1
|
Soslau G. Platelet protein synthesis, regulation, and post-translational modifications: mechanics and function. Crit Rev Biochem Mol Biol 2023; 58:99-117. [PMID: 37347996 DOI: 10.1080/10409238.2023.2224532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Dogma had been firmly entrenched in the minds of the scientific community that the anucleate mammalian platelet was incapable of protein biosynthesis since their identification in the late 1880s. These beliefs were not challenged until the 1960s when several reports demonstrated that platelets possessed the capacity to biosynthesize proteins. Even then, many still dismissed the synthesis as trivial and unimportant for at least another two decades. Research in the field expanded after the 1980s and numerous reports have since been published that now clearly demonstrate the potential significance of platelet protein synthesis under normal, pathological, and activating conditions. It is now clear that the platelet proteome is not a static entity but can be altered slowly or rapidly in response to external signals to support physiological requirements to maintain hemostasis and other biological processes. All the necessary biological components to support protein synthesis have been identified in platelets along with post-transcriptional processing of mRNAs, regulators of translation, and post-translational modifications such as glycosylation. The last comprehensive review of the subject appeared in 2009 and much work has been conducted since that time. The current review of the field will briefly incorporate the information covered in earlier reviews and then bring the reader up to date with more recent findings.
Collapse
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular Biology Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
2
|
Giloteaux L, Li J, Hornig M, Lipkin WI, Ruppert D, Hanson MR. Proteomics and cytokine analyses distinguish myalgic encephalomyelitis/chronic fatigue syndrome cases from controls. J Transl Med 2023; 21:322. [PMID: 37179299 PMCID: PMC10182359 DOI: 10.1186/s12967-023-04179-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogenous disease characterized by unexplained persistent fatigue and other features including cognitive impairment, myalgias, post-exertional malaise, and immune system dysfunction. Cytokines are present in plasma and encapsulated in extracellular vesicles (EVs), but there have been only a few reports of EV characteristics and cargo in ME/CFS. Several small studies have previously described plasma proteins or protein pathways that are associated with ME/CFS. METHODS We prepared extracellular vesicles (EVs) from frozen plasma samples from a cohort of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) cases and controls with prior published plasma cytokine and plasma proteomics data. The cytokine content of the plasma-derived extracellular vesicles was determined by a multiplex assay and differences between patients and controls were assessed. We then performed multi-omic statistical analyses that considered not only this new data, but extensive clinical data describing the health of the subjects. RESULTS ME/CFS cases exhibited greater size and concentration of EVs in plasma. Assays of cytokine content in EVs revealed IL2 was significantly higher in cases. We observed numerous correlations among EV cytokines, among plasma cytokines, and among plasma proteins from mass spectrometry proteomics. Significant correlations between clinical data and protein levels suggest roles of particular proteins and pathways in the disease. For example, higher levels of the pro-inflammatory cytokines Granulocyte-Monocyte Colony-Stimulating Factor (CSF2) and Tumor Necrosis Factor (TNFα) were correlated with greater physical and fatigue symptoms in ME/CFS cases. Higher serine protease SERPINA5, which is involved in hemostasis, was correlated with higher SF-36 general health scores in ME/CFS. Machine learning classifiers were able to identify a list of 20 proteins that could discriminate between cases and controls, with XGBoost providing the best classification with 86.1% accuracy and a cross-validated AUROC value of 0.947. Random Forest distinguished cases from controls with 79.1% accuracy and an AUROC value of 0.891 using only 7 proteins. CONCLUSIONS These findings add to the substantial number of objective differences in biomolecules that have been identified in individuals with ME/CFS. The observed correlations of proteins important in immune responses and hemostasis with clinical data further implicates a disturbance of these functions in ME/CFS.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Jiayin Li
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- Departments of Neurology and Pathology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David Ruppert
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
- School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Cell penetrating SERPINA5 (ProteinC inhibitor, PCI): More questions than answers. Semin Cell Dev Biol 2017; 62:187-193. [DOI: 10.1016/j.semcdb.2016.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022]
|
4
|
Wahlmüller FC, Yang H, Furtmüller M, Geiger M. Regulation of the Extracellular SERPINA5 (Protein C Inhibitor) Penetration Through Cellular Membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639251 DOI: 10.1007/5584_2017_60] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is generally accepted that the phospholipid bilayer of the cell membrane is impermeable for proteins and peptides and that these molecules require special mechanisms for their transport from the extra- to the intracellular space. Recently there is increasing evidence that certain proteins/peptides can also directly cross the phospholipid membrane. SERPINA5 (protein C inhibitor) is a secreted protease inhibitor with broad protease reactivity and wide tissue distribution. It binds glycosaminoglycans and certain phospoholipids, which can modulate its inhibitory activity. SERPINA5 has been shown to be internalized by platelets, granulocytes, HL-60 promyelocytic leukemia cells, and by Jurkat lymphoma cells. Once inside the cell it can translocate to the nucleus. There are several indications that SERPINA5 can directly cross the phospholipid bilayer of the cell membrane. In this review we will describe what is known so far about the conditions, as well as the cellular and molecular requirements for SERPINA5 translocation through the cell membrane and for its penetration of pure phospholipid vesicles.
