pathway inhibitor, or antithrombin III) or pharmacological anticoagulants readily offset the extrinsic hypercoagulation mainly through FVIIa, FXa or FIIa inhibition. Therefore, anticoagulants turn off the thrombosis-inflammation circuit, offering not only antithrombotic but anti-inflammatory significance in the prevention of cardiovascular complications.
Collapse
Affiliation(s)
- Arthur J Chu
- Surgery Department, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
47
|
Camerer E, Cornelissen I, Kataoka H, Duong DN, Zheng YW, Coughlin SR. Roles of protease-activated receptors in a mouse model of endotoxemia. Blood 2006; 107:3912-21. [PMID: 16434493 PMCID: PMC1895289 DOI: 10.1182/blood-2005-08-3130] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 01/13/2006] [Indexed: 12/16/2022] Open
Abstract
Endotoxemia is often associated with extreme inflammatory responses and disseminated intravascular coagulation. Protease-activated receptors (PARs) mediate cellular responses to coagulation proteases, including platelet activation and endothelial cell reactions predicted to promote inflammation. These observations suggested that PAR activation by coagulation proteases generated in the setting of endotoxemia might promote platelet activation, leukocyte-mediated endothelial injury, tissue damage, and death. Toward testing these hypotheses, we examined the effect of PAR deficiencies that ablate platelet and endothelial activation by coagulation proteases in a mouse endotoxemia model. Although coagulation was activated as measured by thrombin-antithrombin (TAT) production and antithrombin III (ATIII) depletion, Par1(-/-), Par2(-/-), Par4(-/-), Par2(-/-):Par4(-/-), and Par1(-/-):Par2(-/-) mice all failed to show improved survival or decreased cytokine responses after endotoxin challenge compared with wild type. Thus, our results fail to support a necessary role for PARs in linking coagulation to inflammation or death in this model. Interestingly, endotoxin-induced thrombocytopenia was not diminished in Par4(-/-) mice. Thus, a mechanism independent of platelet activation by thrombin was sufficient to cause thrombocytopenia in our model. These results raise the possibility that decreases in platelet count in the setting of sepsis may not be caused by disseminated intravascular coagulation but instead report on a sometimes parallel but independent process.
Collapse
Affiliation(s)
- Eric Camerer
- Cardiovascular Research Institute, University of California-San Francisco, HSE-1307, 513 Parnassus Avenue, San Francisco, CA 94143-0130, USA
| | | | | | | | | | | |
Collapse
|
48
|
Mackman N. Role of tissue factor in hemostasis and thrombosis. Blood Cells Mol Dis 2006; 36:104-7. [PMID: 16466951 DOI: 10.1016/j.bcmd.2005.12.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
Tissue factor (TF) is a transmembrane glycoprotein that functions as the primary cellular initiator of blood coagulation. Perivascular cells express TF and provide a hemostatic barrier to limit hemorrhage after vessel injury. In addition, TF is expressed in a tissue-specific manner with high levels in vital organs, such as the heart and lung. TF expression in these tissues may provide additional hemostatic protection from mechanical injury to blood vessels. Recent studies have also detected TF in the blood. This circulating TF is present in the form of microparticles (MPs), which are membrane vesicles shed from cells, and possibly platelets. At present, the cell types that contribute to this pool of TF-positive MPs have not been fully defined. Monocytes, endothelial cells and platelets are the most likely sources of this circulating TF. However, TF-positive MPs represent only a minor subset of circulating MPs. Importantly, TF-negative MPs also possess procoagulant activity. In various diseases, such as sepsis and cancer, TF is expressed by vascular cells and this leads to thrombosis. Levels of circulating TF are also elevated in these diseases and may contribute to thrombosis. Recent studies have analyzed the role of TF-positive MPs in thrombus propagation using different in vivo models. Circulating TF was found to contribute to thrombosis in some models but not others. Inhibition of TF activity in patients with TF expression in vascular cells and with elevated levels of circulating TF may decrease thrombosis associated with a variety of diseases.
