1
|
She S, Ren L, Chen P, Wang M, Chen D, Wang Y, Chen H. Functional Roles of Chemokine Receptor CCR2 and Its Ligands in Liver Disease. Front Immunol 2022; 13:812431. [PMID: 35281057 PMCID: PMC8913720 DOI: 10.3389/fimmu.2022.812431] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a family of cytokines that orchestrate the migration and positioning of immune cells within tissues and are critical for the function of the immune system. CCR2 participates in liver pathology, including acute liver injury, chronic hepatitis, fibrosis/cirrhosis, and tumor progression, by mediating the recruitment of immune cells to inflammation and tumor sites. Although a variety of chemokines have been well studied in various diseases, there is no comprehensive review presenting the roles of all known chemokine ligands of CCR2 (CCL2, CCL7, CCL8, CCL12, CCL13, CCL16, and PSMP) in liver disease, and this review aims to fill this gap. The introduction of each chemokine includes its discovery, its corresponding chemotactic receptors, physiological functions and roles in inflammation and tumors, and its impact on different immune cell subgroups.
Collapse
Affiliation(s)
- Shaoping She
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Liying Ren
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Pu Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Dongbo Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Hongsong Chen
- Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University People’s Hospital, Beijing, China
- *Correspondence: Hongsong Chen,
| |
Collapse
|
2
|
Jasinska AJ, Pandrea I, Apetrei C. CCR5 as a Coreceptor for Human Immunodeficiency Virus and Simian Immunodeficiency Viruses: A Prototypic Love-Hate Affair. Front Immunol 2022; 13:835994. [PMID: 35154162 PMCID: PMC8829453 DOI: 10.3389/fimmu.2022.835994] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
CCR5, a chemokine receptor central for orchestrating lymphocyte/cell migration to the sites of inflammation and to the immunosurveillance, is involved in the pathogenesis of a wide spectrum of health conditions, including inflammatory diseases, viral infections, cancers and autoimmune diseases. CCR5 is also the primary coreceptor for the human immunodeficiency viruses (HIVs), supporting its entry into CD4+ T lymphocytes upon transmission and in the early stages of infection in humans. A natural loss-of-function mutation CCR5-Δ32, preventing the mutated protein expression on the cell surface, renders homozygous carriers of the null allele resistant to HIV-1 infection. This phenomenon was leveraged in the development of therapies and cure strategies for AIDS. Meanwhile, over 40 African nonhuman primate species are long-term hosts of simian immunodeficiency virus (SIV), an ancestral family of viruses that give rise to the pandemic CCR5 (R5)-tropic HIV-1. Many natural hosts typically do not progress to immunodeficiency upon the SIV infection. They have developed various strategies to minimize the SIV-related pathogenesis and disease progression, including an array of mechanisms employing modulation of the CCR5 receptor activity: (i) deletion mutations abrogating the CCR5 surface expression and conferring resistance to infection in null homozygotes; (ii) downregulation of CCR5 expression on CD4+ T cells, particularly memory cells and cells at the mucosal sites, preventing SIV from infecting and killing cells important for the maintenance of immune homeostasis, (iii) delayed onset of CCR5 expression on the CD4+ T cells during ontogenetic development that protects the offspring from vertical transmission of the virus. These host adaptations, aimed at lowering the availability of target CCR5+ CD4+ T cells through CCR5 downregulation, were countered by SIV, which evolved to alter the entry coreceptor usage toward infecting different CD4+ T-cell subpopulations that support viral replication yet without disruption of host immune homeostasis. These natural strategies against SIV/HIV-1 infection, involving control of CCR5 function, inspired therapeutic approaches against HIV-1 disease, employing CCR5 coreceptor blocking as well as gene editing and silencing of CCR5. Given the pleiotropic role of CCR5 in health beyond immune disease, the precision as well as costs and benefits of such interventions needs to be carefully considered.