Collapse
Affiliation(s)
- Felix C Wahlmüller
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Hanjiang Yang
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Margareta Furtmüller
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Margarethe Geiger
- Department of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Einfinger K, Badrnya S, Furtmüller M, Handschuh D, Lindner H, Geiger M. Phospholipid Binding Protein C Inhibitor (PCI) Is Present on Microparticles Generated In Vitro and In Vivo. PLoS One 2015; 10:e0143137. [PMID: 26580551 PMCID: PMC4651509 DOI: 10.1371/journal.pone.0143137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles.
Collapse
Affiliation(s)
- Katrin Einfinger
- Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Sigrun Badrnya
- Center of Physiology and Pharmacology, Department of Physiology, Medical University of Vienna, Vienna, Austria
| | - Margareta Furtmüller
- Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Handschuh
- Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Herbert Lindner
- Biocenter, Division of Clinical Biochemistry, Innsbruck Medical University, Innsbruck, Austria
| | - Margarethe Geiger
- Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
6
|
Malmström E, Mörgelin M, Malmsten M, Johansson L, Norrby-Teglund A, Shannon O, Schmidtchen A, Meijers JCM, Herwald H. Protein C inhibitor--a novel antimicrobial agent. PLoS Pathog 2009; 5:e1000698. [PMID: 20019810 PMCID: PMC2788422 DOI: 10.1371/journal.ppat.1000698] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 11/17/2009] [Indexed: 01/21/2023] Open
Abstract
Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor belonging to the family of serpin proteins. Here we describe that PCI exerts broad antimicrobial activity against bacterial pathogens. This ability is mediated by the interaction of PCI with lipid membranes, which subsequently leads to their permeabilization. As shown by negative staining electron microscopy, treatment of Escherichia coli or Streptococcus pyogenes bacteria with PCI triggers membrane disruption followed by the efflux of bacterial cytosolic contents and bacterial killing. The antimicrobial activity of PCI is located to the heparin-binding site of the protein and a peptide spanning this region was found to mimic the antimicrobial activity of PCI, without causing lysis or membrane destruction of eukaryotic cells. Finally, we show that platelets can assemble PCI on their surface upon activation. As platelets are recruited to the site of a bacterial infection, these results may explain our finding that PCI levels are increased in tissue biopsies from patients suffering from necrotizing fasciitis caused by S. pyogenes. Taken together, our data describe a new function for PCI in innate immunity. The innate immune system is an integral part of our battle against an invading pathogen. Antimicrobial peptides and proteins partake in this fight due to their ability to perforate the bacterial cell wall, which eventually will cause the efflux of bacterial cytosolic content and efficient bacterial killing. Protein C inhibitor (PCI) is a multifunctional heparin-binding serpin which has been implicated in a number of pathological conditions, including severe infectious diseases. Here we show that PCI is a potent antimicrobial agent that is able to destroy the bacterial cell wall and thereby cause death of the bacteria. Our study also shows that in contrast to many other antimicrobial peptides, processing of PCI is not required since the full length protein exerts its antimicrobial activity, and we present data demonstrating that PCI is enriched at the infected site of patients suffering from severe streptococcal infection.
