1
|
Ayabe T, Hisasue M, Yamada Y, Nitta S, Kikuchi K, Neo S, Matsumoto Y, Horie R, Kawamoto K. Characterisation of canine CD34+/CD45 diminished cells by colony-forming unit assay and transcriptome analysis. Front Vet Sci 2022; 9:936623. [PMID: 36172613 PMCID: PMC9510753 DOI: 10.3389/fvets.2022.936623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Haematopoietic stem and progenitor cells (HSPCs) are used for transplantation to reconstruct the haematopoietic pathways in humans receiving severe chemotherapy. However, the characteristics of canine HSPCs, such as specific surface antigens and gene expression profiles, are still unclear. This study aimed to characterise the haematopoietic ability and gene expression profiles of canine bone marrow HSPCs in healthy dogs. In this study, the CD34 positive (CD34+) cells were defined as classical HSPCs, CD34+/CD45 diminished (CD45dim) cells as more enriched HSPCs, and whole viable cells as controls. Haematopoietic abilities and gene expression profiles were evaluated using a colony-forming unit assay and RNA-sequencing analysis. Canine CD34+/CD45dim cells exhibited a significantly higher haematopoietic colony formation ability and expressed more similarity in the gene expression profiles to human and mouse HSPCs than those of the other cell fractions. Furthermore, the canine CD34+/CD45dim cells expressed candidate cell surface antigens necessary to define the canine haematopoietic hierarchy roadmap. These results indicate that the canine CD34+/CD45dim cells express the HSPC characteristics more than the other cell fractions, thereby suggesting that these cells have the potential to be used for studying haematopoietic stem cells in dogs.
Collapse
Affiliation(s)
- Taro Ayabe
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Japan
| | - Masaharu Hisasue
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
- *Correspondence: Masaharu Hisasue
| | - Yoko Yamada
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Suguru Nitta
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kaoruko Kikuchi
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Sakurako Neo
- Laboratory of Clinical Diagnosis, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Yuki Matsumoto
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Japan
| | - Ryo Horie
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Japan
| | - Kosuke Kawamoto
- Research and Development Section, Anicom Specialty Medical Institute Inc., Yokohama, Japan
| |
Collapse
|
2
|
Klinger JR, Pereira M, Del Tatto M, Brodsky AS, Wu KQ, Dooner MS, Borgovan T, Wen S, Goldberg LR, Aliotta JM, Ventetuolo CE, Quesenberry PJ, Liang OD. Mesenchymal Stem Cell Extracellular Vesicles Reverse Sugen/Hypoxia Pulmonary Hypertension in Rats. Am J Respir Cell Mol Biol 2020; 62:577-587. [PMID: 31721618 DOI: 10.1165/rcmb.2019-0154oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mesenchymal stem cell extracellular vesicles attenuate pulmonary hypertension, but their ability to reverse established disease in larger animal models and the duration and mechanism(s) of their effect are unknown. We sought to determine the efficacy and mechanism of mesenchymal stem cells' extracellular vesicles in attenuating pulmonary hypertension in rats with Sugen/hypoxia-induced pulmonary hypertension. Male rats were treated with mesenchymal stem cell extracellular vesicles or an equal volume of saline vehicle by tail vein injection before or after subcutaneous injection of Sugen 5416 and exposure to 3 weeks of hypoxia. Pulmonary hypertension was assessed by right ventricular systolic pressure, right ventricular weight to left ventricle + septum weight, and muscularization of peripheral pulmonary vessels. Immunohistochemistry was used to measure macrophage activation state and recruitment to lung. Mesenchymal stem cell extracellular vesicles injected before or after induction of pulmonary hypertension normalized right ventricular pressure and reduced right ventricular hypertrophy and muscularization of peripheral pulmonary vessels. The effect was consistent over a range of doses and dosing intervals and was associated with lower numbers of lung macrophages, a higher ratio of alternatively to classically activated macrophages (M2/M1 = 2.00 ± 0.14 vs. 1.09 ± 0.11; P < 0.01), and increased numbers of peripheral blood vessels (11.8 ± 0.66 vs. 6.9 ± 0.57 vessels per field; P < 0.001). Mesenchymal stem cell extracellular vesicles are effective at preventing and reversing pulmonary hypertension in Sugen/hypoxia pulmonary hypertension and may offer a new approach for the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- James R Klinger
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Mandy Pereira
- Division of Hematology and Oncology, Department of Medicine, and
| | | | - Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, Rhode Island; and.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Keith Q Wu
- Division of Hematology and Oncology, Department of Medicine, and
| | - Mark S Dooner
- Division of Hematology and Oncology, Department of Medicine, and
| | | | - Sicheng Wen
- Division of Hematology and Oncology, Department of Medicine, and.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Laura R Goldberg
- Division of Hematology and Oncology, Department of Medicine, and.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Jason M Aliotta
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Corey E Ventetuolo
- Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Peter J Quesenberry
- Division of Hematology and Oncology, Department of Medicine, and.,Alpert Medical School of Brown University, Providence, Rhode Island
| | - Olin D Liang
- Division of Hematology and Oncology, Department of Medicine, and.,Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
3
|
Ma HM, Cui N, Zheng PS. HOXA5 inhibits the proliferation and neoplasia of cervical cancer cells via downregulating the activity of the Wnt/β-catenin pathway and transactivating TP53. Cell Death Dis 2020; 11:420. [PMID: 32499530 PMCID: PMC7272418 DOI: 10.1038/s41419-020-2629-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
HOXA5 is considered a regulator involved in embryonic development and cellular differentiation and a tumor suppressor. Nevertheless, its biological role in cervical carcinoma is still unclear. In the present study, immunohistochemistry showed that HOXA5 expression gradually decreased as the degree of cervical lesions deepened. Ectopic expression of HOXA5 restrained cell proliferation, decreased cell viability, and inhibited tumor formation in vitro and in vivo. Furthermore, the expression of HOXA5 could arrest cell cycle from G0/G1 to S phase. RNA-seq revealed that p21 and cyclinD1 were involved in this process. Moreover, the gene set enrichment analysis and the TOP/FOP reporter assay both suggested that HOXA5 could restrain the activity of the Wnt/β-catenin pathway. Further study using dual-luciferase reporter assay and quantitative chromatin immunoprecipitation assay demonstrated that HOXA5 could directly bind to the TAAT motif within the promoter of TP53 by its HD domain and transactivate TP53, which can upregulate p21. Altogether, our data suggest that HOXA5 inhibits the proliferation and neoplasia via repression activity of the Wnt/β-catenin pathway and transactivating TP53 in cervical cancer.
Collapse
Affiliation(s)
- Hong-Mei Ma
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Nan Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China. .,Section of Cancer Stem Cell Research, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of the People's Republic of China, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
4
|
Pathways, Processes, and Candidate Drugs Associated with a Hoxa Cluster-Dependency Model of Leukemia. Cancers (Basel) 2019; 11:cancers11122036. [PMID: 31861091 PMCID: PMC6966468 DOI: 10.3390/cancers11122036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
High expression of the HOXA cluster correlates with poor clinical outcome in acute myeloid leukemias, particularly those harboring rearrangements of the mixed-lineage-leukemia gene (MLLr). Whilst decreased HOXA expression acts as a readout for candidate experimental therapies, the necessity of the HOXA cluster for leukemia maintenance has not been fully explored. Primary leukemias were generated in hematopoietic stem/progenitor cells from Cre responsive transgenic mice for conditional deletion of the Hoxa locus. Hoxa deletion resulted in reduced proliferation and colony formation in which surviving leukemic cells retained at least one copy of the Hoxa cluster, indicating dependency. Comparative transcriptome analysis of Hoxa wild type and deleted leukemic cells identified a unique gene signature associated with key pathways including transcriptional mis-regulation in cancer, the Fanconi anemia pathway and cell cycle progression. Further bioinformatics analysis of the gene signature identified a number of candidate FDA-approved drugs for potential repurposing in high HOXA expressing cancers including MLLr leukemias. Together these findings support dependency for an MLLr leukemia on Hoxa expression and identified candidate drugs for further therapeutic evaluation.
Collapse
|
5
|
Luo H, Zhu G, Xu J, Lai Q, Yan B, Guo Y, Fung TK, Zeisig BB, Cui Y, Zha J, Cogle C, Wang F, Xu B, Yang FC, Li W, So CWE, Qiu Y, Xu M, Huang S. HOTTIP lncRNA Promotes Hematopoietic Stem Cell Self-Renewal Leading to AML-like Disease in Mice. Cancer Cell 2019; 36:645-659.e8. [PMID: 31786140 PMCID: PMC6917035 DOI: 10.1016/j.ccell.2019.10.011] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 08/30/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023]
Abstract
Long non-coding RNAs (lncRNAs) are critical for regulating HOX genes, aberration of which is a dominant mechanism for leukemic transformation. How HOX gene-associated lncRNAs regulate hematopoietic stem cell (HSC) function and contribute to leukemogenesis remains elusive. We found that HOTTIP is aberrantly activated in acute myeloid leukemia (AML) to alter HOXA-driven topologically associated domain (TAD) and gene expression. HOTTIP loss attenuates leukemogenesis of transplanted mice, while reactivation of HOTTIP restores leukemic TADs, transcription, and leukemogenesis in the CTCF-boundary-attenuated AML cells. Hottip aberration in mice abnormally promotes HSC self-renewal leading to AML-like disease by altering the homeotic/hematopoietic gene-associated chromatin signature and transcription program. Hottip aberration acts as an oncogenic event to perturb HSC function by reprogramming leukemic-associated chromatin and gene transcription.
Collapse
Affiliation(s)
- Huacheng Luo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Ganqian Zhu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Jianfeng Xu
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Lai
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Bowen Yan
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ying Guo
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; Department of Cell System & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Tsz Kan Fung
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK
| | - Bernd B Zeisig
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK
| | - Ya Cui
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Christopher Cogle
- Division of Hematology/Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Fei Wang
- Department of Hematology and Oncology, The Affiliated Zhongda Hospital, Southeast University Medical School, Nanjing 210009, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Feng-Chun Yang
- Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; Department of Cell System & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wei Li
- Department of Molecular and Cellular Biology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Chi Wai Eric So
- School of Cancer and Pharmaceutical Science, King's College London, London SE5 9NU, UK.
| | - Yi Qiu
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | - Mingjiang Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
6
|
Nagy Á, Ősz Á, Budczies J, Krizsán S, Szombath G, Demeter J, Bödör C, Győrffy B. Elevated HOX gene expression in acute myeloid leukemia is associated with NPM1 mutations and poor survival. J Adv Res 2019; 20:105-116. [PMID: 31333881 PMCID: PMC6614546 DOI: 10.1016/j.jare.2019.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder of hematopoietic progenitor cells and the most common malignant myeloid disorder in adults. Several gene mutations such as in NPM1 (nucleophosmin 1) are involved in the pathogenesis and progression of AML. The aim of this study was to identify genes whose expression is associated with driver mutations and survival outcome. Genotype data (somatic mutations) and gene expression data including RNA-seq, microarray, and qPCR data were used for the analysis. Multiple datasets were utilized as training sets (GSE6891, TCGA, and GSE1159). A new clinical sample cohort (Semmelweis set) was established for in vitro validation. Wilcoxon analysis was used to identify genes with expression alterations between the mutant and wild type samples. Cox regression analysis was performed to examine the association between gene expression and survival outcome. Data analysis was performed in the R statistical environment. Eighty-five genes were identified with significantly altered expression when comparing NPM1 mutant and wild type patient groups in the GSE6891 set. Additional training sets were used as a filter to condense the six most significant genes associated with NPM1 mutations. Then, the expression changes of these six genes were confirmed in the Semmelweis set: HOXA5 (P = 3.06E-12, FC = 8.3), HOXA10 (P = 2.44E-09, FC = 3.3), HOXB5 (P = 1.86E-13, FC = 37), MEIS1 (P = 9.82E-10, FC = 4.4), PBX3 (P = 1.03E-13, FC = 5.4) and ITM2A (P = 0.004, FC = 0.4). Cox regression analysis showed that higher expression of these genes - with the exception of ITM2A - was associated with worse overall survival. Higher expression of the HOX genes was identified in tumors harboring NPM1 gene mutations by computationally linking genotype and gene expression. In vitro validation of these genes supports their potential therapeutic application in AML.