Collapse
Affiliation(s)
- Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Eye on Primates, Los Angeles, CA, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Wang L, Lan J, Tang J, Luo N. MCP-1 targeting: Shutting off an engine for tumor development. Oncol Lett 2021; 23:26. [PMID: 34868363 PMCID: PMC8630816 DOI: 10.3892/ol.2021.13144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
A large amount of research has proven that monocyte chemotactic protein-1 (MCP-1) is associated with different types of disease, including autoimmune, metabolic and cardiovascular diseases. In addition, several studies have found that MCP-1 is associated with tumor development. MCP-1 expression level in the tumor microenvironment is associated with tumor development, including in tumor invasion and metastasis, angiogenesis, and immune cell infiltration. However, the precise mechanism involved is currently being investigated. MCP-1 exerts its effects mainly via the MCP-1/C-C motif chemokine receptor 2 axis and leads to the activation of classical signaling pathways, such as PI3K/Akt/mTOR, ERK/GSK-3β/Snail, c-Raf/MEK/ERK and MAPK in different cells. The specific mechanism is still under debate; however, target therapy utilizing MCP-1 as a neutralizing antibody has been found to have a detrimental effect on tumor development. The aim of the present review was to examine the effect of MCP-1 on tumor development from several aspects, including its structure, its involvement in signaling pathways, the participating cells, and the therapeutic agents targeting MCP-1. The improved understanding into the structure of MCP-1 and the mechanism of action may facilitate new and practical therapeutic agents to achieve maximum performance in the treatment of patients with cancer.
Collapse
Affiliation(s)
- Liang Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jinxin Lan
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Jiaping Tang
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China.,Tianjin Key Laboratory of Tumour Microenvironment and Neurovascular Regulation, Nankai University, Tianjin 300071, P.R. China
| | - Na Luo
- Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China.,Tianjin Key Laboratory of Tumour Microenvironment and Neurovascular Regulation, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
4
|
Huang B, Wang H, Zheng Y, Li M, Kang G, Barreto-de-Souza V, Nassehi N, Knapp PE, Selley DE, Hauser KF, Zhang Y. Structure-Based Design and Development of Chemical Probes Targeting Putative MOR-CCR5 Heterodimers to Inhibit Opioid Exacerbated HIV-1 Infectivity. J Med Chem 2021; 64:7702-7723. [PMID: 34027668 PMCID: PMC10548452 DOI: 10.1021/acs.jmedchem.1c00408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Crystal structures of ligand-bound G-protein-coupled receptors provide tangible templates for rationally designing molecular probes. Herein, we report the structure-based design, chemical synthesis, and biological investigations of bivalent ligands targeting putative mu opioid receptor C-C motif chemokine ligand 5 (MOR-CCR5) heterodimers. The bivalent ligand VZMC013 possessed nanomolar level binding affinities for both the MOR and CCR5, inhibited CCL5-stimulated calcium mobilization, and remarkably improved anti-HIV-1BaL activity over previously reported bivalent ligands. VZMC013 inhibited viral infection in TZM-bl cells coexpressing CCR5 and MOR to a greater degree than cells expressing CCR5 alone. Furthermore, VZMC013 blocked human immunodeficiency virus (HIV)-1 entry in peripheral blood mononuclear cells (PBMC) cells in a concentration-dependent manner and inhibited opioid-accelerated HIV-1 entry more effectively in phytohemagglutinin-stimulated PBMC cells than in the absence of opioids. A three-dimensional molecular model of VZMC013 binding to the MOR-CCR5 heterodimer complex is constructed to elucidate its mechanism of action. VZMC013 is a potent chemical probe targeting MOR-CCR5 heterodimers and may serve as a pharmacological agent to inhibit opioid-exacerbated HIV-1 entry.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Anti-HIV Agents/chemistry
- Anti-HIV Agents/metabolism
- Anti-HIV Agents/pharmacology
- Binding Sites
- Dimerization
- Drug Design
- HIV-1/drug effects
- HIV-1/physiology
- Humans
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- Ligands
- Maraviroc/chemistry
- Molecular Docking Simulation
- Molecular Dynamics Simulation
- Naltrexone/chemistry
- Phytohemagglutinins/pharmacology
- Protein Binding
- Receptors, CCR5/chemistry