Collapse
Affiliation(s)
- Erik Malmström
- Department of Clinical Sciences, Section for Clinical and Experimental Infection Medicine, Lund University, Lund, Sweden
| | - Matthias Mörgelin
- Department of Clinical Sciences, Section for Clinical and Experimental Infection Medicine, Lund University, Lund, Sweden
| | | | - Linda Johansson
- Karolinska Institutet, Center for Infectious Medicine, Huddinge University Hospital, Stockholm, Sweden
| | - Anna Norrby-Teglund
- Karolinska Institutet, Center for Infectious Medicine, Huddinge University Hospital, Stockholm, Sweden
| | - Oonagh Shannon
- Department of Clinical Sciences, Section for Clinical and Experimental Infection Medicine, Lund University, Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Joost C. M. Meijers
- Departments of Vascular and Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Heiko Herwald
- Department of Clinical Sciences, Section for Clinical and Experimental Infection Medicine, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
7
|
Abstract
Protein C inhibitor (PCI) is a member of the serine protease inhibitor (serpin) family. PCI was initially found to be an inhibitor of activated protein C, and later shown to be a potent inhibitor of blood coagulation and fibrinolysis such as that mediated by urokinase type-plasminogen activator. Therefore, the protein came to be known as plasminogen activator inhibitor-3. It also inhibits proteases involved in fertilization. PCI is broadly conserved, and is found in human, rhesus monkey, cow, rabbit, rat, mouse and chicken. The human PCI gene is located on chromosome 14q32.1 in a cluster of genes encoding related serpins. Sp1- and AP2-binding sites in the 5'-flanking region act as promoter and enhancer, respectively, for its expression in the liver. PCI mRNA is expressed in many organs in primates, but only in the reproductive organs in rodents. Recent studies using transgenic mice expressing the human gene have suggested that PCI is also involved in regulation of lung remodeling, tissue regeneration, vascular permeability, proteolysis in the kidney and tumor cell invasion. A protease inhibitor-independent activity of PCI, the prevention of anti-angiogenesis and metastasis of tumor cells, has also been observed. Thus, PCI is a unique multi-functional serpin playing diverse roles in the thrombosis and hemostasis in multiple organs and tissues of a variety of species.
Collapse
Affiliation(s)
- K Suzuki
- Department of Molecular Pathobiology, Mie University Graduate School of Medicine, Tsu-city, Mie, Japan.
| |
Collapse
|
8
|
Baumgärtner P, Geiger M, Zieseniss S, Malleier J, Huntington JA, Hochrainer K, Bielek E, Stoeckelhuber M, Lauber K, Scherfeld D, Schwille P, Wäldele K, Beyer K, Engelmann B. Phosphatidylethanolamine critically supports internalization of cell-penetrating protein C inhibitor. ACTA ACUST UNITED AC 2007; 179:793-804. [PMID: 18025309 PMCID: PMC2080921 DOI: 10.1083/jcb.200707165] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although their contribution remains unclear, lipids may facilitate noncanonical routes of protein internalization into cells such as those used by cell-penetrating proteins. We show that protein C inhibitor (PCI), a serine protease inhibitor (serpin), rapidly transverses the plasma membrane, which persists at low temperatures and enables its nuclear targeting in vitro and in vivo. Cell membrane translocation of PCI necessarily requires phosphatidylethanolamine (PE). In parallel, PCI acts as a lipid transferase for PE. The internalized serpin promotes phagocytosis of bacteria, thus suggesting a function in host defense. Membrane insertion of PCI depends on the conical shape of PE and is associated with the formation of restricted aqueous compartments within the membrane. Gain- and loss-of-function mutations indicate that the transmembrane passage of PCI requires a branched cavity between its helices H and D, which, according to docking studies, precisely accommodates PE. Our findings show that its specific shape enables cell surface PE to drive plasma membrane translocation of cell-penetrating PCI.
