1
|
Zheng R, Wei W, Liu S, Zeng D, Yang Z, Tang J, Tan J, Huang Z, Gao M. The FABD domain is critical for the oncogenicity of BCR/ABL in chronic myeloid leukaemia. Cell Commun Signal 2024; 22:314. [PMID: 38849885 PMCID: PMC11157785 DOI: 10.1186/s12964-024-01694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Abnormally expressed BCR/ABL protein serves as the basis for the development of chronic myeloid leukaemia (CML). The F-actin binding domain (FABD), which is a crucial region of the BCR/ABL fusion protein, is also located at the carboxyl end of the c-ABL protein and regulates the kinase activity of c-ABL. However, the precise function of this domain in BCR/ABL remains uncertain. METHODS The FABD-deficient adenovirus vectors Ad-BCR/ABL△FABD, wild-type Ad-BCR/ABL and the control vector Adtrack were constructed, and 32D cells were infected with these adenoviruses separately. The effects of FABD deletion on the proliferation and apoptosis of 32D cells were evaluated by a CCK-8 assay, colony formation assay, flow cytometry and DAPI staining. The levels of phosphorylated BCR/ABL, p73, and their downstream signalling molecules were detected by western blot. The intracellular localization and interaction of BCR/ABL with the cytoskeleton-related protein F-actin were identified by immunofluorescence and co-IP. The effect of FABD deletion on BCR/ABL carcinogenesis in vivo was explored in CML-like mouse models. The degree of leukaemic cell infiltration was observed by Wright‒Giemsa staining and haematoxylin and eosin (HE) staining. RESULTS We report that the loss of FABD weakened the proliferation-promoting ability of BCR/ABL, accompanied by the downregulation of BCR/ABL downstream signals. Moreover, the deletion of FABD resulted in a change in the localization of BCR/ABL from the cytoplasm to the nucleus, accompanied by an increase in cell apoptosis due to the upregulation of p73 and its downstream proapoptotic factors. Furthermore, we discovered that the absence of FABD alleviated leukaemic cell infiltration induced by BCR/ABL in mice. CONCLUSIONS These findings reveal that the deletion of FABD diminished the carcinogenic potential of BCR/ABL both in vitro and in vivo. This study provides further insight into the function of the FABD domain in BCR/ABL.
Collapse
MESH Headings
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Animals
- Humans
- Mice
- Cell Proliferation
- Apoptosis/genetics
- Actins/metabolism
- Carcinogenesis/genetics
- Protein Domains
- Cell Line, Tumor
Collapse
Affiliation(s)
- Renren Zheng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wei Wei
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Suotian Liu
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Dachuan Zeng
- Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
| | - Zesong Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Tang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jinfeng Tan
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Tezcanli Kaymaz B, Gumus N, Celik B, Alcitepe İ, Biray Avci C, Aktan C. Ponatinib and STAT5 Inhibitor Pimozide Combined Synergistic Treatment Applications Potentially Overcome Drug Resistance via Regulating the Cytokine Expressional Network in Chronic Myeloid Leukemia Cells. J Interferon Cytokine Res 2024; 44:178-189. [PMID: 38579140 DOI: 10.1089/jir.2023.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Chronic myeloid leukemia (CML) is a clonal myeloproliferative hematological disease characterized by the chimeric breakpoint-cluster region/Abelson kinase1 (BCR::ABL1) oncoprotein; playing a pivotal role in CML molecular pathology, diagnosis, treatment, and possible resistance arising from the success and tolerance of tyrosine kinase inhibitor (TKI)-based therapy. The transcription factor STAT5 constitutive signaling, which is influenced by the cytokine signaling network, triggers BCR::ABL1-based CML pathogenesis and is also relevant to acquired TKI resistance. The unsuccessful therapeutic approaches targeting BCR::ABL1, in particular third-line therapy with ponatinib, still need to be further developed with alternative combination strategies to overcome drug resistance. As treatment with the STAT5 inhibitor pimozide in combination with ponatinib resulted in an efficient and synergistic therapeutic approach in TKI-resistant CML cells, this study focused on identifying the underlying amplification of ponatinib response mechanisms by determining different cytokine expression profiles in parental and ponatinib-resistant CML cells, in vitro. The results showed that expression of interleukin (IL) 1B, IL9, and IL12A-B was increased by 2-fold, while IL18 was downregulated by 2-fold in the ponatinib-resistant cells compared to sensitive ones. Importantly, ponatinib treatment upregulated the expression of 21 of the 23 interferon and IL genes in the ponatinib-resistant cells, while treatment with pimozide or a combination dose resulted in a reduction in the expression of 19 different cytokine genes, such as for example, inflammatory cytokines, IL1A-B and IL6 or cytokine genes associated with supporting tumor progression, leukemia stem cell growth or poor survival, such as IL3, IL8, IL9, IL10, IL12, or IL15. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that the genes were mainly enriched in the regulation of receptor signaling through the Janus kinase/signal transducer and activator of transcription pathway, cytokine-cytokine receptor interaction, and hematopoietic cell lineage. Protein-protein interaction analysis showed that IL2, IL6, IL15, IFNG, and others appeared in the top lists of pathways, indicating their high centrality and importance in the network. Therefore, pimozide could be a promising agent to support TKI therapies in ponatinib resistance. This research would help to clarify the role of cytokines in ponatinib resistance and advance the development of new therapeutics to utilize the STAT5 inhibitor pimozide in combination with TKIs.
Collapse
MESH Headings
- Humans
- Pimozide/pharmacology
- Pimozide/therapeutic use
- Cytokines/metabolism
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Interleukin-15/metabolism
- Interleukin-15/therapeutic use
- Interleukin-6/metabolism
- Interleukin-9/metabolism
- Interleukin-9/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Imidazoles
- Pyridazines
Collapse
Affiliation(s)
| | - Nurcan Gumus
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Besne Celik
- Department of Medical Biology, Ege University Medical School, Izmir, Turkiye
| | - İlayda Alcitepe
- Department of Medical Biology, Ege University Medical School, Izmir, Turkiye
| | - Cigir Biray Avci
- Department of Medical Biology, Ege University Medical School, Izmir, Turkiye
| | - Cagdas Aktan
- Department of Medical Biology, Beykent University Medical School, Istanbul, Turkiye
- Department of Medical Biology, Bandirma Onyedi Eylul University Medical School, Balikesir, Turkiye
| |
Collapse
|
3
|
Stephenson EH, Higgins JMG. Pharmacological approaches to understanding protein kinase signaling networks. Front Pharmacol 2023; 14:1310135. [PMID: 38164473 PMCID: PMC10757940 DOI: 10.3389/fphar.2023.1310135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Protein kinases play vital roles in controlling cell behavior, and an array of kinase inhibitors are used successfully for treatment of disease. Typical drug development pipelines involve biological studies to validate a protein kinase target, followed by the identification of small molecules that effectively inhibit this target in cells, animal models, and patients. However, it is clear that protein kinases operate within complex signaling networks. These networks increase the resilience of signaling pathways, which can render cells relatively insensitive to inhibition of a single kinase, and provide the potential for pathway rewiring, which can result in resistance to therapy. It is therefore vital to understand the properties of kinase signaling networks in health and disease so that we can design effective multi-targeted drugs or combinations of drugs. Here, we outline how pharmacological and chemo-genetic approaches can contribute to such knowledge, despite the known low selectivity of many kinase inhibitors. We discuss how detailed profiling of target engagement by kinase inhibitors can underpin these studies; how chemical probes can be used to uncover kinase-substrate relationships, and how these tools can be used to gain insight into the configuration and function of kinase signaling networks.
Collapse
Affiliation(s)
| | - Jonathan M. G. Higgins
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle uponTyne, United Kingdom
| |
Collapse
|
4
|
Yoshimaru R, Minami Y. Genetic Landscape of Chronic Myeloid Leukemia and a Novel Targeted Drug for Overcoming Resistance. Int J Mol Sci 2023; 24:13806. [PMID: 37762109 PMCID: PMC10530602 DOI: 10.3390/ijms241813806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) exemplify the success of molecular targeted therapy for chronic myeloid leukemia (CML). However, some patients do not respond to TKI therapy. Mutations in the kinase domain of BCR::ABL1 are the most extensively studied mechanism of TKI resistance in CML, but BCR::ABL1-independent mechanisms are involved in some cases. There are two known types of mechanisms that contribute to resistance: mutations in known cancer-related genes; and Philadelphia-associated rearrangements, a novel mechanism of genomic heterogeneity that occurs at the time of the Philadelphia chromosome formation. Most chronic-phase and accelerated-phase CML patients who were treated with the third-generation TKI for drug resistance harbored one or more cancer gene mutations. Cancer gene mutations and additional chromosomal abnormalities were found to be independently associated with progression-free survival. The novel agent asciminib specifically inhibits the ABL myristoyl pocket (STAMP) and shows better efficacy and less toxicity than other TKIs due to its high target specificity. In the future, pooled analyses of various studies should address whether additional genetic analyses could guide risk-adapted therapy and lead to a final cure for CML.
