1
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
2
|
Qiu X, Shen C, Zhao W, Zhang X, Zhao D, Wu X, Yang L. A pan-cancer analysis of the oncogenic role of dual-specificity tyrosine (Y)-phosphorylation- regulated kinase 2 (DYRK2) in human tumors. Sci Rep 2022; 12:15419. [PMID: 36104345 PMCID: PMC9474874 DOI: 10.1038/s41598-022-19087-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Abstract
Although there have been studies correlating DYRK2 with a number of human cancers, there has been no pan-cancer analysis. Therefore, through the TCGA database, we conducted a related study on the expression of DYRK2 in cancers.The expression of DYRK2 is obviously increased in some cancers, while the opposite is true in others, and there is a clear association between its expression and the prognosis of cancer patients.The mutation of DYRK2 is also significantly correlated with patients’ prognosis in certain human tumors. In addition, phosphorylation and methylation levels of DYRK2 are different between tumor tissues and adjacent normal tissues in various tumors. In the tumour microenvironment, the expression of DYRK2 correlates with cancer-associated fibroblast infiltration, such as BLCA or HNSC. In order to fully understand the role of DYRK2 in different tumors, we conducted a pan-cancer analysis.
Collapse
|
3
|
New insights into the roles for DYRK family in mammalian development and congenital diseases. Genes Dis 2022. [DOI: 10.1016/j.gendis.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
4
|
DYRK3 contributes to differentiation and hypoxic control in neuroblastoma. Biochem Biophys Res Commun 2021; 567:215-221. [PMID: 34171798 DOI: 10.1016/j.bbrc.2021.06.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Neuroblastoma (NB), a pediatric cancer of the peripheral sympathetic nervous system, represents the most frequent solid malignancy in infants. Treatment of high-risk patients is still challenging and, depending on the genetic make-up and involved risk factors, the 5-year survival rate can drop to only 30%. Here, we found that the expression of the Dual Specificity Tyrosine Phosphorylation Regulated Kinase 3 (DYRK3) is increased in NB and is associated with decreased survival in NB patients. We further identified DYRK3 as a cytoplasmic kinase in NB cells and found that its levels are increased by hypoxic conditions. Further mechanistic studies revealed that DYRK3 acts as a negative regulator of HIF-driven transcriptional responses, suggesting that it functions in a negative feedback loop controlling the hypoxic response. Moreover, DYRK3 negatively impacted on NB cell differentiation, proposing an oncogenic role of this kinase in the etiology of NB. In summary, we describe novel functions of the DYRK3 kinase in NB, which will help to further improve the understanding of this disease eventually leading to the design of improved therapeutic concepts.
Collapse
|
5
|
Boni J, Rubio-Perez C, López-Bigas N, Fillat C, de la Luna S. The DYRK Family of Kinases in Cancer: Molecular Functions and Therapeutic Opportunities. Cancers (Basel) 2020; 12:cancers12082106. [PMID: 32751160 PMCID: PMC7465136 DOI: 10.3390/cancers12082106] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
DYRK (dual-specificity tyrosine-regulated kinases) are an evolutionary conserved family of protein kinases with members from yeast to humans. In humans, DYRKs are pleiotropic factors that phosphorylate a broad set of proteins involved in many different cellular processes. These include factors that have been associated with all the hallmarks of cancer, from genomic instability to increased proliferation and resistance, programmed cell death, or signaling pathways whose dysfunction is relevant to tumor onset and progression. In accordance with an involvement of DYRK kinases in the regulation of tumorigenic processes, an increasing number of research studies have been published in recent years showing either alterations of DYRK gene expression in tumor samples and/or providing evidence of DYRK-dependent mechanisms that contribute to tumor initiation and/or progression. In the present article, we will review the current understanding of the role of DYRK family members in cancer initiation and progression, providing an overview of the small molecules that act as DYRK inhibitors and discussing the clinical implications and therapeutic opportunities currently available.
Collapse
Affiliation(s)
- Jacopo Boni
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| | - Carlota Rubio-Perez
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
| | - Nuria López-Bigas
- Cancer Science Programme, Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (C.R.-P.); (N.L.-B.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Cristina Fillat
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain;
| | - Susana de la Luna
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-933-160-144
| |
Collapse
|
6
|
Yoshida S, Yoshida K. Multiple functions of DYRK2 in cancer and tissue development. FEBS Lett 2019; 593:2953-2965. [PMID: 31505048 DOI: 10.1002/1873-3468.13601] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) are evolutionarily conserved from yeast to mammals. Accumulating studies have revealed that DYRKs have important roles in regulation of the cell cycle and survival. DYRK2, a member of the class II DYRK family protein, is a key regulator of p53, and phosphorylates it at Ser46 to induce apoptosis in response to DNA damage. Moreover, recent studies have uncovered that DYRK2 regulates G1/S transition, epithelial-mesenchymal-transition, and stemness in human cancer cells. DYRK2 also appears to have roles in tissue development in lower eukaryotes. Thus, the elucidation of mechanisms for DYRK2 during mammalian tissue development will promote the understanding of cell differentiation, tissue homeostasis, and congenital diseases as well as cancer. In this review, we discuss the roles of DYRK2 in tumor cells. Moreover, we focus on DYRK2-dependent developmental mechanisms in several species including fly (Drosophila), worm (Caenorhabditis elegans), zebrafish (Danio rerio), and mammals.