Collapse
Affiliation(s)
- Petra Baumgärtner
- Vaskuläre Biologie und Hämostase, Institut für Klinische Chemie, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang C, Li X, Lian X, Wang Y, Zeng Y, Yang K, Yu J, Gao Q, Yang T. Immunolocalization of protein C inhibitor in differentiation of human epidermal keratinocytes. Acta Histochem 2007; 109:461-7. [PMID: 17706750 DOI: 10.1016/j.acthis.2007.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 04/09/2007] [Accepted: 04/16/2007] [Indexed: 11/29/2022]
Abstract
Keratinocytes propagated in low calcium (0.05 mM) serum-free medium grow as monolayers and exhibit morphological and biosynthetic phenotypes similar to the keratinocytes of the basal layer in normal epidermis. When the calcium in the medium is increased to 1.5 mM, the keratinocytes start to stratify and differentiate. Such differentiation is important in the formation of an epidermal barrier. Proteolysis plays a crucial role in the process. The functions of most of the plasminogen activator cascade components in human skin have been studied, but little was known about the expression and role of protein C inhibitor in the differentiation of human epidermal keratinocytes. In the present study, we used immunohistochemistry and immunocytochemistry to examine the immunolocalization of protein C inhibitor in normal human skin and in cultured keratinocytes in serum-free medium with low and high calcium, respectively. The results indicated that protein C inhibitor is mainly localized in superficial and more differentiated keratinocytes in normal human epidermis. Keratinocytes positive for protein C inhibitor were detected in cultures containing both low and high calcium media, and the level of protein C inhibitor was increased in high calcium medium. This increase was accompanied by an altered intracellular distribution, from the perinuclear cytoplasm in undifferentiated keratinocytes to the whole cytoplasm in differentiated keratinocytes. Further study revealed that protein C inhibitor was incorporated into the cornified envelope in normal skin keratinocytes and cultured differentiated keratinocytes. Our results suggest that protein C inhibitor may be involved in the differentiation of keratinocytes.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Cell Biology, The Third Military Medical University, Chongqing 400038, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Malleier JM, Oskolkova O, Bochkov V, Jerabek I, Sokolikova B, Perkmann T, Breuss J, Binder BR, Geiger M. Regulation of protein C inhibitor (PCI) activity by specific oxidized and negatively charged phospholipids. Blood 2007; 109:4769-76. [PMID: 17332248 DOI: 10.1182/blood-2006-09-046953] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractProtein C inhibitor (PCI) is a serpin with affinity for heparin and phosphatidylethanolamine (PE). We analyzed the interaction of PCI with different phospholipids and their oxidized forms. PCI bound to oxidized PE (OxPE), and oxidized and unoxidized phosphatidylserine (PS) immobilized on microtiter plates and in aqueous suspension. Binding to OxPE and PS was competed by heparin, but not by the aminophospholipid-binding protein annexin V or the PCI-binding lipid retinoic acid. PS and OxPE stimulated the inhibition of activated protein C (aPC) by PCI in a Ca++-dependent manner, indicating that binding of both, aPC (Ca++ dependent) and PCI (Ca++ independent), to phospholipids is necessary. A peptide corresponding to the heparin-binding site of PCI abolished the stimulatory effect of PS on aPC inhibition. No stimulatory effect of phospholipids on aPC inhibition was seen with a PCI mutant lacking the heparin-binding site. A heparin-like effect of phospholipids (OxPE) was not seen with antithrombin III, another heparin-binding serpin, suggesting that it is specific for PCI. PCI and annexin V were found to be endogenously colocalized in atherosclerotic plaques, supporting the hypothesis that exposure of oxidized PE and/or PS may be important for the local regulation of PCI activity in vivo.