Collapse
Key Words
- AML, acute myeloid leukemia
- Acute myeloid leukemia
- Clinical samples
- FAB classification, French–American–British classification
- FC, fold change
- Gene expression
- HOX genes
- HOX, homeobox
- HR, hazard ratio
- ITD, internal tandem duplication
- MEIS, myeloid ecotropic viral integration site
- Mutation
- NCBI GEO, National Center for Biotechnology Gene expression Omnibus
- OS, overall survival
- PBX, pre-B-cell leukemia homeobox
- Survival
- TCGA, The Cancer Genome Atlas
- WHO, World Health Organization
- qPCR, quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Ádám Nagy
- MTA TTK Lendület Cancer Biomarker Research Group, Hungarian Academy of Sciences Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9, 1094 Budapest, Hungary
| | - Ágnes Ősz
- MTA TTK Lendület Cancer Biomarker Research Group, Hungarian Academy of Sciences Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9, 1094 Budapest, Hungary
| | - Jan Budczies
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Szilvia Krizsán
- MTA-SE Lendület Molecular Oncohematology Research Group, 1st Department of Pathology, and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Gergely Szombath
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Judit Demeter
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- MTA-SE Lendület Molecular Oncohematology Research Group, 1st Department of Pathology, and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Hungarian Academy of Sciences Research Centre for Natural Sciences, Institute of Enzymology, Magyar Tudósok körútja 2, 1117 Budapest, Hungary.,Semmelweis University 2nd Dept. of Pediatrics, Tűzoltó utca 7-9, 1094 Budapest, Hungary
| |
Collapse
|
7
|
Role of HOX Genes in Stem Cell Differentiation and Cancer. Stem Cells Int 2018; 2018:3569493. [PMID: 30154863 PMCID: PMC6081605 DOI: 10.1155/2018/3569493] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023] Open
Abstract
HOX genes encode an evolutionarily conserved set of transcription factors that control how the phenotype of an organism becomes organized during development based on its genetic makeup. For example, in bilaterian-type animals, HOX genes are organized in gene clusters that encode anatomic segment identity, that is, whether the embryo will form with bilateral symmetry with a head (anterior), tail (posterior), back (dorsal), and belly (ventral). Although HOX genes are known to regulate stem cell (SC) differentiation and HOX genes are dysregulated in cancer, the mechanisms by which dysregulation of HOX genes in SCs causes cancer development is not fully understood. Therefore, the purpose of this manuscript was (i) to review the role of HOX genes in SC differentiation, particularly in embryonic, adult tissue-specific, and induced pluripotent SC, and (ii) to investigate how dysregulated HOX genes in SCs are responsible for the development of colorectal cancer (CRC) and acute myeloid leukemia (AML). We analyzed HOX gene expression in CRC and AML using information from The Cancer Genome Atlas study. Finally, we reviewed the literature on HOX genes and related therapeutics that might help us understand ways to develop SC-specific therapies that target aberrant HOX gene expression that contributes to cancer development.
Collapse
|
8
|
Jeannotte L, Gotti F, Landry-Truchon K. Hoxa5: A Key Player in Development and Disease. J Dev Biol 2016; 4:E13. [PMID: 29615582 PMCID: PMC5831783 DOI: 10.3390/jdb4020013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/08/2016] [Accepted: 03/16/2016] [Indexed: 12/28/2022] Open
Abstract
A critical position in the developmental hierarchy is occupied by the Hox genes, which encode transcription factors. Hox genes are crucial in specifying regional identity along the embryonic axes and in regulating morphogenesis. In mouse, targeted mutations of Hox genes cause skeletal transformations and organ defects that can impair viability. Here, we present the current knowledge about the Hoxa5 gene, a paradigm for the function and the regulation of Hox genes. The phenotypic survey of Hoxa5-/- mice has unveiled its critical role in the regional specification of the skeleton and in organogenesis. Most Hoxa5-/- mice die at birth from respiratory distress due to tracheal and lung dysmorphogenesis and impaired diaphragm innervation. The severity of the phenotype establishes that Hoxa5 plays a predominant role in lung organogenesis versus other Hox genes. Hoxa5 also governs digestive tract morphogenesis, thyroid and mammary glands development, and ovary homeostasis. Deregulated Hoxa5 expression is reported in cancers, indicating Hoxa5 involvement in tumor predisposition and progression. The dynamic Hoxa5 expression profile is under the transcriptional control of multiple cis-acting sequences and trans-acting regulators. It is also modulated by epigenetic mechanisms, implicating chromatin modifications and microRNAs. Finally, lncRNAs originating from alternative splicing and distal promoters encompass the Hoxa5 locus.
Collapse
Affiliation(s)
- Lucie Jeannotte
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| | - Florian Gotti
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| | - Kim Landry-Truchon
- Centre de recherche sur le cancer de l'Université Laval; CRCHU de Québec, L'Hôtel-Dieu de Québec, QC G1R 3S3, Canada.
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, QC G1V 0A6, Canada.
| |
Collapse
|
9
|
Zhao P, Tan L, Ruan J, Wei XP, Zheng Y, Zheng LX, Jiang WQ, Fang WJ. Aberrant Expression of HOXA5 and HOXA9 in AML. Asian Pac J Cancer Prev 2016; 16:3941-4. [PMID: 25987065 DOI: 10.7314/apjcp.2015.16.9.3941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant expression of HOX gene expression has been observed in cancer. The purpose of this study was to investigate the alteration of HOXA5 and HOXA9 expression and their clinical significance in acute meloid leukemia (AML). MATERIALS AND METHODS The expression of HOXA5 and HOXA9 genes of bone marrow samples from 75 newly diagnosed AML patients and 22 healthy controls for comparison were examined by Real- time quantitative PCR (RQ-PCR) assay. Statistical analysis was conducted to evaluate HOXA5 and HOXA9 expression as possible biomarkers for AML. RESULTS The results showed that the complete remission rate (52.6%) of the patients who highly expressed HOXA5 and HOXA9 was significantly lower than that (88.9%) in patients who lowly express the genes (P=0.015). Spearmann correlation coefficients indicated that the expression levels for HOXA5 and HOXA9 genes were highly interrelated (r=0.657, P<0.001). Meanwhile, we detected significant correlations between HOXA9 expression and age in this limited set of patients (P=0.009). CONCLUSIONS The results suggest a prognostic impact of increased expression of HOXA5 and HOXA9 in AML patients.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ordóñez-Morán P, Dafflon C, Imajo M, Nishida E, Huelsken J. HOXA5 Counteracts Stem Cell Traits by Inhibiting Wnt Signaling in Colorectal Cancer. Cancer Cell 2015; 28:815-829. [PMID: 26678341 DOI: 10.1016/j.ccell.2015.11.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/11/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022]
Abstract
Hierarchical organization of tissues relies on stem cells, which either self-renew or produce committed progenitors predestined for lineage differentiation. Here we identify HOXA5 as an important repressor of intestinal stem cell fate in vivo and identify a reciprocal feedback between HOXA5 and Wnt signaling. HOXA5 is suppressed by the Wnt pathway to maintain stemness and becomes active only outside the intestinal crypt where it inhibits Wnt signaling to enforce differentiation. In colon cancer, HOXA5 is downregulated, and its re-expression induces loss of the cancer stem cell phenotype, preventing tumor progression and metastasis. Tumor regression by HOXA5 induction can be triggered by retinoids, which represent tangible means to treat colon cancer by eliminating cancer stem cells.
Collapse
Affiliation(s)
- Paloma Ordóñez-Morán
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), Lausanne 1015, Switzerland
| | - Caroline Dafflon
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), Lausanne 1015, Switzerland
| | - Masamichi Imajo
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; JST, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan; JST, CREST, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), Lausanne 1015, Switzerland.
| |
Collapse
|
11
|
Yang D, Zhang X, Dong Y, Liu X, Wang T, Wang X, Geng Y, Fang S, Zheng Y, Chen X, Chen J, Pan G, Wang J. Enforced expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Cell Cycle 2015; 14:612-20. [PMID: 25590986 DOI: 10.4161/15384101.2014.992191] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Hoxa5 is preferentially expressed in haematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs), and is more highly expressed in expanding HSCs. To date, little is known regarding the role of Hoxa5 in HSCs and downstream progenitor cells in vivo. In this study, we show that increased expression of Hoxa5 in haematopoietic stem cells leads to aberrant erythropoiesis in vivo. Hoxa5 differentially modifies the cell cycle of HSCs and lineage committed progenitor cells, depending on the cellular context. Hoxa5 drives HSCs, but not MPPs, through the cell cycle and arrests erythroid progenitor cells in G0 phase. Although the HSC pool shrinks after overexpression of Hoxa5, HSCs sustain the abilities of self-renewal and multipotency. In vivo, Hoxa5 has two effects on erythropoiesis: it causes a predominance of mature erythroid lineage cells and the partial apoptosis of erythroid progenitors. RNA-seq indicates that multiple biological processes, including erythrocyte homeostasis, cell metabolism, and apoptosis, are modified by Hoxa5. The results of this study indicate that Hoxa5 is a key regulator of the HSC cell cycle, and the inappropriate expression of Hoxa5 in lineage-committed progenitor cells leads to aberrant erythropoiesis.
