1
|
Zheng Y, Lin S, Chen M, Xu L, Huang H. Regulation of N 6-methyladenosine modification in erythropoiesis and thalassemia. Clin Genet 2024; 106:3-12. [PMID: 38488342 DOI: 10.1111/cge.14518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 06/04/2024]
Abstract
In eukaryotic RNA, N6-methyladenosine (m6A) is a prevalent form of methylation modification. The m6A modification process is reversible and dynamic, written by m6A methyltransferase complex, erased by m6A demethylase, and recognized by m6A binding proteins. Through mediating RNA stability, decay, alternative splicing, and translation processes, m6A modification regulates gene expression at the post-transcriptional level. Erythropoiesis is the process of hematopoietic stem cells undergoing proliferation, a series of differentiation and maturation to form red blood cells (RBCs). Thalassemia is a common monogenic disease characterized by excessive production of ineffective RBCs in the peripheral circulation, resulting in hemolytic anemia. Increasing evidence suggests that m6A modification plays a crucial role in erythropoiesis. In this review, we comprehensively summarize the function of m6A modification in erythropoiesis and further generalize the mechanism of m6A modification regulating ineffective erythropoiesis and fetal hemoglobin expression. The purpose is to improve the understanding of the pathogenesis of erythroid dysplasia and offer new perspectives for the diagnosis and treatment of thalassemia.
Collapse
Affiliation(s)
- Yanping Zheng
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
| | - Siyang Lin
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Provincial Key Laboratory of Prenatal Diagnosis and Birth Defect, Fujian Medical University, Fuzhou, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China
- Fujian Clinical Research Center for Maternal-Fetal Medicine, Fuzhou, China
- National Key Obstetric Clinical Specialty Construction Institution of China, Fuzhou, China
| |
Collapse
|
2
|
Liang R, Lin M, Menon V, Qiu J, Menon A, Breda L, Arif T, Rivella S, Ghaffari S. Elevated CDKN1A (P21) mediates β-thalassemia erythroid apoptosis, but its loss does not improve β-thalassemic erythropoiesis. Blood Adv 2023; 7:6873-6885. [PMID: 37672319 PMCID: PMC10685172 DOI: 10.1182/bloodadvances.2022007655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
β-thalassemias are common hemoglobinopathies due to mutations in the β-globin gene that lead to hemolytic anemias. Premature death of β-thalassemic erythroid precursors results in ineffective erythroid maturation, increased production of erythropoietin (EPO), expansion of erythroid progenitor compartment, extramedullary erythropoiesis, and splenomegaly. However, the molecular mechanism of erythroid apoptosis in β-thalassemia is not well understood. Using a mouse model of β-thalassemia (Hbbth3/+), we show that dysregulated expression of the FOXO3 transcription factor is implicated in β-thalassemia erythroid apoptosis. In Foxo3-/-/Hbbth3/+ mice, erythroid apoptosis is significantly reduced, whereas erythroid cell maturation, and red blood cell and hemoglobin production are substantially improved even with elevated reactive oxygen species in double-mutant erythroblasts. However, persistence of elevated reticulocytes and splenomegaly suggests that ineffective erythropoiesis is not resolved in Foxo3-/-/Hbbth3/+. We found the cell cycle inhibitor Cdkn1a (cyclin-dependent kinase inhibitor p21), a FOXO3 target gene, is markedly upregulated in both mouse and patient-derived β-thalassemic erythroid precursors. Double-mutant p21/Hbbth3/+ mice exhibited embryonic lethality with only a fraction of mice surviving to weaning. Notably, studies in adult mice displayed greatly reduced apoptosis and circulating Epo in erythroid compartments of surviving p21-/-/Hbbth3/+ mice relative to Hbbth3/+ mice, whereas ineffective erythroid cell maturation, extramedullary erythropoiesis, and splenomegaly were not modified. These combined results suggest that mechanisms that control β-thalassemic erythroid cell survival and differentiation are uncoupled from ineffective erythropoiesis and involve a molecular network including FOXO3 and P21. Overall, these studies provide a new framework for investigating ineffective erythropoiesis in β-thalassemia.
Collapse
Affiliation(s)
- Raymond Liang
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Miao Lin
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jiajing Qiu
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Anagha Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Laura Breda
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Tasleem Arif
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Stefano Rivella
- Division of Hematology, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Developmental and Stem Cell Biology Multidisciplinary Training, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
3
|
de Paula CP, de Oliveira da Silva JPM, Romanello KS, Bernardo VS, Torres FF, da Silva DGH, da Cunha AF. Peroxiredoxins in erythrocytes: far beyond the antioxidant role. J Mol Med (Berl) 2023; 101:1335-1353. [PMID: 37728644 DOI: 10.1007/s00109-023-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023]
Abstract
The red blood cells (RBCs) are essential to transport oxygen (O2) and nutrients throughout the human body. Changes in the structure or functioning of the erythrocytes can lead to several deficiencies, such as hemolytic anemias, in which an increase in reactive oxidative species generation is involved in the pathophysiological process, playing a significant role in the severity of several clinical manifestations. There are important lines of defense against the damage caused by oxidizing molecules. Among the antioxidant molecules, the enzyme peroxiredoxin (Prx) has the higher decomposition power of hydrogen peroxide, especially in RBCs, standing out because of its abundance. This review aimed to present the recent findings that broke some paradigms regarding the three isoforms of Prxs found in RBC (Prx1, Prx2, and Prx6), showing that in addition to their antioxidant activity, these enzymes may have supplementary roles in transducing peroxide signals, as molecular chaperones, protecting from membrane damage, and maintenance of iron homeostasis, thus contributing to the overall survival of human RBCs, roles that seen to be disrupted in hemolytic anemia conditions.
Collapse
Affiliation(s)
- Carla Peres de Paula
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
- Biotechnology Graduate Program, Exact and Technology Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
| | - João Pedro Maia de Oliveira da Silva
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
- Evolutionary Genetics and Molecular Biology Graduate Program, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
| | - Karen Simone Romanello
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
- Evolutionary Genetics and Molecular Biology Graduate Program, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Danilo Grünig Humberto da Silva
- Department of Biology, Paulista State University, São Paulo, Brazil
- Federal University of Mato Grosso do Sul, Campus de Três Lagoas, Três Lagoas, Mato Grosso do Sul, Brazil
| | - Anderson Ferreira da Cunha
- Genetics and Evolution Department, Biological and Health Sciences Center, Federal University of São Carlos, São Carlos, Brazil.
| |
Collapse
|
4
|
Phannasil P, Sukhuma C, Nauphar D, Nuamsee K, Svasti S. Up-regulation of microRNA 101-3p during erythropoiesis in β-thalassemia/HbE. Blood Cells Mol Dis 2023; 103:102781. [PMID: 37478523 DOI: 10.1016/j.bcmd.2023.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/18/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Ineffective erythropoiesis is the main cause of anemia in β-thalassemia. The crucial hallmark of ineffective erythropoiesis is the high proliferation of erythroblast. microRNA (miR/miRNA) involves several biological processes, including cell proliferation and erythropoiesis. miR-101 was widely studied and associated with proliferation in several types of cancer. However, the miR-101-3p has not been studied in β-thalassemia/HbE. Therefore, this study aims to investigate the expression of miR-101-3p during erythropoiesis in β-thalassemia/HbE. The results showed that miR-101-3p was upregulated in the erythroblast of β-thalassemia/HbE patients on day 7, indicating that miR-101-3p may be involved with high proliferation in β-thalassemia/HbE. Therefore, the mRNA targets of miR-101-3p including Rac1, SUB1, TET2, and TRIM44 were investigated to determine the mechanisms involved with high proliferation of β-thalassemia/HbE erythroblasts. Rac1 expression was significantly reduced at day 11 in severe β-thalassemia/HbE compared to normal controls and mild β-thalassemia/HbE. SUB1 gene expression was significantly lower in severe β-thalassemia/HbE compared to normal controls at day 9 of culture. For TET2 and TRIM44 expression, a significant difference was not observed among normal and β-thalassemia/HbE. However, the high expression of miR-101-3p at day 7 and these target genes was not correlated, suggesting that this miRNA may regulate ineffective erythropoiesis in β-thalassemia/HbE via other target genes.
Collapse
Affiliation(s)
- Phatchariya Phannasil
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chanyanat Sukhuma
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Donny Nauphar
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta Pusat 10430, Indonesia; Department of Genetics, Faculty of Medicine, Universitas Swadaya Gunung Jati, Cirebon 45132, West-Java, Indonesia
| | - Khanita Nuamsee
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
5
|
Rodrigues F, Coman T, Fouquet G, Côté F, Courtois G, Trovati Maciel T, Hermine O. A deep dive into future therapies for microcytic anemias and clinical considerations. Expert Rev Hematol 2023; 16:349-364. [PMID: 37092971 DOI: 10.1080/17474086.2023.2206556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Microcytic anemias (MA) have frequent or rare etiologies. New discoveries in understanding and treatment of microcytic anemias need to be reviewed. AREAS COVERED Microcytic anemias with a focus on most frequent causes and on monogenic diseases that are relevant for understanding biocellular mechanisms of MA. All treatments excepting gene therapy, with a focus on recent advances. Pubmed search with references selected by expert opinion. EXPERT OPINION As the genetic and cellular background of dyserythropoiesis will continue to be clarified, collaboration with bioengineering of treatments acting specifically at the protein domain level will continue to provide new therapies in haematology as well as oncology and neurology.
Collapse
Affiliation(s)
- François Rodrigues
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, Asrsistance Publique- Hôpitaux de Paris, France
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| | - Tereza Coman
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
- Département d'hématologie, Institut Gustave Roussy, Villejuif, France
| | - Guillemette Fouquet
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, Asrsistance Publique- Hôpitaux de Paris, France
- Hématologie clinique, Centre Hospitalier Sud Francilien, Corbeil Essonnes, France
| | - Francine Côté
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| | | | | | - Olivier Hermine
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, Asrsistance Publique- Hôpitaux de Paris, France
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| |
Collapse
|
6
|
Algeri M, Lodi M, Locatelli F. Hematopoietic Stem Cell Transplantation in Thalassemia. Hematol Oncol Clin North Am 2023; 37:413-432. [PMID: 36907612 DOI: 10.1016/j.hoc.2022.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only consolidated, potentially curative treatment for patients with transfusion-dependent thalassemia major. In the past few decades, several new approaches have reduced the toxicity of conditioning regimens and decreased the incidence of graft-versus-host disease, improving patients' outcomes and quality of life. In addition, the progressive availability of alternative stem cell sources from unrelated or haploidentical donors or umbilical cord blood has made HSCT a feasible option for an increasing number of subjects lacking an human leukocyte antigen (HLA)-identical sibling. This review provides an overview of allogeneic hematopoietic stem cell transplantation in thalassemia, reassesses current clinical results, and discusses future perspectives.