Collapse
Affiliation(s)
- Julia M Malleier
- Department of Vascular Biology and Thrombosis Research, Center for Biomolecular Medicine and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Factor V Leiden (FVL) is the most common known inherited cause of thrombophilia; it is present in approximately 5% of the Caucasian population. Although the risk of venous thrombosis associated with this polymorphism in various medical settings is well described, its effect on perioperative risk is only beginning to be explored. Specifically, there are few studies addressing the potential risks of FVL in the surgical population, in which both hemorrhagic and thrombotic complications convey substantial clinical and economic significance. There are speculations and unproven hypotheses regarding FVL in this population, and these therefore highlight the need to comprehensively address this issue. This review will describe the physiology of the FVL mutation, briefly clarify its risk in the nonsurgical setting, and assess current data regarding FVL in noncardiac and cardiac surgery. Finally, a summary of current clinical evidence and a plan for more detailed investigation of this potentially significant risk factor will be proposed.
Collapse
Affiliation(s)
- Brian S Donahue
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
12
|
Sayinalp N, Haznedaroğlu IC, Büyükaşik Y, Göker H, Aksu S, Koçoğlu H, Ozcebe OI, Koşar A, Kirazli S, Dündar SV. Protein C Inhibitor and Serum Amyloid a in Immune Thrombocytopaenic Purpura. J Int Med Res 2004; 32:62-5. [PMID: 14997708 DOI: 10.1177/147323000403200110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In immune thrombocytopaenic purpura (ITP), phagocytic cells prematurely destroy platelets opsonized by anti-platelet auto-antibodies, while residual platelets rescued from these autoimmune attacks are hyperfunctioning. The exact pathobiological basis of this phenomenon is unknown. Protein C inhibitor (PCI), a platelet α-granule pro-coagulant molecule, is released on activation of platelets. Serum amyloid A (SAA; an acute phase protein), however, inhibits platelet aggregation and modulates platelet adhesion. We aimed to assess circulating soluble plasma PCI and SAA concentrations in 17 patients with newly diagnosed ITP and ten healthy volunteers. Plasma PCI concentrations tended to be higher in ITP patients, despite absolute thrombocytopaenia, than in normal controls. SAA levels were significantly higher in ITP patients compared with the control group. We conclude that secretion of the α-granule PCI content of platelets could result from platelet activation, and that PCI may be the link between platelet microparticles and haemostatically active ITP platelets. Increased concentrations of SAA and PCI may interfere with the disordered and compensatory pro-coagulant mechanisms of ITP.
Collapse
Affiliation(s)
- N Sayinalp
- Department of Haematology, Hacettepe University Medical School, Ankara, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mairhofer M, Steiner M, Mosgoeller W, Prohaska R, Salzer U. Stomatin is a major lipid-raft component of platelet alpha granules. Blood 2002; 100:897-904. [PMID: 12130500 DOI: 10.1182/blood.v100.3.897] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid rafts are detergent-resistant, cholesterol- and sphingolipid-rich membrane domains that are involved in important cellular processes such as signal transduction and intracellular trafficking. Stomatin, a major lipid-raft component of erythrocytes and epithelial cells, is also an abundant platelet protein. Microscopical methods and subcellular fractionation showed that stomatin is located mainly at the alpha-granular membrane. The lipid-raft marker proteins flotillin-1 and flotillin-2 were also present in platelets but excluded from alpha granules. Stomatin and the flotillins were associated with Triton X-100-insoluble lipid rafts. Whereas stomatin was partly soluble in Triton X-100, it was insoluble in the detergents Lubrol and 3-[(3-cholamidopropyl)dimethylamonio]-1-propyl sulfonate (CHAPS). Flotation experiments after CHAPS lysis of platelets revealed a distinct set of lipid-raft-associated proteins, which were identified by matrix-assisted laser desorption/ionization mass spectrometry as stomatin, flotillin-1, flotillin-2, CD36, CD9, integrin alpha(IIb)beta(3), and the glucose transporter GLUT-3. Stomatin, the flotillins, and CD36 were exclusively present in this lipid-raft fraction. Activation of platelets by calcium ionophore A23187 or thrombin led to translocation of stomatin to the plasma membrane, cleavage by calpain, and specific sorting into released microvesicles. In conclusion, this study demonstrated the existence of alpha-granular lipid rafts and suggests an important role for stomatin in the organization and function of alpha granules.