Collapse
Affiliation(s)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-shi 277-8577, Japan;
| |
Collapse
|
5
|
Mazzera L, Abeltino M, Lombardi G, Cantoni AM, Jottini S, Corradi A, Ricca M, Rossetti E, Armando F, Peli A, Ferrari A, Martinelli G, Scupoli MT, Visco C, Bonifacio M, Ripamonti A, Gambacorti-Passerini C, Bonati A, Perris R, Lunghi P. MEK1/2 regulate normal BCR and ABL1 tumor-suppressor functions to dictate ATO response in TKI-resistant Ph+ leukemia. Leukemia 2023; 37:1671-1685. [PMID: 37386079 PMCID: PMC10400427 DOI: 10.1038/s41375-023-01940-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/10/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Resistance to tyrosine kinase inhibitors (TKIs) remains a clinical challenge in Ph-positive variants of chronic myeloid leukemia. We provide mechanistic insights into a previously undisclosed MEK1/2/BCR::ABL1/BCR/ABL1-driven signaling loop that may determine the efficacy of arsenic trioxide (ATO) in TKI-resistant leukemic patients. We find that activated MEK1/2 assemble into a pentameric complex with BCR::ABL1, BCR and ABL1 to induce phosphorylation of BCR and BCR::ABL1 at Tyr360 and Tyr177, and ABL1, at Thr735 and Tyr412 residues thus provoking loss of BCR's tumor-suppression functions, enhanced oncogenic activity of BCR::ABL1, cytoplasmic retention of ABL1 and consequently drug resistance. Coherently, pharmacological blockade of MEK1/2 induces dissociation of the pentameric MEK1/2/BCR::ABL1/BCR/ABL1 complex and causes a concurrent BCRY360/Y177, BCR::ABL1Y360/Y177 and cytoplasmic ABL1Y412/T735 dephosphorylation thereby provoking the rescue of the BCR's anti-oncogenic activities, nuclear accumulation of ABL1 with tumor-suppressive functions and consequently, growth inhibition of the leukemic cells and an ATO sensitization via BCR-MYC and ABL1-p73 signaling axes activation. Additionally, the allosteric activation of nuclear ABL1 was consistently found to enhance the anti-leukemic effects of the MEK1/2 inhibitor Mirdametinib, which when combined with ATO, significantly prolonged the survival of mice bearing BCR::ABL1-T315I-induced leukemia. These findings highlight the therapeutic potential of MEK1/2-inhibitors/ATO combination for the treatment of TKI-resistant leukemia.
Collapse
Affiliation(s)
- Laura Mazzera
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Manuela Abeltino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Guerino Lombardi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | | | - Stefano Jottini
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Micaela Ricca
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - Elena Rossetti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- National Healthcare Service (SSN-Servizio Sanitario Nazionale) ASL Piacenza, Piacenza, Italy
| | - Federico Armando
- Department of Veterinary Science, University of Parma, Parma, Italy
- University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Angelo Peli
- Department for Life Quality Studies Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Anna Ferrari
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, FC, Italy
- Institute of Hematology "L. e A. Seragnoli", Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Maria Teresa Scupoli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Carlo Visco
- Department of Engineering for Innovation Medicine, Section of Hematology-University of Verona, Verona, Italy
| | - Massimiliano Bonifacio
- Department of Engineering for Innovation Medicine, Section of Hematology-University of Verona, Verona, Italy
| | - Alessia Ripamonti
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Adult Hematology, IRCCS San Gerardo, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Adult Hematology, IRCCS San Gerardo, Monza, Italy
| | - Antonio Bonati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberto Perris
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Centre for Molecular and Translational Oncology-COMT, University of Parma, Parma, Italy
| | - Paolo Lunghi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
- Centre for Molecular and Translational Oncology-COMT, University of Parma, Parma, Italy.
| |
Collapse
|
6
|
Deregowska A, Lewinska A, Warzybok A, Stoklosa T, Wnuk M. Telomere loss is accompanied by decreased pool of shelterin proteins TRF2 and RAP1, elevated levels of TERRA and enhanced glycolysis in imatinib-resistant CML cells. Toxicol In Vitro 2023; 90:105608. [PMID: 37149272 DOI: 10.1016/j.tiv.2023.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Telomere length may be maintained by telomerase nucleoprotein complex and shelterin complex, namely TRF1, TRF2, TIN2, TPP1, POT1 and RAP1 proteins and modulated by TERRA expression. Telomere loss is observed during progression of chronic myeloid leukemia (CML) from the chronic phase (CML-CP) to the blastic phase (CML-BP). The introduction of tyrosine kinase inhibitors (TKIs), such as imatinib (IM), has changed outcome for majority of patients, however, a number of patients treated with TKIs may develop drug resistance. The molecular mechanisms underlying this phenomenon are not fully understood and require further investigation. In the present study, we demonstrate that IM-resistant BCR::ABL1 gene-positive CML K-562 and MEG-A2 cells are characterized by decreased telomere length, lowered protein levels of TRF2 and RAP1 and increased expression of TERRA in comparison to corresponding IM-sensitive CML cells and BCR::ABL1 gene-negative HL-60 cells. Furthermore, enhanced activity of glycolytic pathway was observed in IM-resistant CML cells. A negative correlation between a telomere length and advanced glycation end products (AGE) was also revealed in CD34+ cells isolated from CML patients. In conclusion, we suggest that affected expression of shelterin complex proteins, namely TRF2 and RAP1, TERRA levels, and glucose consumption rate may promote telomere dysfunction in IM-resistant CML cells.
Collapse
Affiliation(s)
- Anna Deregowska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland; Department of Tumor Biology and Genetics, Medical University of Warsaw, Pawinskiego 7, Warsaw 02-106, Poland.
| | - Anna Lewinska
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland.
| | - Aleksandra Warzybok
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Tomasz Stoklosa
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Pawinskiego 7, Warsaw 02-106, Poland.
| | - Maciej Wnuk
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland.
| |
Collapse
|
7
|
Mlejnek P. What Is the Significance of Lysosomal-Mediated Resistance to Imatinib? Cells 2023; 12:cells12050709. [PMID: 36899844 PMCID: PMC10000661 DOI: 10.3390/cells12050709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The lysosomal sequestration of hydrophobic weak-base anticancer drugs is one proposed mechanism for the reduced availability of these drugs at target sites, resulting in a marked decrease in cytotoxicity and consequent resistance. While this subject is receiving increasing emphasis, it is so far only in laboratory experiments. Imatinib is a targeted anticancer drug used to treat chronic myeloid leukaemia (CML), gastrointestinal stromal tumours (GISTs), and a number of other malignancies. Its physicochemical properties make it a typical hydrophobic weak-base drug that accumulates in the lysosomes of tumour cells. Further laboratory studies suggest that this might significantly reduce its antitumor efficacy. However, a detailed analysis of published laboratory studies shows that lysosomal accumulation cannot be considered a clearly proven mechanism of resistance to imatinib. Second, more than 20 years of clinical experience with imatinib has revealed a number of resistance mechanisms, none of which is related to its accumulation in lysosomes. This review focuses on the analysis of salient evidence and raises a fundamental question about the significance of lysosomal sequestration of weak-base drugs in general as a possible resistance mechanism both in clinical and laboratory settings.
Collapse
Affiliation(s)
- Petr Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 77515 Olomouc, Czech Republic
| |
Collapse
|
8
|
Mitrovský O, Myslivcová D, Macháčková-Lopotová T, Obr A, Čermáková K, Ransdorfová Š, Březinová J, Klamová H, Žáčková M. Inhibition of casein kinase 2 induces cell death in tyrosine kinase inhibitor resistant chronic myelogenous leukemia cells. PLoS One 2023; 18:e0284876. [PMID: 37141212 PMCID: PMC10159124 DOI: 10.1371/journal.pone.0284876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Chronic myelogenous leukemia (CML) is a myeloproliferative disease characterized by the BCR-ABL oncogene. Despite the high performance of treatment with tyrosine kinase inhibitors (TKI), about 30% of patients develop resistance to the therapy. To improve the outcomes, identification of new targets of treatment is needed. Here, we explored the Casein Kinase 2 (CK2) as a potential target for CML therapy. Previously, we detected increased phosphorylation of HSP90β Serine 226 in patients non-responding to TKIs imatinib and dasatinib. This site is known to be phosphorylated by CK2, which was also linked to CML resistance to imatinib. In the present work, we established six novel imatinib- and dasatinib-resistant CML cell lines, all of which had increased CK2 activation. A CK2 inhibitor, CX-4945, induced cell death of CML cells in both parental and resistant cell lines. In some cases, CK2 inhibition also potentiated the effects of TKI on the cell metabolic activity. No effects of CK2 inhibition were observed in normal mononuclear blood cells from healthy donors and BCR-ABL negative HL60 cell line. Our data indicate that CK2 kinase supports CML cell viability even in cells with different mechanisms of resistance to TKI, and thus represents a potential target for treatment.
Collapse
Affiliation(s)
- Ondřej Mitrovský
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Denisa Myslivcová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | | | - Adam Obr
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Kamila Čermáková
- Laboratory of PCR Diagnostics of Leukemias, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Šárka Ransdorfová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Jana Březinová
- Department of Cytogenetics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Hana Klamová
- Clinical Division, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| | - Markéta Žáčková
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague 2, Czech Republic
| |
Collapse
|
9
|
Scalzulli E, Carmosino I, Bisegna ML, Martelli M, Breccia M. CML Resistant to 2nd-Generation TKIs: Mechanisms, Next Steps, and New Directions. Curr Hematol Malig Rep 2022; 17:198-205. [PMID: 36264428 DOI: 10.1007/s11899-022-00683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW The clinical scenario for chronic myeloid leukemia patients rapidly changed after the introduction of tyrosine kinase inhibitors (TKIs). Second-generation TKIs as frontline treatment increased the rate of deep molecular responses without increasing the rate of overall survival. About 20% of patients experience resistance to these agents, needing alternative treatments. Here, we reviewed the possible mechanisms of resistance, available treatment, and new drugs developed to counteract and overcome resistance. RECENT FINDINGS Results of novel TKIs have been recently reported, especially for the setting of T315I mutated patients, such as olverembatinib and asciminib, or for patients who developed resistance due to other mutations, such as vodobatinib. Most of new TKIs are selected among compounds tested selective on ABL, therefore without possible off-target effects in the long term. New potential treatments are on the horizon in the field of CML, able to rescue patients treated firstly with one or more second-generation TKIs. Results of ongoing trials and real-world evidence dataset will help us to identify the appropriate timing of intervention and to select appropriate candidate to these drugs.