Collapse
Affiliation(s)
- Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Kim K, Cha JS, Cho YS, Kim H, Chang N, Kim HJ, Cho HS. Crystal Structure of Human Dual-Specificity Tyrosine-Regulated Kinase 3 Reveals New Structural Features and Insights into its Auto-phosphorylation. J Mol Biol 2018; 430:1521-1530. [PMID: 29634919 DOI: 10.1016/j.jmb.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 11/15/2022]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) auto-phosphorylate a critical tyrosine residue in their activation loop and phosphorylate their substrate on serine and threonine residues. The auto-phosphorylation occurs intramolecularly and is a one-off event. DYRK3 is selectively expressed at a high level in hematopoietic cells and attenuates erythroblast development, leading to anemia. In the present study, we determined the crystal structure of the mature form of human DYRK3 in complex with harmine, an ATP competitive inhibitor. The crystal structure revealed a phosphorylation site, residue S350, whose phosphorylation increases the stability of DYRK3 and enhances its kinase activity. In addition, our structural and biochemical assays suggest that the N-terminal auto-phosphorylation accessory domain stabilizes the DYRK3 protein, followed by auto-phosphorylation of the tyrosine of the activation loop, which is important for kinase activity. Finally, our docking analysis provides information for the design of novel and potent therapeutics to treat anemia.
Collapse
Affiliation(s)
- Kuglae Kim
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeong Seok Cha
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yong-Soon Cho
- Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, 88 Olympic-ro, 43-gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Hoyoung Kim
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Nienping Chang
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hye-Jung Kim
- New Drug Development Center, KBIO Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea
| | - Hyun-Soo Cho
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Singh R, Lauth M. Emerging Roles of DYRK Kinases in Embryogenesis and Hedgehog Pathway Control. J Dev Biol 2017; 5:E13. [PMID: 29615569 PMCID: PMC5831797 DOI: 10.3390/jdb5040013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 12/19/2022] Open
Abstract
Hedgehog (Hh)/GLI signaling is an important instructive cue in various processes during embryonic development, such as tissue patterning, stem cell maintenance, and cell differentiation. It also plays crucial roles in the development of many pediatric and adult malignancies. Understanding the molecular mechanisms of pathway regulation is therefore of high interest. Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) comprise a group of protein kinases which are emerging modulators of signal transduction, cell proliferation, survival, and cell differentiation. Work from the last years has identified a close regulatory connection between DYRKs and the Hh signaling system. In this manuscript, we outline the mechanistic influence of DYRK kinases on Hh signaling with a focus on the mammalian situation. We furthermore aim to bring together what is known about the functional consequences of a DYRK-Hh cross-talk and how this might affect cellular processes in development, physiology, and pathology.
Collapse
Affiliation(s)
- Rajeev Singh
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor and Immune Biology (ZTI), Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| | - Matthias Lauth
- Philipps University Marburg, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor and Immune Biology (ZTI), Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| |
Collapse
|
9
|
Wang L, Yu H, Cheng H, He K, Fang Z, Ge L, Cheng T, Jin Y. Deletion of Stk40 impairs definitive erythropoiesis in the mouse fetal liver. Cell Death Dis 2017; 8:e2722. [PMID: 28358362 PMCID: PMC5386544 DOI: 10.1038/cddis.2017.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/26/2017] [Accepted: 02/28/2017] [Indexed: 01/09/2023]
Abstract
The serine threonine kinase Stk40 has been shown to involve in mouse embryonic stem cell differentiation, pulmonary maturation and adipocyte differentiation. Here we report that targeted deletion of Stk40 leads to fetal liver hypoplasia and anemia in the mouse embryo. The reduction of erythrocytes in the fetal liver is accompanied by increased apoptosis and compromised erythroid maturation. Stk40-/- fetal liver cells have significantly reduced colony-forming units (CFUs) capable of erythroid differentiation, including burst forming unit-erythroid, CFU-erythroid (CFU-E), and CFU-granulocyte, erythrocyte, megakaryocyte and macrophage, but not CFU-granulocyte/macrophages. Purified Stk40-/- megakaryocyte-erythrocyte progenitors produce substantially fewer CFU-E colonies compared to control cells. Moreover, Stk40-/- fetal liver erythroblasts fail to form normal erythroblastic islands in association with wild type or Stk40-/- macrophages, indicating an intrinsic defect of Stk40-/- erythroblasts. Furthermore, the hematopoietic stem and progenitor cell pool is reduced in Stk40-/- fetal livers but still retains the multi-lineage reconstitution capacity. Finally, comparison of microarray data between wild type and Stk40-/- E14.5 fetal liver cells reveals a potential role of aberrantly activated TNF-α signaling in Stk40 depletion induced dyserythropoiesis with a concomitant increase in cleaved caspase-3 and decrease in Gata1 proteins. Altogether, the identification of Stk40 as a regulator for fetal erythroid maturation and survival provides new clues to the molecular regulation of erythropoiesis and related diseases.