- Receptors, CCR5/metabolism
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/metabolism
- Virus Internalization/drug effects
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Yi Zheng
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Guifeng Kang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| | - Victor Barreto-de-Souza
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
| | - Nima Nassehi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, Virginia 23298, United States
| | - Dana E Selley
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N. 12th Street, Richmond, Virginia 23298, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, 1101 E. Marshall Street, Richmond, Virginia 23298, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, Virginia 23298, United States
| |
Collapse
|
5
|
HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines. Proc Natl Acad Sci U S A 2013; 110:9475-80. [PMID: 23696662 DOI: 10.1073/pnas.1222205110] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
CC chemokine receptor 5 (CCR5) is a receptor for chemokines and the coreceptor for R5 HIV-1 entry into CD4(+) T lymphocytes. Chemokines exert anti-HIV-1 activity in vitro, both by displacing the viral envelope glycoprotein gp120 from binding to CCR5 and by promoting CCR5 endocytosis, suggesting that they play a protective role in HIV infection. However, we showed here that different CCR5 conformations at the cell surface are differentially engaged by chemokines and gp120, making chemokines weaker inhibitors of HIV infection than would be expected from their binding affinity constants for CCR5. These distinct CCR5 conformations rely on CCR5 coupling to nucleotide-free G proteins ((NF)G proteins). Whereas native CCR5 chemokines bind with subnanomolar affinity to (NF)G protein-coupled CCR5, gp120/HIV-1 does not discriminate between (NF)G protein-coupled and uncoupled CCR5. Interestingly, the antiviral activity of chemokines is G protein independent, suggesting that "low-chemokine affinity" (NF)G protein-uncoupled conformations of CCR5 represent a portal for viral entry. Furthermore, chemokines are weak inducers of CCR5 endocytosis, as is revealed by EC50 values for chemokine-mediated endocytosis reflecting their low-affinity constant value for (NF)G protein-uncoupled CCR5. Abolishing CCR5 interaction with (NF)G proteins eliminates high-affinity binding of CCR5 chemokines but preserves receptor endocytosis, indicating that chemokines preferentially endocytose low-affinity receptors. Finally, we evidenced that chemokine analogs achieve highly potent HIV-1 inhibition due to high-affinity interactions with internalizing and/or gp120-binding receptors. These data are consistent with HIV-1 evading chemokine inhibition by exploiting CCR5 conformational heterogeneity, shed light into the inhibitory mechanisms of anti-HIV-1 chemokine analogs, and provide insights for the development of unique anti-HIV molecules.
Collapse
|
6
|
Control of feeding behavior in C. elegans by human G protein-coupled receptors permits screening for agonist-expressing bacteria. Proc Natl Acad Sci U S A 2008; 105:14826-31. [PMID: 18815363 DOI: 10.1073/pnas.0803290105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have a key role in many biological processes and are important drug targets for many human diseases. Therefore, understanding the molecular interactions between GPCRs and their ligands would improve drug design. Here, we describe an approach that allows the rapid identification of functional agonists expressed in bacteria. Transgenic Caenorhabditis elegans expressing the human chemokine receptor 5 (CCR5) in nociceptive neurons show avoidance behavior on encounter with the ligand MIP-1alpha and avoid feeding on Escherichia coli expressing MIP-1alpha compared with control bacteria. This system allows a simple activity screen, based on the distribution of transgenic worms in a binary food-choice assay, without a requirement for protein purification or tagging. By using this approach, a library of 68 MIP-1alpha variants was screened, and 13 critical agonist residues involved in CCR5 activation were identified, four of which (T8, A9, N22, and A25) have not been described previously, to our knowledge. Identified residues were subsequently validated in receptor binding assays and by calcium flux assays in mammalian cells. This approach serves not only for structure/function studies as demonstrated, but may be used to facilitate the discovery of agonists within bacterial libraries.