Collapse
Affiliation(s)
- Mattia Algeri
- Department of Hematology/Oncology, Cell and Gene Therapy - IRCCS, Bambino Gesù Children's Hospital, Rome, Italy.
| | - Mariachiara Lodi
- Department of Hematology/Oncology, Cell and Gene Therapy - IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy - IRCCS, Bambino Gesù Children's Hospital, Rome, Italy; Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
7
|
Chaichompoo P, Nithipongvanitch R, Kheansaard W, Tubsuwan A, Srinoun K, Vadolas J, Fucharoen S, Smith DR, Winichagoon P, Svasti S. Increased autophagy leads to decreased apoptosis during β-thalassaemic mouse and patient erythropoiesis. Sci Rep 2022; 12:18628. [PMID: 36329049 PMCID: PMC9633749 DOI: 10.1038/s41598-022-21249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
β-Thalassaemia results from defects in β-globin chain production, leading to ineffective erythropoiesis and subsequently to severe anaemia and other complications. Apoptosis and autophagy are the main pathways that regulate the balance between cell survival and cell death in response to diverse cellular stresses. Herein, the death of erythroid lineage cells in the bone marrow from both βIVS2-654-thalassaemic mice and β-thalassaemia/HbE patients was investigated. Phosphatidylserine (PS)-bearing basophilic erythroblasts and polychromatophilic erythroblasts were significantly increased in β-thalassaemia as compared to controls. However, the activation of caspase 8, caspase 9 and caspase 3 was minimal and not different from control in both murine and human thalassaemic erythroblasts. Interestingly, bone marrow erythroblasts from both β-thalassaemic mice and β-thalassaemia/HbE patients had significantly increased autophagy as shown by increased autophagosomes and increased co-localization between LC3 and LAMP-1. Inhibition of autophagy by chloroquine caused significantly increased erythroblast apoptosis. We have demonstrated increased autophagy which led to minimal apoptosis in β-thalassaemic erythroblasts. However, increased PS exposure occurring through other mechanisms in thalassaemic erythroblasts might cause rapid phagocytic removal by macrophages and consequently ineffective erythropoiesis in β-thalassaemia.
Collapse
Affiliation(s)
- Pornthip Chaichompoo
- grid.10223.320000 0004 1937 0490Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand ,grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Ramaneeya Nithipongvanitch
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Wasinee Kheansaard
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Alisa Tubsuwan
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kanitta Srinoun
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.7130.50000 0004 0470 1162Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Jim Vadolas
- grid.452824.dCentre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | - Suthat Fucharoen
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Duncan R. Smith
- grid.10223.320000 0004 1937 0490Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Pranee Winichagoon
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Saovaros Svasti
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
In Vitro Study of Ineffective Erythropoiesis in Thalassemia: Diverse Intrinsic Pathophysiological Features of Erythroid Cells Derived from Various Thalassemia Syndromes. J Clin Med 2022; 11:jcm11185356. [PMID: 36143003 PMCID: PMC9504363 DOI: 10.3390/jcm11185356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Defective hemoglobin production and ineffective erythropoiesis contribute to the pathophysiology of thalassemia syndromes. Previous studies in the field of erythropoiesis mainly focused on the severe forms of thalassemia, such as β-thalassemia major, while mechanisms underlying the pathogenesis of other thalassemia syndromes remain largely unexplored. The current study aimed to investigate the intrinsic pathophysiological properties of erythroid cells derived from the most common forms of thalassemia diseases, including α-thalassemia (hemoglobin H and hemoglobin H-Constant Spring diseases) and β-thalassemia (homozygous β0-thalassemia and β0-thalassemia/hemoglobin E diseases), under an identical in vitro erythroid culture system. Cell proliferation capacity, differentiation velocity, cell death, as well as globin synthesis and the expression levels of erythropoiesis modifying factors were determined. Accelerated expansion was found in erythroblast cells derived from all types of thalassemia, with the highest degree in β0-thalassemia/hemoglobin E. Likewise, all types of thalassemia showed limited erythroid cell differentiation, but each of them manifested varying degrees of erythroid maturation arrest corresponding with the clinical severity. Robust induction of HSP70 transcripts, an erythroid maturation-related factor, was found in both α- and β-thalassemia erythroid cells. Increased cell death was distinctly present only in homozygous β0-thalassemia erythroblasts and associated with the up-regulation of pro-apoptotic (Caspase 9, BAD, and MTCH1) genes and down-regulation of the anti-apoptotic BCL-XL gene.
Collapse
|
9
|
Bou-Fakhredin R, De Franceschi L, Motta I, Eid AA, Taher AT, Cappellini MD. Redox Balance in β-Thalassemia and Sickle Cell Disease: A Love and Hate Relationship. Antioxidants (Basel) 2022; 11:antiox11050967. [PMID: 35624830 PMCID: PMC9138068 DOI: 10.3390/antiox11050967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
β-thalassemia and sickle cell disease (SCD) are inherited hemoglobinopathies that result in both quantitative and qualitative variations in the β-globin chain. These in turn lead to instability in the generated hemoglobin (Hb) or to a globin chain imbalance that affects the oxidative environment both intracellularly and extracellularly. While oxidative stress is not among the primary etiologies of β-thalassemia and SCD, it plays a significant role in the pathogenesis of these diseases. Different mechanisms exist behind the development of oxidative stress; the result of which is cytotoxicity, causing the oxidation of cellular components that can eventually lead to cell death and organ damage. In this review, we summarize the mechanisms of oxidative stress development in β-thalassemia and SCD and describe the current and potential antioxidant therapeutic strategies. Finally, we discuss the role of targeted therapy in achieving an optimal redox balance.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, 37128 Verona, Italy;
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Ali T. Taher
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
10
|
Ineffective erythropoiesis and its treatment. Blood 2021; 139:2460-2470. [PMID: 34932791 DOI: 10.1182/blood.2021011045] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
The erythroid marrow and circulating red blood cells (RBCs) are the key components of the human erythron. Abnormalities of the erythron that are responsible for anemia can be distinguished into 3 major categories, that is, erythroid hypoproliferation, ineffective erythropoiesis, and peripheral hemolysis. Ineffective erythropoiesis is characterized by erythropoietin-driven expansion of early-stage erythroid precursors, associated with apoptosis of late-stage precursors. This mechanism is primarily responsible for anemia in inherited disorders like β-thalassemia, inherited sideroblastic anemias, and congenital dyserythropoietic anemias, as well as in acquired conditions like some subtypes of myelodysplastic syndromes (MDS). The inherited anemias due to ineffective erythropoiesis are also defined as iron loading anemias because of the associated parenchymal iron loading caused by the release of erythroid factors that suppress hepcidin production. Novel treatments specifically targeting ineffective erythropoiesis are being developed. Iron restriction through enhancement of hepcidin activity or inhibition of ferroportin function has been shown to reduce ineffective erythropoiesis in murine models of β-thalassemia. Luspatercept is a TGF-β ligand trap that inhibits SMAD2/3 signaling. Based on pre-clinical and clinical studies, this compound is now approved for the treatment of anemia in adult patients with β-thalassemia who require regular RBC transfusions. Luspatercept is also approved for the treatment of transfusion-dependent anemia in patients with MDS with ring sideroblasts, most of whom carry a somatic SF3B1mutation. While long-term efficacy and safety of luspatercept need to be evaluated both in β-thalassemia and MDS, defining the molecular mechanisms of ineffective erythropoiesis in different disorders might allow the discovery of new effective compounds.
Collapse
|
11
|
Ineffective Erythropoiesis in β-Thalassaemia: Key Steps and Therapeutic Options by Drugs. Int J Mol Sci 2021; 22:ijms22137229. [PMID: 34281283 PMCID: PMC8268821 DOI: 10.3390/ijms22137229] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023] Open
Abstract
β-thalassaemia is a rare genetic condition caused by mutations in the β-globin gene that result in severe iron-loading anaemia, maintained by a detrimental state of ineffective erythropoiesis (IE). The role of multiple mechanisms involved in the pathophysiology of the disease has been recently unravelled. The unbalanced production of α-globin is a major source of oxidative stress and membrane damage in red blood cells (RBC). In addition, IE is tightly linked to iron metabolism dysregulation, and the relevance of new players of this pathway, i.e., hepcidin, erythroferrone, matriptase-2, among others, has emerged. Advances have been made in understanding the balance between proliferation and maturation of erythroid precursors and the role of specific factors in this process, such as members of the TGF-β superfamily, and their downstream effectors, or the transcription factor GATA1. The increasing understanding of IE allowed for the development of a broad set of potential therapeutic options beyond the current standard of care. Many candidates of disease-modifying drugs are currently under clinical investigation, targeting the regulation of iron metabolism, the production of foetal haemoglobin, the maturation process, or the energetic balance and membrane stability of RBC. Overall, they provide tools and evidence for multiple and synergistic approaches that are effectively moving clinical research in β-thalassaemia from bench to bedside.
Collapse
|
12
|
Pace BS, Perrine S, Li B, Makala L, Xu H, Takezaki M, Wolf RF, Wang A, Xu X, Huang J, Alimardanov A, Tawa GJ, Sangerman J, Faller A, Zheng W, Toney L, Haugabook SJ. Benserazide racemate and enantiomers induce fetal globin gene expression in vivo: Studies to guide clinical development for beta thalassemia and sickle cell disease. Blood Cells Mol Dis 2021; 89:102561. [PMID: 33744514 PMCID: PMC8409227 DOI: 10.1016/j.bcmd.2021.102561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023]
Abstract
Increased expression of developmentally silenced fetal globin (HBG) reduces the clinical severity of β-hemoglobinopathies. Benserazide has a relatively benign safety profile having been approved for 50 years in Europe and Canada for Parkinson's disease treatment. Benserazide was shown to activate HBG gene transcription in a high throughput screen, and subsequent studies confirmed fetal hemoglobin (HbF) induction in erythroid progenitors from hemoglobinopathy patients, transgenic mice containing the entire human β-globin gene (β-YAC) and anemic baboons. The goal of this study is to evaluate efficacies and plasma exposure profiles of benserazide racemate and its enantiomers to select the chemical form for clinical development. Intermittent treatment with all forms of benserazide in β-YAC mice significantly increased proportions of red blood cells expressing HbF and HbF protein per cell with similar pharmacokinetic profiles and with no cytopenia. These data contribute to the regulatory justification for development of the benserazide racemate. Additionally, dose ranges and frequencies required for HbF induction using racemic benserazide were explored. Orally administered escalating doses of benserazide in an anemic baboon induced γ-globin mRNA up to 13-fold and establish an intermittent dose regimen for clinical studies as a therapeutic candidate for potential treatment of β-hemoglobinopathies.