Collapse
Affiliation(s)
- Nigel Mackman
- Departments of Immunology and Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, CVN-18, La Jolla, CA 92037, USA.
| |
Collapse
|
49
|
Feistritzer C, Lenta R, Riewald M. Protease-activated receptors-1 and -2 can mediate endothelial barrier protection: role in factor Xa signaling. J Thromb Haemost 2005; 3:2798-805. [PMID: 16359518 DOI: 10.1111/j.1538-7836.2005.01610.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coagulation and inflammation are intimately linked and cellular signaling by coagulation proteases through protease-activated receptors (PARs) may affect pro- and anti-inflammatory responses. Permeability of the endothelial cell barrier at the blood-tissue interface plays a key role in inflammatory disorders such as sepsis. We have recently shown that PAR1 signaling by activated protein C or low concentrations of thrombin can enhance endothelial barrier integrity. In the present study, we analyzed effects of coagulation factor Xa (FXa), which is known to activate both endothelial cell PAR1 and PAR2, on monolayer integrity using a transformed human umbilical vein endothelial cell (HUVEC) line in a dual-chamber system. Preincubation with FXa potently reduced high-dose thrombin-mediated hyperpermeability and basal permeability. FXa was protective at concentrations of 5 nm or higher and proteolytic activity was required. Barrier protective FXa signaling was not affected by cleavage-blocking anti-PAR1 antibodies or by a PAR1 antagonist. Similarly, cleavage-blocking anti-PAR2 alone had no effect, but blocking both PAR1 and PAR2 inhibited barrier protection by FXa. Incubation of the cell layer with a PAR2-specific agonist peptide reduced thrombin-mediated hyperpermeability and basal permeability similar to FXa. In conclusion, not only PAR1, but also PAR2 can mediate barrier protection in endothelial cells and FXa can use either receptor to enhance barrier integrity. Although it is currently unknown whether PAR signaling by FXa has a physiological role, the results suggest a potential protective effect of FXa and other agonists of endothelial PAR2, which should be explored in models of local and systemic inflammation in vivo.
Collapse
Affiliation(s)
- C Feistritzer
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
50
|
Schoenmakers SHHF, Brüggemann LW, Groot AP, Maijs S, Reitsma PH, Spek CA. Role of coagulation FVIII in septic peritonitis assessed in hemophilic mice. J Thromb Haemost 2005; 3:2738-44. [PMID: 16359511 DOI: 10.1111/j.1538-7836.2005.01649.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inhibition of blood coagulation appears to be an important therapeutic strategy to improve the outcome in sepsis. However, the beneficial effect of anticoagulant treatment in sepsis is solely based on experimental data using inhibitors of the extrinsic coagulant pathway. The role of the intrinsic pathway of coagulation in the pathogenesis of sepsis has not been explored yet. OBJECTIVE In the current study, we contribute to determine the role of factor (F)VIII, the key player of the intrinsic coagulant pathway, on host defense against peritonitis. METHOD Hemizygous FVIII-deficient mice and their wild-type littermates were challenged with 1 x 10(4) bacteria in a septic peritonitis model. RESULTS The intraperitoneal injection of Escherichia coli led to growth and dissemination of bacteria and provoked an inflammatory response as evident from elevated cytokine levels, increased cell influx into tissues, liver necrosis, and endothelialitis resulting in mortality. The FVIII-deficient genotype slightly reduced bacterial outgrowth but had no effect on markers of inflammation and/or survival. In addition, FVIII-deficient mice showed profound activation of coagulation, thereby improving the hemophilic phenotype of FVIII-deficient mice. CONCLUSION FVIII deficiency slightly modifies host defense in septic peritonitis in mice, but does not influence the final outcome of peritonitis. Therefore, we question the importance of the intrinsic coagulant pathway during sepsis.
Collapse
Affiliation(s)
- S H H F Schoenmakers
- Laboratory for Experimental Internal Medicine, Academic Medical Center Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|