Collapse
Affiliation(s)
- Lina Wang
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Hongyao Yu
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Hui Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Ke He
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Zhuoqing Fang
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Science, Chinese Academy of Sciences, Shanghai 200032, China
| | - Laixiang Ge
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
- Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Ying Jin
- Laboratory of Molecular Developmental Biology, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Stem Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Health Science, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Network Analysis Implicates Alpha-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss. Sci Rep 2016; 6:29475. [PMID: 27378017 PMCID: PMC4932518 DOI: 10.1038/srep29475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022] Open
Abstract
The postmenopausal period in women is associated with decreased circulating estrogen levels, which accelerate bone loss and increase the risk of fracture. Here, we gained novel insight into the molecular mechanisms mediating bone loss in ovariectomized (OVX) mice, a model of human menopause, using co-expression network analysis. Specifically, we generated a co-expression network consisting of 53 gene modules using expression profiles from intact and OVX mice from a panel of inbred strains. The expression of four modules was altered by OVX, including module 23 whose expression was decreased by OVX across all strains. Module 23 was enriched for genes involved in the response to oxidative stress, a process known to be involved in OVX-induced bone loss. Additionally, module 23 homologs were co-expressed in human bone marrow. Alpha synuclein (Snca) was one of the most highly connected “hub” genes in module 23. We characterized mice deficient in Snca and observed a 40% reduction in OVX-induced bone loss. Furthermore, protection was associated with the altered expression of specific network modules, including module 23. In summary, the results of this study suggest that Snca regulates bone network homeostasis and ovariectomy-induced bone loss.
Collapse
|
11
|
Schmitt C, Kail D, Mariano M, Empting M, Weber N, Paul T, Hartmann RW, Engel M. Design and synthesis of a library of lead-like 2,4-bisheterocyclic substituted thiophenes as selective Dyrk/Clk inhibitors. PLoS One 2014; 9:e87851. [PMID: 24676346 PMCID: PMC3968014 DOI: 10.1371/journal.pone.0087851] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/02/2014] [Indexed: 12/31/2022] Open
Abstract
The Dyrk family of protein kinases is implicated in the pathogenesis of several diseases, including cancer and neurodegeneration. Pharmacological inhibitors were mainly described for Dyrk1A so far, but in fewer cases for Dyrk1B, Dyrk2 or other isoforms. Herein, we report the development and optimization of 2,4-bisheterocyclic substituted thiophenes as a novel class of Dyrk inhibitors. The optimized hit compounds displayed favorable pharmacokinetic properties and high ligand efficiencies, and inhibited Dyrk1B in intact cells. In a larger selectivity screen, only Clk1 and Clk4 were identified as additional targets of compound 48, but no other kinases frequently reported as off-targets. Interestingly, Dyrk1A is implicated in the regulation of alternative splicing, a function shared with Clk1/Clk4; thus, some of the dual inhibitors might be useful as efficient splicing modulators. A further compound (29) inhibited Dyrk1A and 1B with an IC50 of 130 nM, showing a moderate selectivity over Dyrk2. Since penetration of the central nervous system (CNS) seems possible based on the physicochemical properties, this compound might serve as a lead for the development of potential therapeutic agents against glioblastoma. Furthermore, an inhibitor selective for Dyrk2 (24) was also identified, which might be are suitable as a pharmacological tool to dissect Dyrk2 isoform-mediated functions.
Collapse
Affiliation(s)
- Christian Schmitt
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | | | - Marica Mariano
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Martin Empting
- Department of Drug Design and Optimization, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Nadja Weber
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Tamara Paul
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Rolf W. Hartmann
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
12
|
Abstract
The p38 pathway has been at the center of interest for anti-inflammatory drug discovery for many years as it is crucial for the biosynthesis of TNF-α, IL-1β and other mediators. Most of the anti-inflammatory effects of p38 inhibition are mediated through MAPK-activated protein kinase-2 (MK2), a direct downstream target of p38, which makes MK2 a very interesting drug target. Within the last 5 years, several classes of low-molecular-weight MK2 inhibitors were disclosed in the patent and primary literature. Advanced compounds could be optimized to nanomolar potencies and inhibit TNF-α release, as well as the phosphorylation of the MK2 substrate heat-shock protein 27 in cellular assays. This article will review the recent progress in this field and will highlight and discuss the most promising compound series disclosed so far.