Collapse
Key Words
- BFU-E, burst-forming unit-erythroid
- CFU-G, colony forming unit-granulocyte
- CFU-GM, colony forming unit-granulocyte macrophage
- CMP, common myeloid progenitor
- GMP, granulocyte monocyte progenitor
- HSC, haematopoietic stem cell
- LSK, lineage negative, Sca1 positive, cKit positive
- MEP, megakaryocyte-erythroid progenitor
- MP, myeloid progenitor
- MPP, multipotent progenitor
- apoptosis
- cell cycle
- erythropoiesis
- haematopoietic stem cells, Hoxa5
Collapse
Affiliation(s)
- Dan Yang
- a Department of Hematology ; Third Affiliated Hospital of Sun Yat-Sen University ; Guangzhou , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li N, Jia X, Wang J, Li Y, Xie S. Knockdown of homeobox A5 by small hairpin RNA inhibits proliferation and enhances cytarabine chemosensitivity of acute myeloid leukemia cells. Mol Med Rep 2015; 12:6861-6. [PMID: 26397212 DOI: 10.3892/mmr.2015.4331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 07/31/2015] [Indexed: 11/06/2022] Open
Abstract
Homeobox genes encode transcription factors that are essential for embryonic morphogenesis and differentiation. Transcription factors containing the highly conserved homeobox motif show considerable promise as potential regulators of hematopoietic maturation events. Previous studies have suggested that the increased expression levels of homeobox (HOX)A genes was correlated with the cytogenetic findings associated with poor prognosis in acute myeloid leukemia and mixed lineage leukemia. The aim of the present study was to investigate the role of HOXA5 in leukemia. The U937 human leukemia cell line was transfected with a HOXA5‑targeted short hairpin RNA (shRNA) to determine the effects of downregulation of the HOXA5 on proliferation, apoptosis, cell cycle distribution and chemoresistance in leukemia cells. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses demonstrated that the mRNA and protein expression levels of HOXA5 were markedly suppressed following transfection with an shRNA‑containing vector. Knockdown of HOXA5 significantly inhibited cell proliferation, as determined by Cell Counting kit‑8 assay. Flow cytometry revealed that reduced HOXA5 expression levels resulted in cell cycle arrest at the G1 phase, and induced apoptosis. In addition, western blot analysis demonstrated that HOXA5 knockdown increased the expression levels of caspase‑3, and reduced the expression levels of survivin in the U937 cells. Furthermore, knockdown of HOXA5 in the U937 cells enhanced their chemosensitivity to cytarabine. The results of the present study suggested that downregulation of HOXA5 by shRNA may trigger apoptosis and overcome drug resistance in leukemia cells. Therefore, HOXA5 may serve as a potential target for developing novel therapeutic strategies for leukemia.
Collapse
Affiliation(s)
- Na Li
- Department of Pediatrics, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256003, P.R. China
| | - Xiuhong Jia
- Department of Pediatrics, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256003, P.R. China
| | - Jianyong Wang
- Department of Pediatrics, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256003, P.R. China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
13
|
Cuevas I, Layman H, Coussens L, Boudreau N. Sustained endothelial expression of HoxA5 in vivo impairs pathological angiogenesis and tumor progression. PLoS One 2015; 10:e0121720. [PMID: 25821967 PMCID: PMC4379087 DOI: 10.1371/journal.pone.0121720] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/18/2015] [Indexed: 12/20/2022] Open
Abstract
HoxA5 is expressed in quiescent endothelial cells (EC), but absent in activated angiogenic EC. To examine the efficacy of targeting HoxA5 therapeutically to quell pathologic or tumor angiogenesis, we generated an inducible, transgenic mouse model of sustained HoxA5 expression in ECs. During pathologic angiogenesis, sustained HoxA5 regulates expression several angiogenic effector molecules, notably increased expression of TSP-2 and reduced expression of VEGF, thus leading to inhibition of pathological angiogenesis in tissues. To evaluate if this impressive reduction of vascularization could also impact tumor angiogenesis, HoxA5 mice were bred with a mouse model of de novo squamous carcinogenesis, e.g., K14-HPV16 mice. Activation of EC-HoxA5 significantly reduced infiltration by mast cells into neoplastic skin, an early hallmark of progression to dysplasia, reduced angiogenic vasculature, and blunted characteristics of tumor progression. To evaluate HoxA5 as a therapeutic, topical application of a HoxA5 transgene onto early neoplastic skin of K14-HPV16 mice similarly resulted in a significant impairment of angiogenic vasculature and progression to dysplasia to a similar extent as observed with genetic delivery of HoxA5. Together these data indicate that HoxA5 represents a novel molecule for restricting pathological and tumorigenic angiogenesis.
Collapse
Affiliation(s)
- Ileana Cuevas
- Department of Surgery, Surgical Research Laboratory, University of California, San Francisco, San Francisco, California, United States of America
| | - Hans Layman
- Department of Surgery, Surgical Research Laboratory, University of California, San Francisco, San Francisco, California, United States of America
| | - Lisa Coussens
- Department of Cell & Developmental Biology and Knight Cancer Institute, Oregon Health & Sciences University, Portland, Oregon, United States of America
| | - Nancy Boudreau
- Department of Surgery, Surgical Research Laboratory, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Musialik E, Bujko M, Kober P, Wypych A, Gawle-Krawczyk K, Matysiak M, Siedlecki JA. Promoter methylation and expression levels of selected hematopoietic genes in pediatric B-cell acute lymphoblastic leukemia. Blood Res 2015; 50:26-32. [PMID: 25830127 PMCID: PMC4377334 DOI: 10.5045/br.2015.50.1.26] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/28/2014] [Accepted: 01/09/2015] [Indexed: 12/13/2022] Open
Abstract
Background Precursor B-cell acute lymphoblastic leukemia (B-cell ALL) is the most common neoplasm in children and is characterized by genetic and epigenetic aberrations in hematopoietic transcription factor (TF) genes. This study evaluated promoter DNA methylation and aberrant expression levels of early- and late-acting hematopoietic TF genes homeobox A4 and A5 (HOXA4 and HOXA5), Meis homeobox 1 (MEIS1), T-cell acute lymphocytic leukemia 1 (TAL1), and interferon regulatory factors 4 and 8 (IRF4 and IRF8) in pediatric B-cell ALL. Methods Blood samples of 38 ALL patients and 20 controls were obtained. DNA was treated with sodium bisulfite and DNA methylation level of HOXA4, HOXA5, MEIS1, TAL1, IRF4, and IRF8 was assessed using quantitative methylation-specific polymerase chain reaction (PCR). Relative gene expression was measured using quantitative reverse transcription-PCR. Results Aberrant methylation of TAL1, IRF8, MEIS1, and IRF4 was observed in 26.3%, 7.9%, 5.3%, and 2.6% patients, respectively, but not in controls. HOXA4 and HOXA5 were methylated in some controls and hypermethylated in 16% and 5% patients, respectively. IRF8, MEIS1, and TAL1 expression was lower in patients than in controls. MEIS1 expression was inversely correlated with white blood cell (WBC) count. HOXA4 expression was down-regulated in patients with high risk according to the National Cancer Institute (NCI) classification. TAL1 methylation was slightly elevated in patients aged >9 years and in patients showing relapse, suggesting its potential prognostic value. Conclusion Aberrant methylation and expression of the selected hematopoietic genes were correlated with demographic/clinical prognostic factors of pediatric ALL, such as age, WBC count, and NCI risk classification.
Collapse
Affiliation(s)
- Ewa Musialik
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Wypych
- Department of Pediatric Haematology & Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Gawle-Krawczyk
- Department of Pediatric Haematology & Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Michal Matysiak
- Department of Pediatric Haematology & Oncology, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Aleksander Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Musialik E, Bujko M, Kober P, Grygorowicz MA, Libura M, Przestrzelska M, Juszczyński P, Borg K, Florek I, Jakóbczyk M, Siedlecki JA. Promoter DNA methylation and expression levels of HOXA4, HOXA5 and MEIS1 in acute myeloid leukemia. Mol Med Rep 2015; 11:3948-54. [PMID: 25585874 DOI: 10.3892/mmr.2015.3196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
HOXA genes encode transcription factors, which are crucial for embryogenesis and tissue differentiation and are involved in the early stages of hematopoiesis. Aberrations in HOXA genes and their cofactor MEIS1 are found in human neoplasms, including acute myeloid leukemia (AML). The present study investigated the role of HOXA4, HOXA5 and MEIS1 promoter DNA methylation and mRNA expression in AML. Samples from 78 AML patients and 12 normal bone marrow (BM) samples were included. The levels of promoter DNA methylation were determined using quantitative methylation‑specific polymerase chain reaction (PCR; qMSP) and the relative expression levels were measured using reverse transcription quantitative PCR in Ficoll‑separated BM mononuclear cells and in fluorescent activated cell sorting‑sorted populations of normal hematopoietic progenitors. In total, 38.1 and 28.9% of the patients exhibited high methylation levels of HOXA4 and HOXA5, respectively, compared with the control samples, and MEIS1 methylation was almost absent. An inverse correlation between HOXA4 methylation and expression was identified in a group of patients with a normal karyotype (NK AML). An association between the genes was observed and correlation between the DNA methylation and expression levels of the HOXA gene promoter with the expression of MEIS1 was observed. Patients with favorable chromosomal aberrations revealed a low level of HOXA4 methylation and decreased expression levels of HOXA5 and MEIS1 compared with the NK AML and the adverse cytogenetic risk patients. The NK AML patients with NPM1 mutations exhibited elevated HOXA4 methylation and expression levels of HOXA5 and MEIS1 compared with the NPM1 wild‑type patients. Comparison of the undifferentiated BM‑derived hematopoietic CD34+CD38low, CD34+CD38+ and CD15+ cells revealed a gradual decrease in the expression levels of these three genes and an increase in HOXA4 promoter methylation. This differentiation‑associated variability was not observed in AML, which was classified according to the French‑American‑British system.
Collapse
Affiliation(s)
- Ewa Musialik
- Department of Molecular and Translational Oncology, Maria Sklodowska‑Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02‑781, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska‑Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02‑781, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska‑Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02‑781, Poland
| | - Monika Anna Grygorowicz
- Department of Immunology, Maria Sklodowska‑Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02‑781, Poland
| | - Marta Libura
- Department of Hematology, Oncology and Internal Diseases, The Medical University of Warsaw, Warsaw 02‑097, Poland
| | - Marta Przestrzelska
- Department of Hematology, Oncology and Internal Diseases, The Medical University of Warsaw, Warsaw 02‑097, Poland
| | - Przemysław Juszczyński
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw 02‑109, Poland
| | - Katarzyna Borg
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw 02‑109, Poland
| | - Izabela Florek
- Department of Hematology, Jagiellonian University, Cracow 31‑501, Poland
| | | | - Janusz Aleksander Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska‑Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02‑781, Poland
| |
Collapse
|
16
|
Ng RK, Kong CT, So CC, Lui WC, Chan YF, Leung KC, So KC, Tsang HM, Chan LC, Sham MH. Epigenetic dysregulation of leukaemic HOX code inMLL-rearranged leukaemia mouse model. J Pathol 2013; 232:65-74. [DOI: 10.1002/path.4279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 09/22/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Ray Kit Ng
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Cheuk Ting Kong
- Department of Biochemistry; University of Hong Kong, Pokfulam; Hong Kong SAR China
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Chi Chiu So
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Wing Chi Lui
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Yuen Fan Chan
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Ka Chun Leung
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Kam Chung So
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Ho Man Tsang
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Li Chong Chan
- SH Ho Foundation Research Laboratories, Department of Pathology, Hong Kong Jockey Club Clinical Research Centre; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| | - Mai Har Sham
- Department of Biochemistry; University of Hong Kong, Pokfulam; Hong Kong SAR China
- Centre for Reproduction, Development and Growth, Li Ka Shing Faculty of Medicine; University of Hong Kong, Pokfulam; Hong Kong SAR China
| |
Collapse
|
17
|
Long and short non-coding RNAs as regulators of hematopoietic differentiation. Int J Mol Sci 2013; 14:14744-70. [PMID: 23860209 PMCID: PMC3742271 DOI: 10.3390/ijms140714744] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 02/06/2023] Open
Abstract
Genomic analyses estimated that the proportion of the genome encoding proteins corresponds to approximately 1.5%, while at least 66% are transcribed, suggesting that many non-coding DNA-regions generate non-coding RNAs (ncRNAs). The relevance of these ncRNAs in biological, physiological as well as in pathological processes increased over the last two decades with the understanding of their implication in complex regulatory networks. This review particularly focuses on the involvement of two large families of ncRNAs, namely microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of hematopoiesis. To date, miRNAs have been widely studied, leading to a wealth of data about processing, regulation and mechanisms of action and more specifically, their involvement in hematopoietic differentiation. Notably, the interaction of miRNAs with the regulatory network of transcription factors is well documented whereas roles, regulation and mechanisms of lncRNAs remain largely unexplored in hematopoiesis; this review gathers current data about lncRNAs as well as both potential and confirmed roles in normal and pathological hematopoiesis.