Collapse
Affiliation(s)
- Mario Mairhofer
- Institute of Medical Biochemistry, Vienna Biocenter, University of Vienna, Austria
| | | | | | | | | |
Collapse
|
14
|
Huber J, Boechzelt H, Karten B, Surboeck M, Bochkov VN, Binder BR, Sattler W, Leitinger N. Oxidized cholesteryl linoleates stimulate endothelial cells to bind monocytes via the extracellular signal-regulated kinase 1/2 pathway. Arterioscler Thromb Vasc Biol 2002; 22:581-6. [PMID: 11950694 DOI: 10.1161/01.atv.0000012782.59850.41] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxidation products of cholesteryl esters have been shown to be present in oxidized low density lipoprotein and in atherosclerotic lesions. Monocyte adhesion to the endothelium is an initiating crucial event in atherogenesis. Here, we show that in vitro oxidized cholesteryl linoleate (oxCL) stimulated human umbilical vein endothelial cells (HUVECs) to bind human peripheral blood mononuclear cells as well as monocyte-like U937 cells but not peripheral blood neutrophils or neutrophil-like HL-60 cells. Among the oxidation products contained in oxCLs, 9-oxononanoyl cholesterol (9-ONC) and cholesteryl linoleate hydroperoxides stimulated U937 cell adhesion. OxCL-induced U937 cell adhesion was inhibited by an antibody against the connecting segment-1 region of fibronectin. Neither oxCL nor 9-ONC induced activation of the classical nuclear factor-kappaB pathway. In contrast, stimulation of HUVECs with oxCL resulted in phosphorylation of the extracellular signal-regulated kinase 1/2. Moreover, U937 cell adhesion induced by 9-ONC and oxCL was blocked by a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor and a protein kinase C inhibitor. Taken together, oxCLs stimulate HUVECs to specifically bind monocytes, involving endothelial connecting segment-1 and the activation of a protein kinase C- and mitogen-activated protein kinase-dependent pathway. Thus, oxidized cholesteryl esters may play an important role as novel mediators in the initiation and progression of atherosclerosis.
Collapse
Affiliation(s)
- Joakim Huber
- Department of Vascular Biology and Thrombosis Research, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chuang JL, Schleef RR. Recombinant Semliki Forest virus enhanced plasminogen activator inhibitor 1 expression and storage in the megakaryocytic cell line MEG-01. J Cell Biochem 2002; 82:277-89. [PMID: 11527153 DOI: 10.1002/jcb.1113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Platelet plasminogen activator inhibitor I (PAI-1), a trace alpha-granule protein, is a key physiological regulator of fibrinolysis. Because information on the packaging of PAI-1 into alpha-granules during megakaryocytopoiesis may reveal novel approaches for controlling hemostasis, this study investigated basal, plasmid-mediated, and alphavirus-mediated PAI-1 packaging into alpha-granules-like structures in the megakaryocytic cell line MEG-01. Differentiation of MEG-01 cells with phorbol myristate acetate (PMA) was observed to result in a four-fold increase in both secreted and cell-associated PAI-1 antigen over a four day period. Subcellular fractionation of PMA-treated MEG-01 cells on 45% self-forming Percoll gradients was employed to separate low density membrane and Golgi-rich fractions from a high density granule-containing region. A subsequent 30-60% pre-formed Percoll gradient was employed to remove contaminating lysosomes from the PAI-1/glycoprotein IIbIIIa-containing granules. Electron microscopy showed that these MEG-01 granules share a similar size distribution (350-600 nm) and morphology to platelet alpha-granules. PAI-1 (40 ng/mg protein) in isolated MEG-01 storage granules was approximately 10% of the levels present in isolated platelet alpha-granules. To elevate PAI-1 production/storage, two expression systems were investigated. Experiments with plasmids encoding PAI-1 and beta-galactosidase resulted in low transfection efficiency (0.001%). In contrast, Semliki Forest virus (SFV)-mediated gene transfer increased cellular PAI-1 by 31-fold (1,200 ng/10(6) cells at 10 MOI) in comparison to mock-infected cells. Pulse-chase experiments demonstrated that SFV/PAI-1 mediated gene expression could enhance PAI-1 storage 6-9-fold, reaching levels present within platelets. To document the ability of PAI-1 to be stored in a rapidly releasable form in MEG-01 cells, we isolated platelet-like particles from the media conditioned by the cells and examined secretagogue-induced release of PAI-1. Particles from SFV/PAI-1 infected cells display a 5-fold enhanced secretion of PAI-1 following treatment with ADP in comparison to particles incubated in the absence of secretagogue. These results suggest that SFV mediated gene expression in MEG-01 cells provides a useful framework for analyzing the production and storage of alpha-granule proteins.