Collapse
Affiliation(s)
- Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Susan Perrine
- Phoenicia BioSciences, Weston, MA 02493, USA; Department of Pharmacology and Experimental Therapeutics, Hemoglobinopathy Thalassemia Research Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Biaoru Li
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Levi Makala
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Augusta University, Augusta, GA 30912, USA
| | - Mayuko Takezaki
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Roman F Wolf
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amy Wang
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Xu
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Junfeng Huang
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Asaf Alimardanov
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory J Tawa
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jose Sangerman
- Phoenicia BioSciences, Weston, MA 02493, USA; Department of Pharmacology and Experimental Therapeutics, Hemoglobinopathy Thalassemia Research Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aidan Faller
- Phoenicia BioSciences, Weston, MA 02493, USA; Department of Pharmacology and Experimental Therapeutics, Hemoglobinopathy Thalassemia Research Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Wei Zheng
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - London Toney
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharie J Haugabook
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Castro-Mollo M, Gera S, Ruiz-Martinez M, Feola M, Gumerova A, Planoutene M, Clementelli C, Sangkhae V, Casu C, Kim SM, Ostland V, Han H, Nemeth E, Fleming R, Rivella S, Lizneva D, Yuen T, Zaidi M, Ginzburg Y. The hepcidin regulator erythroferrone is a new member of the erythropoiesis-iron-bone circuitry. eLife 2021; 10:e68217. [PMID: 34002695 PMCID: PMC8205482 DOI: 10.7554/elife.68217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
Background Erythroblast erythroferrone (ERFE) secretion inhibits hepcidin expression by sequestering several bone morphogenetic protein (BMP) family members to increase iron availability for erythropoiesis. Methods To address whether ERFE functions also in bone and whether the mechanism of ERFE action in bone involves BMPs, we utilize the Erfe-/- mouse model as well as β-thalassemic (Hbbth3/+) mice with systemic loss of ERFE expression. In additional, we employ comprehensive skeletal phenotyping analyses as well as functional assays in vitro to address mechanistically the function of ERFE in bone. Results We report that ERFE expression in osteoblasts is higher compared with erythroblasts, is independent of erythropoietin, and functional in suppressing hepatocyte hepcidin expression. Erfe-/- mice display low-bone-mass arising from increased bone resorption despite a concomitant increase in bone formation. Consistently, Erfe-/- osteoblasts exhibit enhanced mineralization, Sost and Rankl expression, and BMP-mediated signaling ex vivo. The ERFE effect on osteoclasts is mediated through increased osteoblastic RANKL and sclerostin expression, increasing osteoclastogenesis in Erfe-/- mice. Importantly, Erfe loss in Hbbth3/+mice, a disease model with increased ERFE expression, triggers profound osteoclastic bone resorption and bone loss. Conclusions Together, ERFE exerts an osteoprotective effect by modulating BMP signaling in osteoblasts, decreasing RANKL production to limit osteoclastogenesis, and prevents excessive bone loss during expanded erythropoiesis in β-thalassemia. Funding YZG acknowledges the support of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R01 DK107670 to YZG and DK095112 to RF, SR, and YZG). MZ acknowledges the support of the National Institute on Aging (U19 AG60917) and NIDDK (R01 DK113627). TY acknowledges the support of the National Institute on Aging (R01 AG71870). SR acknowledges the support of NIDDK (R01 DK090554) and Commonwealth Universal Research Enhancement (CURE) Program Pennsylvania.
Collapse
Affiliation(s)
- Melanie Castro-Mollo
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sakshi Gera
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Marc Ruiz-Martinez
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Maria Feola
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Gumerova
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Marina Planoutene
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Cara Clementelli
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Veena Sangkhae
- Center for Iron Disorders, University of California, Los Angeles (UCLA)Los AngelesUnited States
| | - Carla Casu
- Department of Pediatrics, Division of Hematology, and Penn Center for Musculoskeletal Disorders, Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Perelman School of MedicinePhiladelphiaUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Huiling Han
- Intrinsic Lifesciences, LLCLaJollaUnited States
| | - Elizabeta Nemeth
- Center for Iron Disorders, University of California, Los Angeles (UCLA)Los AngelesUnited States
| | - Robert Fleming
- Department of Pediatrics, Saint Louis University School of MedicineSt LouisUnited States
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, and Penn Center for Musculoskeletal Disorders, Children’s Hospital of Philadelphia (CHOP), University of Pennsylvania, Perelman School of MedicinePhiladelphiaUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mone Zaidi
- The Mount Sinai Bone Program, Departments of Medicine and Pharmacological Sciences, and Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- Division of Hematology Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
14
|
Hematopoietic stem cell function in β-thalassemia is impaired and is rescued by targeting the bone marrow niche. Blood 2021; 136:610-622. [PMID: 32344432 DOI: 10.1182/blood.2019002721] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are regulated by signals from the bone marrow (BM) niche that tune hematopoiesis at steady state and in hematologic disorders. To understand HSC-niche interactions in altered nonmalignant homeostasis, we selected β-thalassemia, a hemoglobin disorder, as a paradigm. In this severe congenital anemia, alterations secondary to the primary hemoglobin defect have a potential impact on HSC-niche cross talk. We report that HSCs in thalassemic mice (th3) have an impaired function, caused by the interaction with an altered BM niche. The HSC self-renewal defect is rescued after cell transplantation into a normal microenvironment, thus proving the active role of the BM stroma. Consistent with the common finding of osteoporosis in patients, we found reduced bone deposition with decreased levels of parathyroid hormone (PTH), which is a key regulator of bone metabolism but also of HSC activity. In vivo activation of PTH signaling through the reestablished Jagged1 and osteopontin levels correlated with the rescue of the functional pool of th3 HSCs by correcting HSC-niche cross talk. Reduced HSC quiescence was confirmed in thalassemic patients, along with altered features of the BM stromal niche. Our findings reveal a defect in HSCs in β-thalassemia induced by an altered BM microenvironment and provide novel and relevant insight for improving transplantation and gene therapy approaches.
Collapse
|
15
|
Role of Extrinsic Apoptotic Signaling Pathway during Definitive Erythropoiesis in Normal Patients and in Patients with β-Thalassemia. Int J Mol Sci 2020; 21:ijms21093325. [PMID: 32397135 PMCID: PMC7246929 DOI: 10.3390/ijms21093325] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Apoptosis is a process of programmed cell death which has an important role in tissue homeostasis and in the control of organism development. Here, we focus on information concerning the role of the extrinsic apoptotic pathway in the control of human erythropoiesis. We discuss the role of tumor necrosis factor α (TNFα), tumor necrosis factor ligand superfamily member 6 (FasL), tumor necrosis factor-related apoptosis-inducing (TRAIL) and caspases in normal erythroid maturation. We also attempt to initiate a discussion on the observations that mature erythrocytes contain most components of the receptor-dependent apoptotic pathway. Finally, we point to the role of the extrinsic apoptotic pathway in ineffective erythropoiesis of different types of β-thalassemia.
Collapse
|
16
|
Tahannejad Asadi Z, Yarahmadi R, Saki N, Jalali MT, Amin Asnafi A, Tangestani R. Investigation of JAK2V617F Mutation Prevalence in Patients with Beta Thalassemia Major. Lab Med 2020; 51:176-180. [PMID: 31495895 DOI: 10.1093/labmed/lmz045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Beta (β)-thalassemia major is a genetic disorder with anemia and an increased level of erythropoietin by Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway. JAK plays an important role in cell signaling, and the common mutation in the JAK2 gene in myeloid disorders is called JAK2V617F. METHODS A total of 75 patients with beta (β)-thalassemia major patients, including 34 males (45%) and 41 females (55%), were enrolled in this study. The presence of the JAK2V617F mutation was assessed using the amplification-refractory mutation-polymerase chain reaction (ARMS-PCR) technique. RESULTS Among the 75 patients, 14 patients (19%) tested positive and 61 patients (81%) tested negative for JAK2V617F mutation. We observed no statistically significant difference in sex, age, genotype, and JAK2V617F mutation among patients (P> .05). However, a significant difference between blood-transfusion frequency and JAK2V617F mutation was observed (P <.05). CONCLUSION Due to the low prevalence of JAK2V617F mutation in thalassemia, using a larger population of the patients to investigate this mutation in ineffective erythropoiesis can be useful.
Collapse
Affiliation(s)
- Zari Tahannejad Asadi
- Health Research Institute, Thalassemia & Hemoglobinopathy Research Center.,Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Yarahmadi
- Health Research Institute, Thalassemia & Hemoglobinopathy Research Center
| | - Najmaldin Saki
- Health Research Institute, Thalassemia & Hemoglobinopathy Research Center
| | - Mohammad Taha Jalali
- Department of Laboratory Sciences, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amin Asnafi
- Health Research Institute, Thalassemia & Hemoglobinopathy Research Center
| | - Raheleh Tangestani
- Health Research Institute, Thalassemia & Hemoglobinopathy Research Center
| |
Collapse
|
17
|
Weber L, Frati G, Felix T, Hardouin G, Casini A, Wollenschlaeger C, Meneghini V, Masson C, De Cian A, Chalumeau A, Mavilio F, Amendola M, Andre-Schmutz I, Cereseto A, El Nemer W, Concordet JP, Giovannangeli C, Cavazzana M, Miccio A. Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. SCIENCE ADVANCES 2020; 6:6/7/eaay9392. [PMID: 32917636 PMCID: PMC7015694 DOI: 10.1126/sciadv.aay9392] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/25/2019] [Indexed: 05/02/2023]
Abstract
Sickle cell disease (SCD) is caused by a single amino acid change in the adult hemoglobin (Hb) β chain that causes Hb polymerization and red blood cell (RBC) sickling. The co-inheritance of mutations causing fetal γ-globin production in adult life hereditary persistence of fetal Hb (HPFH) reduces the clinical severity of SCD. HPFH mutations in the HBG γ-globin promoters disrupt binding sites for the repressors BCL11A and LRF. We used CRISPR-Cas9 to mimic HPFH mutations in the HBG promoters by generating insertions and deletions, leading to disruption of known and putative repressor binding sites. Editing of the LRF-binding site in patient-derived hematopoietic stem/progenitor cells (HSPCs) resulted in γ-globin derepression and correction of the sickling phenotype. Xenotransplantation of HSPCs treated with gRNAs targeting the LRF-binding site showed a high editing efficiency in repopulating HSPCs. This study identifies the LRF-binding site as a potent target for genome-editing treatment of SCD.
Collapse
Affiliation(s)
- Leslie Weber
- Laboratory of Human Lymphohematopoiesis, INSERM UMR1163, Paris, France
- Paris Diderot University-Sorbonne Paris Cité, Paris, France
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
| | - Giacomo Frati
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Tristan Felix
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Giulia Hardouin
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | | | - Clara Wollenschlaeger
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Vasco Meneghini
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Cecile Masson
- Paris-Descartes Bioinformatics Platform, Imagine Institute, Paris 75015, France
| | - Anne De Cian
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris, France
| | - Anne Chalumeau
- Laboratory of Human Lymphohematopoiesis, INSERM UMR1163, Paris, France
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Audentes Therapeutics, San Francisco, CA, USA
| | | | - Isabelle Andre-Schmutz
- Laboratory of Human Lymphohematopoiesis, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | | | - Wassim El Nemer
- Biologie Intégrée du Globule Rouge UMR_S1134, Inserm, Univ. Paris Diderot, Sorbonne Paris Cité, Univ. de la Réunion, Univ. des Antilles, Paris, France
- Institut National de la Transfusion Sanguine, F-75015 Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris, France
| | | | - Marina Cavazzana
- Laboratory of Human Lymphohematopoiesis, INSERM UMR1163, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Annarita Miccio
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France.