Collapse
|
13
|
Huang SH, Long M, Wu CH, Kwon-Chung KJ, Chang YC, Chi F, Lee S, Jong A. Invasion of Cryptococcus neoformans into human brain microvascular endothelial cells is mediated through the lipid rafts-endocytic pathway via the dual specificity tyrosine phosphorylation-regulated kinase 3 (DYRK3). J Biol Chem 2011; 286:34761-9. [PMID: 21693704 DOI: 10.1074/jbc.m111.219378] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cryptococcus neoformans is a neurotropic fungal pathogen, which provokes the onset of devastating meningoencephalitis. We used human brain microvascular endothelial cells (HBMEC) as the in vitro model to investigate how C. neoformans traverses across the blood-brain barrier. In this study, we present several lines of evidence indicating that C. neoformans invasion is mediated through the endocytic pathway via lipid rafts. Human CD44 molecules from lipid rafts can directly interact with hyaluronic acid, the C. neoformans ligand. Bikunin, which perturbs CD44 function in the lipid raft, can block C. neoformans adhesion and invasion of HBMEC. The lipid raft marker, ganglioside GM1, co-localizes with CD44 on the plasma membrane, and C. neoformans cells can adhere to the host cell in areas where GM1 is enriched. These findings suggest that C. neoformans entry takes place on the lipid rafts. Upon C. neoformans engagement, GM1 is internalized through vesicular structures to the nuclear membrane. This endocytic redistribution process is abolished by cytochalasin D, nocodazole, or anti-DYRK3 (dual specificity tyrosine-phosphorylation-regulated kinase 3) siRNA. Concomitantly, the knockdown of DYRK3 significantly reduces C. neoformans invasion across the HBMEC monolayer in vitro. Our data demonstrate that the lipid raft-dependent endocytosis process mediates C. neoformans internalization into HBMEC and that the CD44 protein of the hosts, cytoskeleton, and intracellular kinase-DYRK3 are involved in this process.
Collapse
Affiliation(s)
- Sheng-He Huang
- Department of Pediatrics, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California 90027, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Papadopoulos C, Arato K, Lilienthal E, Zerweck J, Schutkowski M, Chatain N, Müller-Newen G, Becker W, de la Luna S. Splice variants of the dual specificity tyrosine phosphorylation-regulated kinase 4 (DYRK4) differ in their subcellular localization and catalytic activity. J Biol Chem 2011; 286:5494-505. [PMID: 21127067 PMCID: PMC3037663 DOI: 10.1074/jbc.m110.157909] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 12/01/2010] [Indexed: 11/06/2022] Open
Abstract
Dual specificity tyrosine phosphorylation-regulated kinases, DYRKs, are a family of conserved protein kinases that play key roles in the regulation of cell differentiation, proliferation, and survival. Of the five mammalian DYRKs, DYRK4 is the least studied family member. Here, we show that several splice variants of DYRK4 are expressed in tissue-specific patterns and that these variants have distinct functional capacities. One of these variants contains a nuclear localization signal in its extended N terminus that mediates its interaction with importin α3 and α5 and that is capable of targeting a heterologous protein to the nucleus. Consequently, the nucleocytoplasmic mobility of this variant differs from that of a shorter isoform in live cell imaging experiments. Other splicing events affect the catalytic domain, including a three-amino acid deletion within subdomain XI that markedly reduces the enzymatic activity of DYRK4. We also show that autophosphorylation of a tyrosine residue within the activation loop is necessary for full DYRK4 kinase activity, a defining feature of the DYRK family. Finally, by comparing the phosphorylation of an array of 720 peptides, we show that DYRK1A, DYRK2, and DYRK4 differ in their target recognition sequence and that preference for an arginine residue at position P -3 is a feature of DYRK1A but not of DYRK2 and DYRK4. Therefore, we highlight the use of subcellular localization as an important regulatory mechanism for DYRK proteins, and we propose that substrate specificity could be a source of functional diversity among DYRKs.