Collapse
|
18
|
Abstract
The homeobox (HOX) genes are a highly conserved family of homeodomain-containing transcription factors that specify cell identity in early development and, subsequently, in a number of adult processes including hematopoiesis. The dysregulation of HOX genes is associated with a number of malignancies including acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL), where they have been shown to support the immortalization of leukemic cells both as chimeric partners in fusion genes and when overexpressed in their wild-type form. This review covers our current understanding of the role of HOX genes in normal hematopoiesis, AML and ALL, with particular emphasis on the similarities and differences of HOX function in these contexts, their hematopoietic downstream gene targets and implications for therapy.
Collapse
|
19
|
Polycomb group ring finger 1 cooperates with Runx1 in regulating differentiation and self-renewal of hematopoietic cells. Blood 2012; 119:4152-61. [PMID: 22411870 DOI: 10.1182/blood-2011-09-382390] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor runt-related transcription factor 1 (Runx1) is essential for the establishment of definitive hematopoiesis during embryonic development. In adult blood homeostasis, Runx1 plays a pivotal role in the maturation of lymphocytes and megakaryocytes. Furthermore, Runx1 is required for the regulation of hematopoietic stem and progenitor cells. However, how Runx1 orchestrates self-renewal and lineage choices in combination with other factors is not well understood. In the present study, we describe a genome-scale RNA interference screen to detect genes that cooperate with Runx1 in regulating hematopoietic stem and progenitor cells. We identify the polycomb group protein Pcgf1 as an epigenetic regulator involved in hematopoietic cell differentiation and show that simultaneous depletion of Runx1 and Pcgf1 allows sustained self-renewal while blocking differentiation of lineage marker-negative cells in vitro. We found an up-regulation of HoxA cluster genes on Pcgf1 knock-down that possibly accounts for the increase in self-renewal. Moreover, our data suggest that cells lacking both Runx1 and Pcgf1 are blocked at an early progenitor stage, indicating that a concerted action of the transcription factor Runx1, together with the epigenetic repressor Pcgf1, is necessary for terminal differentiation. The results of the present study uncover a link between transcriptional and epigenetic regulation that is required for hematopoietic differentiation.
Collapse
|
20
|
Bahrami SB, Veiseh M, Dunn AA, Boudreau NJ. Temporal changes in Hox gene expression accompany endothelial cell differentiation of embryonic stem cells. Cell Adh Migr 2011; 5:133-41. [PMID: 21200152 DOI: 10.4161/cam.5.2.14373] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In pluripotent embryonic stem cells (ESCs), expression of the Hox master regulatory transcription factors that play essential roles in organogenesis, angiogenesis, and maintenance of differentiated tissues, is globally suppressed. We investigated whether differentiation of endothelial cells (ECs) from mouse ESCs was accompanied by activation of distinct Hox gene expression profiles. Differentiation was observed within 3 days, as indicated by the appearance of cells expressing specific endothelial marker genes (Flk-1+ /VE-Cadherin+ ). Expression of HoxA3 and HoxD3, which drive adult endothelial cell invasion and angiogenesis, peaked at day 3 and declined thereafter, whereas expression of HoxA5 and HoxD10, which maintain a mature quiescent EC phenotype, was low at day 3, but increased over time. The temporal and reciprocal changes in HoxD3 and HoxA5 expression were accompanied by corresponding changes in expression of established downstream target genes including integrin β3 and Thrombospondin-2. Our results indicate that differentiation and maturation of ECs derived from cultured ESCs mimic changes in Hox gene expression that accompany maturation of immature angiogenic endothelium into differentiated quiescent endothelium in vivo.
Collapse
Affiliation(s)
- S Bahram Bahrami
- Department of Surgery; University of California-San Francisco, CA, USA
| | | | | | | |
Collapse
|
21
|
Crosstalk between leukemia-associated proteins MOZ and MLL regulates HOX gene expression in human cord blood CD34+ cells. Oncogene 2010; 29:5019-31. [PMID: 20581860 DOI: 10.1038/onc.2010.254] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
MOZ and MLL, encoding a histone acetyltransferase (HAT) and a histone methyltransferase, respectively, are targets for recurrent chromosomal translocations found in acute myeloblastic or lymphoblastic leukemia. In MOZ (MOnocytic leukemia Zinc-finger protein)/CBP- or mixed lineage leukemia (MLL)-rearranged leukemias, abnormal levels of HOX transcription factors have been found to be critical for leukemogenesis. We show that MOZ and MLL cooperate to regulate these key genes in human cord blood CD34+ cells. These chromatin-modifying enzymes interact, colocalize and functionally cooperate, and both are recruited to multiple HOX promoters. We also found that WDR5, an adaptor protein essential for lysine 4 trimethylation of histone H3 (H3K4me3) by MLL, colocalizes and interacts with MOZ. We detected the binding of the HAT MOZ to H3K4me3, thus linking histone methylation to acetylation. In CD34+ cells, depletion of MLL causes release of MOZ from HOX promoters, which is correlated to defective histone activation marks, leading to repression of HOX gene expression and alteration of commitment of CD34+ cells into myeloid progenitors. Thus, our results unveil the role of the interaction between MOZ and MLL in CD34+ cells in which both proteins have a critical role in hematopoietic cell-fate decision, suggesting a new molecular mechanism by which MOZ or MLL deregulation leads to leukemogenesis.
Collapse
|
22
|
Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration. Blood 2009; 113:2535-46. [PMID: 19139076 DOI: 10.1182/blood-2008-07-171967] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Granulocyte colony-stimulating factor receptor (GCSFR) signaling participates in the production of neutrophilic granulocytes during normal hematopoietic development, with a particularly important role during emergency hematopoiesis. This study describes the characterization of the zebrafish gcsf and gcsfr genes, which showed broad conservation and similar regulation to their mammalian counterparts. Morpholino-mediated knockdown of gcsfr and overexpression of gcsf revealed the presence of an anterior population of myeloid cells during primitive hematopoiesis that was dependent on GCSF/GCSFR for development and migration. This contrasted with a posterior domain that was largely independent of this pathway. Definitive myelopoiesis was also partially dependent on a functional GCSF/GCSFR pathway. Injection of bacterial lipopolysaccharide elicited significant induction of gcsf expression and emergency production of myeloid cells, which was abrogated by gcsfr knockdown. Collectively, these data demonstrate GCSF/GCSFR to be a conserved signaling system for facilitating the production of multiple myeloid cell lineages in both homeostatic and emergency conditions, as well as for early myeloid cell migration, establishing a useful experimental platform for further dissection of this pathway.
Collapse
|
23
|
Lim CK, Hwang WYK, Aw SE, Sun L. Study of gene expression profile during cord blood-associated megakaryopoiesis. Eur J Haematol 2008; 81:196-208. [PMID: 18510698 DOI: 10.1111/j.1600-0609.2008.01104.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS To study the gene profile in cord blood (CB)-associated megakaryopoiesis. METHODS In vitro differentiation of megakaryocytes (Mks) was carried out using human CB CD34(+) cells under the stimulation of recombinant human interleukin-3, stem cell factor and thrombopoietin for 7 d, followed by thrombopoietin only for further 3 d. Lineage-specific differentiation of Mk was examined by the expression of CD41 using flow cytometry and confocal microscopy. Total cellular RNA was extracted from day-0 CD34(+), day-10 CD41(+) and CD41(-) populations were isolated by immunomagnetic sorting respectively. Microarray was performed, and the data were analyzed using the GeneChip Operating System, Spotfire software and Genomatix BiblioSphere. RESULTS Flow cytometric analysis showed 19.44 +/- 3.05% CD41(+) cells at day 10 of culture. The purity of CD41(+) population was enriched to 95.70 +/- 4.19% after sorting. Gene expression profiling revealed an upregulation of 285 and downregulation of 53 unique genes in the CD41(+) cells compared with CD41(-) and CD34(+) cells. Platelet-associated genes, such as thrombospondin 1, platelet glycoprotein IIIa, etc., were highly expressed in CD41(+) cells but not in CD41(-) cells and CD34(+) cells. Moreover, some genes that have not been reported to be associated with CB-derived megakaryopoiesis, such as Cbl-interacting proteins Sts-1, protocadherin 21, etc., are found to be highly expressed in the CD41(+) cells from this study. CONCLUSIONS This study reveals a global gene expression profile of in vitro human CB-derived megakaryopoiesis at day 10. Some of these genes may play regulatory roles during the development of CB-derived megakaryopoiesis.
Collapse
Affiliation(s)
- Che Kang Lim
- Department of Clinical Research, Singapore General Hospital, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
24
|
Igreja C, Fragoso R, Caiado F, Clode N, Henriques A, Camargo L, Reis EM, Dias S. Detailed molecular characterization of cord blood-derived endothelial progenitors. Exp Hematol 2007; 36:193-203. [PMID: 18036718 DOI: 10.1016/j.exphem.2007.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 09/04/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Given their involvement in pathological and physiological angiogenesis, there has been growing interest in understanding and manipulating endothelial progenitor cells (EPC) for therapeutic purposes. However, detailed molecular analysis of EPC before and during endothelial differentiation is lacking and is the subject of the present study. MATERIALS AND METHODS We report a detailed microarray gene-expression profile of freshly isolated (day 0) human cord blood (CB)-derived EPC (CD133+KDR+ or CD34+KDR+), and at different time points during in vitro differentiation (early: day 13; late: day 27). RESULTS Data obtained reflect an EPC transcriptome enriched in genes related to stem/progenitor cells properties (chromatin remodeling, self-renewal, signaling, cytoskeleton organization and biogenesis, recruitment, and adhesion). Using a complementary DNA microarray enriched in intronic transcribed sequences, we observed, as well, that naturally transcribed intronic noncoding RNAs were specifically expressed at the EPC stage. CONCLUSION Taken together, we have defined the global gene-expression profile of CB-derived EPC during the process of endothelial differentiation, which can be used to identify genes involved in different vascular pathologies.