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
18
|
Evaluating viscoelastic properties and membrane electrical charges of red blood cells with optical tweezers and cationic quantum dots - applications to β-thalassemia intermedia hemoglobinopathy. Colloids Surf B Biointerfaces 2019; 186:110671. [PMID: 31816460 DOI: 10.1016/j.colsurfb.2019.110671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/08/2019] [Accepted: 11/24/2019] [Indexed: 11/23/2022]
Abstract
Biomechanical and electrical properties are important to the performance and survival of red blood cells (RBCs) in the microcirculation. This study proposed and explored methodologies based on optical tweezers and cationic quantum dots (QDs) as biophotonic tools to characterize, in a complementary way, viscoelastic properties and membrane electrical charges of RBCs. The methodologies were applied to normal (HbA) and β-thalassemia intermedia (Hbβ) RBCs. The β-thalassemia intermedia disease is a hereditary hemoglobinopathy characterized by a reduction (or absence) of β-globin chains, which leads to α-globin chains precipitation. The apparent elasticity (μ) and membrane viscosity (ηm) of RBCs captured by optical tweezers were obtained in just a single experiment. Besides, the membrane electrical charges were evaluated by flow cytometry, exploring electrostatic interactions between cationic QDs, stabilized with cysteamine, with the negatively charged RBC surfaces. Results showed that Hbβ RBCs are less elastic, have a higher ηm, and presented a reduction in membrane electrical charges, when compared to HbA RBCs. Moreover, the methodologies based on optical tweezers and QDs, here proposed, showed to be capable of providing a deeper and integrated comprehension on RBC rheological and electrical changes, resulting from diverse biological conditions, such as the β-thalassemia intermedia hemoglobinopathy.
Collapse
|
19
|
Valderrábano RJ, Wu JY. Bone and blood interactions in human health and disease. Bone 2019; 119:65-70. [PMID: 29476979 PMCID: PMC11370649 DOI: 10.1016/j.bone.2018.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/18/2022]
Abstract
Under physiologic conditions hematopoiesis takes place in the bone marrow, and the skeleton provides the structural and supportive network necessary for normal hematopoiesis. Chronic disorders affecting hematopoiesis such as sickle cell anemia and thalassemia demonstrate striking skeletal phenotypes including bone loss and increased fracture risk. There is mounting evidence that anemia in older populations may also be associated with bone fragility. Given the interconnectedness of bone and hematopoietic cells, it is important to review the potential clinical implications and opportunities for therapeutic intervention. There are recognized associations between blood-borne and solid tissue malignancy and skeletal health, but our review will focus on non-malignant disease.
Collapse
Affiliation(s)
- Rodrigo J Valderrábano
- Division of Endocrinology, University of Miami Miller School of Medicine, Miami, FL, United States.
| | - Joy Y Wu
- Division of Endocrinology, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
20
|
Sii-Felice K, Giorgi M, Leboulch P, Payen E. Hemoglobin disorders: lentiviral gene therapy in the starting blocks to enter clinical practice. Exp Hematol 2018; 64:12-32. [PMID: 29807062 DOI: 10.1016/j.exphem.2018.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/18/2018] [Accepted: 05/19/2018] [Indexed: 01/19/2023]
Abstract
The β-hemoglobinopathies, transfusion-dependent β-thalassemia and sickle cell disease, are the most prevalent inherited disorders worldwide and affect millions of people. Many of these patients have a shortened life expectancy and suffer from severe morbidity despite supportive therapies, which impose an enormous financial burden to societies. The only available curative therapy is allogeneic hematopoietic stem cell transplantation, although most patients do not have an HLA-matched sibling donor, and those who do still risk life-threatening complications. Therefore, gene therapy by one-time ex vivo modification of hematopoietic stem cells followed by autologous engraftment is an attractive new therapeutic modality. The first proof-of-principle of conversion to transfusion independence by means of a lentiviral vector expressing a marked and anti-sickling βT87Q-globin gene variant was reported a decade ago in a patient with transfusion-dependent β-thalassemia. In follow-up multicenter Phase II trials with an essentially identical vector (termed LentiGlobin BB305) and protocol, 12 of the 13 patients with a non-β0/β0 genotype, representing more than half of all transfusion-dependent β-thalassemia cases worldwide, stopped red blood cell transfusions with total hemoglobin levels in blood approaching normal values. Correction of biological markers of dyserythropoiesis was achieved in evaluated patients. In nine patients with β0/β0 transfusion-dependent β-thalassemia or equivalent severity (βIVS1-110), median annualized transfusion volume decreased by 73% and red blood cell transfusions were stopped in three patients. Proof-of-principle of therapeutic efficacy in the first patient with sickle cell disease was also reported with LentiGlobin BB305. Encouraging results were presented in children with transfusion-dependent β-thalassemia in another trial with the GLOBE lentiviral vector and several other gene therapy trials are currently open for both transfusion-dependent β-thalassemia and sickle cell disease. Phase III trials are now under way and should help to determine benefit/risk/cost ratios to move gene therapy toward clinical practice.
Collapse
Affiliation(s)
- Karine Sii-Felice
- UMR E007, Service of Innovative Therapies, Institute of Biology François Jacob and University Paris Saclay, CEA Paris Saclay, Fontenay-aux-Roses, France
| | - Marie Giorgi
- UMR E007, Service of Innovative Therapies, Institute of Biology François Jacob and University Paris Saclay, CEA Paris Saclay, Fontenay-aux-Roses, France
| | - Philippe Leboulch
- UMR E007, Service of Innovative Therapies, Institute of Biology François Jacob and University Paris Saclay, CEA Paris Saclay, Fontenay-aux-Roses, France; Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Emmanuel Payen
- UMR E007, Service of Innovative Therapies, Institute of Biology François Jacob and University Paris Saclay, CEA Paris Saclay, Fontenay-aux-Roses, France; INSERM, Paris, France.
| |
Collapse
|
21
|
Lidonnici MR, Ferrari G. Gene therapy and gene editing strategies for hemoglobinopathies. Blood Cells Mol Dis 2018; 70:87-101. [DOI: 10.1016/j.bcmd.2017.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 10/24/2022]
|
22
|
Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? Blood Rev 2018; 32:130-143. [PMID: 29054350 PMCID: PMC5882559 DOI: 10.1016/j.blre.2017.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023]
Abstract
Erythropoiesis is a dynamic process regulated at multiple levels to balance proliferation, differentiation and survival of erythroid progenitors. Ineffective erythropoiesis is a key feature of various diseases, including β-thalassemia. The pathogenic mechanisms leading to ineffective erythropoiesis are complex and still not fully understood. Altered survival and decreased differentiation of erythroid progenitors are both critical processes contributing to reduced production of mature red blood cells. Recent studies have identified novel important players and provided major advances in the development of targeted therapeutic approaches. In this review, β-thalassemia is used as a paradigmatic example to describe our current knowledge on the mechanisms leading to ineffective erythropoiesis and novel treatments that may have the potential to improve the clinical phenotype of associated diseases in the future.
Collapse
Affiliation(s)
- Paraskevi Rea Oikonomidou
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA.
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group (CAMB), University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Srinoun K, Nopparatana C, Wongchanchailert M, Fucharoen S. MiR-155 enhances phagocytic activity of β-thalassemia/HbE monocytes via targeting of BACH1. Int J Hematol 2017; 106:638-647. [PMID: 28685309 DOI: 10.1007/s12185-017-2291-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 12/01/2022]
Abstract
Abnormal red blood cell (RBC) clearance in β-thalassemia is triggered by activated monocytes. Recent reports indicate that miRNA (miR-) plays a role in monocyte activation. To study phagocytic function, we co-cultured monocytes of normal, non-splenectomized and splenectomized β-thalassemia/HbE individuals with RBCs obtained from normal, non-splenectomized and splenectomized β-thalassemia/HbE individuals. The phagocytic activity of β-thalassemia/HbE monocytes co-cultured with β-thalassemia/HbE RBCs was significantly higher than that of normal monocytes co-cultured with normal RBCs. Upregulation of monocyte miR-155 was observed in β-thalassemia/HbE patients. Increased miR-155 was associated with reductions in BTB and CNC Homology1 (BACH1) target gene expression and increased phagocytic activity of β-thalassemia/HbE monocytes. Taken together, these findings suggested that increased miR-155 expression in activated monocytes leads to enhanced phagocytic activity via BACH-1 regulation in β-thalassemia/HbE. This provides novel insights into the phagocytic clearance of abnormal RBCs in β-thalassemia/HbE.
Collapse
Affiliation(s)
- Kanitta Srinoun
- Faculty of Medical Technology, Prince of Songkla University, 15, Kanjanavanit Rd., Hat Yai, Songkhla, 90110, Thailand.
| | - Chamnong Nopparatana
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, 25/25, Putthamonthon 4 Rd., Salaya, Putthamonthon, Nakron Pratom, 73170, Thailand
| | - Malai Wongchanchailert
- Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, 15, Kanjanavanit Rd., Hat Yai, Songkhla, 90110, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, 15, Kanjanavanit Rd., Hat Yai, Songkhla, 90110, Thailand
| |
Collapse
|
24
|
Phanthong P, Borwornpinyo S, Kitiyanant N, Jearawiriyapaisarn N, Nuntakarn L, Saetan J, Nualkaew T, Sa-Ngiamsuntorn K, Anurathapan U, Dinnyes A, Kitiyanant Y, Hongeng S. Enhancement of β-Globin Gene Expression in Thalassemic IVS2-654 Induced Pluripotent Stem Cell-Derived Erythroid Cells by Modified U7 snRNA. Stem Cells Transl Med 2017; 6:1059-1069. [PMID: 28213976 PMCID: PMC5442829 DOI: 10.1002/sctm.16-0121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 11/27/2016] [Accepted: 12/21/2016] [Indexed: 12/30/2022] Open
Abstract
The therapeutic use of patient‐specific induced pluripotent stem cells (iPSCs) is emerging as a potential treatment of β‐thalassemia. Ideally, patient‐specific iPSCs would be genetically corrected by various approaches to treat β‐thalassemia including lentiviral gene transfer, lentivirus‐delivered shRNA, and gene editing. These corrected iPSCs would be subsequently differentiated into hematopoietic stem cells and transplanted back into the same patient. In this article, we present a proof of principle study for disease modeling and screening using iPSCs to test the potential use of the modified U7 small nuclear (sn) RNA to correct a splice defect in IVS2‐654 β‐thalassemia. In this case, the aberration results from a mutation in the human β‐globin intron 2 causing an aberrant splicing of β‐globin pre‐mRNA and preventing synthesis of functional β‐globin protein. The iPSCs (derived from mesenchymal stromal cells from a patient with IVS2‐654 β‐thalassemia/hemoglobin (Hb) E) were transduced with a lentivirus carrying a modified U7 snRNA targeting an IVS2‐654 β‐globin pre‐mRNA in order to restore the correct splicing. Erythroblasts differentiated from the transduced iPSCs expressed high level of correctly spliced β‐globin mRNA suggesting that the modified U7 snRNA was expressed and mediated splicing correction of IVS2‐654 β‐globin pre‐mRNA in these cells. Moreover, a less active apoptosis cascade process was observed in the corrected cells at transcription level. This study demonstrated the potential use of a genetically modified U7 snRNA with patient‐specific iPSCs for the partial restoration of the aberrant splicing process of β‐thalassemia. Stem Cells Translational Medicine2017;6:1059–1069
Collapse
Affiliation(s)
| | - Suparerk Borwornpinyo
- Biotechnology.,Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | | | | | - Jirawat Saetan
- Anatomy Department, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | | | | | - Usanarat Anurathapan
- Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Andras Dinnyes
- Biotalentum Ltd, Godollo, Hungary.,Molecular Animal Biotechnology Laboratory, Szent Istvan University, Godollo, Hungary
| | - Yindee Kitiyanant
- Departments of Anatomy.,Stem Cell Research Group.,Reproductive Biology Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Suradej Hongeng
- Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW The review provides an overview of recent data regarding the molecular players in β-thalassemia dyserythropoiesis and the corresponding therapeutic implications. RECENT FINDINGS β-thalassemia dyserythropoiesis is characterized by four steps: expansion of erythroid progenitors, accelerated erythroid differentiation until the polychromatophilic stage, maturation arrest, and apoptosis at the polychromatophilic stage. Excess α-globin chains are the primary culprit in the disease, but the link between this excess and ineffective erythropoiesis has only recently been established. Important recent advances in understanding the molecular determinants involved in two critical steps of dyserythropoiesis are paving the way to new alternative targets for the treatment of this disease. SUMMARY Growth differentiation factor 11 (GDF11) blockade increases the apoptosis of erythroblasts with excess α-chains by upregulating Fas-ligand in late basophilic and polychromatophilic erythroblasts, thereby decreasing cell expansion (step 1). Blocking GDF11 alleviates anemia in a mouse model of β-thalassemia and also in humans, most likely by promoting cells of 'good' erythroblastic lineage containing an α-/non-α-globin chain ratio of close to 1. Maturation arrest at the polychromatophilic stage (step 3) is associated with the depletion of GATA binding protein 1 (GATA-1) from the nucleus, which results from cytoplasmic sequestration of heat shock protein 70 (HSP70) by α-globin chains. Small molecules disrupting the HSP70/α-globin complex in the cytoplasm or decreasing HSP70 nuclear export might increase the nuclear localization of HSP70, thereby protecting GATA-1 and alleviating anemia. Finally, increasing the serum levels of hepcidin or transferrin alleviates anemia and dyserythropoiesis by diminishing iron uptake by erythroblasts in mouse models.