Collapse
|
7
|
Hartley O, Gaertner H, Wilken J, Thompson D, Fish R, Ramos A, Pastore C, Dufour B, Cerini F, Melotti A, Heveker N, Picard L, Alizon M, Mosier D, Kent S, Offord R. Medicinal chemistry applied to a synthetic protein: development of highly potent HIV entry inhibitors. Proc Natl Acad Sci U S A 2004; 101:16460-5. [PMID: 15545608 PMCID: PMC534511 DOI: 10.1073/pnas.0404802101] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have used total chemical synthesis to perform high-resolution dissection of the pharmacophore of a potent anti-HIV protein, the aminooxypentane oxime of [glyoxylyl1]RANTES(2-68), known as AOP-RANTES, of which we designed and made 37 analogs. All involved incorporation of one or more rationally chosen nonnatural noncoded structures, for which we found a clear comparative advantage over coded ones. We investigated structure-activity relationships in the pharmacophore by screening the analogs for their ability to block the HIV entry process and produced a derivative, PSC-RANTES [N-nonanoyl, des-Ser1[L-thioproline2, L-cyclohexylglycine3]-RANTES(2-68)], which is 50 times more potent than AOP-RANTES. This promising group of compounds might be optimized yet further as potential prophylactic and therapeutic anti-HIV agents. The remarkable potency of our RANTES analogs probably involves the unusual mechanism of intracellular sequestration of CC-chemokine receptor 5 (CCR5), and it has been suggested that this arises from enhanced affinity for the receptor. We found that inhibitory potency and capacity to induce CCR5 down-modulation do appear to be correlated, but that unexpectedly, inhibitory potency and affinity for CCR5 do not. We believe this study represents the proof of principle for the use of a medicinal chemistry approach, above all one showing the advantage of noncoded structures, to the optimization of the pharmacological properties of a protein. Medicinal chemistry of small molecules is the foundation of modern pharmaceutical practice, and we believe we have shown that techniques have now reached the point at which the approach could also be applied to the many macromolecular drugs now in common use.
Collapse
Affiliation(s)
- Oliver Hartley
- Department of Structural Biology and Bioinformatics, Centre Médical Universitaire, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Choi ES, Jakubzick C, Carpenter KJ, Kunkel SL, Evanoff H, Martinez FJ, Flaherty KR, Toews GB, Colby TV, Kazerooni EA, Gross BH, Travis WD, Hogaboam CM. Enhanced monocyte chemoattractant protein-3/CC chemokine ligand-7 in usual interstitial pneumonia. Am J Respir Crit Care Med 2004; 170:508-15. [PMID: 15191918 DOI: 10.1164/rccm.200401-002oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemokines are increased and may exert effects on both inflammatory and remodeling events in idiopathic pulmonary pneumonia (IIP). Accordingly, we examined the concomitant expression of inflammatory CC chemotactic cytokines or chemokines and their corresponding receptors in surgical lung biopsies obtained at the time of disease diagnosis and pulmonary fibroblasts grown from these biopsies. By gene array analysis, upper and lower lobe biopsies and primary fibroblast lines from patients with usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia, and respiratory bronchiolitis-interstitial lung disease, but not patients without IIP, exhibited CCL7 gene expression. TAQMAN, immunohistochemical, and ELISA analyses confirmed that CCL7 was expressed at significantly higher levels in UIP lung biopsies compared with biopsies from patients with nonspecific interstitial pneumonia, respiratory bronchiolitis-interstitial lung disease, and from patients without IIP. Higher levels of CCL7 were present in cultures of IIP fibroblasts compared with non-IIP fibroblasts, and CCL5, a CCR5 agonist, significantly increased the synthesis of CCL7 by UIP fibroblasts. Together, these data suggest that CCL7 is highly expressed in biopsies and pulmonary fibroblast lines obtained from patients with UIP relative to patients with other IIP and patients without IIP, and that this CC chemokine may have a major role in the progression of fibrosis in this IIP patient group.