Collapse
Affiliation(s)
- Cátia Igreja
- Angiogenesis Lab, CIPM/Portuguese Institute of Oncology, Lisboa, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rawat VPS, Thoene S, Naidu VM, Arseni N, Heilmeier B, Metzeler K, Petropoulos K, Deshpande A, Quintanilla-Martinez L, Bohlander SK, Spiekermann K, Hiddemann W, Feuring-Buske M, Buske C. Overexpression of CDX2 perturbs HOX gene expression in murine progenitors depending on its N-terminal domain and is closely correlated with deregulated HOX gene expression in human acute myeloid leukemia. Blood 2007; 111:309-19. [PMID: 17855634 DOI: 10.1182/blood-2007-04-085407] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mechanisms underlying deregulation of HOX gene expression in AML are poorly understood. The ParaHox gene CDX2 was shown to act as positive upstream regulator of several HOX genes. In this study, constitutive expression of Cdx2 caused perturbation of leukemogenic Hox genes such as Hoxa10 and Hoxb8 in murine hematopoietic progenitors. Deletion of the N-terminal domain of Cdx2 abrogated its ability to perturb Hox gene expression and to cause acute myeloid leukemia (AML) in mice. In contrast inactivation of the putative Pbx interacting site of Cdx2 did not change the leukemogenic potential of the gene. In an analysis of 115 patients with AML, expression levels of CDX2 were closely correlated with deregulated HOX gene expression. Patients with normal karyotype showed a 14-fold higher expression of CDX2 and deregulated HOX gene expression compared with patients with chromosomal translocations such as t(8:21) or t(15;17). All patients with AML with normal karyotype tested were negative for CDX1 and CDX4 expression. These data link the leukemogenic potential of Cdx2 to its ability to dysregulate Hox genes. They furthermore correlate the level of CDX2 expression with HOX gene expression in human AML and support a potential role of CDX2 in the development of human AML with aberrant Hox gene expression.
Collapse
|
26
|
Moore MAS, Chung KY, Plasilova M, Schuringa JJ, Shieh JH, Zhou P, Morrone G. NUP98 Dysregulation in Myeloid Leukemogenesis. Ann N Y Acad Sci 2007; 1106:114-42. [PMID: 17442773 DOI: 10.1196/annals.1392.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nucleoporin 98 (NUP98) is a component of the nuclear pore complex that facilitates mRNA export from the nucleus. It is mapped to 11p15.5 and is fused to a number of distinct partners, including nine members of the homeobox family as a consequence of leukemia-associated chromosomal translocations. NUP98-HOXA9 is associated with the t(7;11)(p15;p15) translocation in acute myeloid leukemia (AML), myelodysplastic syndrome, and blastic crisis of chronic myeloid leukemia. Expression of NUP98-HOXA9 in murine bone marrow resulted in a myeloproliferative disease progressing to AML by 7-8 months. Transduction of NUP98 fusion genes into human CD34(+) cells confers a proliferative advantage in long-term cytokine-stimulated and stromal cocultures and in NOD-SCID engrafted mice, associated with a five- to eight-fold increase in hematopoietic stem cells. NUP98-HOXA9 expression inhibited erythroid and myeloid differentiation but enhanced serial progenitor replating. NUP98-HOXA9 upregulated a number of homeobox genes of the A and B cluster as well as MEIS1 and Pim-1, and downmodulated globin genes and C/EBPalpha. The HOXA9 component of the NUP98-HOXA9 fusion protein was protected from cullin-4A-mediated ubiquitination and subsequent proteasome-dependent degradation. In NUP98-HOX-transduced CD34(+) cells and cells from AML patients with t(7;11)(p15;p15) NUP98 was no longer associated with the nuclear pore complex but formed intranuclear aggregation bodies. Analysis of NUP98 allelic expression in AML and myelodysplastic syndrome showed loss of heterozygosity observed in 29% of the former and 8% of the latter. This was associated with poor prognosis.
Collapse
MESH Headings
- Alleles
- Animals
- Antigens, CD34/biosynthesis
- Cell Nucleus/metabolism
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 7
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Loss of Heterozygosity
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Nuclear Pore Complex Proteins/physiology
Collapse
Affiliation(s)
- M A S Moore
- Moore Laboratory, Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Moore MAS, Dorn DC, Schuringa JJ, Chung KY, Morrone G. Constitutive activation of Flt3 and STAT5A enhances self-renewal and alters differentiation of hematopoietic stem cells. Exp Hematol 2007; 35:105-16. [PMID: 17379095 DOI: 10.1016/j.exphem.2007.01.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To model human leukemogenesis by transduction of human hematopoietic stem cells (HSC) with genes associated with leukemia and expressed in leukemic stem cells. METHODS Constitutive activation of Flt3 (Flt3-ITD) has been reported in 25 to 30% of patients with acute myeloid leukemia (AML). Retroviral vectors expressing constitutively activated Flt3 and STAT5A were used to transduce human cord blood CD34(+) cells and HSC cell self-renewal and differentiation were evaluated. RESULTS We have demonstrated that retroviral transduction of Flt3 mutations into CD34(+) cells enhanced HSC self-renewal as measured in vitro in competitive stromal coculture and limiting-dilution week-2 cobblestone (CAFC) assays. Enhanced erythropoiesis and decreased myelopoiesis were noted together with strong activation of STAT5A. Consequently, transduction studies were undertaken with a constitutively active mutant of STAT5A (STAT5A[1( *)6]) and here also a marked, selective expansion of transduced CD34(+) cells was noted, with a massive increase in self-renewing CAFC detectable at both 2 and 5 weeks of stromal coculture. Differentiation was biased to erythropoiesis, including erythropoietin independence, with myeloid maturation inhibition. The observed phenotypic changes correlated with differential gene expression, with a number of genes differentially regulated by both the Flt3 and STAT5A mutants. These included upregulation of genes involved in erythropoiesis and downregulation of genes involved in myelopoiesis. The phenotype of week-2 self-renewing CAFC also characterized primary Flt3-ITD(+) AML bone marrow samples. Isolation of leukemic stem cells (LSC) with a CD34(+), CD38(-), HLA-DR(-) phenotype was undertaken with Flt3-ITD(+) AML samples resulting in co-purification of early CAFC. Gene expression of LSC relative to the bulk leukemic population revealed upregulation of homeobox genes (HOXA9, HOXA5) implicated in leukemogenesis, and hepatic leukemia factor (HLF) involved in stem cell proliferation. CONCLUSION Myeloid leukemogenesis is a multi-stage process that can involve constitutively activated receptors and downstream pathways involving STAT5, HOX genes, and HLF.
Collapse
Affiliation(s)
- Malcolm A S Moore
- Moore Laboratory, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
28
|
Chung KY, Morrone G, Schuringa JJ, Plasilova M, Shieh JH, Zhang Y, Zhou P, Moore MAS. Enforced expression of NUP98-HOXA9 in human CD34(+) cells enhances stem cell proliferation. Cancer Res 2007; 66:11781-91. [PMID: 17178874 DOI: 10.1158/0008-5472.can-06-0706] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The t(7;11)(p15;p15) translocation, observed in acute myelogenous leukemia and myelodysplastic syndrome, generates a chimeric gene where the 5' portion of the sequence encoding the human nucleoporin NUP98 protein is fused to the 3' region of HOXA9. Here, we show that retroviral-mediated enforced expression of the NUP98-HOXA9 fusion protein in cord blood-derived CD34(+) cells confers a proliferative advantage in both cytokine-stimulated suspension cultures and stromal coculture. This advantage is reflected in the selective expansion of hematopoietic stem cells as measured in vitro by cobblestone area-forming cell assays and in vivo by competitive repopulation of nonobese diabetic/severe combined immunodeficient mice. NUP98-HOXA9 expression inhibited erythroid progenitor differentiation and delayed neutrophil maturation in transduced progenitors but strongly enhanced their serial replating efficiency. Analysis of the transcriptosome of transduced cells revealed up-regulation of several homeobox genes of the A and B cluster as well as of Meis1 and Pim-1 and down-modulation of globin genes and of CAAT/enhancer binding protein alpha. The latter gene, when coexpressed with NUP98-HOXA9, reversed the enhanced proliferation of transduced CD34(+) cells. Unlike HOXA9, the NUP98-HOXA9 fusion was protected from ubiquitination mediated by Cullin-4A and subsequent proteasome-dependent degradation. The resulting protein stabilization may contribute to the leukemogenic activity of the fusion protein.
Collapse
Affiliation(s)
- Ki Y Chung
- Department of Medicine and Moore Laboratory, Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Magnusson M, Brun ACM, Miyake N, Larsson J, Ehinger M, Bjornsson JM, Wutz A, Sigvardsson M, Karlsson S. HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development. Blood 2007; 109:3687-96. [PMID: 17234739 DOI: 10.1182/blood-2006-10-054676] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
AbstractThe Homeobox (Hox) transcription factors are important regulators of normal and malignant hematopoiesis because they control proliferation, differentiation, and self-renewal of hematopoietic cells at different levels of the hematopoietic hierarchy. In transgenic mice we show that the expression of HOXA10 is tightly regulated by doxycycline. Intermediate concentrations of HOXA10 induced a 15-fold increase in the repopulating capacity of hematopoietic stem cells (HSCs) after 13 days of in vitro culture. Notably, the proliferation induction of HSC by HOXA10 was dependent on the HOXA10 concentration, because high levels of HOXA10 had no effect on HSC proliferation. Furthermore, high levels of HOXA10 blocked erythroid and megakaryocyte development, demonstrating that tight regulation of HOXA10 is critical for normal development of the erythroid and megakaryocytic lineages. The HOXA10-mediated effects on hematopoietic cells were associated with altered expression of genes that govern stem-cell self-renewal and lineage commitment (eg, hepatic leukemia factor [HlF], Dickkopf-1 [Dkk-1], growth factor independent-1 [Gfi-1], and Gata-1). Interestingly, binding sites for HOXA10 were found in HLF, Dkk-1, and Gata-1, and Dkk-1 and Gfi-1 were transcriptionally activated by HOXA10. These findings reveal novel molecular pathways that act downstream of HOXA10 and identify HOXA10 as a master regulator of postnatal hematopoietic development.
Collapse
Affiliation(s)
- Mattias Magnusson
- Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine, Lund University Hospital, 221 84 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cheung AMS, Tam CKH, Chow HCH, Verfaillie CM, Liang R, Leung AYH. All-trans retinoic acid induces proliferation of an irradiated stem cell supporting stromal cell line AFT024. Exp Hematol 2007; 35:56-63. [PMID: 17198874 DOI: 10.1016/j.exphem.2006.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 08/25/2006] [Accepted: 09/19/2006] [Indexed: 01/25/2023]
Abstract
OBJECTIVE We have previously shown that all-trans retinoic acid (ATRA) enhanced the maintenance of early human hematopoietic progenitor cells (HPCs) in the presence of an irradiated stromal cell line AFT024. In this study, we examined the effects of ATRA on the stromal cell component with particular reference to cellular proliferation and gene expression. METHODS Irradiated AFT024 cells were cultured in Dulbecco's Modified Eagle's Medium supplemented with fetal bovine serum and were incubated with ATRA at 1 mumol/L up to 21 days. The cells were examined in terms of immunostaining for proliferative cell nuclear antigen (PCNA) and BrdU incorporation, apoptosis assay, cell cycle analysis, and gene expression using semiquantitative reverse-transcriptase polymerase chain reaction. RESULTS In the control experiments, AFT024 cells lost their confluence in culture after 15-Gy irradiation and were arrested in G2/M phase on days 7 and 21. ATRA restored the cellular confluence with an increase in proliferation on day 21 (BrdU incorporation: 20.6-fold; PCNA staining: 51.7-fold) with reversal of cell cycle arrest (S phase: 2.7-fold increase; G2/M phase: 2.0-fold decrease). There was no effect on apoptosis as shown by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining. ATRA significantly upregulated the expression of cell cycle genes for checkpoint transition, including cyclin A2, B2, and aurora kinase B, as well as genes associated with a putative role in HPC maintenance, including osteopontin, HoxA5, enhancer of zeste homolog 2, and peroxisome proliferator-activated receptor gamma. CONCLUSION We concluded that ATRA induced cellular proliferation of irradiated AFT024 cells and expression of a number of genes whose relevance to HPC homeostasis would have to be further examined.