Collapse
|
26
|
Dede AD, Trovas G, Chronopoulos E, Triantafyllopoulos IK, Dontas I, Papaioannou N, Tournis S. Thalassemia-associated osteoporosis: a systematic review on treatment and brief overview of the disease. Osteoporos Int 2016; 27:3409-3425. [PMID: 27503175 DOI: 10.1007/s00198-016-3719-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/20/2016] [Indexed: 01/19/2023]
Abstract
Thalassemia-associated osteoporosis constitutes a major complication in patients with thalassemia. This review presents the existing studies on the treatment of thalassemia-associated osteoporosis and discusses the management of this debilitating complication. A brief presentation of the disease characteristics and pathogenetic mechanisms is also provided. The life expectancy of patients with thalassemia has increased markedly in recent years resulting in the aging of the population and the emergence of new comorbidities. The majority of patients with thalassemia have low bone mineral density and experience lifelong fracture rates as high as 71 %. The pathogenesis of thalassemia-associated osteoporosis (TAO) is multifactorial with anemia and iron overload playing crucial role in its development. Data concerning the prevention and treatment of TAO are extremely limited. We performed a literature research in Pubmed and Scopus to identify interventional studies evaluating the effects of various agents on TAO. Seventeen studies were retrieved. We present the results of these studies as well as a brief overview of TAO including presentation, pathogenesis, and management. Most of the studies identified are of poor quality, are not randomized controlled, and include small number of participants. There are no data concerning effects on fracture rates. Bisphosphonates are the most widely studied agents and among them zoledronic acid is the most well studied. Hormone replacement treatment (HRT) shows beneficial but small effects. Denosumab and strontium ranelate have each been evaluated in only a single study, while there are no data about the effects of anabolic agents. Given the increased life expectancy and the increase in fracture rates with age, more data about the management of TAO are warranted. Moreover, due to the need for lifelong management starting at young age, careful treatment plans which may include sequential treatment may often be required. However, currently, there are no relevant data available.
Collapse
Affiliation(s)
- A D Dede
- Laboratory for Research of Musculoskeletal System "Theodoros Garofalidis", KAT Hospital, University of Athens, 10 Athinas Str., Kifissia, 145 61, Athens, Greece.
| | - G Trovas
- Laboratory for Research of Musculoskeletal System "Theodoros Garofalidis", KAT Hospital, University of Athens, 10 Athinas Str., Kifissia, 145 61, Athens, Greece
| | - E Chronopoulos
- Orthopedic Department, Konstantopoulion Hospital, University of Athens, Nea Ionia, Greece
| | - I K Triantafyllopoulos
- Laboratory for Research of Musculoskeletal System "Theodoros Garofalidis", KAT Hospital, University of Athens, 10 Athinas Str., Kifissia, 145 61, Athens, Greece
| | - I Dontas
- Laboratory for Research of Musculoskeletal System "Theodoros Garofalidis", KAT Hospital, University of Athens, 10 Athinas Str., Kifissia, 145 61, Athens, Greece
| | - N Papaioannou
- Laboratory for Research of Musculoskeletal System "Theodoros Garofalidis", KAT Hospital, University of Athens, 10 Athinas Str., Kifissia, 145 61, Athens, Greece
| | - S Tournis
- Laboratory for Research of Musculoskeletal System "Theodoros Garofalidis", KAT Hospital, University of Athens, 10 Athinas Str., Kifissia, 145 61, Athens, Greece
| |
Collapse
|
27
|
Leecharoenkiat K, Lithanatudom P, Sornjai W, Smith DR. Iron dysregulation in beta-thalassemia. ASIAN PAC J TROP MED 2016; 9:1035-1043. [PMID: 27890361 DOI: 10.1016/j.apjtm.2016.07.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 08/01/2016] [Accepted: 10/14/2016] [Indexed: 11/24/2022] Open
Abstract
Iron deficiency anemia and iron overload conditions affect more than one billion people worldwide. Iron homeostasis involves the regulation of cells that export iron into the plasma and cells that utilize or store iron. The cellular iron balance in humans is primarily mediated by the hepcidin-ferroportin axis. Ferroportin is the sole cellular iron export protein, and its expression is regulated transcriptionally, post-transcriptionally and post-translationally. Hepcidin, a hormone produced by liver cells, post-translationally regulates ferroportin expression on iron exporting cells by binding with ferroportin and promoting its internalization by endocytosis and subsequent degradation by lysosomes. Dysregulation of iron homeostasis leading to iron deposition in vital organs is the main cause of death in beta-thalassemia patients. Beta-thalassemia patients show marked hepcidin suppression, ineffective erythropoiesis, anemia and iron overload. Beta-thalassemia is common in the Mediterranean region, Southeast Asia and the Indian subcontinent, and the focus of this review is to provide an update on the factors mediating hepcidin related iron dysregulation in beta-thalassemia disease. Understanding this process may pave the way for new treatments to ameliorate iron overloading and improve the long term prognosis of these patients.
Collapse
Affiliation(s)
- Kamonlak Leecharoenkiat
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Rama 4 Road, Bangkok 10330, Thailand
| | - Pathrapol Lithanatudom
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huaykaew Road, Amphur Muang, Chiang Mai 50200, Thailand
| | - Wannapa Sornjai
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Duncan R Smith
- Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
28
|
Sornjai W, Lithanatudom P, Erales J, Joly P, Francina A, Hacot S, Fucharoen S, Svasti S, Diaz JJ, Mertani HC, Smith DR. Hypermethylation of 28S ribosomal RNA in β-thalassemia trait carriers. Int J Biol Macromol 2016; 94:728-734. [PMID: 27765567 DOI: 10.1016/j.ijbiomac.2016.10.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/14/2016] [Indexed: 01/01/2023]
Abstract
Ribosome biogenesis is the process of synthesis of the cellular ribosomes which mediate protein translation. Integral with the ribosomes are four cytoplasmic ribosomal RNAs (rRNAs) which show extensive post-transcriptional modifications including 2'-O-methylation and pseudouridylation. Several hereditary hematologic diseases including Diamond-Blackfan anemia have been shown to be associated with defects in ribosome biogenesis. Thalassemia is the most important hematologic inherited genetic disease worldwide, and this study examined the post-transcriptional ribose methylation status of three specific active sites of the 28S rRNA molecule at positions 1858, 4197 and 4506 of β-thalassemia trait carriers and normal controls. Samples from whole blood and cultured erythroid cells were examined. Results showed that site 4506 was hypermethylated in β-thalassemia trait carriers in both cohorts. Expression of fibrillarin, the ribosomal RNA methyltransferase as well as snoRNAs were additionally quantified by RT-qPCR and evidence of dysregulation was seen. Hemoglobin E trait carriers also showed evidence of dysregulation. These results provide the first evidence that ribosome biogenesis is dysregulated in β-thalassemia trait carriers.
Collapse
Affiliation(s)
- Wannapa Sornjai
- Institute of Molecular Bioscience, Mahidol University, Thailand
| | - Pathrapol Lithanatudom
- Institute of Molecular Bioscience, Mahidol University, Thailand; Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| | - Jenny Erales
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Philippe Joly
- Unité de Pathologie Moléculaire du Globule Rouge, Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Alain Francina
- Unité de Pathologie Moléculaire du Globule Rouge, Laboratoire de Biochimie et de Biologie Moléculaire, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Sabine Hacot
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | | | - Saovaros Svasti
- Institute of Molecular Bioscience, Mahidol University, Thailand
| | - Jean Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Hichem C Mertani
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université de Lyon, Lyon, France.
| | - Duncan R Smith
- Institute of Molecular Bioscience, Mahidol University, Thailand.
| |
Collapse
|
29
|
Ferro E, Di Pietro A, Visalli G, Piraino B, Salpietro C, La Rosa MA. Soluble hemojuvelin in transfused and untransfused thalassaemic subjects. Eur J Haematol 2016; 98:67-74. [PMID: 27440164 DOI: 10.1111/ejh.12786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The hemojuvelin-bone morphogenetic protein axis is the principal iron-dependent mechanism of hepcidin regulation. The determination of soluble hemojuvelin (sHJV) levels could allow for a better understanding of the pathophysiological mechanisms of hepcidin regulation in thalassaemia. METHOD We have assessed sHJV in 45 transfused and 15 untransfused thalassaemic patients in comparison with 15 healthy subjects, evaluating its relationships with some parameters of iron overload, anaemia and erythropoiesis. RESULTS Untransfused thalassaemic patients had more severe anaemia and erythropoietic activity, while in transfused patients, the transfused RBCs reduced % reticulocytes and sTfR, increased serum indices of iron overload and iron stores in the liver (low MRI T2* values). sHJV levels were higher in patients than in controls and in untransfused in comparison with transfused patients. In the transfused group, we also found that sHJV values are significantly related to serum ferritin, cardiac MRI T2* and growth differentiation factor 15 and are sensitive to hepatitis C virus infection. CONCLUSION These results suggest that sHJV synthesis seems to be affected by an erythropoietic/hypoxic signal in untransfused patients that have severe anaemia, while in regularly transfused subjects, it is influenced by iron stores.