Collapse
Affiliation(s)
- Esther S Choi
- Department of Pathology, University of Michigan Medical School, Rm. 5216B, Med Sci I, 1301 Catherine Rd., Ann Arbor, MI 48109-0602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fulkerson PC, Zimmermann N, Brandt EB, Muntel EE, Doepker MP, Kavanaugh JL, Mishra A, Witte DP, Zhang H, Farber JM, Yang M, Foster PS, Rothenberg ME. Negative regulation of eosinophil recruitment to the lung by the chemokine monokine induced by IFN-gamma (Mig, CXCL9). Proc Natl Acad Sci U S A 2004; 101:1987-92. [PMID: 14769916 PMCID: PMC357039 DOI: 10.1073/pnas.0308544100] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Experimental analysis of allergic airway inflammation (AAI) in animals and humans is associated with coordinate gene induction. Using DNA microarray analysis, we have identified a large panel of AAI signature genes. Unexpectedly, the allergen-challenged lung (a T helper 2 microenvironment) was found to be associated with the expression of T helper 1-associated CXCR3 ligands, monokine induced by IFN-gamma (Mig), and IFN-gamma-inducible protein of 10 kDa (IP-10). Here we report that Mig functions as a negative regulator of murine eosinophils. Whereas Mig was not able to induce chemotaxis of eosinophils, pretreatment with Mig induced a dose-dependent inhibition of chemoattractant-induced eosinophil transmigration in vitro. Moreover, i.v. administration of low doses of Mig ( approximately 10-30 microg/kg) induced strong and specific dose-dependent inhibition of chemokine-, IL-13-, and allergen-induced eosinophil recruitment and, conversely, neutralization of Mig before allergen challenge increased airway eosinophilia. Importantly, Mig also inhibited a CCR3-mediated functional response in eosinophils. These results indicate that the ultimate distribution and function of inflammatory cells within the allergic lung is dictated by a balance between positively and negatively regulatory chemokines. The identification of a naturally occurring eosinophil inhibitory chemokine pathway in vivo provides a strategic basis for future therapeutic consideration.
Collapse
MESH Headings
- Allergens/immunology
- Animals
- Chemokine CCL11
- Chemokine CXCL9
- Chemokines, CC/antagonists & inhibitors
- Chemokines, CC/pharmacology
- Chemokines, CXC/genetics
- Chemokines, CXC/pharmacology
- Chemotaxis, Leukocyte/drug effects
- Endocytosis/drug effects
- Eosinophils/cytology
- Eosinophils/drug effects
- Female
- Gene Expression Regulation
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/pharmacology
- Interleukin-13/antagonists & inhibitors
- Interleukin-13/pharmacology
- Ligands
- Lung/cytology
- Lung/drug effects
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Ovalbumin/antagonists & inhibitors
- Ovalbumin/immunology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, CCR3
- Receptors, CXCR3
- Receptors, Chemokine/metabolism
- STAT6 Transcription Factor
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Patricia C Fulkerson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH 45257-0524, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
CCR5 is the major coreceptor for macrophage-tropic strains of the human immunodeficiency virus type I (HIV-1). Homozygotes for a 32-base pair (bp) deletion in the coding sequence of the receptor (CCR5Δ32) were found to be highly resistant to viral infection, and CCR5 became, therefore, one of the paradigms illustrating the influence of genetic variability onto individual susceptibility to infectious and other diseases. We investigated the functional consequences of 16 other natural CCR5 mutations described in various human populations. We found that 10 of these variants are efficiently expressed at the cell surface, bind [125I]-MIP-1β with affinities similar to wtCCR5, respond functionally to chemokines, and act as HIV-1 coreceptors. In addition to Δ32, six mutations were characterized by major alterations in their functional response to chemokines, as a consequence of intracellular trapping and poor expression at the cell surface (C101X, FS299), general or specific alteration of ligand binding affinities (C20S, C178R, A29S), or relative inability to mediate receptor activation (L55Q). A29S displayed an unusual pharmacological profile, binding and responding to MCP-2 similarly to wtCCR5, but exhibiting severely impaired binding and functional responses to MIP-1α, MIP-1β, and RANTES. In addition to Δ32, only C101X was totally unable to mediate entry of HIV-1. The fact that nonfunctional CCR5 alleles are relatively frequent in various human populations reinforces the hypothesis of a selective pressure favoring these alleles.
Collapse
|