Collapse
Affiliation(s)
- Chrisovalantis Papadopoulos
- From the Genes and Disease Program, Centre for Genomic Regulation, University Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
- the Institute of Pharmacology and Toxicology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Krisztina Arato
- From the Genes and Disease Program, Centre for Genomic Regulation, University Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
- the Centro de Investigación Biomédica en Red de Enfermedades Raras, 08003 Barcelona, Spain
| | - Eva Lilienthal
- the Institute of Pharmacology and Toxicology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Johannes Zerweck
- JPT Peptide Technologies GmbH, Volmerstrasse 5, 12489 Berlin, Germany
| | - Mike Schutkowski
- JPT Peptide Technologies GmbH, Volmerstrasse 5, 12489 Berlin, Germany
- the Institute of Biochemistry and Biotechnology, University of Halle-Wittenberg, Kurt-Mothes Strasse 3, 06099 Halle (Saale), Germany, and
| | - Nicolas Chatain
- the Department of Biochemistry, Rheinisch-Westfaelische Technische Hochschule Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Gerhard Müller-Newen
- the Department of Biochemistry, Rheinisch-Westfaelische Technische Hochschule Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Walter Becker
- the Institute of Pharmacology and Toxicology, Rheinisch-Westfaelische Technische Hochschule Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | - Susana de la Luna
- From the Genes and Disease Program, Centre for Genomic Regulation, University Pompeu Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
- the Centro de Investigación Biomédica en Red de Enfermedades Raras, 08003 Barcelona, Spain
- the Institució Catalana de Recerca i Estudis Avançats, 08003 Barcelona, Spain
| |
Collapse
|
15
|
Aranda S, Laguna A, de la Luna S. DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 2011; 25:449-62. [PMID: 21048044 DOI: 10.1096/fj.10-165837] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dual-specificity tyrosine-regulated kinases (DYRKs) comprise a family of protein kinases within the CMGC group of the eukaryotic kinome. Members of the DYRK family are found in 4 (animalia, plantae, fungi, and protista) of the 5 main taxa or kingdoms, and all DYRK proteins studied to date share common structural, biochemical, and functional properties with their ancestors in yeast. Recent work on DYRK proteins indicates that they participate in several signaling pathways critical for developmental processes and cell homeostasis. In this review, we focus on the DYRK family of proteins from an evolutionary, biochemical, and functional point of view and discuss the most recent, relevant, and controversial contributions to the study of these kinases.
Collapse
Affiliation(s)
- Sergi Aranda
- Center for Genomic Regulation, University Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|
16
|
Guo X, Williams JG, Schug TT, Li X. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem 2010; 285:13223-32. [PMID: 20167603 PMCID: PMC2857074 DOI: 10.1074/jbc.m110.102574] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/18/2010] [Indexed: 12/21/2022] Open
Abstract
DYRK1A (the dual specificity tyrosine phosphorylation-regulated kinase 1A) plays an important role in body growth and brain physiology. Overexpression of this kinase has been associated with the development of Down syndrome in both human and animal models, whereas single copy loss-of-function of DYRK1A leads to increased apoptosis and decreased brain size. Although more than a dozen of DYRK1A targets have been identified, the molecular basis of its involvement in neuronal development remains unclear. Here we show that DYRK1A and another pro-survival member of the DYRK family, DYRK3, promote cell survival through phosphorylation and activation of SIRT1, an NAD(+)-dependent protein deacetylase that is essential in a variety of physiological processes including stress response and energy metabolism. DYRK1A and DYRK3 directly phosphorylate SIRT1 at Thr(522), promoting deacetylation of p53. A SIRT1 phosphorylation mimetic (SIRT1 T522D) displays elevated deacetylase activity, thus inhibiting cell apoptosis. Conversely, a SIRT1 dephosphorylation mimetic (SIRT1 T522V) fails to mediate DYRK-induced deacetylation of p53 and cell survival. We show that knockdown of endogenous DYRK1A and DYRK3 leads to hypophosphorylation of SIRT1, sensitizing cells to DNA damage-induced cell death. We also provide evidence that phosphorylation of Thr(522) activates SIRT1 by promoting product release, thereby increasing its enzymatic turnover. Taken together, our findings provide a novel mechanism by which two anti-apoptotic DYRK members promote cell survival through direct modification of SIRT1. These findings may have important implications in understanding the molecular mechanisms of tumorigenesis, Down syndrome, and aging.