Collapse
Affiliation(s)
- Elisa Ferro
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', University Hospital of Messina, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Basilia Piraino
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', University Hospital of Messina, Messina, Italy
| | - Carmelo Salpietro
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', University Hospital of Messina, Messina, Italy
| | - Maria Angela La Rosa
- Department of Human Pathology of Adult and Developmental Age 'Gaetano Barresi', University Hospital of Messina, Messina, Italy
| |
Collapse
|
30
|
Liang R, Ghaffari S. Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease. Br J Haematol 2016; 174:661-73. [PMID: 27442953 DOI: 10.1111/bjh.14194] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anaemia or decreased blood haemoglobin is the most common blood disorder often characterized by reduced red blood cell (RBC) numbers. RBCs are produced from differentiation and commitment of haematopoietic stem cells to the erythroid lineage by a process called erythropoiesis. Coordination of erythropoietin receptor signalling with several erythroid transcription factors including GATA1 is essential for this process. A number of additional players that are critical for RBC production have been identified in recent years. Major technological advances, such as the development of RNA interference, genetically modified animals, including zebrafish, and imaging flow cytometry have led to these discoveries; the emergence of -omics approaches in combination with the optimization of ex vivo erythroid cultures have also produced a more comprehensive understanding of erythropoiesis. Here we summarize studies describing novel regulators of erythropoiesis that modulate erythroid cell production in the context of human erythroid disorders involving hypoxia, iron regulation, immune-related molecules, and the transcription factor FOXO3.
Collapse
Affiliation(s)
- Raymond Liang
- Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Developmental and Stem Cell Biology Multidisciplinary Training Area, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saghi Ghaffari
- Department of Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Developmental and Stem Cell Biology Multidisciplinary Training Area, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Medicine, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
31
|
Forster L, Cornwall S, Finlayson J, Ghassemifar R. Cell cycle, proliferation and apoptosis in erythroblasts cultured from patients with β-thalassaemia major. Br J Haematol 2016; 175:539-542. [PMID: 26763683 DOI: 10.1111/bjh.13875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luke Forster
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia.,Department of Haematology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Scott Cornwall
- Department of Haematology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Jill Finlayson
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia.,Department of Haematology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Reza Ghassemifar
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia. .,Department of Haematology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia.
| |
Collapse
|
32
|
Dai Y, Sangerman J, Luo HY, Fucharoen S, Chui DHK, Faller DV, Perrine SP. Therapeutic fetal-globin inducers reduce transcriptional repression in hemoglobinopathy erythroid progenitors through distinct mechanisms. Blood Cells Mol Dis 2015; 56:62-9. [PMID: 26603726 DOI: 10.1016/j.bcmd.2015.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022]
Abstract
Pharmacologic augmentation of γ-globin expression sufficient to reduce anemia and clinical severity in patients with diverse hemoglobinopathies has been challenging. In studies here, representative molecules from four chemical classes, representing several distinct primary mechanisms of action, were investigated for effects on γ-globin transcriptional repressors, including components of the NuRD complex (LSD1 and HDACs 2-3), and the downstream repressor BCL11A, in erythroid progenitors from hemoglobinopathy patients. Two HDAC inhibitors (MS-275 and SB939), a short-chain fatty acid derivative (sodium dimethylbutyrate [SDMB]), and an agent identified in high-throughput screening, Benserazide, were studied. These therapeutics induced γ-globin mRNA in progenitors above same subject controls up to 20-fold, and increased F-reticulocytes up to 20%. Cellular protein levels of BCL11A, LSD-1, and KLF1 were suppressed by the compounds. Chromatin immunoprecipitation assays demonstrated a 3.6-fold reduction in LSD1 and HDAC3 occupancy in the γ-globin gene promoter with Benserazide exposure, 3-fold reduction in LSD-1 and HDAC2 occupancy in the γ-globin gene promoter with SDMB exposure, while markers of gene activation (histone H3K9 acetylation and H3K4 demethylation), were enriched 5.7-fold. These findings identify clinical-stage oral therapeutics which inhibit or displace major co-repressors of γ-globin gene transcription and may suggest a rationale for combination therapy to produce enhanced efficacy.
Collapse
Affiliation(s)
- Yan Dai
- Hemoglobinopathy Thalassemia Research Unit and Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Jose Sangerman
- Hemoglobinopathy Thalassemia Research Unit and Cancer Center, Boston University School of Medicine, Boston, MA, United States
| | - Hong Yuan Luo
- Department of Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Suthat Fucharoen
- Thalassemia Research Center, Mahidol University, Phuttamonthon, Thailand
| | - David H K Chui
- Department of Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Douglas V Faller
- Hemoglobinopathy Thalassemia Research Unit and Cancer Center, Boston University School of Medicine, Boston, MA, United States; Phoenicia BioSciences, Inc., Newton, MA, United States
| | - Susan P Perrine
- Hemoglobinopathy Thalassemia Research Unit and Cancer Center, Boston University School of Medicine, Boston, MA, United States; Phoenicia BioSciences, Inc., Newton, MA, United States; Center for Hemoglobin Research in Minorities, Departments of Pediatrics and Medicine, Howard University College of Medicine, Washington DC, United States.
| |
Collapse
|
33
|
Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of β-thalassemia. Blood 2015; 126:2031-7. [PMID: 26276665 DOI: 10.1182/blood-2015-07-658419] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/03/2015] [Indexed: 01/19/2023] Open
Abstract
Inherited anemias with ineffective erythropoiesis, such as β-thalassemia, manifest inappropriately low hepcidin production and consequent excessive absorption of dietary iron, leading to iron overload. Erythroferrone (ERFE) is an erythroid regulator of hepcidin synthesis and iron homeostasis. Erfe expression was highly increased in the marrow and spleen of Hbb(Th3/+) mice (Th3/+), a mouse model of thalassemia intermedia. Ablation of Erfe in Th3/+ mice restored normal levels of circulating hepcidin at 6 weeks of age, suggesting ERFE could be a factor suppressing hepcidin production in β-thalassemia. We examined the expression of Erfe and the consequences of its ablation in thalassemic mice from 3 to 12 weeks of age. The loss of ERFE in thalassemic mice led to full restoration of hepcidin mRNA expression at 3 and 6 weeks of age, and significant reduction in liver and spleen iron content at 6 and 12 weeks of age. Ablation of Erfe slightly ameliorated ineffective erythropoiesis, as indicated by reduced spleen index, red cell distribution width, and mean corpuscular volume, but did not improve the anemia. Thus, ERFE mediates hepcidin suppression and contributes to iron overload in a mouse model of β-thalassemia.
Collapse
|
34
|
Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M. Oxidative stress in β-thalassaemia and sickle cell disease. Redox Biol 2015; 6:226-239. [PMID: 26285072 PMCID: PMC4543215 DOI: 10.1016/j.redox.2015.07.018] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022] Open
Abstract
Sickle cell disease and β-thalassaemia are inherited haemoglobinopathies resulting in structural and quantitative changes in the β-globin chain. These changes lead to instability of the generated haemoglobin or to globin chain imbalance, which in turn impact the oxidative environment both intracellularly and extracellularly. The ensuing oxidative stress and the inability of the body to adequately overcome it are, to a large extent, responsible for the pathophysiology of these diseases. This article provides an overview of the main players and control mechanisms involved in the establishment of oxidative stress in these haemoglobinopathies.
Collapse
Affiliation(s)
- S Voskou
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - M Aslan
- Akdeniz University, Faculty of Medicine, Department of Medical Biochemistry, Antalya, Turkey
| | - P Fanis
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - M Phylactides
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | - M Kleanthous
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
35
|
|
36
|
Tournis S, Dede AD, Savvidis C, Triantafyllopoulos IK, Kattamis A, Papaioannou N. Effects of teriparatide retreatment in a patient with β-thalassemia major. Transfusion 2015; 55:2905-10. [DOI: 10.1111/trf.13237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Symeon Tournis
- Laboratory for Research of the Musculoskeletal System “Th. Garofalidis,” Medical School; University of Athens, KAT Hospital
| | - Anastasia D. Dede
- Department of Endocrinology and Metabolism; Hippokrateion General Hospital
| | - Christos Savvidis
- Department of Endocrinology and Metabolism; Hippokrateion General Hospital
| | - Ioannis K. Triantafyllopoulos
- Laboratory for Research of the Musculoskeletal System “Th. Garofalidis,” Medical School; University of Athens, KAT Hospital
| | - Antonis Kattamis
- First Department of Pediatrics; University of Athens, “Aghia Sofia” Children's Hospital; Athens Greece
| | - Nikolaos Papaioannou
- Laboratory for Research of the Musculoskeletal System “Th. Garofalidis,” Medical School; University of Athens, KAT Hospital
| |
Collapse
|
37
|
Forster L, McCooke J, Bellgard M, Joske D, Finlayson J, Ghassemifar R. Differential gene expression analysis in early and late erythroid progenitor cells in β-thalassaemia. Br J Haematol 2015; 170:257-67. [DOI: 10.1111/bjh.13432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/19/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Luke Forster
- School of Pathology and Laboratory Medicine; University of Western Australia; Nedlands WA Australia
| | - John McCooke
- Centre for Comparative Genomics; Murdoch University; Murdoch WA Australia
| | - Matthew Bellgard
- Centre for Comparative Genomics; Murdoch University; Murdoch WA Australia
| | - David Joske
- Department of Haematology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
| | - Jill Finlayson
- School of Pathology and Laboratory Medicine; University of Western Australia; Nedlands WA Australia
- Department of Haematology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
| | - Reza Ghassemifar
- School of Pathology and Laboratory Medicine; University of Western Australia; Nedlands WA Australia
- Department of Haematology; PathWest Laboratory Medicine; Queen Elizabeth II Medical Centre; Nedlands WA Australia
| |
Collapse
|
38
|
Song B, Fan Y, He W, Zhu D, Niu X, Wang D, Ou Z, Luo M, Sun X. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev 2015; 24:1053-65. [PMID: 25517294 DOI: 10.1089/scd.2014.0347] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The generation of beta-thalassemia (β-Thal) patient-specific induced pluripotent stem cells (iPSCs), subsequent homologous recombination-based gene correction of disease-causing mutations/deletions in the β-globin gene (HBB), and their derived hematopoietic stem cell (HSC) transplantation offers an ideal therapeutic solution for treating this disease. However, the hematopoietic differentiation efficiency of gene-corrected β-Thal iPSCs has not been well evaluated in the previous studies. In this study, we used the latest gene-editing tool, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), to correct β-Thal iPSCs; gene-corrected cells exhibit normal karyotypes and full pluripotency as human embryonic stem cells (hESCs) showed no off-targeting effects. Then, we evaluated the differentiation efficiency of the gene-corrected β-Thal iPSCs. We found that during hematopoietic differentiation, gene-corrected β-Thal iPSCs showed an increased embryoid body ratio and various hematopoietic progenitor cell percentages. More importantly, the gene-corrected β-Thal iPSC lines restored HBB expression and reduced reactive oxygen species production compared with the uncorrected group. Our study suggested that hematopoietic differentiation efficiency of β-Thal iPSCs was greatly improved once corrected by the CRISPR/Cas9 system, and the information gained from our study would greatly promote the clinical application of β-Thal iPSC-derived HSCs in transplantation.