Collapse
Affiliation(s)
- Emilia Scalzulli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Via Benevento 6, 00161, Rome, Italy
| | - Ida Carmosino
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Via Benevento 6, 00161, Rome, Italy
| | - Maria Laura Bisegna
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Via Benevento 6, 00161, Rome, Italy
| | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Via Benevento 6, 00161, Rome, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Via Benevento 6, 00161, Rome, Italy.
| |
Collapse
|
10
|
Nguyen TTT, Tamai M, Harama D, Kagami K, Kasai S, Watanabe A, Akahane K, Goi K, Inukai T. Introduction of the T315I gatekeeper mutation of BCR/ABL1 into a Philadelphia chromosome-positive lymphoid leukemia cell line using the CRISPR/Cas9 system. Int J Hematol 2022; 116:534-543. [PMID: 35524023 DOI: 10.1007/s12185-022-03369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
Imatinib and second-generation tyrosine kinase inhibitors (TKIs) have dramatically improved the prognosis of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL). However, overcoming TKI resistance due to the T315I gatekeeper mutation of BCR/ABL1 is crucial for further improving the prognosis. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is appropriate for establishing a human model of Ph+ ALL with the T315I mutation, because it can induce specific mutations via homologous recombination (HR) repair in cells with intact endogenous HR pathway. Here we used CRISPR/Cas9 to introduce the T315I mutation into the Ph+ lymphoid leukemia cell line KOPN55bi, which appeared to have an active HR pathway based on its resistance to a poly (ADP-Ribose) polymerase-1 inhibitor. Single-guide RNA targeting at codon 315 and single-strand oligodeoxynucleotide containing ACT to ATT nucleotide transition at codon 315 were electroporated with recombinant Cas9 protein. Dasatinib-resistant sublines were obtained after one-month selection with the therapeutic concentration of dasatinib, leading to T315I mutation acquisition through HR. T315I-acquired sublines were highly resistant to imatinib and second-generation TKIs but moderately sensitive to the therapeutic concentration of ponatinib. This authentic human model is helpful for developing new therapeutic strategies overcoming TKI resistance in Ph+ ALL due to T315I mutation.
Collapse
Affiliation(s)
- Thao T T Nguyen
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Minori Tamai
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Daisuke Harama
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Keiko Kagami
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Shin Kasai
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Atsushi Watanabe
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| |
Collapse
|
11
|
Bhatia S, Spanier L, Bickel D, Dienstbier N, Woloschin V, Vogt M, Pols H, Lungerich B, Reiners J, Aghaallaei N, Diedrich D, Frieg B, Schliehe-Diecks J, Bopp B, Lang F, Gopalswamy M, Loschwitz J, Bajohgli B, Skokowa J, Borkhardt A, Hauer J, Hansen FK, Smits SHJ, Jose J, Gohlke H, Kurz T. Development of a First-in-Class Small-Molecule Inhibitor of the C-Terminal Hsp90 Dimerization. ACS CENTRAL SCIENCE 2022; 8:636-655. [PMID: 35647282 PMCID: PMC9136973 DOI: 10.1021/acscentsci.2c00013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 05/04/2023]
Abstract
Heat shock proteins 90 (Hsp90) are promising therapeutic targets due to their involvement in stabilizing several aberrantly expressed oncoproteins. In cancerous cells, Hsp90 expression is elevated, thereby exerting antiapoptotic effects, which is essential for the malignant transformation and tumor progression. Most of the Hsp90 inhibitors (Hsp90i) under investigation target the ATP binding site in the N-terminal domain of Hsp90. However, adverse effects, including induction of the prosurvival resistance mechanism (heat shock response or HSR) and associated dose-limiting toxicity, have so far precluded their clinical approval. In contrast, modulators that interfere with the C-terminal domain (CTD) of Hsp90 do not inflict HSR. Since the CTD dimerization of Hsp90 is essential for its chaperone activity, interfering with the dimerization process by small-molecule protein-protein interaction inhibitors is a promising strategy for anticancer drug research. We have developed a first-in-class small-molecule inhibitor (5b) targeting the Hsp90 CTD dimerization interface, based on a tripyrimidonamide scaffold through structure-based molecular design, chemical synthesis, binding mode model prediction, assessment of the biochemical affinity, and efficacy against therapy-resistant leukemia cells. 5b reduces xenotransplantation of leukemia cells in zebrafish models and induces apoptosis in BCR-ABL1+ (T315I) tyrosine kinase inhibitor-resistant leukemia cells, without inducing HSR.
Collapse
Affiliation(s)
- Sanil Bhatia
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Phone: (+49) 211 81 04896.
| | - Lukas Spanier
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - David Bickel
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Niklas Dienstbier
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Vitalij Woloschin
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Melina Vogt
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Henrik Pols
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Beate Lungerich
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jens Reiners
- Center
for Structural Studies, Heinrich Heine University
Düsseldorf, Düsseldorf 40225, Germany
| | - Narges Aghaallaei
- Department
of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen 72076, Germany
| | - Daniela Diedrich
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Benedikt Frieg
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- John
von Neumann Institute for Computing (NIC), Jülich Supercomputing
Centre (JSC), Institute of Biological Information Processing (IBI-7:
Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4:
Bioinformatics), Forschungszentrum Jülich
GmbH, Jülich 52425, Germany
| | - Julian Schliehe-Diecks
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Bertan Bopp
- Institute
for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster 48149, Germany
| | - Franziska Lang
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Mohanraj Gopalswamy
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Jennifer Loschwitz
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Baubak Bajohgli
- Department
of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen 72076, Germany
| | - Julia Skokowa
- Department
of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen 72076, Germany
| | - Arndt Borkhardt
- Department
of Pediatric Oncology, Hematology and Clinical Immunology, Medical
Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Julia Hauer
- Department
of Pediatrics, Pediatric Hematology and Oncology, University Hospital Carl Gustav Carus, Dresden 01307, Germany
- Partner
Site Dresden, National Center for Tumor
Diseases (NCT), Dresden 01307, Germany
| | - Finn K. Hansen
- Pharmaceutical
and Cell Biological Chemistry, Pharmaceutical
Institute University of Bonn, Bonn 53121, Germany
| | - Sander H. J. Smits
- Center
for Structural Studies, Heinrich Heine University
Düsseldorf, Düsseldorf 40225, Germany
- Institute
of Biochemistry, Heinrich Heine University
Düsseldorf, Düsseldorf 40225, Germany
| | - Joachim Jose
- Institute
for Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms University, Münster 48149, Germany
| | - Holger Gohlke
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- John
von Neumann Institute for Computing (NIC), Jülich Supercomputing
Centre (JSC), Institute of Biological Information Processing (IBI-7:
Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4:
Bioinformatics), Forschungszentrum Jülich
GmbH, Jülich 52425, Germany
- Phone: (+49)
211 81 13662.
| | - Thomas Kurz
- Institute
for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
- Phone: (+49)
211 81 14984.
| |
Collapse
|
12
|
BCR-ABL1 Tyrosine Kinase Complex Signaling Transduction: Challenges to Overcome Resistance in Chronic Myeloid Leukemia. Pharmaceutics 2022; 14:pharmaceutics14010215. [PMID: 35057108 PMCID: PMC8780254 DOI: 10.3390/pharmaceutics14010215] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The constitutively active BCR-ABL1 tyrosine kinase, found in t(9;22)(q34;q11) chromosomal translocation-derived leukemia, initiates an extremely complex signaling transduction cascade that induces a strong state of resistance to chemotherapy. Targeted therapies based on tyrosine kinase inhibitors (TKIs), such as imatinib, dasatinib, nilotinib, bosutinib, and ponatinib, have revolutionized the treatment of BCR-ABL1-driven leukemia, particularly chronic myeloid leukemia (CML). However, TKIs do not cure CML patients, as some develop TKI resistance and the majority relapse upon withdrawal from treatment. Importantly, although BCR-ABL1 tyrosine kinase is necessary to initiate and establish the malignant phenotype of Ph-related leukemia, in the later advanced phase of the disease, BCR-ABL1-independent mechanisms are also in place. Here, we present an overview of the signaling pathways initiated by BCR-ABL1 and discuss the major challenges regarding immunologic/pharmacologic combined therapies.
Collapse
|
13
|
De Santis S, Monaldi C, Mancini M, Bruno S, Cavo M, Soverini S. Overcoming Resistance to Kinase Inhibitors: The Paradigm of Chronic Myeloid Leukemia. Onco Targets Ther 2022; 15:103-116. [PMID: 35115784 PMCID: PMC8800859 DOI: 10.2147/ott.s289306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Protein kinases (PKs) play crucial roles in cellular proliferation and survival, hence their deregulation is a common event in the pathogenesis of solid and hematologic malignancies. Targeting PKs has been a promising strategy in cancer treatment, and there are now a variety of approved anticancer drugs targeting PKs. However, the phenomenon of resistance remains an obstacle to be addressed and overcoming resistance is a goal to be achieved. Chronic myeloid leukemia (CML) is the first as well as one of the best examples of a cancer that can be targeted by molecular therapy; hence, it can be used as a model disease for other cancers. This review aims to summarize up-to-date knowledge on the main mechanisms implicated in resistance to PK inhibitory therapies and to outline the main strategies that are being explored to overcome resistance. The importance of molecular diagnostics and disease monitoring in counteracting resistance will also be discussed.