Collapse
|
16
|
Jerabek I, Zechmeister-Machhart M, Binder BR, Geiger M. Binding of retinoic acid by the inhibitory serpin protein C inhibitor. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:5989-96. [PMID: 11722589 DOI: 10.1046/j.0014-2956.2001.02560.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The serpin superfamily includes inhibitors of serine proteases and noninhibitory members with other functions (e.g. the hormone precursor angiotensinogen and the hormone carriers corticosteroid-binding globulin and thyroxine-binding globulin). It is not known whether inhibitory serpins have additional, noninhibitory functions. We studied binding of (3)H-labeled hydrophobic hormones (estradiol, progesterone, testosterone, cortisol, aldosterone, and all-trans-retinoic acid) to the inhibitory serpins antithrombin III, heparin cofactor II, plasminogen activator inhibitor-1, and protein C inhibitor (PCI). All-trans-[(3)H]retinoic acid bound in a specific dose-dependent and time-dependent way to PCI (apparent K(d) = 2.43 microm, 0.8 binding sites per molecule of PCI). We did not observe binding of other hormones to serpins. Intact and protease-cleaved PCI bound retinoic acid equally well, and retinoic acid did not influence inhibition of tissue kallikrein by PCI. Gel filtration confirmed binding of retinoic acid to PCI in purified systems and suggested that PCI may also function as a retinoic acid-binding protein in seminal plasma. Therefore, our present data, together with the fact that PCI is abundantly expressed in tissues requiring retinoic acid for differentiation processes (e.g. the male reproductive tract, epithelia in various organs), suggest an additional biological role for PCI as a retinoic acid-binding and/or delivering serpin.
Collapse
Affiliation(s)
- I Jerabek
- Department of Vascular Biology and Thrombosis Research, University of Vienna, Austria
| | | | | | | |
Collapse
|
17
|
Uhrin P, Dewerchin M, Hilpert M, Chrenek P, Schöfer C, Zechmeister-Machhart M, Krönke G, Vales A, Carmeliet P, Binder BR, Geiger M. Disruption of the protein C inhibitor gene results in impaired spermatogenesis and male infertility. J Clin Invest 2000; 106:1531-9. [PMID: 11120760 PMCID: PMC381472 DOI: 10.1172/jci10768] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein C inhibitor (PCI) is a nonspecific, heparin-binding serpin (serine protease inhibitor) that inactivates many plasmatic and extravascular serine proteases by forming stable 1:1 complexes. Proteases inhibited by PCI include the anticoagulant activated protein C, the plasminogen activator urokinase, and the sperm protease acrosin. In humans PCI circulates as a plasma protein but is also present at high concentrations in organs of the male reproductive tract. The biological role of PCI has not been defined so far. However, the colocalization of high concentrations of PCI together with several of its target proteases in the male reproductive tract suggests a role of PCI in reproduction. We generated mice lacking PCI by homologous recombination. Here we show that PCI(-/-) mice are apparently healthy but that males of this genotype are infertile. Infertility was apparently caused by abnormal spermatogenesis due to destruction of the Sertoli cell barrier, perhaps due to unopposed proteolytic activity. The resulting sperm are malformed and are morphologically similar to abnormal sperm seen in some cases of human male infertility. This animal model might therefore be useful for analyzing the molecular bases of these human conditions.
Collapse
Affiliation(s)
- P Uhrin
- Department of Vascular Biology and Thrombosis Research, University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Protein C inhibitor in platelets? Blood 2000. [DOI: 10.1182/blood.v95.5.1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|