Collapse
Affiliation(s)
- Bing Song
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou City, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vallelian F, Gelderman-Fuhrmann MP, Schaer CA, Puglia M, Opitz L, Baek JH, Vostal J, Buehler PW, Schaer DJ. Integrative proteome and transcriptome analysis of extramedullary erythropoiesis and its reversal by transferrin treatment in a mouse model of beta-thalassemia. J Proteome Res 2015; 14:1089-100. [PMID: 25566950 DOI: 10.1021/pr5010778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Beta-thalassemia results from mutations of the β-hemoglobin (Hbb) gene and reduced functional Hbb synthesis. Excess α-Hb causes globin chain aggregation, oxidation, cytoskeletal damage, and increased red blood cell clearance. These events result in anemia, altered iron homeostasis, and expansion of extramedullary erythropoiesis. Serum transferrin (Tf) is suggested to be an important regulator of erythropoiesis in murine models of thalassemia. The present study was conducted to establish a quantitative proteomic and transcriptomic analysis of transferrin-modulated extramedullary erythropoiesis in the spleen of wild type and thalassemic Hbb(th3/+) mice. Our LC-MS/MS protein analysis and mRNA sequencing data provide quantitative expression estimates of 1590 proteins and 24,581 transcripts of the murine spleen and characterize key processes of erythropoiesis and RBC homeostasis such as the whole heme synthesis pathway as well as critical components of the red blood cell antioxidant systems and the proliferative cell cycling pathway. The data confirm that Tf treatment of nontransfused Hbb(th3/+) mice induces a systematic correction of these processes at a molecular level. Tf treatment of Hbb(th3/+) mice for 60 days leads to a complete molecular restoration of the normal murine spleen phenotype. These findings support further investigation of plasma-derived Tf as a treatment for thalassemia.
Collapse
Affiliation(s)
- Florence Vallelian
- Division of Internal Medicine, University of Zurich , CH-8091 Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sumera A, Radhakrishnan A, Baba AA, George E. Review: Beta-thalassemia and molecular chaperones. Blood Cells Mol Dis 2015; 54:348-52. [PMID: 25648458 DOI: 10.1016/j.bcmd.2015.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/11/2015] [Indexed: 12/31/2022]
Abstract
Thalassemia is known as a diverse single gene disorder, which is prevalent worldwide. The molecular chaperones are set of proteins that help in two important processes while protein synthesis and degradation include folding or unfolding and assembly or disassembly, thereby helping in cell homeostasis. This review recaps current knowledge regarding the role of molecular chaperones in thalassemia, with a focus on beta thalassemia.
Collapse
Affiliation(s)
- Afshan Sumera
- Department of Pathology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| | - Ammu Radhakrishnan
- Department of Pathology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Abdul Aziz Baba
- Department of Pathology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Elizabeth George
- Department of Pathology, University Putra Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Perrine SP, Pace BS, Faller DV. Targeted fetal hemoglobin induction for treatment of beta hemoglobinopathies. Hematol Oncol Clin North Am 2014; 28:233-48. [PMID: 24589264 DOI: 10.1016/j.hoc.2013.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fetal globin (gamma globin; HBG) is normally expressed during fetal life and prevents the clinical manifestations of beta hemoglobinopathies before birth. HBG genes are normally integrated in hematopoietic stem cells in all humans, and are at least partially amenable to reactivation. Inducing expression of fetal globin (HBG) gene expression to 60% to 70% of alpha globin synthesis produces a β-thalassemia trait phenotype, and reduces anemia. Tailoring combinations of therapeutics to patient subsets characterized for quantitative trait loci which modulate basal fetal hemoglobin and erythroid cell survival should provide effective amelioration of clinical symptoms in β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Susan P Perrine
- Hemoglobinopathy-Thalassemia Research Unit, Cancer Center, Department of Medicine, Pediatrics, Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, L-909, Boston, MA 02118, USA.
| | - Betty S Pace
- Department of Pediatrics and Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Douglas V Faller
- Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
42
|
Bao W, Zhong H, Yazdanbakhsh K. Immunologic characterization suggests reduced alloimmunization in a murine model of thalassemia intermedia. Transfusion 2014; 54:2880-91. [PMID: 24797509 PMCID: PMC4221584 DOI: 10.1111/trf.12683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/24/2014] [Accepted: 03/02/2014] [Indexed: 01/19/2023]
Abstract
BACKGROUND Transfusion therapy remains a mainstay of treatment for patients with thalassemia major and to a lesser extent for the less anemic patients with thalassemia intermedia. We have previously reported a role for regulatory T cells (Tregs) in the control of antibody responses in wild-type C57BL/6 (WT) mice exposed to allogeneic red blood cell transfusions. As an initial step to study and characterize immune regulation in thalassemias, we performed an immunologic cell-type characterization of C57BL/6 Hbb(th-1)/Hbb(th-1) mouse model of thalassemia intermedia (Thal) in steady state as well as after transfusions with allogeneic blood. STUDY DESIGN AND METHODS The myeloid and lymphocyte compartments including Tregs and T helper (Th) responses were analyzed in transfusion naive Thal and WT mouse spleens. The effect of allogeneic transfusions on Treg and global T helper responses was also measured. RESULTS We found elevated levels and activity of splenic Tregs in Thal mice with lower Th type 1/Th type 2 ratios before as well as after transfusion. Furthermore, pretransfused Thal mice had altered ratios of the splenic myeloid compartment with increased proportion of macrophages but lower frequency of conventional dendritic cells. Surprisingly, transfusions resulted in lower alloimmunization levels in Thal compared to WT mice. CONCLUSION These data suggest that this experimental model of thalassemia intermedia has an intrinsic alteration in splenic immunoregulation with an increased resistance to alloimmunization, raising the possibility that studying this animal model may help to identify potential immunoregulatory networks to inhibit alloimmunization.
Collapse
|
43
|
Natural Remedies for the Treatment of Beta-Thalassemia and Sickle Cell Anemia-Current Status and Perspectives in Fetal Hemoglobin Reactivation. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:123257. [PMID: 27350962 PMCID: PMC4897541 DOI: 10.1155/2014/123257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022]
Abstract
For the treatment of β-thalassemia and sickle cell disease (SCD), pharmacological induction of fetal hemoglobin (HbF) production may be a promising approach. To date, numerous studies have been done on identifying the novel HbF-inducing agents and understanding the underlying mechanism for stimulating the HbF production. In this review, we have summarized the identified HbF-inducing agents by far. By examining the action mechanisms of the HbF-inducing agents, various studies have suggested that despite the ability of stimulating HbF production, the chemotherapeutic agents could not be practically applied for treating β-hemoglobinopathies, especially β-thalassemia, due to the their cytotoxicity and growth-inhibitory effect. Owing to this therapeutic obstacle, much effort has been put on identifying new HbF-inducing agents from the natural world with the combination of efficacy, safety, and ease of use. Therefore, this review aims to (i) reveal the novel screening platforms for identifying potential inducers with high efficiency and accuracy and to (ii) summarize the new identified natural remedies for stimulating HbF production. Hopefully, this review can provide a new insight into the current status and future perspectives in fetal hemoglobin reactivation for treating β-thalassaemia and SCD.
Collapse
|
44
|
Arlet JB, Ribeil JA, Guillem F, Negre O, Hazoume A, Marcion G, Beuzard Y, Dussiot M, Moura IC, Demarest S, de Beauchêne IC, Belaid-Choucair Z, Sevin M, Maciel TT, Auclair C, Leboulch P, Chretien S, Tchertanov L, Baudin-Creuza V, Seigneuric R, Fontenay M, Garrido C, Hermine O, Courtois G. HSP70 sequestration by free α-globin promotes ineffective erythropoiesis in β-thalassaemia. Nature 2014; 514:242-6. [PMID: 25156257 DOI: 10.1038/nature13614] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 06/25/2014] [Indexed: 12/28/2022]
Abstract
β-Thalassaemia major (β-TM) is an inherited haemoglobinopathy caused by a quantitative defect in the synthesis of β-globin chains of haemoglobin, leading to the accumulation of free α-globin chains that form toxic aggregates. Despite extensive knowledge of the molecular defects causing β-TM, little is known of the mechanisms responsible for the ineffective erythropoiesis observed in the condition, which is characterized by accelerated erythroid differentiation, maturation arrest and apoptosis at the polychromatophilic stage. We have previously demonstrated that normal human erythroid maturation requires a transient activation of caspase-3 at the later stages of maturation. Although erythroid transcription factor GATA-1, the master transcriptional factor of erythropoiesis, is a caspase-3 target, it is not cleaved during erythroid differentiation. We have shown that, in human erythroblasts, the chaperone heat shock protein70 (HSP70) is constitutively expressed and, at later stages of maturation, translocates into the nucleus and protects GATA-1 from caspase-3 cleavage. The primary role of this ubiquitous chaperone is to participate in the refolding of proteins denatured by cytoplasmic stress, thus preventing their aggregation. Here we show in vitro that during the maturation of human β-TM erythroblasts, HSP70 interacts directly with free α-globin chains. As a consequence, HSP70 is sequestrated in the cytoplasm and GATA-1 is no longer protected, resulting in end-stage maturation arrest and apoptosis. Transduction of a nuclear-targeted HSP70 mutant or a caspase-3-uncleavable GATA-1 mutant restores terminal maturation of β-TM erythroblasts, which may provide a rationale for new targeted therapies of β-TM.