Collapse
Affiliation(s)
- Sara De Santis
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
- Correspondence: Sara De Santis Insitute of Hematology “Lorenzo e Ariosto Seràgnoli”, Via Massarenti 9, Bologna, 40138, ItalyTel +39 051 2143791Fax +39 051 2144037 Email
| | - Cecilia Monaldi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| | - Manuela Mancini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Samantha Bruno
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| | - Michele Cavo
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Simona Soverini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, UO Ematologia ‘Lorenzo e Ariosto Seràgnoli’, Università di Bologna, Bologna, Italy
| |
Collapse
|
14
|
Aranda-Tavío H, Recio C, Martín-Acosta P, Guerra-Rodríguez M, Brito-Casillas Y, Blanco R, Junco V, León J, Montero JC, Gandullo-Sánchez L, McNaughton-Smith G, Zapata JM, Pandiella A, Amesty A, Estévez-Braun A, Fernández-Pérez L, Guerra B. JKST6, a novel multikinase modulator of the BCR-ABL1/STAT5 signaling pathway that potentiates direct BCR-ABL1 inhibition and overcomes imatinib resistance in chronic myelogenous leukemia. Biomed Pharmacother 2021; 144:112330. [PMID: 34673425 DOI: 10.1016/j.biopha.2021.112330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a hematological malignancy that highly depends on the BCR-ABL1/STAT5 signaling pathway for cell survival. First-line treatments for CML consist of tyrosine kinase inhibitors that efficiently target BCR-ABL1 activity. However, drug resistance and intolerance are still therapeutic limitations in Ph+ cells. Therefore, the development of new anti-CML drugs that exhibit alternative mechanisms to overcome these limitations is a desirable goal. In this work, the antitumoral activity of JKST6, a naphthoquinone-pyrone hybrid, was assessed in imatinib-sensitive and imatinib-resistant human CML cells. Live-cell imaging analysis revealed JKST6 potent antiproliferative activity in 2D and 3D CML cultures. JKST6 provoked cell increase in the subG1 phase along with a reduction in the G0/G1 phase and altered the expression of key proteins involved in the control of mitosis and DNA damage. Rapid increases in Annexin V staining and activation/cleavage of caspases 8, 9 and 3 were observed after JKST6 treatment in CML cells. Of interest, JKST6 inhibited BCR-ABL1/STAT5 signaling through oncokinase downregulation that was preceded by rapid polyubiquitination. In addition, JKST6 caused a transient increase in JNK and AKT phosphorylation, whereas the phosphorylation of P38-MAPK and Src was reduced. Combinatory treatment unveiled synergistic effects between imatinib and JKST6. Notably, JKST6 maintained its antitumor efficacy in BCR-ABL1-T315I-positive cells and CML cells that overexpress BCR-ABL and even restored imatinib efficacy after a short exposure time. These findings, together with the observed low toxicity of JKST6, reveal a novel multikinase modulator that might overcome the limitations of BCR-ABL1 inhibitors in CML therapy.
Collapse
Affiliation(s)
- Haidée Aranda-Tavío
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Pedro Martín-Acosta
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO), Departamento de Química Orgánica, QUIBIONAT, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Miguel Guerra-Rodríguez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Rosa Blanco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Vanessa Junco
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Javier León
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC, Santander, Spain
| | - Juan Carlos Montero
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Lucía Gandullo-Sánchez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | | | - Juan Manuel Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols" - CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and CIBERONC. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Angel Amesty
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO), Departamento de Química Orgánica, QUIBIONAT, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Ana Estévez-Braun
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO), Departamento de Química Orgánica, QUIBIONAT, Universidad de La Laguna (ULL), La Laguna, Spain
| | - Leandro Fernández-Pérez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
| | - Borja Guerra
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional (BIOPharm), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
15
|
Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia-From Molecular Mechanisms to Clinical Relevance. Cancers (Basel) 2021; 13:cancers13194820. [PMID: 34638304 PMCID: PMC8508378 DOI: 10.3390/cancers13194820] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic myeloid leukemia (CML) is a myeloproliferative neoplasia associated with a molecular alteration, the fusion gene BCR-ABL1, that encodes the tyrosine kinase oncoprotein BCR-ABL1. This led to the development of tyrosine kinase inhibitors (TKI), with Imatinib being the first TKI approved. Although the vast majority of CML patients respond to Imatinib, resistance to this targeted therapy contributes to therapeutic failure and relapse. Here we review the molecular mechanisms and other factors (e.g., patient adherence) involved in TKI resistance, the methodologies to access these mechanisms, and the possible therapeutic approaches to circumvent TKI resistance in CML. Abstract Resistance to targeted therapies is a complex and multifactorial process that culminates in the selection of a cancer clone with the ability to evade treatment. Chronic myeloid leukemia (CML) was the first malignancy recognized to be associated with a genetic alteration, the t(9;22)(q34;q11). This translocation originates the BCR-ABL1 fusion gene, encoding the cytoplasmic chimeric BCR-ABL1 protein that displays an abnormally high tyrosine kinase activity. Although the vast majority of patients with CML respond to Imatinib, a tyrosine kinase inhibitor (TKI), resistance might occur either de novo or during treatment. In CML, the TKI resistance mechanisms are usually subdivided into BCR-ABL1-dependent and independent mechanisms. Furthermore, patients’ compliance/adherence to therapy is critical to CML management. Techniques with enhanced sensitivity like NGS and dPCR, the use of artificial intelligence (AI) techniques, and the development of mathematical modeling and computational prediction methods could reveal the underlying mechanisms of drug resistance and facilitate the design of more effective treatment strategies for improving drug efficacy in CML patients. Here we review the molecular mechanisms and other factors involved in resistance to TKIs in CML and the new methodologies to access these mechanisms, and the therapeutic approaches to circumvent TKI resistance.
Collapse
|
16
|
Why chronic myeloid leukaemia cannot be cured by tyrosine kinase-inhibitors. Leukemia 2021; 35:2199-2204. [PMID: 34002028 DOI: 10.1038/s41375-021-01272-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 01/29/2023]
|
17
|
DNA Methylation and Intra-Clonal Heterogeneity: The Chronic Myeloid Leukemia Model. Cancers (Basel) 2021; 13:cancers13143587. [PMID: 34298798 PMCID: PMC8307727 DOI: 10.3390/cancers13143587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/24/2023] Open
Abstract
Chronic Myeloid Leukemia (CML) is a model to investigate the impact of tumor intra-clonal heterogeneity in personalized medicine. Indeed, tyrosine kinase inhibitors (TKIs) target the BCR-ABL fusion protein, which is considered the major CML driver. TKI use has highlighted the existence of intra-clonal heterogeneity, as indicated by the persistence of a minority subclone for several years despite the presence of the target fusion protein in all cells. Epigenetic modifications could partly explain this heterogeneity. This review summarizes the results of DNA methylation studies in CML. Next-generation sequencing technologies allowed for moving from single-gene to genome-wide analyses showing that methylation abnormalities are much more widespread in CML cells. These data showed that global hypomethylation is associated with hypermethylation of specific sites already at diagnosis in the early phase of CML. The BCR-ABL-independence of some methylation profile alterations and the recent demonstration of the initial intra-clonal DNA methylation heterogeneity suggests that some DNA methylation alterations may be biomarkers of TKI sensitivity/resistance and of disease progression risk. These results also open perspectives for understanding the epigenetic/genetic background of CML predisposition and for developing new therapeutic strategies.
Collapse
|
18
|
Yuan M, Wang Y, Qin M, Zhao X, Chen X, Li D, Miao Y, Otieno Odhiambo W, Liu H, Ma Y, Ji Y. RAG enhances BCR-ABL1-positive leukemic cell growth through its endonuclease activity in vitro and in vivo. Cancer Sci 2021; 112:2679-2691. [PMID: 33949040 PMCID: PMC8253288 DOI: 10.1111/cas.14939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
BCR-ABL1 gene fusion associated with additional DNA lesions involves the pathogenesis of chronic myelogenous leukemia (CML) from a chronic phase (CP) to a blast crisis of B lymphoid (CML-LBC) lineage and BCR-ABL1+ acute lymphoblastic leukemia (BCR-ABL1+ ALL). The recombination-activating gene RAG1 and RAG2 (collectively, RAG) proteins that assemble a diverse set of antigen receptor genes during lymphocyte development are abnormally expressed in CML-LBC and BCR-ABL1+ ALL. However, the direct involvement of dysregulated RAG in disease progression remains unclear. Here, we generate human wild-type (WT) RAG and catalytically inactive RAG-expressing BCR-ABL1+ and BCR-ABL1- cell lines, respectively, and demonstrate that BCR-ABL1 specifically collaborates with RAG recombinase to promote cell survival in vitro and in xenograft mice models. WT RAG-expressing BCR-ABL1+ cell lines and primary CD34+ bone marrow cells from CML-LBC samples maintain more double-strand breaks (DSB) compared to catalytically inactive RAG-expressing BCR-ABL1+ cell lines and RAG-deficient CML-CP samples, which are measured by γ-H2AX. WT RAG-expressing BCR-ABL1+ cells are biased to repair RAG-mediated DSB by the alternative non-homologous end joining pathway (a-NHEJ), which could contribute genomic instability through increasing the expression of a-NHEJ-related MRE11 and RAD50 proteins. As a result, RAG-expressing BCR-ABL1+ cells decrease sensitivity to tyrosine kinase inhibitors (TKI) by activating BCR-ABL1 signaling but independent of the levels of BCR-ABL1 expression and mutations in the BCR-ABL1 tyrosine kinase domain. These findings identify a surprising and novel role of RAG in the functional specialization of disease progression in BCR-ABL1+ leukemia through its endonuclease activity.