Collapse
Affiliation(s)
- Xiumei Guo
- From the
Laboratory of Signal Transduction and
| | - Jason G. Williams
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | | - Xiaoling Li
- From the
Laboratory of Signal Transduction and
| |
Collapse
|
17
|
Kinstrie R, Luebbering N, Miranda-Saavedra D, Sibbet G, Han J, Lochhead PA, Cleghon V. Characterization of a domain that transiently converts class 2 DYRKs into intramolecular tyrosine kinases. Sci Signal 2010; 3:ra16. [PMID: 20197545 DOI: 10.1126/scisignal.2000579] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) autophosphorylate an essential tyrosine residue in their activation loop and phosphorylate their substrates on serine and threonine residues. Phosphorylation of the activation loop tyrosine occurs intramolecularly, is mediated by a short-lived transitional intermediate during protein maturation, and is required for functional serine-threonine kinase activity of DYRKs. The DYRK family is separated into two subclasses. Through bioinformatics and mutational analyses, we identified a conserved domain in the noncatalytic N terminus of a class 2 DYRK that was required for autophosphorylation of the activation loop tyrosine but not for the phosphorylation of serine or threonine residues in substrates. We propose that this domain, which we term the NAPA domain, provides a chaperone-like function that transiently converts class 2 DYRKs into intramolecular kinases capable of autophosphorylating the activation loop tyrosine. The conservation of the NAPA domain from trypanosomes to humans indicates that this form of intramolecular phosphorylation of the activation loop is ancient and may represent a primordial mechanism for the activation of protein kinases.
Collapse
Affiliation(s)
- Ross Kinstrie
- 1Department of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhou W, Calciano MA, Jordan H, Brenner M, Johnson S, Wu D, Lei L, Pallares D, Beurdeley P, Rouet F, Gill PS, Bracco L, Soucaille C, Einstein R. High resolution analysis of the human transcriptome: detection of extensive alternative splicing independent of transcriptional activity. BMC Genet 2009; 10:63. [PMID: 19804644 PMCID: PMC2768739 DOI: 10.1186/1471-2156-10-63] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 10/05/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Commercially available microarrays have been used in many settings to generate expression profiles for a variety of applications, including target selection for disease detection, classification, profiling for pharmacogenomic response to therapeutics, and potential disease staging. However, many commercially available microarray platforms fail to capture transcript diversity produced by alternative splicing, a major mechanism for driving proteomic diversity through transcript heterogeneity. RESULTS The human Genome-Wide SpliceArray(TM) (GWSA), a novel microarray platform, utilizes an existing probe design concept to monitor such transcript diversity on a genome scale. The human GWSA allows the detection of alternatively spliced events within the human genome through the use of exon body and exon junction probes to provide a direct measure of each transcript, through simple calculations derived from expression data. This report focuses on the performance and validation of the array when measured against standards recently published by the Microarray Quality Control (MAQC) Project. The array was shown to be highly quantitative, and displayed greater than 85% correlation with the HG-U133 Plus 2.0 array at the gene level while providing more extensive coverage of each gene. Almost 60% of splice events among genes demonstrating differential expression of greater than 3 fold also contained extensive splicing alterations. Importantly, almost 10% of splice events within the gene set displaying constant overall expression values had evidence of transcript diversity. Two examples illustrate the types of events identified: LIM domain 7 showed no differential expression at the gene level, but demonstrated deregulation of an exon skip event, while erythrocyte membrane protein band 4.1 -like 3 was differentially expressed and also displayed deregulation of a skipped exon isoform. CONCLUSION Significant changes were detected independent of transcriptional activity, indicating that the controls for transcript generation and transcription are distinct, and require novel tools in order to detect changes in specific transcript quantity. Our results demonstrate that the SpliceArray(TM) design will provide researchers with a robust platform to detect and quantify specific changes not only in overall gene expression, but also at the individual transcript level.
Collapse
Affiliation(s)
- Weiyin Zhou
- ExonHit Therapeutics Inc, 217 Perry Parkway, Bldg 5, Gaithersburg, MD, 20877 USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yoshida K. Role for DYRK family kinases on regulation of apoptosis. Biochem Pharmacol 2008; 76:1389-94. [PMID: 18599021 DOI: 10.1016/j.bcp.2008.05.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/01/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
Abstract
The cellular response to a variety of stress including DNA damage is involved in cell cycle arrest, activation of DNA repair, and in the event of irreparable damage, induction of apoptosis. However, the signals that determine cell fate, that is, survival or apoptosis, are largely unknown. Accumulating studies have revealed that dual-specificity tyrosine-regulated kinases (DYRKs) play key roles on cell proliferation and apoptosis induction. In particular, DYRK2 translocates from the cytoplasm into the nucleus following genotoxic stress. DYRK2 is then activated by ATM and induce apoptosis by phosphorylating p53 at Ser46. Importantly, whereas precise regulation of these kinases remain uncertain, this mechanism has consequences for cell proliferation, differentiation, or apoptosis. This progress review highlights recent efforts demonstrating that DYRKs could be novel and essential regulatory molecules for the regulation of cell fate including apoptosis.