Collapse
Affiliation(s)
- Jean-Benoît Arlet
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Service de Médecine Interne, Faculté de médecine Paris Descartes, Sorbonne Paris-Cité et Assistance publique - Hôpitaux de Paris, Hôpital Européen Georges Pompidou, 15 rue Leblanc 75908 Paris, France [3] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [4] Laboratory of Excellence GR-Ex, 75015 Paris, France [5]
| | - Jean-Antoine Ribeil
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] Département de Biothérapie, Faculté de médecine Paris Descartes, Sorbonne Paris-Cité et Assistance publique - Hôpitaux de Paris, Hôpital Necker, 149 rue de Sèvres 75015 Paris, France [5]
| | - Flavia Guillem
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France
| | - Olivier Negre
- Commissariat à l'énergie atomique (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), 18 Route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Adonis Hazoume
- 1] INSERM, unité mixte de recherche 866, Equipe labellisée Ligue contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et santé (LipSTIC), 21033 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France
| | - Guillaume Marcion
- 1] INSERM, unité mixte de recherche 866, Equipe labellisée Ligue contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et santé (LipSTIC), 21033 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France
| | - Yves Beuzard
- Commissariat à l'énergie atomique (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), 18 Route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Michaël Dussiot
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] INSERM, unité mixte de recherche 699, Hôpital Bichat, 46 rue Henri Huchard, 75018 Paris, France
| | - Ivan Cruz Moura
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] INSERM, unité mixte de recherche 699, Hôpital Bichat, 46 rue Henri Huchard, 75018 Paris, France [5] Faculté de médecine and Université Denis Diderot Paris VII, 5 Rue Thomas Mann, 75013 Paris, France
| | - Samuel Demarest
- Centre national de la recherche scientifique (CNRS), unité mixte de recherche 8113, Ecole Normale Supérieure de Cachan, 61 avenue du président Wilson, 94230 Cachan, France
| | - Isaure Chauvot de Beauchêne
- 1] Centre national de la recherche scientifique (CNRS), unité mixte de recherche 8113, Ecole Normale Supérieure de Cachan, 61 avenue du président Wilson, 94230 Cachan, France [2] Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Campus Paris Saclay, 5 rue Jean-Baptiste Clément 92296 Châtenay-Malabry, France
| | - Zakia Belaid-Choucair
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France
| | - Margaux Sevin
- 1] INSERM, unité mixte de recherche 866, Equipe labellisée Ligue contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et santé (LipSTIC), 21033 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France
| | - Thiago Trovati Maciel
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] INSERM, unité mixte de recherche 699, Hôpital Bichat, 46 rue Henri Huchard, 75018 Paris, France [5] Faculté de médecine and Université Denis Diderot Paris VII, 5 Rue Thomas Mann, 75013 Paris, France
| | - Christian Auclair
- 1] Centre national de la recherche scientifique (CNRS), unité mixte de recherche 8113, Ecole Normale Supérieure de Cachan, 61 avenue du président Wilson, 94230 Cachan, France [2] Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Campus Paris Saclay, 5 rue Jean-Baptiste Clément 92296 Châtenay-Malabry, France
| | - Philippe Leboulch
- 1] Commissariat à l'énergie atomique (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), 18 Route du Panorama, 92260 Fontenay-aux-Roses, France [2] Women's Hospital and Harvard Medical School, 25 Shattuck St, Boston, Massachusetts 02115, USA
| | - Stany Chretien
- Commissariat à l'énergie atomique (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), 18 Route du Panorama, 92260 Fontenay-aux-Roses, France
| | - Luba Tchertanov
- 1] Centre national de la recherche scientifique (CNRS), unité mixte de recherche 8113, Ecole Normale Supérieure de Cachan, 61 avenue du président Wilson, 94230 Cachan, France [2] Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (LERMIT), Campus Paris Saclay, 5 rue Jean-Baptiste Clément 92296 Châtenay-Malabry, France
| | | | - Renaud Seigneuric
- University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France
| | - Michaela Fontenay
- 1] Laboratory of Excellence GR-Ex, 75015 Paris, France [2] Institut Cochin, INSERM, unité mixte de recherche 1016, centre national de la recherche scientifique (CNRS), unité mixte de recherche 8104, Université Paris Descartes, and Assistance publique - Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Service d'hématologie biologique, 27 rue du Faubourg Saitn-Jacques, 75014 Paris, France
| | - Carmen Garrido
- 1] INSERM, unité mixte de recherche 866, Equipe labellisée Ligue contre le Cancer and Association pour la Recherche contre le Cancer, and Laboratoire d'Excellence Lipoprotéines et santé (LipSTIC), 21033 Dijon, France [2] University of Burgundy, Faculty of Medicine and Pharmacy, 7 boulevard Jeanne d'Arc, 21033 Dijon, France [3] Centre anticancéreux George François Leclerc, 1 rue professeur Marion, 21079 Dijon, France [4]
| | - Olivier Hermine
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4] Service d'hématologie, Faculté de médecine Paris Descartes, Sorbonne Paris-Cité et Assistance publique - Hôpitaux de Paris Hôpital Necker, 149 rue de Sèvres, 75015 Paris, France [5]
| | - Geneviève Courtois
- 1] Laboratoire INSERM, unité mixte de recherche 1163, centre national de la recherche scientifique (CNRS) équipe de recherche labellisée 8254, 24 Boulevard de Montparnasse, 75015 Paris, France [2] Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Assistance publique - Hôpitaux de Paris, Hôpital Necker, 24 Boulevard de Montparnasse, 75015 Paris, France [3] Laboratory of Excellence GR-Ex, 75015 Paris, France [4]
| |
Collapse
|
45
|
Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T. Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet 2014; 46:678-84. [PMID: 24880340 PMCID: PMC4104984 DOI: 10.1038/ng.2996] [Citation(s) in RCA: 773] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/07/2014] [Indexed: 02/06/2023]
Abstract
Recovery from blood loss requires a greatly enhanced supply of iron to support expanded erythropoiesis. After hemorrhage, suppression of the iron-regulatory hormone hepcidin allows increased iron absorption and mobilization from stores. We identified a new hormone, erythroferrone (ERFE), that mediates hepcidin suppression during stress erythropoiesis. ERFE is produced by erythroblasts in response to erythropoietin. ERFE-deficient mice fail to suppress hepcidin rapidly after hemorrhage and exhibit a delay in recovery from blood loss. ERFE expression is greatly increased in Hbb(th3/+) mice with thalassemia intermedia, where it contributes to the suppression of hepcidin and the systemic iron overload characteristic of this disease.
Collapse
Affiliation(s)
- Léon Kautz
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Erika V. Valore
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Stefano Rivella
- Department of Pediatrics, Division of Hematology-Oncology, Weill Cornell Medical College, New York, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, USA
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
46
|
Breda L, Rivella S. Modulators of erythropoiesis: emerging therapies for hemoglobinopathies and disorders of red cell production. Hematol Oncol Clin North Am 2014; 28:375-86. [PMID: 24589272 PMCID: PMC3970239 DOI: 10.1016/j.hoc.2013.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Use of new compound such as inhibitors of JAK2 or transforming growth factor β-like molecules might soon revolutionize the treatment of β-thalassemia and related disorders. However, this situation requires careful optimization, noting the potential for off-target immune suppression for JAK2 inhibitors and the lack of mechanistic insights for the use of the ligand trap soluble molecules that sequester ligands of activin receptor IIA and B.
Collapse
Affiliation(s)
- Laura Breda
- Department of Pediatrics, Hematology-Oncology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA.
| | - Stefano Rivella
- Department of Pediatrics, Hematology-Oncology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| |
Collapse
|
47
|
Koury MJ. Abnormal erythropoiesis and the pathophysiology of chronic anemia. Blood Rev 2014; 28:49-66. [PMID: 24560123 DOI: 10.1016/j.blre.2014.01.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/17/2014] [Indexed: 12/14/2022]
Abstract
Erythropoiesis, the bone marrow production of erythrocytes by the proliferation and differentiation of hematopoietic cells, replaces the daily loss of 1% of circulating erythrocytes that are senescent. This daily output increases dramatically with hemolysis or hemorrhage. When erythrocyte production rate of erythrocytes is less than the rate of loss, chronic anemia develops. Normal erythropoiesis and specific abnormalities of erythropoiesis that cause chronic anemia are considered during three periods of differentiation: a) multilineage and pre-erythropoietin-dependent hematopoietic progenitors, b) erythropoietin-dependent progenitor cells, and c) terminally differentiating erythroblasts. These erythropoietic abnormalities are discussed in terms of their pathophysiological effects on the bone marrow cells and the resultant changes that can be detected in the peripheral blood using a clinical laboratory test, the complete blood count.
Collapse
Affiliation(s)
- Mark J Koury
- Division of Hematology/Oncology, Vanderbilt University and Veterans Affairs Tennessee Valley Healthcare System, 777 Preston Research Building, Nashville, TN 37232, USA.
| |
Collapse
|
48
|
Schrier SL, Centis F, Verneris M, Ma L, Angelucci E. The role of oxidant injury in the pathophysiology of human thalassemias. Redox Rep 2013; 8:241-5. [PMID: 14962357 DOI: 10.1179/135100003225002835] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The anemia in beta-thalassemia major is caused by a combination of hemolysis and ineffective erythropoiesis, with the latter being more important. Studies of the underlying cause of the hemolysis have indicated that oxidant injury to circulating red blood cells (RBCs) was of critical importance, with evidence of oxidant damage to RBC membrane proteins 4.1 and band 3. Therefore, it seemed reasonable that oxidant damage to thalassemic erythroid precursors would cause their accelerated apoptosis and ineffective erythropoiesis. However, direct analysis showed that the apoptotic programs turned on in thalassemics were not those triggered by oxidative damage but were dependent on activation of FAS/FAS-Ligand interaction. Thus, destruction of thalassemic erythroid precursors may involve different mechanisms from those that cause RBC hemolysis.
Collapse
MESH Headings
- Anion Exchange Protein 1, Erythrocyte/metabolism
- Annexin A5/metabolism
- Apoptosis/physiology
- Blood Proteins/metabolism
- Bone Marrow/pathology
- Case-Control Studies
- Caspase 8
- Caspases/metabolism
- Cytoskeletal Proteins
- Erythroid Precursor Cells/metabolism
- Erythropoiesis/physiology
- Hemolysis/physiology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Lymphoma/blood
- Lymphoma/etiology
- Lymphoma/physiopathology
- Membrane Potentials
- Membrane Proteins
- Mitochondria
- Oxidants
- Oxidative Stress/physiology
- beta-Thalassemia/blood
- beta-Thalassemia/etiology
- beta-Thalassemia/physiopathology
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Stanley L Schrier
- Unità Operativa Ematologia e Centro Trapianto di Midollo Osseo, Ospedale di Muraglia, Azienda Ospedale S. Salvatore Pesaro, Italy.
| | | | | | | | | |
Collapse
|
49
|
A synthetic model of human beta-thalassemia erythropoiesis using CD34+ cells from healthy adult donors. PLoS One 2013; 8:e68307. [PMID: 23861885 PMCID: PMC3704632 DOI: 10.1371/journal.pone.0068307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/21/2013] [Indexed: 11/29/2022] Open
Abstract
Based upon the lack of clinical samples available for research in many laboratories worldwide, a significant gap exists between basic and clinical studies of beta-thalassemia major. To bridge this gap, we developed an artificially engineered model for human beta thalassemia by knocking down beta-globin gene and protein expression in cultured CD34+ cells obtained from healthy adults. Lentiviral-mediated transduction of beta-globin shRNA (beta-KD) caused imbalanced globin chain production. Beta-globin mRNA was reduced by 90% compared to controls, while alpha-globin mRNA levels were maintained. HPLC analyses revealed a 96% reduction in HbA with only a minor increase in HbF. During the terminal phases of differentiation (culture days 14–21), beta-KD cells demonstrated increased levels of insoluble alpha-globin, as well as activated caspase-3. The majority of the beta-KD cells underwent apoptosis around the polychromatophilic stage of maturation. GDF15, a marker of ineffective erythropoiesis in humans with thalassemia, was significantly increased in the culture supernatants from the beta-KD cells. Knockdown of beta-globin expression in cultured primary human erythroblasts provides a robust ex vivo model for beta-thalassemia.
Collapse
|
50
|
Ineffective erythropoiesis in β -thalassemia. ScientificWorldJournal 2013; 2013:394295. [PMID: 23606813 PMCID: PMC3628659 DOI: 10.1155/2013/394295] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/03/2013] [Indexed: 01/06/2023] Open
Abstract
In humans, β-thalassemia dyserythropoiesis is characterized by expansion of early erythroid precursors and erythroid progenitors and then ineffective erythropoiesis. This ineffective erythropoiesis is defined as a suboptimal production of mature erythrocytes originating from a proliferating pool of immature erythroblasts. It is characterized by (1) accelerated erythroid differentiation, (2) maturation blockade at the polychromatophilic stage, and (3) death of erythroid precursors. Despite extensive knowledge of molecular defects causing β-thalassemia, less is known about the mechanisms responsible for ineffective erythropoiesis. In this paper, we will focus on the underlying mechanisms leading to premature death of thalassemic erythroid precursors in the bone marrow.
Collapse
|