Collapse
MESH Headings
- Acid Anhydride Hydrolases/metabolism
- Animals
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- DNA Breaks, Double-Stranded
- DNA End-Joining Repair
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Disease Progression
- Endonucleases/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Genomic Instability
- Heterografts
- Histones/analysis
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- In Vitro Techniques
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- MRE11 Homologue Protein/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Meng Yuan
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yang Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Mengting Qin
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaohui Zhao
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Xiaodong Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Dandan Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yinsha Miao
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
- Department of Clinical laboratoryXi’an No. 3 HospitalThe Affiliated Hospital of Northwest UniversityXi’anChina
| | - Wood Otieno Odhiambo
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Huasheng Liu
- Department of HematologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
| | - Yunfeng Ma
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical SciencesXi’an Jiaotong University Health Science CenterXi’anChina
| |
Collapse
|
19
|
Current Approaches to Philadelphia Chromosome-Positive B-Cell Lineage Acute Lymphoblastic Leukemia: Role of Tyrosine Kinase Inhibitor and Stem Cell Transplant. Curr Oncol Rep 2021; 23:95. [PMID: 34125415 DOI: 10.1007/s11912-021-01086-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Over the past two decades, tyrosine kinase inhibitors (TKIs) have changed the management of patients with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL), and this has led to significant improvement in their outcome. In this review, we will provide an overview of the current understanding of treatment of Ph+ ALL focusing on TKIs, alloHSCT, and novel therapies. RECENT FINDINGS The advent of more potent TKIs and the novel therapeutic options including blinatumomab, inotuzumab ozogamicin, and CD19 CAR-T therapy has changed the role of allogeneic hematopoietic stem cell transplant (alloHSCT) and intensive chemotherapy. To avoid toxicity from the historical treatment strategies, a more individualized, targeted approach to therapy including detection and monitoring of measurable residual disease (MRD) has become of interest. The treatment of patients with Ph+ ALL has been rapidly evolving with a more individualized, targeted treatment and use of TKIs and novel therapy.
Collapse
|
20
|
Gupta SK, Singh P, Chhabra R, Verma M. Novel pharmacological approach for the prevention of multidrug resistance (MDR) in a human leukemia cell line. Leuk Res 2021; 109:106641. [PMID: 34144313 DOI: 10.1016/j.leukres.2021.106641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Drug resistance mechanisms are the regulatory factors associated with drug metabolism and drug transport to inward and outward of the target cells. Maybridge fragment (MBF) library is a collection of pharmacophore rich compounds having affinity with membrane transporters. This study has been designed to evaluate the efficacy of MBFs in overcoming the leukemic cells' resistance to imatinib. METHODS Imatinib resistant cells (K562-R) were prepared using myelogenous leukemia cell line (K562) by titration method. The four MBFs were prioritized for determining their effect on imatinib resistance. The cells were treated with imatinib and MBFs and the MTT assay was performed to evaluate the efficacy of MBFs in enhancing the imatinib mediated cell death. The transcript levels of Bcr-Abl1 gene and efflux transporter genes were determined by RT-qPCR analysis. RESULTS The MBFs enhanced the imatinib mediated cell death of K562-R cells. There was also a significant decrease in the mRNA levels of the major drug efflux genes (ABCB1, ABCB10, ABCC1 and ABCG2) when treated with a combination of imatinib and MBF in comparison to imatinib treatment alone. CONCLUSION The drug efflux is one of the mechanisms of multidrug resistance in cancer cells and the MBFs used in this study were all found to significantly overcome the imatinib resistance by limiting the expression of efflux genes. This study, therefore, highlights the potential of Maybridge compounds in treating the drug resistant leukemia.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Cell Proliferation
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Sonu Kumar Gupta
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Priyanka Singh
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic & Applied Sciences, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Malkhey Verma
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
21
|
Kaehler M, Dworschak M, Rodin JP, Ruemenapp J, Vater I, Penas EMM, Liu C, Cascorbi I, Nagel I. ZFP36L1 plays an ambiguous role in the regulation of cell expansion and negatively regulates CDKN1A in chronic myeloid leukemia cells. Exp Hematol 2021; 99:54-64.e7. [PMID: 34090970 DOI: 10.1016/j.exphem.2021.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022]
Abstract
The mRNA-destabilizing proteins ZFP36L1 and ZFP36L2 are described as mediators of quiescence and play a pivotal role in hematopoietic malignancies. Both genes are mainly classified as tumor suppressor genes as they posttranscriptionally downregulate the expression of oncogenes and contribute to cellular quiescence. Here, we analyzed the role of ZFP36L1 and ZFP36L2 in chronic myeloid leukemia (CML). We found ZFP36L1 and ZFP36L2 expression to be deregulated in patients with CML. By use of in vitro models of tyrosine kinase inhibitor resistance, an increase in ZFP36L1 and ZFP36L2 expression was detected during the development of imatinib resistance. CRISPR/Cas9-derived knockout of ZFP36L1, but not of ZFP36L2, in imatinib-sensitive cells led to decreased proliferation rates in response to tyrosine kinase inhibitor treatment. This effect was also observed in untreated ZFP36L1 knockout cells, albeit to a lower extent. Genomewide gene expression analyses of ZFP36L1 knockout cells revealed differential expression of cell cycle regulators, in particular upregulation of the cell cycle inhibitor CDKN1A. In addition, the 3' untranslated region of CDKN1A was proven to be a direct target of ZFP36L1. This indicates that tumor suppressor genes can also be targeted by ZFP36L1. Hence, ZFP36L1 cannot unambiguously be regarded as a tumor suppressor gene.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Maike Dworschak
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Julian Phillip Rodin
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johanna Ruemenapp
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inga Vater
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel Germany
| | - Eva Maria Murga Penas
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel Germany
| | - Catherine Liu
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Inga Nagel
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany; Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel Germany
| |
Collapse
|
22
|
Osman AEG, Deininger MW. Chronic Myeloid Leukemia: Modern therapies, current challenges and future directions. Blood Rev 2021; 49:100825. [PMID: 33773846 DOI: 10.1016/j.blre.2021.100825] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm caused by a reciprocal translocation [t(9;22)(q34;q11.2)] that leads to the fusion of ABL1 gene sequences (9q34) downstream of BCR gene sequences (22q11) and is cytogenetically visible as Philadelphia chromosome (Ph). The resulting BCR/ABL1 chimeric protein is a constitutively active tyrosine kinase that activates multiple signaling pathways, which collectively lead to malignant transformation. During the early (chronic) phase of CML (CP-CML), the myeloid cell compartment is expanded, but differentiation is maintained. Without effective therapy, CP-CML invariably progresses to blast phase (BP-CML), an acute leukemia of myeloid or lymphoid phenotype. The development of BCR-AB1 tyrosine kinase inhibitors (TKIs) revolutionized the treatment of CML and ignited the start of a new era in oncology. With three generations of BCR/ABL1 TKIs approved today, the majority of CML patients enjoy long term remissions and near normal life expectancy. However, only a minority of patients maintain remission after TKI discontinuation, a status termed treatment free remission (TFR). Unfortunately, 5-10% of patients fail TKIs due to resistance and are at risk of progression to BP-CML, which is curable only with hematopoietic stem cell transplantation. Overcoming TKI resistance, improving the prognosis of BP-CML and improving the rates of TFR are areas of active research in CML.
Collapse
Affiliation(s)
- Afaf E G Osman
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.
| | - Michael W Deininger
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
23
|
Simvastatin enhances the efficacy of nilotinib in chronic myeloid leukaemia by post-translational modification and drug transporter modulation. Anticancer Drugs 2021; 32:526-536. [PMID: 33587350 DOI: 10.1097/cad.0000000000001028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The resistance of chronic myeloid leukaemia (CML) to tyrosine kinase inhibitors (TKIs) remains a significant clinical problem. Targeting alternative pathways, such as protein prenylation, is known to be effective in overcoming resistance. Simvastatin inhibits 3-hydroxy-3-methylglutaryl-CoA reductase (a key enzyme in isoprenoid-regulation), thereby inhibiting prenylation. We demonstrate that simvastatin alone effectively inhibits proliferation in a panel of TKI-resistant CML cell lines, regardless of mechanism of resistance. We further show that the combination of nilotinib and simvastatin synergistically kills CML cells via an increase in apoptosis and decrease in prosurvival proteins and cellular proliferation. Mechanistically, simvastatin inhibits protein prenylation as shown by increased levels of unprenylated Ras and rescue experiments with mevalonate resulted in abrogation of synergism. The combination also leads to an increase in the intracellular uptake and retention of radio-labelled nilotinib, which further enhances the inhibition of Bcr-Abl kinase activity. In primary CML samples, this combination inhibits clonogenicity in both imatinib-naive and resistant cells. Such combinatorial effects provide the basis for utilising these Food and Drug Administration-approved drugs as a potential clinical approach in overcoming resistance and improving CML treatment.
Collapse
|
24
|
|
25
|
Lewis M, Prouzet‐Mauléon V, Lichou F, Richard E, Iggo R, Turcq B, Mahon F. A genome-scale CRISPR knock-out screen in chronic myeloid leukemia identifies novel drug resistance mechanisms along with intrinsic apoptosis and MAPK signaling. Cancer Med 2020; 9:6739-6751. [PMID: 38831555 PMCID: PMC7520295 DOI: 10.1002/cam4.3231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
Understanding resistance mechanisms in cancer is of utmost importance for the discovery of novel "druggable" targets. Efficient genetic screening, now even more possible with CRISPR-Cas9 gene-editing technology, next-generation sequencing and bioinformatics, is an important tool for deciphering novel cellular processes, such as resistance to treatment in cancer. Imatinib specifically eliminates chronic myeloid leukemia (CML) cells by targeting and blocking the kinase activity of BCR-ABL1; however, resistance to treatment exists. In order to discover BCR-ABL1 independent mechanisms of imatinib resistance, we utilized the genome-scale CRISPR knock-out library to screen for imatinib-sensitizing genes in vitro on K562 cells. We revealed genes that seem essential for imatinib-induced cell death, such as proapoptotic genes (BIM, BAX) or MAPK inhibitor SPRED2. Specifically, reestablishing apoptosis in BIM knock-out (KO) cells with BH3 mimetics, or inhibiting MAPK signaling in SPRED2 KO cells with MEK inhibitors restores sensitivity to imatinib. In this work, we discovered previously identified pathways and novel pathways that modulate response to imatinib in CML cell lines, such as the implication of the Mediator complex, mRNA processing and protein ubiquitinylation. Targeting these specific genetic lesions with combinational therapy can overcome resistance phenotypes and paves the road for the use of precision oncology.