Collapse
Affiliation(s)
- Kiyotsugu Yoshida
- Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
20
|
Bogacheva O, Bogachev O, Menon M, Dev A, Houde E, Valoret EI, Prosser HM, Creasy CL, Pickering SJ, Grau E, Rance K, Livi GP, Karur V, Erickson-Miller CL, Wojchowski DM. DYRK3 dual-specificity kinase attenuates erythropoiesis during anemia. J Biol Chem 2008; 283:36665-75. [PMID: 18854306 DOI: 10.1074/jbc.m807844200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During anemia erythropoiesis is bolstered by several factors including KIT ligand, oncostatin-M, glucocorticoids, and erythropoietin. Less is understood concerning factors that limit this process. Experiments performed using dual-specificity tyrosine-regulated kinase-3 (DYRK3) knock-out and transgenic mice reveal that erythropoiesis is attenuated selectively during anemia. DYRK3 is restricted to erythroid progenitor cells and testes. DYRK3-/- mice exhibited essentially normal hematological profiles at steady state and reproduced normally. In response to hemolytic anemia, however, reticulocyte production increased severalfold due to DYRK3 deficiency. During 5-fluorouracil-induced anemia, both reticulocyte and red cell formation in DYRK3-/- mice were elevated. In short term transplant experiments, DYRK3-/- progenitors also supported enhanced erythroblast formation, and erythropoietic advantages due to DYRK3-deficiency also were observed in 5-fluorouracil-treated mice expressing a compromised erythropoietin receptor EPOR-HM allele. As analyzed ex vivo, DYRK3-/- erythroblasts exhibited enhanced CD71posTer119pos cell formation and 3HdT incorporation. Transgenic pA2gata1-DYRK3 mice, in contrast, produced fewer reticulocytes during hemolytic anemia, and pA2gata1-DYRK3 progenitors were compromised in late pro-erythroblast formation ex vivo. Finally, as studied in erythroid K562 cells, DYRK3 proved to effectively inhibit NFAT (nuclear factor of activated T cells) transcriptional response pathways and to co-immunoprecipitate with NFATc3. Findings indicate that DYRK3 attenuates (and possibly apportions) red cell production selectively during anemia.
Collapse
Affiliation(s)
- Olga Bogacheva
- Stem and Progenitor Cell Biology Program, Molecular Medicine Division, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sacher F, Möller C, Bone W, Gottwald U, Fritsch M. The expression of the testis-specific Dyrk4 kinase is highly restricted to step 8 spermatids but is not required for male fertility in mice. Mol Cell Endocrinol 2007; 267:80-8. [PMID: 17292540 DOI: 10.1016/j.mce.2006.12.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 11/30/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
Members of the dual specificity tyrosine phosphorylated and regulated kinase family (Dyrk) were shown to have a highly testis-abundant or testis-restricted expression pattern. Furthermore, for some members of the family an involvement in gene expression regulation by phosphorylating transcription factors has been shown. Since little is known about the complex regulation of germ cell differentiation in spermatogenesis, we analysed the possible involvement of Dyrk kinases in this process. ISH experiments showed specific distribution of Dyrk kinases mainly in postmeiotic germ cell. We identified Dyrk4 as a testis-specific kinase with a very restricted expression to stage VIII postmeiotic spermatids. In vitro and in vivo experiments proved the enzymatic activity and suggested the cytoplasmatic localisation of Dyrk4. Finally, analysis of a Dyrk4 deficient mouse line showed that Dyrk4 is dispensable for male fertility, hence suggesting a functional redundancy of some Dyrk isoforms during spermiogenesis.
Collapse
Affiliation(s)
- F Sacher
- Corporate Research Business Area Gynecology and Andrology, Schering AG, Berlin, Germany
| | | | | | | | | |
Collapse
|
22
|
Li K, Zhao S, Karur V, Wojchowski DM. DYRK3 activation, engagement of protein kinase A/cAMP response element-binding protein, and modulation of progenitor cell survival. J Biol Chem 2002; 277:47052-60. [PMID: 12356771 DOI: 10.1074/jbc.m205374200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DYRKs are a new family of dual-specificity tyrosine-regulated kinases with emerging roles in cell growth and development. Recently, we discovered that DYRK3 is expressed primarily in erythroid progenitor cells and modulates late erythropoiesis. We now describe 1) roles for the DYRK3 YTY signature motif in kinase activation, 2) the coupling of DYRK3 to cAMP response element (CRE)-binding protein (CREB), and 3) effects of DYRK3 on hematopoietic progenitor cell survival. Regarding the DYRK3 kinase domain, intactness of Tyr(333) (but not Tyr(331)) within subdomain loop VII-VIII was critical for activation. Tyr(331) plus Tyr(333) acidification (Tyr mutated to Glu) was constitutively activating, but kinase activity was not affected substantially by unique N- or C-terminal domains. In transfected 293 and HeLa cells, DYRK3 was discovered to efficiently stimulate CRE-luciferase expression, to activate a CREB-Gal4 fusion protein, and to promote CREB phosphorylation at Ser(133). Interestingly, this CREB/CRE response was also supported (50% of wild-type activity) by a kinase-inactive DYRK3 mutant as well as a DYRK3 C-terminal region and was blocked by protein kinase A inhibitors, suggesting functional interactions between protein kinase A and DYRK3. Finally, DYRK3 expression in cytokine-dependent hematopoietic FDCW2 cells was observed to inhibit programmed cell death. Thus, primary new insight into DYRK3 kinase signaling routes, subdomain activities, and possible biofunctions is provided.