Collapse
Affiliation(s)
- Alice M S Cheung
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
31
|
Hemmoranta H, Hautaniemi S, Niemi J, Nicorici D, Laine J, Yli-Harja O, Partanen J, Jaatinen T. Transcriptional Profiling Reflects Shared and Unique Characters for CD34+and CD133+Cells. Stem Cells Dev 2006; 15:839-51. [PMID: 17253947 DOI: 10.1089/scd.2006.15.839] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD34 and CD133 are the most commonly used markers to enrich hematopoietic stem cells (HSCs). Positively selected HSCs are increasingly used for autologous and allogeneic transplantation, yet the biological properties of CD34(+) and CD133(+) cells are largely unknown. In the present study, a genome-wide gene expression analysis of human cord blood (CB)-derived CD34(+) cells was performed. The CD34(+) gene expression profile was compared to an identically constructed CD133(+) gene expression profile to reveal the specific expression patterns and major differences of CD34(+) and CD133(+) cells. As expected, many genes were similarly expressed in the two cell populations, but cell-type-specific gene expression was also demonstrated. Self-organizing map analysis was used to identify transcripts having similar expression patterns, and the results were compared between CD34(+) and CD133(+) cells. Also, a prioritization algorithm was used to rank the genes best separating CD34(+) and CD133(+) cells from their CD34() and CD133() counterparts in CB. Our results show that CD133(+) cells have higher numbers of up-regulated genes than CD34(+) cells. Furthermore, the uniquely expressed genes in CD34(+) or CD133(+) cell populations were associated with different biological processes. CD34(+) cells overexpressed many transcripts associated with development and response to stress or external stimuli. In CD133(+) cells, the most significantly represented biological processes were establishment and maintenance of chromatin architecture, DNA metabolism, and cell cycle. The differences between the gene expression profiles of CD34(+) and CD133(+) cells indicate the more primitive nature of CD133(+) cells. These profiles suggest that CD34(+) and CD133(+) cells may have different roles in hematopoietic regeneration.
Collapse
Affiliation(s)
- Heidi Hemmoranta
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Toren A, Bielorai B, Jacob-Hirsch J, Fisher T, Kreiser D, Moran O, Zeligson S, Givol D, Yitzhaky A, Itskovitz-Eldor J, Kventsel I, Rosenthal E, Amariglio N, Rechavi G. CD133-positive hematopoietic stem cell "stemness" genes contain many genes mutated or abnormally expressed in leukemia. Stem Cells 2006; 23:1142-53. [PMID: 16140871 DOI: 10.1634/stemcells.2004-0317] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Affymetrix human Hu133A oligonucleotide arrays were used to study the expression profile of CD133+ cord blood (CB) and peripheral blood (PB) using CD133 cell-surface marker. An unsupervised hierarchical clustering of 14,025 valid probe sets showed a clear distinction between the CD133+ cells representing the hematopoietic stem cell (HSC) population and CD133-differentiated cells. Two hundred forty-four genes were found to be upregulated by at least twofold in the CD133-positive cells of both CB and PB compared with the CD133-negative cells. These genes represent the hematopoietic "stemness," whereas the 218 and 304 upregulated genes exclusively in PB and CB, respectively, represent tissue specificity. Some of the stemness genes were also common to HSC genes found to be upregulated in several recently published studies. Among these common stemness genes, we identified several groups of genes that have an important role in hematopoiesis: growth factor receptors, transcription factors, genes that have an important role in development, and genes involved in cell growth. Sixteen selected stemness genes are known to be mutated or abnormally regulated in acute leukemias. It can be suggested that key hematopoietic stemness machinery genes may lead to abnormal proliferation and leukemia upon mutation or change of their expression.
Collapse
Affiliation(s)
- Amos Toren
- Department of Pediatric Hematology-Oncology, Sheba Medical Center,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Okada Y, Jiang Q, Lemieux M, Jeannotte L, Su L, Zhang Y. Leukaemic transformation by CALM-AF10 involves upregulation of Hoxa5 by hDOT1L. Nat Cell Biol 2006; 8:1017-24. [PMID: 16921363 PMCID: PMC4425349 DOI: 10.1038/ncb1464] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 07/23/2006] [Indexed: 12/16/2022]
Abstract
Chromosomal translocation is a common cause of leukaemia and the most common chromosome translocations found in leukaemia patients involve the mixed lineage leukaemia (MLL) gene. AF10 is one of more than 30 MLL fusion partners in leukaemia. We have recently demonstrated that the H3K79 methyltransferase hDOT1L contributes to MLL-AF10-mediated leukaemogenesis through its interaction with AF10 (ref. 5). In addition to MLL, AF10 has also been reported to fuse to CALM (clathrin-assembly protein-like lymphoid-myeloid) in patients with T-cell acute lymphoblastic leukaemia (T-ALL) and acute myeloid leukaemia (AML). Here, we analysed the molecular mechanism of leukaemogenesis by CALM-AF10. We demonstrate that CALM-AF10 fusion is both necessary and sufficient for leukaemic transformation. Additionally, we provide evidence that hDOT1L has an important role in the transformation process. hDOT1L contributes to CALM-AF10-mediated leukaemic transformation by preventing nuclear export of CALM-AF10 and by upregulating the Hoxa5 gene through H3K79 methylation. Thus, our study establishes CALM-AF10 fusion as a cause of leukaemia and reveals that mistargeting of hDOT1L and upregulation of Hoxa5 through H3K79 methylation is the underlying mechanism behind leukaemia caused by CALM-AF10 fusion.
Collapse
Affiliation(s)
- Yuki Okada
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599–7295, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599–7295, USA
| | - Qi Jiang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599–7295, USA
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599–7295, USA
| | - Margot Lemieux
- Centre de Recherche de L’Hotel-Dieu de Quebec, 9 rue McMahon, Quebec, QC G1R 2J6, Canada
| | - Lucie Jeannotte
- Centre de Recherche de L’Hotel-Dieu de Quebec, 9 rue McMahon, Quebec, QC G1R 2J6, Canada
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599–7295, USA
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599–7295, USA
| | - Yi Zhang
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599–7295, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599–7295, USA
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599–7295, USA
- Correspondence should be addressed to Y.Z. ()
| |
Collapse
|
34
|
Abstract
The existence and roles of a class of abundant regulatory RNA molecules have recently come into sharp focus. Micro-RNAs (miRNAs) are small (approximately 22 bases), non-protein-coding RNAs that recognize target sequences of imperfect complementarity in cognate mRNAs and either destabilize them or inhibit protein translation. Although mechanisms of miRNA biogenesis have been elucidated in some detail, there is limited appreciation of their biological functions. Reported examples typically focus on miRNA regulation of a single tissue-restricted transcript, often one encoding a transcription factor, that controls a specific aspect of development, cell differentiation, or physiology. However, computational algorithms predict up to hundreds of putative targets for individual miRNAs, single transcripts may be regulated by multiple miRNAs, and miRNAs may either eliminate target gene expression or serve to finetune transcript and protein levels. Theoretical considerations and early experimental results hence suggest diverse roles for miRNAs as a class. One appealing possibility, that miRNAs eliminate low-level expression of unwanted genes and hence refine unilineage gene expression, may be especially amenable to evaluation in models of hematopoiesis. This review summarizes current understanding of miRNA mechanisms, outlines some of the important outstanding questions, and describes studies that attempt to define miRNA functions in hematopoiesis.
Collapse
|
35
|
Strathdee G, Sim A, Soutar R, Holyoake TL, Brown R. HOXA5 is targeted by cell-type-specific CpG island methylation in normal cells and during the development of acute myeloid leukaemia. Carcinogenesis 2006; 28:299-309. [PMID: 16861263 DOI: 10.1093/carcin/bgl133] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HOXA5 is a member of the HOX gene family, which is known to play key roles during embryonic development and in differentiation of adult cells. In addition, HOXA5 has been implicated as a tumour suppressor in breast cancer and shown to transactivate the p53 gene. CpG island methylation is a common mechanism of gene inactivation in tumour cells, but is rarely involved in control of cell-type-specific (CTS) expression in normal cells. However, here we demonstrate that HOXA5 is one of a small number of genes whose CTS expression pattern is controlled by CTS CpG island methylation in normal cells. Furthermore, chromatin immunoprecipitation analysis identified novel patterns of histone modifications associated with DNA methylation of HOXA5. High levels of methylation of histone residues (lysine 9 and 36 of histone H3) previously associated with transcriptional repression were present in the unmethylated, actively transcribing state, and were then reduced following DNA methylation and gene inactivation. Alterations to the normal patterns of HOXA5 gene methylation were also observed in tumour cells. Quantitative analysis of HOXA5 methylation identified the presence of limited methylation in all of the breast, lung and ovarian tumours examined. However, methylation levels in these three tumour types were nearly always low and comparable with that detected in the corresponding normal tissue. In contrast, acute myeloid leukaemia (AML) samples frequently (60% of samples) exhibited very high methylation levels, far greater than that seen in normal haematopoietic cells, suggesting a role for hypermethylation of HOXA5 in the development of AML, consistent with its previously identified role in haematopoietic differentiation.
Collapse
Affiliation(s)
- Gordon Strathdee
- Centre for Oncology and Applied Pharmacology, CR-UK Beatson Laboratories, G61 1BD UK.
| | | | | | | | | |
Collapse
|
36
|
Strathdee G, Sim A, Parker A, Oscier D, Brown R. Promoter hypermethylation silences expression of the HoxA4 gene and correlates with IgVh mutational status in CLL. Leukemia 2006; 20:1326-9. [PMID: 16688227 DOI: 10.1038/sj.leu.2404254] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Ferrell CM, Dorsam ST, Ohta H, Humphries RK, Derynck MK, Haqq C, Largman C, Lawrence HJ. Activation of Stem-Cell Specific Genes by HOXA9 and HOXA10 Homeodomain Proteins in CD34+Human Cord Blood Cells. Stem Cells 2005; 23:644-55. [PMID: 15849172 DOI: 10.1634/stemcells.2004-0198] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is growing evidence for a role of HOX homeodomain proteins in normal hematopoiesis. Several HOX genes, including HOXA9 and HOXA10, are expressed in primitive hematopoietic cells, implying a role in early hematopoietic differentiation. To identify potential target genes of these two closely related transcription factors, human CD34+ umbilical cord blood cells were transduced with vectors expressing either HOXA9 or HOXA10 and analyzed with cDNA micro-arrays. Statistical analysis using significance analysis of microarrays revealed a common signature of several hundred genes, demonstrating that the transcriptomes of HOXA9 and HOXA10 largely overlap in this cellular context. Seven genes that were upregulated by both HOX proteins were validated by real-time reverse transcription polymerase chain reaction. HOXA9 and HOXA10 showed positive regulation of genes in the Wnt pathway, including Wnt10B and two Wnt receptors Frizzled 1 and Frizzled 5, an important pathway for hematopoietic stem cell (HSC) self-renewal. Other validated genes included v-ets-related gene (ERG), Iroquois 3 (IRX3), aldehyde dehydrogenase 1 (ALDH1), and very long-chain acyl-CoA synthetase homolog 1 (VLCS-H1). GenMAPP (Gene Micro Array Pathway Profiler) analysis indicated that HOXA10 repressed expression of several genes involved in heme biosynthesis and three globin genes, indicating a general suppression of erythroid differentiation. A number of genes regulated by HOXA9 and HOXA10 are expressed in normal HSC populations.