Collapse
Affiliation(s)
- Matthieu Lewis
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Valérie Prouzet‐Mauléon
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Florence Lichou
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Elodie Richard
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Richard Iggo
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - Béatrice Turcq
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| | - François‐Xavier Mahon
- Laboratory of Mammary and Leukemic OncogenesisInserm U1218 ACTIONUniversity of BordeauxBergonié Cancer InstituteBordeauxFrance
| |
Collapse
|
26
|
Yu J, Oh K, Moorthi S, Li L, Strey HH, Schuster M, Luberto C, Quan PL, Brouzes E. Enzymatic-based cytometry, a sensitive single-cell cytometric method to assess BCR-ABL1 activity in CML. LAB ON A CHIP 2020; 20:942-948. [PMID: 32031548 PMCID: PMC7439560 DOI: 10.1039/c9lc01213c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We developed a simple, rapid and cost-effective enzymatic-based cytometry platform to measure intracellular signaling pathway activity. Our single-cell microwell array platform quantifies protein phosphorylation using enzymatic signal amplification and exploiting Michaelis-Menten kinetics. Our method provides a two-fold increase in resolution compared to conventional flow cytometry.
Collapse
Affiliation(s)
- Jinzhu Yu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Ki Oh
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Sitapriya Moorthi
- Department of Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, NY 11794, USA
| | - Ling Li
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Helmut H Strey
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA. and Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael Schuster
- Hematology Department, Stony Brook Cancer Center, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Department of Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, NY 11794, USA
| | - Phenix-Lan Quan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Eric Brouzes
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA. and Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA and Cancer Center, Stony Brook School of Medicine, Stony Brook, NY 11794, USA and Institute for Engineering Driven Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
27
|
Özgür Yurttaş N, Eşkazan AE. Novel therapeutic approaches in chronic myeloid leukemia. Leuk Res 2020; 91:106337. [PMID: 32200189 DOI: 10.1016/j.leukres.2020.106337] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022]
Abstract
The tyrosine kinase inhibitors (TKIs) have revolutionized the management of chronic myeloid leukemia (CML) and BCR-ABL1 inhibitors form the mainstay of CML treatment. Although patients with CML generally do well under TKI therapy, there is a subgroup of patients who are resistant and/or intolerant to TKIs. In these group of patients, there is the need of additional treatment strategies. In this review, we provide an update on the current knowledge of these novel treatment approaches that can be used alone and/or in combination with TKIs.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Clinical Trials as Topic
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Everolimus/therapeutic use
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/immunology
- Gene Expression
- Histone Deacetylase Inhibitors/therapeutic use
- Homoharringtonine/therapeutic use
- Humans
- Immunotherapy/methods
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Targeted Therapy/methods
- Niacinamide/analogs & derivatives
- Niacinamide/therapeutic use
- Piperidines/therapeutic use
- Polyethylene Glycols/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Pyrazoles/therapeutic use
- Pyridines/therapeutic use
- Quinolones/therapeutic use
- Recombinant Proteins/therapeutic use
Collapse
Affiliation(s)
- Nurgül Özgür Yurttaş
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ahmet Emre Eşkazan
- Division of Hematology, Department of Internal Medicine, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
28
|
Almeida TP, Ramos AA, Ferreira J, Azqueta A, Rocha E. Bioactive Compounds from Seaweed with Anti-Leukemic Activity: A Mini-Review on Carotenoids and Phlorotannins. Mini Rev Med Chem 2020; 20:39-53. [PMID: 30854962 DOI: 10.2174/1389557519666190311095655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/08/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Chronic Myeloid Leukemia (CML) represents 15-20% of all new cases of leukemia and is characterized by an uncontrolled proliferation of abnormal myeloid cells. Currently, the first-line of treatment involves Tyrosine Kinase Inhibitors (TKIs), which specifically inhibits the activity of the fusion protein BCR-ABL. However, resistance, mainly due to mutations, can occur. In the attempt to find more effective and less toxic therapies, several approaches are taken into consideration such as research of new anti-leukemic drugs and "combination chemotherapy" where different drugs that act by different mechanisms are used. Here, we reviewed the molecular mechanisms of CML, the main mechanisms of drug resistance and current strategies to enhance the therapeutic effect of TKIs in CML. Despite major advances in CML treatment, new, more potent anticancer drugs and with fewer side effects are needed. Marine organisms, and particularly seaweed, have a high diversity of bioactive compounds with some of them having anticancer activity in several in vitro and in vivo models. The state-of-art suggests that their use during cancer treatment may improve the outcome. We reviewed here the yet few data supporting anti-leukemic activity of some carotenoids and phlorotannins in some leukemia models. Also, strategies to overcome drug resistance are discussed, particularly the combination of conventional drugs with natural compounds.
Collapse
Affiliation(s)
- Tânia P Almeida
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.,FCUP - Faculty of Sciences, U. Porto - University of Porto (U.Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Alice A Ramos
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| | - Joana Ferreira
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal.,FCUP - Faculty of Sciences, U. Porto - University of Porto (U.Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, CP 31008 Pamplona, Navarra, Spain
| | - Eduardo Rocha
- Team of Histomorphology, Physiopathology and Applied Toxicology, CIIMAR/CIMAR - Interdisciplinary Center for Marine and Environmental Research, U.Porto - University of Porto, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.,Laboratory of Histology and Embryology, Department of Microscopy, ICBAS - Institute of Biomedical Sciences Abel Salazar, U.Porto - University of Porto, Rua de Jorge Viterbo Ferreira, no 228, 4050-313 Porto, Portugal
| |
Collapse
|
29
|
Liu J, Pei J, Lai L. A combined computational and experimental strategy identifies mutations conferring resistance to drugs targeting the BCR-ABL fusion protein. Commun Biol 2020; 3:18. [PMID: 31925328 PMCID: PMC6952392 DOI: 10.1038/s42003-019-0743-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
Drug resistance is of increasing concern, especially during the treatments of infectious diseases and cancer. To accelerate the drug discovery process in combating issues of drug resistance, here we developed a computational and experimental strategy to predict drug resistance mutations. Using BCR-ABL as a case study, we successfully recaptured the clinically observed mutations that confer resistance imatinib, nilotinib, dasatinib, bosutinib, and ponatinib. We then experimentally tested the predicted mutants in vitro. We found that although all mutants showed weakened binding strength as expected, the binding constants alone were not a good indicator of drug resistance. Instead, the half-maximal inhibitory concentration (IC50) was shown to be a good indicator of the incidence of the predicted mutations, together with change in catalytic efficacy. Our suggested strategy for predicting drug-resistance mutations includes the computational prediction and in vitro selection of mutants with increased IC50 values beyond the drug safety window.
Collapse
Affiliation(s)
- Jinxin Liu
- The PTN Graduate Program, College of Life Sciences, Peking University, Beijing, 100871, P. R. China
| | - Jianfeng Pei
- Center for Quantitative Biology, AAIS, Peking University, Beijing, 100871, P. R. China.
| | - Luhua Lai
- Center for Quantitative Biology, AAIS, Peking University, Beijing, 100871, P. R. China.
- BNLMS, Peking-Tsinghua Center for Life Sciences at College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
30
|
Lyn regulates creatine uptake in an imatinib-resistant CML cell line. Biochim Biophys Acta Gen Subj 2019; 1864:129507. [PMID: 31881245 DOI: 10.1016/j.bbagen.2019.129507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/06/2019] [Accepted: 12/22/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Imatinib mesylate (imatinib) is the first-line treatment for newly diagnosed chronic myeloid leukemia (CML) due to its remarkable hematologic and cytogenetic responses. We previously demonstrated that the imatinib-resistant CML cells (Myl-R) contained elevated Lyn activity and intracellular creatine pools compared to imatinib-sensitive Myl cells. METHODS Stable isotope metabolic labeling, media creatine depletion, and Na+/K+-ATPase inhibitor experiments were performed to investigate the origin of creatine pools in Myl-R cells. Inhibition and shRNA knockdown were performed to investigate the specific role of Lyn in regulating the Na+/K+-ATPase and creatine uptake. RESULTS Inhibition of the Na+/K+-ATPase pump (ouabain, digitoxin), depletion of extracellular creatine or inhibition of Lyn kinase (ponatinib, dasatinib), demonstrated that enhanced creatine accumulation in Myl-R cells was dependent on uptake from the growth media. Creatine uptake was independent of the Na+/creatine symporter (SLC6A8) expression or de novo synthesis. Western blot analyses showed that phosphorylation of the Na+/K+-ATPase on Tyr 10 (Y10), a known regulatory phosphorylation site, correlated with Lyn activity. Overexpression of Lyn in HEK293 cells increased Y10 phosphorylation (pY10) of the Na+/K+-ATPase, whereas Lyn inhibition or shRNA knockdown reduced Na+/K+-ATPase pY10 and decreased creatine accumulation in Myl-R cells. Consistent with enhanced uptake in Myl-R cells, cyclocreatine (Ccr), a cytotoxic creatine analog, caused significant loss of viability in Myl-R compared to Myl cells. CONCLUSIONS These data suggest that Lyn can affect creatine uptake through Lyn-dependent phosphorylation and regulation of the Na+/K+-ATPase pump activity. GENERAL SIGNIFICANCE These studies identify kinase regulation of the Na+/K+-ATPase as pivotal in regulating creatine uptake and energy metabolism in cells.