Collapse
Affiliation(s)
- Ke Li
- Immunobiology Program and the Department of Veterinary Science, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
23
|
Zhang D, Johnson MM, Miller CP, Pircher TJ, Geiger JN, Wojchowski DM. An optimized system for studies of EPO-dependent murine pro-erythroblast development. Exp Hematol 2001; 29:1278-88. [PMID: 11698123 DOI: 10.1016/s0301-472x(01)00725-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Objectives were to develop new means to isolate useful numbers of primary progenitor cells and to quantitatively assay the stepwise maturation of erythroblasts. METHODS Approaches involved dosing mice with thiamphenicol (TAP) to yield staged cohorts of pro-erythroid cells; optimizing conditions for their EPO-dependent in vitro growth and survival; developing assays for CFU-E maturation; analyzing stage-specific transcript expression; and expressing a heterologous, erythroid-specific tag (EE372) in transgenic mice. RESULTS Per TAP-treated mouse, 3 x 10(7) highly EPO-responsive erythroid progenitor cells were generated that represented up to 30% of total splenocytes and showed strict dependence on EPO for survival, growth, and immediate response gene expression. In this developing cohort, a tightly programmed sequence of gene expression was observed, and maximal expression of c-kit, EPO receptor, and beta-globin transcripts occurred at 72, 96, and 120 hours post-TAP withdrawal, respectively. Also, the newly discovered erythroid-specific dual-specificity kinase, DYRK3, was revealed to be expressed at a late CFU-E stage. In vitro, these progenitor cells matured stepwise from high FALS Ter119- cells (24-hour culture) to high FALS Ter119+ cells (24-36 hours) to low FALS Ter119+ maturing erythroblasts (40-48 hours) and sharp differences in their morphologies were observed. Finally, a MACS-based procedure for the purification of erythroid progenitor cells from TAP-treated EE372 transgenic mice also was developed. CONCLUSIONS A comprehensive new system for isolating large numbers of primary murine erythroid progenitor cells and quantitatively monitoring their development is established that should serve well in investigations of endogenous and pharmacological regulators of red blood cell development.
Collapse
Affiliation(s)
- D Zhang
- Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
24
|
Geiger JN, Knudsen GT, Panek L, Pandit AK, Yoder MD, Lord KA, Creasy CL, Burns BM, Gaines P, Dillon SB, Wojchowski DM. mDYRK3 kinase is expressed selectively in late erythroid progenitor cells and attenuates colony-forming unit-erythroid development. Blood 2001; 97:901-10. [PMID: 11159515 DOI: 10.1182/blood.v97.4.901] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DYRKs are a new subfamily of dual-specificity kinases that was originally discovered on the basis of homology to Yak1, an inhibitor of cell cycle progression in yeast. At present, mDYRK-3 and mDYRK-2 have been cloned, and mDYRK-3 has been characterized with respect to kinase activity, expression among tissues and hematopoietic cells, and possible function during erythropoiesis. In sequence, mDYRK-3 diverges markedly in noncatalytic domains from mDYRK-2 and mDYRK-1a, but is 91.3% identical overall to hDYRK-3. Catalytically, mDYRK-3 readily phosphorylated myelin basic protein (but not histone 2B) and also appeared to autophosphorylate in vitro. Expression of mDYRK-1a, mDYRK-2, and mDYRK-3 was high in testes, but unlike mDYRK1a and mDYRK 2, mDYRK-3 was not expressed at appreciable levels in other tissues examined. Among hematopoietic cells, however, mDYRK-3 expression was selectively elevated in erythroid cell lines and primary pro-erythroid cells. In developmentally synchronized erythroid progenitor cells, expression peaked sharply following exposure to erythropoietin plus stem cell factor (SCF) (but not SCF alone), and in situ hybridizations of sectioned embryos revealed selective expression of mDYRK-3 in fetal liver. Interestingly, antisense oligonucleotides to mDYRK-3 were shown to significantly and specifically enhance colony-forming unit-erythroid colony formation. Thus, it is proposed that mDYRK-3 kinase functions as a lineage-restricted, stage-specific suppressor of red cell development. (Blood. 2001;97:901-910)
Collapse
Affiliation(s)
- J N Geiger
- Department of Biochemistry & Molecular Biology and Veterinary Science, The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|