Collapse
Affiliation(s)
- Christina M Ferrell
- Department of Medicine, Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Manfredini R, Zini R, Salati S, Siena M, Tenedini E, Tagliafico E, Montanari M, Zanocco-Marani T, Gemelli C, Vignudelli T, Grande A, Fogli M, Rossi L, Fagioli ME, Catani L, Lemoli RM, Ferrari S. The Kinetic Status of Hematopoietic Stem Cell Subpopulations Underlies a Differential Expression of Genes Involved in Self-Renewal, Commitment, and Engraftment. Stem Cells 2005; 23:496-506. [PMID: 15790771 DOI: 10.1634/stemcells.2004-0265] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The gene expression profile of CD34(-) hematopoietic stem cells (HSCs) and the correlations with their biological properties are still poorly understood. To address this issue, we used the DNA microarray technology to compare the expression profiles of different peripheral blood hemopoietic stem/progenitor cell subsets, lineage-negative (Lin(-)) CD34(-), Lin(-)CD34(+), and Lin(+)CD34(+) cells. The analysis of gene categories differentially expressed shows that the expression of CD34 is associated with cell cycle entry and metabolic activation, such as DNA, RNA, and protein synthesis. Moreover, the significant upregulation in CD34(-) cells of pathways inhibiting HSC proliferation induces a strong differential expression of cyclins, cyclin-dependent kinases (CDKs), CDK inhibitors, and growth-arrest genes. According to the expression of their receptors and transducers, interleukin (IL)-10 and IL-17 showed an inhibitory effect on the clonogenic activity of CD34(-) cells. Conversely, CD34(+) cells were sensitive to the mitogenic stimulus of thrombopoietin. Furthermore, CD34(-) cells express preferentially genes related to neural, epithelial, and muscle differentiation. The analysis of transcription factor expression shows that the CD34 induction results in the upregulation of genes related to self-renewal and lineage commitment. The preferential expression in CD34(+) cells of genes supporting the HSC mobilization and homing to the bone marrow, such as chemokine receptors and integrins, gives the molecular basis for the higher engraftment capacity of CD34(+) cells. Thus, the different kinetic status of CD34(-) and CD34(+) cells, detailed by molecular and functional analysis, significantly influences their biological behavior.
Collapse
Affiliation(s)
- Rossella Manfredini
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Via Campi 287, 41100 Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR. The pathophysiology of HOX genes and their role in cancer. J Pathol 2005; 205:154-71. [PMID: 15643670 DOI: 10.1002/path.1710] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The HOM-C clustered prototype homeobox genes of Drosophila, and their counterparts, the HOX genes in humans, are highly conserved at the genomic level. These master regulators of development continue to be expressed throughout adulthood in various tissues and organs. The physiological and patho-physiological functions of this network of genes are being avidly pursued within the scientific community, but defined roles for them remain elusive. The order of expression of HOX genes within a cluster is co-ordinated during development, so that the 3' genes are expressed more anteriorly and earlier than the 5' genes. Mutations in HOXA13 and HOXD13 are associated with disorders of limb formation such as hand-foot-genital syndrome (HFGS), synpolydactyly (SPD), and brachydactyly. Haematopoietic progenitors express HOX genes in a pattern characteristic of the lineage and stage of differentiation of the cells. In leukaemia, dysregulated HOX gene expression can occur due to chromosomal translocations involving upstream regulators such as the MLL gene, or the fusion of a HOX gene to another gene such as the nucleoporin, NUP98. Recent investigations of HOX gene expression in leukaemia are providing important insights into disease classification and prediction of clinical outcome. Whereas the oncogenic potential of certain HOX genes in leukaemia has already been defined, their role in other neoplasms is currently being studied. Progress has been hampered by the experimental approach used in many studies in which the expression of small subsets of HOX genes was analysed, and complicated by the functional redundancy implicit in the HOX gene system. Attempts to elucidate the function of HOX genes in malignant transformation will be enhanced by a better understanding of their upstream regulators and downstream target genes.
Collapse
Affiliation(s)
- D G Grier
- Department of Child Health, Queen's University, Belfast, Grosvenor Road, Belfast BT12 6BA, UK
| | | | | | | | | | | |
Collapse
|
40
|
Wermuth PJ, Buchberg AM. Meis1-mediated apoptosis is caspase dependent and can be suppressed by coexpression of HoxA9 in murine and human cell lines. Blood 2004; 105:1222-30. [PMID: 15479723 DOI: 10.1182/blood-2004-03-0802] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Coexpression of the homeodomain protein Meis1 and either HoxA7 or HoxA9 is characteristic of many acute myelogenous leukemias. Although Meis1 can be overexpressed in bone marrow long-term repopulating cells, it is incapable of mediating their transformation. Although overexpressing HoxA9 alone transforms murine bone marrow cells, concurrent Meis1 overexpression greatly accelerates oncogenesis. Meis1-HoxA9 cooperation suppresses several myeloid differentiation pathways. We now report that Meis1 overexpression strongly induces apoptosis in a variety of cell types in vitro through a caspase-dependent process. Meis1 requires a functional homeodomain and Pbx-interaction motif to induce apoptosis. Coexpressing HoxA9 with Meis1 suppresses this apoptosis and provides protection from several apoptosis inducers. Pbx1, another Meis1 cofactor, also induces apoptosis; however, coexpressing HoxA9 is incapable of rescuing Pbx-mediated apoptosis. This resistance to apoptotic stimuli, coupled with the previously reported ability to suppress multiple myeloid differentiation pathways, would provide a strong selective advantage to Meis1-HoxA9 coexpressing cells in vivo, leading to leukemogenesis.
Collapse
Affiliation(s)
- Peter J Wermuth
- Department of Microbiology and Immunology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, 233 S 10th St, Philadelphia, PA 19107-5541, USA
| | | |
Collapse
|
41
|
Kajiume T, Ninomiya Y, Ishihara H, Kanno R, Kanno M. Polycomb group gene mel-18 modulates the self-renewal activity and cell cycle status of hematopoietic stem cells. Exp Hematol 2004; 32:571-8. [PMID: 15183898 DOI: 10.1016/j.exphem.2004.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 03/05/2004] [Accepted: 03/09/2004] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Mel-18 is a member of the mammalian Polycomb group (PcG) genes. This family of genes regulates global gene expression in many biologic processes, including hematopoiesis and anterior-posterior axis formation by manipulating specific target genes, including members of the Hox family. Here, we demonstrate that mel-18 negatively regulates the self-renewal activity of hematopoietic stem cells (HSCs). MATERIALS AND METHODS Long-term reconstitution activity was evaluated by competitive repopulating unit (CRU) and mean activity of the stem cells (MAS) assays in vivo in bone marrow cells (BMCs) derived from mel-18(-/-) and mel-18 tg mice. The expression levels of mel-18 and Hoxb4 were measured by quantitative real-time reverse transcription polymerase chain reaction. RESULTS The Hoxb4 gene was highly expressed in HSCs derived from mel-18(-/-) mice. The observed CRUs were 3.21, 4.77, 3.32, and 1.64 CRU per 10(5) BMCs in mel-18(+/+), mel-18(-/-), C57BL/6, and mel-18 tg, respectively. MAS was 0.58, 0.18, 0.41, and 5.89 in mel-18(+/+), mel-18(-/-), C57BL/6, and mel-18 tg, respectively. The percentage in G0 phase HSCs (lin(-)flk2(-)c-Kit(+)Sca1+ cells) was increased in mel-18(-/-) mice and decreased in mel-18 tg mice. CONCLUSION Loss or knockdown of mel-18 leads to the expression of Hoxb4, an increase in the proportion of HSCs in G0 phase, and the subsequent promotion of HSC self-renewal. These findings will enable us to develop new approaches for controlling HSC activity for hematopoietic transplantations based on ex vivo expansion of HSCs.
Collapse
Affiliation(s)
- Teruyuki Kajiume
- Department of Immunology, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
42
|
Brun ACM, Björnsson JM, Magnusson M, Larsson N, Leveén P, Ehinger M, Nilsson E, Karlsson S. Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood 2004; 103:4126-33. [PMID: 14962901 DOI: 10.1182/blood-2003-10-3557] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AbstractEnforced expression of Hoxb4 dramatically increases the regeneration of murine hematopoietic stem cells (HSCs) after transplantation and enhances the repopulation ability of human severe combined immunodeficiency (SCID) repopulating cells. Therefore, we asked what physiologic role Hoxb4 has in hematopoiesis. A novel mouse model lacking the entire Hoxb4 gene exhibits significantly reduced cellularity in spleen and bone marrow (BM) and a subtle reduction in red blood cell counts and hemoglobin values. A mild reduction was observed in the numbers of primitive progenitors and stem cells in adult BM and fetal liver, whereas lineage distribution was normal. Although the cell cycle kinetics of primitive progenitors was normal during endogenous hematopoiesis, defects in proliferative responses of BM Lin- Sca1+ c-kit+ stem and progenitor cells were observed in culture and in vivo after the transplantation of BM and fetal liver HSCs. Quantitative analysis of mRNA from fetal liver revealed that a deficiency of Hoxb4 alone changed the expression levels of several other Hox genes and of genes involved in cell cycle regulation. In summary, the deficiency of Hoxb4 leads to hypocellularity in hematopoietic organs and impaired proliferative capacity. However, Hoxb4 is not required for the generation of HSCs or the maintenance of steady state hematopoiesis.
Collapse
Affiliation(s)
- Ann C M Brun
- Department of Molecular Medicine and Gene Therapy, Institute of Laboratory Medicine, Lund Strategic Center for Stem Cell Biology and Cell Therapy, Lund University Hospital, BMC A12, 221 84 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Roche J, Zeng C, Barón A, Gadgil S, Gemmill RM, Tigaud I, Thomas X, Drabkin HA. Hox expression in AML identifies a distinct subset of patients with intermediate cytogenetics. Leukemia 2004; 18:1059-63. [PMID: 15085154 DOI: 10.1038/sj.leu.2403366] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously reported that favorable and poor prognostic chromosomal rearrangements in acute myeloid leukemia (AML) were associated with distinct levels of HOX expression. We have now analyzed HOX expression in 50 independent adult AML patients (median age=62 years), together with FLT3 and FLT3-ligand mRNA levels, and FLT3 mutation determination. By cluster analysis, we could divide AMLs into cases with low, intermediate and high HOX expression. Cases with high expression were uniquely restricted to a subset of AMLs with intermediate cytogenetics (P=0.0174). This subset has significantly higher levels of FLT3 expression and appears to have an increase of FLT3 mutations (44%), while CEBPalpha mutations were infrequent (6%). FLT3 mRNA levels were correlated with the expression of multiple HOX genes, whereas FLT3 mutations were correlated with HOXB3. In some cases, FLT3 was expressed at levels equivalent to GAPDH in the absence of genomic amplification. We propose that high HOX expression may be characteristically associated with a distinct biologic subset of AML. The apparent global upregulation of HOX expression could be due to growth-factor signaling or, alternatively, these patterns may reflect a particular stage of differentiation of the leukemic cells.