Collapse
|
31
|
Baccarani M, Rosti G, Soverini S. Chronic myeloid leukemia: the concepts of resistance and persistence and the relationship with the BCR-ABL1 transcript type. Leukemia 2019; 33:2358-2364. [PMID: 31455852 DOI: 10.1038/s41375-019-0562-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Accepted: 07/03/2019] [Indexed: 12/27/2022]
Abstract
Chronic myeloid leukemia is driven by a hybrid gene, BCR-ABL1, that codes for a leukemogenic tyrosine kinase (TK) protein of 210 KDa (p210BCR-ABL1). Resistance to TK inhibitor (TKI) therapy occurs in relatively few patients, no more than 10%, while persistence of minimal residual disease during TKI therapy occurs in the great majority of patients. Resistance is a cause of death, persistence is compatible with a fairly normal length and quality of life, but may require lifelong treatment. The causes of resistance are heterogeneous, including the development of other genomic abnormalities or the altered expression of other genes, requiring different treatments. The causes of persistence may not be the same as those of resistance. We hypothesize that the variability in breakpoint position within the Major-breakpoint cluster region (M-bcr), resulting in two different messenger RNAs that may or may not include exon 14 of BCR (e13a2 and e14a2, respectively), and, as a consequence, in two p210BCR-ABL1 proteins that differ by 25 amino acids, may be a cause of persistence. The hypothesis is based on a critical review of the relationships between the BCR-ABL1 transcript types, the response to TKIs, the outcome of treatment, and the immune response, suggesting that the e14a2 transcript is associated with more and deeper molecular responses, hence with a higher probability of achieving treatment-free remission (TFR). Investigating this putative cause of persistence may help bringing more patients into stable TFR.
Collapse
Affiliation(s)
- Michele Baccarani
- Institute of Hematology "Lorenzo and Ariosto Seràgnoli", Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy.
| | - Gianantonio Rosti
- Institute of Hematology "Lorenzo and Ariosto Seràgnoli", Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| | - Simona Soverini
- Institute of Hematology "Lorenzo and Ariosto Seràgnoli", Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
32
|
Shin D, Lee W, Lee JH, Bang D. Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations. SCIENCE ADVANCES 2019; 5:eaav2249. [PMID: 31106268 PMCID: PMC6520024 DOI: 10.1126/sciadv.aav2249] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/02/2019] [Indexed: 05/06/2023]
Abstract
The development of high-throughput single-cell RNA sequencing (scRNA-seq) has enabled access to information about gene expression in individual cells and insights into new biological areas. Although the interest in scRNA-seq has rapidly grown in recent years, the existing methods are plagued by many challenges when performing scRNA-seq on multiple samples. To simultaneously analyze multiple samples with scRNA-seq, we developed a universal sample barcoding method through transient transfection with short barcode oligonucleotides. By conducting a species-mixing experiment, we have validated the accuracy of our method and confirmed the ability to identify multiplets and negatives. Samples from a 48-plex drug treatment experiment were pooled and analyzed by a single run of Drop-Seq. This revealed unique transcriptome responses for each drug and target-specific gene expression signatures at the single-cell level. Our cost-effective method is widely applicable for the single-cell profiling of multiple experimental conditions, enabling the widespread adoption of scRNA-seq for various applications.
Collapse
Affiliation(s)
- Dongju Shin
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Wookjae Lee
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea
- Corresponding author. (D.B.); (J.H.L.)
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, Korea
- Corresponding author. (D.B.); (J.H.L.)
| |
Collapse
|
33
|
Shin D, Lee W, Lee JH, Bang D. Multiplexed single-cell RNA-seq via transient barcoding for simultaneous expression profiling of various drug perturbations. SCIENCE ADVANCES 2019; 5:eaav2249. [PMID: 31106268 DOI: 10.1101/359851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 04/02/2019] [Indexed: 05/24/2023]
Abstract
The development of high-throughput single-cell RNA sequencing (scRNA-seq) has enabled access to information about gene expression in individual cells and insights into new biological areas. Although the interest in scRNA-seq has rapidly grown in recent years, the existing methods are plagued by many challenges when performing scRNA-seq on multiple samples. To simultaneously analyze multiple samples with scRNA-seq, we developed a universal sample barcoding method through transient transfection with short barcode oligonucleotides. By conducting a species-mixing experiment, we have validated the accuracy of our method and confirmed the ability to identify multiplets and negatives. Samples from a 48-plex drug treatment experiment were pooled and analyzed by a single run of Drop-Seq. This revealed unique transcriptome responses for each drug and target-specific gene expression signatures at the single-cell level. Our cost-effective method is widely applicable for the single-cell profiling of multiple experimental conditions, enabling the widespread adoption of scRNA-seq for various applications.
Collapse
Affiliation(s)
- Dongju Shin
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Wookjae Lee
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Ji Hyun Lee
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Seoul, Korea
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea
| | - Duhee Bang
- Department of Chemistry, Yonsei University, Seoul, Korea
| |
Collapse
|
34
|
El Eit R, Itani AR, Nassar F, Rasbieh N, Jabbour M, Santina A, Zaatari G, Mahon FX, Bazarbachi A, Nasr R. Antitumor efficacy of arsenic/interferon in preclinical models of chronic myeloid leukemia resistant to tyrosine kinase inhibitors. Cancer 2019; 125:2818-2828. [PMID: 31034603 DOI: 10.1002/cncr.32130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/12/2019] [Accepted: 03/05/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) are the standard treatment for chronic myeloid leukemia (CML). Despite their clinical success, TKIs are faced with challenges such as treatment resistance, which may be driven by kinase domain mutations, and frequent disease relapse upon the cessation of treatment. The combination of arsenic trioxide (ATO) and interferon-α (IFN) was previously demonstrated to inhibit proliferation and induce apoptosis in CML cell lines, prolong the survival of primary wild-type CML mice, and dramatically decrease the activity of leukemia-initiating cells (LICs). METHODS The ATO/IFN combination was tested in vitro on imatinib (IMN)-resistant K562-R and Ar230-R cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays were used to evaluate proliferation and apoptosis, respectively. The acridine orange assay was used to assess autophagy, and quantitative reverse transcription-polymerase chain reaction was used to assess the involvement of the hedgehog (Hh) pathway. In vivo, a retroviral transduction/transplantation T315I BCR-ABL CML mouse model was used to assay the effect of the treatment on survival, tumor burden (histopathology and blood counts), and LIC activity (secondary transplantation). RESULTS In vitro, ATO/IFN synergized to inhibit proliferation and induce apoptosis of IMN-resistant cells with variant modes of resistance. Furthermore, the preclinical effects of ATO/IFN were associated with induction of autophagy along with inhibition of the Hh pathway. Most remarkably, ATO/IFN significantly prolonged the survival of primary T315I-CML mice and displayed a dramatic impairment of disease engraftment in secondary mice, which reflected decreased LIC activity. CONCLUSIONS Collectively, the ATO/IFN strategy has been demonstrated to have the potential to lead to durable remissions in TKI-resistant CML preclinical models and to overcome various TKI-specific mechanisms of resistance.
Collapse
Affiliation(s)
- Rabab El Eit
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Abdul Rahman Itani
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Farah Nassar
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Nagham Rasbieh
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Mark Jabbour
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - Ahmad Santina
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Ghazi Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - François-Xavier Mahon
- French National Institute of Health and Medical Research Unit 876, Laboratory of Hematology and Department of Blood Diseases, University Hospital Center of Bordeaux, Bordeaux Segalen University, Bordeaux, France
| | - Ali Bazarbachi
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon.,Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
35
|
Chrobák L, Voglová J. Imatinib Mesylate (STI 571) – A New Oral Target Therapy For Chronic Myelogenous Leukemia (CML). ACTA MEDICA (HRADEC KRÁLOVÉ) 2019. [DOI: 10.14712/18059694.2019.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The publication provides an up-to-date review of the significance of cytogenetic abnormalities in chronic myelogenous leukemia (CML) and the development of a promising agent with specific molecular target against tyrosine kinase, product of the BCR-ABL fusion gene, namely imatinib mesylate (STI 571, Glivec). The publication summarizes the achieved results with this compound in the chronic phase CML (in patients resistant to interferon and in newly diagnosed patients) further in patients in the accelerated phase and in blast crisis and in patients in relapse after allogeneic stem cells transplantations for CML. The results in Ph+ acute lymphoblastic leukemia are also presented. The mechanisms of resistance to imatinib mesylate and the possibilities how to overcome or circumvent it are mentioned (escalation of the dosage, combination of imatinib with some other treatment modalities as immunotherapy, interferon or convention chemotherapy and development of new drugs).