Collapse
Affiliation(s)
- J Roche
- CNRS UMR 6187, Université de Poitiers, 40 Av du Recteur Pineau, Poitiers, Cédex, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
For many years, adult haemopoietic stem cells (HSCs) have been considered 'plastic' in their proliferative and differentiation capacities. Recently, evidence that supports newer concepts of adult stem cell plasticity has been reported. In particular, stem cells from haemopoietic tissues seem to have 'extraordinary' abilities to generate or switch between haemopoietic and nonhaemopoietic lineages, exhibiting an unexpected degree of developmental or differentiation potential. The mechanisms by which cell fate reprogramming occurs are still poorly understood. Nevertheless, an increasing number of studies is challenging one of the main dogmas in biology, namely that mammalian cell differentiation follows established programmes in a hierarchical fashion, and once committed to a particular somatic cell lineage, cells do not change into another somatic lineage. The 'nonhierarchical', 'reversible' phenotype of stem cells in haemopoietic tissues, if it exists, would be an advantage that could be exploited in regenerative medicine. Here, we review the recent advances in HSC biology and discuss the general concepts of adult stem cell plasticity with respect to these cells and how these might be exploited clinically.
Collapse
Affiliation(s)
- E Martin-Rendon
- Stem Cell Research Laboratory, National Blood Service, Oxford Centre, Oxford, UK
| | | |
Collapse
|
45
|
Abstract
Dysregulation of homeobox (HB)-containing genes is becoming increasingly recognized as the underlying basis of many hematologic malignancies. Expression of clustered HB (HOX) genes within the hematopoietic system, and enforced overexpression and knockout studies have provided support for the concept that these homeodomain-containing transcription factors play a significant role in the developmental biology of hematopoietic cells. Diverged HB (non-HOX) genes have recently been identified as either cofactors and/or accelerators of leukemic disease mediated by HOX genes or as bona fide oncogenes. In this review, we examine the evidence that supports a central role for HB genes in normal and malignant hematopoiesis, paying particular attention to the non-HOX class and the possible mechanisms through which they contribute to leukemic transformation.
Collapse
Affiliation(s)
- Bronwyn M Owens
- Hematopoiesis Department, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA.
| | | |
Collapse
|
46
|
Schiedlmeier B, Klump H, Will E, Arman-Kalcek G, Li Z, Wang Z, Rimek A, Friel J, Baum C, Ostertag W. High-level ectopic HOXB4 expression confers a profound in vivo competitive growth advantage on human cord blood CD34+ cells, but impairs lymphomyeloid differentiation. Blood 2003; 101:1759-68. [PMID: 12406897 DOI: 10.1182/blood-2002-03-0767] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ectopic retroviral expression of homeobox B4 (HOXB4) causes an accelerated and enhanced regeneration of murine hematopoietic stem cells (HSCs) and is not known to compromise any program of lineage differentiation. However, HOXB4 expression levels for expansion of human stem cells have still to be established. To test the proposed hypothesis that HOXB4 could become a prime tool for in vivo expansion of genetically modified human HSCs, we retrovirally overexpressed HOXB4 in purified cord blood (CB) CD34+ cells together with green fluorescent protein (GFP) as a reporter protein, and evaluated the impact of ectopic HOXB4 expression on proliferation and differentiation in vitro and in vivo. When injected separately into nonobese diabetic-severe combined immunodeficient (NOD/SCID) mice or in competition with control vector-transduced cells, HOXB4-overexpressing cord blood CD34+ cells had a selective growth advantage in vivo, which resulted in a marked enhancement of the primitive CD34+ subpopulation (P =.01). However, high HOXB4 expression substantially impaired the myeloerythroid differentiation program, and this was reflected in a severe reduction of erythroid and myeloid progenitors in vitro (P <.03) and in vivo (P =.01). Furthermore, HOXB4 overexpression also significantly reduced B-cell output (P <.01). These results show for the first time unwanted side effects of ectopic HOXB4 expression and therefore underscore the need to carefully determine the therapeutic window of HOXB4 expression levels before initializing clinical trials.
Collapse
|
47
|
Thompson A, Quinn MF, Grimwade D, O'Neill CM, Ahmed MR, Grimes S, McMullin MF, Cotter F, Lappin TRJ. Global down-regulation of HOX gene expression in PML-RARalpha + acute promyelocytic leukemia identified by small-array real-time PCR. Blood 2003; 101:1558-65. [PMID: 12560242 DOI: 10.1182/blood.v101.4.1558] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is associated with a reciprocal and balanced translocation involving the retinoic acid receptor-alpha (RARalpha). All-trans retinoic acid (ATRA) is used to treat APL and is a potent morphogen that regulates HOX gene expression in embryogenesis and organogenesis. HOX genes are also involved in hematopoiesis and leukemogenesis. Thirty-nine mammalian HOX genes have been identified and classified into 13 paralogous groups clustered on 4 chromosomes. They encode a complex network of transcription regulatory proteins whose precise targets remain poorly understood. The overall function of the network appears to be dictated by gene dosage. To investigate the mechanisms involved in HOX gene regulation in hematopoiesis and leukemogenesis by precise measurement of individual HOX genes, a small-array real-time HOX (SMART-HOX) quantitative polymerase chain reaction (PCR) platform was designed and validated. Application of SMART-HOX to 16 APL bone marrow samples revealed a global down-regulation of 26 HOX genes compared with normal controls. HOX gene expression was also altered during differentiation induced by ATRA in the PML-RARalpha(+) NB4 cell line. PML-RARalpha fusion proteins have been reported to act as part of a repressor complex during myeloid cell differentiation, and a model linking HOX gene expression to this PML-RARalpha repressor complex is now proposed.
Collapse
MESH Headings
- Bone Marrow/chemistry
- Cell Differentiation/drug effects
- Cloning, Molecular
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Hematopoiesis/genetics
- Homeodomain Proteins/genetics
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Neoplasm Proteins/analysis
- Oncogene Proteins, Fusion/analysis
- Polymerase Chain Reaction
- Sequence Analysis, DNA
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Alexander Thompson
- Department of Haematology, Cancer Research Centre, Queen's University, Belfast, Northern Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Greene WK, Ford J, Dixon D, Tilbrook PA, Watt PM, Klinken SP, Kees UR. Enforced expression of HOX11 is associated with an immature phenotype in J2E erythroid cells. Br J Haematol 2002; 118:909-17. [PMID: 12181065 DOI: 10.1046/j.1365-2141.2002.03704.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The HOX11 gene encodes a homeodomain transcription factor that is essential for spleen development during embryogenesis. HOX11 is also leukaemogenic, both through its clinical association with childhood T-cell acute lymphoblastic leukaemia, and its ability to immortalize other haematopoietic cell lineages experimentally. To examine the pathological role of HOX11 in tumorigenesis, we constitutively expressed HOX11 cDNA in J2E murine erythroleukaemic cells, which are capable of terminal differentiation. Enforced HOX11 expression was found to induce a profound alteration in J2E cellular morphology and differentiation status. Our analyses revealed that HOX11 produced clones with a preponderance of less differentiated cells that were highly adherent to plastic. Morphologically, the cells overexpressing HOX11 were larger and had decreased globin levels, as well as a reduction in haemoglobin synthesis in response to erythropoietin (EPO). Immunocytochemical analysis confirmed the immature erythroid phenotype imposed by HOX11, with clones transfected with HOX11 demonstrating expression of the c-Kit stem cell marker, while retaining EPO receptor expression. Taken together, these results show that HOX11 alters erythroid differentiation, favouring a less mature progenitor-like stage. This supports the notion that disrupted haematopoietic cell differentiation is responsible for pre-leukaemic immortalization by the HOX11 oncoprotein.
Collapse
Affiliation(s)
- Wayne K Greene
- Division of Children's Leukaemia and Cancer Research, TVW Telethon Institute for Child Health Research and Centre for Child Health Research, University of Western Australia, West Perth, Australia.
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The ultimate goal of developmental immunology is to understand the normal processes that give rise to the immune system in order to diagnose and develop effective treatments for diseases that occur as a consequence of immune system defects. Central to achieving this goal is understanding the complex interplay between microenvironmental signals and transcription factors that direct human hematopoietic differentiation and lineage commitment. The ability to isolate highly purified populations of human hematopoietic cells at critical points in differentiation make it possible to answer very specific questions about the hematopoietic process and lineage restriction. This review describes the use of surface immunophenotypes to identify human hematopoietic cells at particular points in differentiation or with particular patterns of lineage restriction. Culture models are discussed in the context of the ability to detect, characterize and determine the lineage potential of human hematopoietic stem cells and progenitors. Variations in hematopoeises that correspond to ontogeny will be examined. Potential roles for the HOX and Ikaros proteins in human lineage commitment will be considered. Also included will be discussion of a number of factors that provide challenges to experimental design, to experimental interpretation, and to the development of a comprehensive model of human hematopoiesis.
Collapse
Affiliation(s)
- Kimberly J Payne
- Childrens Hospital Los Angeles, Division of Research Immunology/Bone Marrow Transplantation, Los Angeles, CA, USA.
| | | |
Collapse
|
50
|
Kömüves LG, Michael E, Arbeit JM, Ma XK, Kwong A, Stelnicki E, Rozenfeld S, Morimune M, Yu QC, Largman C. HOXB4 homeodomain protein is expressed in developing epidermis and skin disorders and modulates keratinocyte proliferation. Dev Dyn 2002; 224:58-68. [PMID: 11984874 DOI: 10.1002/dvdy.10085] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The HOX homeodomain proteins are fundamental regulators of organ and tissue development, where they are thought to function as transcription factors, and HOX gene expression has been associated with numerous types of cancers. Previous studies have demonstrated that enforced expression of the HOXB4 protein transforms cultured fibroblasts and leads to a selective expansion of the hematopoietic stem cell pool, suggesting that this protein might play a role in cellular proliferation. In support of this concept, we now show that enforced expression of HOXB4 in human neonatal keratinocytes results in increased cellular proliferation and colony formation as well as decreased expression of the alpha-2-integrin and CD44 cell surface adhesion molecules. We previously have reported HOXB4 gene expression in the basal and suprabasal layers of developing human skin and now show extensive HOXB4 mRNA in psoriatic skin and basal cell carcinoma. In fetal human skin HOXB4 protein expression was both nuclear and cytoplasmic within epidermal basal cells and in hair follicle inner and outer root sheath cells, whereas strong nuclear signals were observed in the bulge region. In adult skin, HOXB4 protein expression was both nuclear and cytoplasmic, but was predominantly localized to the intermediate and differentiated cell layers. In contrast to the striking gradient patterns of HOX gene and protein expression previously described in developing spinal cord and limb, HOXB4 protein was uniformly detected in all regions of the fetal and adult skin. Although little HOXB4 signal localized to proliferative cell layers, as marked by proliferating cell nuclear antigen (PCNA) staining, in normal adult epidermis, nuclear HOXB4 protein expression substantially overlapped with PCNA-positive cell in a series of samples of hyperproliferative skin. Taken together, these data suggest that nuclear HOXB4 protein may play a role in the regulation of cellular proliferation/adhesion in developing fetal human epidermis and in hyperproliferation conditions, including cancers, in adult epidermis. Published 2002 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- László G Kömüves
- Department of Dermatology, VA Medical Center and University of California-San Francisco, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|