Collapse
|
36
|
Wang Z, Li H, Dong M, Zhu P, Cai Y. The anticancer effects and mechanisms of fucoxanthin combined with other drugs. J Cancer Res Clin Oncol 2019; 145:293-301. [PMID: 30627824 DOI: 10.1007/s00432-019-02841-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/03/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE Fucoxanthin (Fx) is a characteristic carotenoid present in brown seaweed that has been shown to have various benefits, including anticancer effects. In vitro studies demonstrated these various effects, including the suppression of cell viability, the promotion of apoptosis, and antiangiogenic, antiproliferative, and antimetastatic activity. Interestingly, combinations of Fx with other drugs have better effects than either Fx or other drugs alone. Although the antiproliferative and cancer prevention activities of the combination of Fx and other drugs are still unclear, several effects have been discovered, including the induction of apoptosis, cell cycle arrest at G1/G0, enhanced gap junctional intercellular communication, and the induction of autophagy via various mechanisms, such as decreasing P-gp, activating the CYP3A4 promoter, increasing reactive oxygen species and cellular uptake and suppressing the PI3K/Akt/NFκB pathway. In this review, we address the anticancer effects and mechanisms of the combination of Fx and other drugs in different types of cancer. METHODS The relevant literature from PubMed and Web of Science databases is reviewed in this article. RESULTS Fx combined with other drugs could enhance the effect of both Fx and the other drug or reduce the dose without reducing the effect, which may create more effective and less harmful therapeutic strategies. CONCLUSION Fx combined with other drugs has significant anticancer effects by various mechanisms and could be a potential therapeutic strategy for different types of cancer.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Li
- Medical Examination Center, Zibo Sixth Hospital, Zibo Prevention and Treatment Hospital for Occupation Diseases, Zibo, China
| | - Minghao Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Zhu
- Department of Rehabilitation, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, HanZheng Street 473, QiaoKou District, Wuhan, 430030, China.
| | - Yu Cai
- Department of Rehabilitation, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, HanZheng Street 473, QiaoKou District, Wuhan, 430030, China.
| |
Collapse
|
37
|
Genomic amplification of BCR-ABL1 fusion gene and its impact on the disease progression mechanism in patients with chronic myelogenous leukemia. Gene 2018; 686:85-91. [PMID: 30399426 DOI: 10.1016/j.gene.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/24/2018] [Accepted: 11/01/2018] [Indexed: 01/12/2023]
Abstract
Identification of BCR-ABL1 fusion gene amplification status is critically important in the effective management of chronic myelogenous leukemia (CML) patients. Earlier reports suggested that overexpression of BCR-ABL1 either through amplification of BCR-ABL1 fusion gene or by the up regulation of BCR-ABL1 transcript level might be an early phenomenon in the establishment of IM resistance and disease evolution in CML. In the current study, we performed dual color dual fusion locus specific BCR/ABL1 FISH analysis along with karyotype analysis using GTG banding (G-banding using trypsin and Giemsa) technique in 489 patients with different clinical stages of CML at diagnosis or during the course of the disease to unravel the spectrum of BCR-ABL1 fusion gene amplification status. Among the study group analyzed, it was found that prevalence of occurrence of BCR-ABL1 fusion gene amplification was significantly higher in advanced stages of disease and in IM resistant CML-CP patients when compared to initial stage of disease, de novo CML-CP. Cytogenetic and metaphase FISH characterization on our study samples revealed that BCR-ABL1 fusion gene amplification was occurred through the formation of extra copies Ph chromosomes and isoderived Ph chromosomes. Current study suggests that unrestrained activity of BCR-ABL1 played a vital role in resistance to targeted therapy and disease evolution in CML. In our study population, patients in progressive stage CML and in IM resistant CP with multiple copies of BCR-ABL1 fusion gene displayed a poor response to targeted treatment with IM. Hence, the early identification of BCR-ABL1 fusion gene amplification using FISH technique will lead to improved interventions and outcome in future CML patients.
Collapse
|
38
|
A dynamic N 6-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. Cell Res 2018; 28:1062-1076. [PMID: 30297871 PMCID: PMC6218444 DOI: 10.1038/s41422-018-0097-4] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/13/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022] Open
Abstract
N6-methyladenosine (m6A) on mRNAs is critical for various biological processes, yet whether m6A regulates drug resistance remains unknown. Here we show that developing resistant phenotypes during tyrosine kinase inhibitor (TKI) therapy depends on m6A reduction resulting from FTO overexpression in leukemia cells. This deregulated FTO-m6A axis pre-exists in naïve cell populations that are genetically homogeneous and is inducible/reversible in response to TKI treatment. Cells with mRNA m6A hypomethylation and FTO upregulation demonstrate more TKI tolerance and higher growth rates in mice. Either genetic or pharmacological restoration of m6A methylation through FTO deactivation renders resistant cells sensitive to TKIs. Mechanistically, the FTO-dependent m6A demethylation enhances mRNA stability of proliferation/survival transcripts bearing m6A and subsequently leads to increased protein synthesis. Our findings identify a novel function for the m6A methylation in regulating cell fate decision and demonstrate that dynamic m6A methylome is an additional epigenetic driver of reversible TKI-tolerance state, providing a mechanistic paradigm for drug resistance in cancer.
Collapse
|
39
|
Lu L, Kok CH, Saunders VA, Wang J, McLean JA, Hughes TP, White DL. Modelling ponatinib resistance in tyrosine kinase inhibitor-naïve and dasatinib resistant BCR-ABL1+ cell lines. Oncotarget 2018; 9:34735-34747. [PMID: 30410673 PMCID: PMC6205183 DOI: 10.18632/oncotarget.26187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/15/2018] [Indexed: 11/25/2022] Open
Abstract
TKI resistance remains a major impediment to successful treatment of CML. In this study, we investigated the emerging modes of ponatinib resistance in TKI-naïve and dasatinib resistant BCR-ABL1+ cell lines. To investigate potential resistance mechanisms, ponatinib resistance was generated in BCR-ABL1+ cell-lines by long-term exposure to increasing concentrations of ponatinib. Two cell lines with prior dasatinib resistance demonstrated BCR-ABL1 kinase domain (KD) mutation(s) upon exposure to ponatinib. In one of these cell lines the T315I mutation had emerged during dasatinib exposure. When further cultured with ponatinib, the T315I mutation level and BCR-ABL1 mRNA expression level were increased. In the other cell line, compound mutations G250E/E255K developed with ponatinib exposure. In contrast, the ponatinib resistant cell lines that had no prior exposure to other TKIs (TKI-naïve) did not develop BCR-ABL1 KD mutations. Rather, both of these cell lines demonstrated Bcr-Abl-independent resistance via Axl overexpression. Axl, a receptor tyrosine kinase, has previously been associated with imatinib and nilotinib resistance. Ponatinib sensitivity was restored following Axl inhibition or shRNA-mediated-knockdown of Axl, suggesting that Axl was the primary driver of resistance and a potential target for therapy in this setting.
Collapse
Affiliation(s)
- Liu Lu
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Chung Hoow Kok
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Verity Ann Saunders
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia
| | - Jueqiong Wang
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Jennifer Anne McLean
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia
| | - Timothy Peter Hughes
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Department of Haematology, SA Pathology, Adelaide, SA, Australia
| | - Deborah Lee White
- South Australian Health and Medical Research Institute (SAHMRI), Cancer Theme, Adelaide, SA, Australia.,School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,Discipline of Paediatrics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.,School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
40
|
Li X, Pang J, Xue W, Wang Y, Tian T, Elgehama A, Wu X, Wu X, Sun Y, Qiu H, Shen Y, Xu Q. Inducible SHP-2 activation confers resistance to imatinib in drug-tolerant chronic myeloid leukemia cells. Toxicol Appl Pharmacol 2018; 360:249-256. [PMID: 30290167 DOI: 10.1016/j.taap.2018.09.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/21/2018] [Accepted: 09/30/2018] [Indexed: 01/10/2023]
Abstract
BCR-ABL kinase mutations, accounting for clinical resistance to tyrosine kinase inhibitor (TKI) such as imatinib, frequently occur in acquired resistance or in advanced phases of chronic myeloid leukemia (CML). Emerging evidence implicates a critical role for non-mutational drug resistance mechanisms underlying the survival of residual cancer 'persister' cells. Here, we utilized non-mutational imatinib-resistant K562/G cells to reveal SHP-2 as a resistance modulator of imatinib treatment response during the early phase. SHP-2 phosphorylation was significantly higher in K562/G cells than in sensitive K562 cells. In K562 cells, both short-term and long-term exposure to imatinib induced SHP-2 phosphorylation. Consistently, gain- and loss-of-function mutants in SHP-2 proved its regulation of imatinib resistance. SHP-2 inhibitor and imatinib exhibited a strong antitumor synergy in in vitro and in vivo K562/G models. Mechanistically, dual SHP-2 and BCR-ABL inhibition blocked RAF/MEK/ERK and PI3K/AKT/mTOR pathways, respectively, leading to dramatic apoptotic death of K562/G cells. In conclusion, our results highlight that SHP-2 could be exploited as a biomarker and therapeutic target during the early phase of imatinib resistance development in CML.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Juan Pang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenwen Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Tian Tian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ahmed Elgehama
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Hongxia Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
41
|
Cai M, Zhang H, Hou L, Gao W, Song Y, Cui X, Li C, Guan R, Ma J, Wang X, Han Y, Lv Y, Chen F, Wang P, Meng X, Fu S. Inhibiting homologous recombination decreases extrachromosomal amplification but has no effect on intrachromosomal amplification in methotrexate-resistant colon cancer cells. Int J Cancer 2018; 144:1037-1048. [PMID: 30070702 PMCID: PMC6586039 DOI: 10.1002/ijc.31781] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/23/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023]
Abstract
Gene amplification, which involves the two major topographical structures double minutes (DMs) and homegeneously stained region (HSR), is a common mechanism of treatment resistance in cancer and is initiated by DNA double‐strand breaks. NHEJ, one of DSB repair pathways, is involved in gene amplification as we demonstrated previously. However, the involvement of homologous recombination, another DSB repair pathway, in gene amplification remains to be explored. To better understand the association between HR and gene amplification, we detected HR activity in DM‐ and HSR‐containing MTX‐resistant HT‐29 colon cancer cells. In DM‐containing MTX‐resistant cells, we found increased homologous recombination activity compared with that in MTX‐sensitive cells. Therefore, we suppressed HR activity by silencing BRCA1, the key player in the HR pathway. The attenuation of HR activity decreased the numbers of DMs and DM‐form amplified gene copies and increased the exclusion of micronuclei and nuclear buds that contained DM‐form amplification; these changes were accompanied by cell cycle acceleration and increased MTX sensitivity. In contrast, BRCA1 silencing did not influence the number of amplified genes and MTX sensitivity in HSR‐containing MTX‐resistant cells. In conclusion, our results suggest that the HR pathway plays different roles in extrachromosomal and intrachromosomal gene amplification and may be a new target to improve chemotherapeutic outcome by decreasing extrachromosomal amplification in cancer. What's new? Double‐strand DNA breaks (DSBs) initiate gene amplification, a phenomenon associated with therapeutic resistance in cancer that involves two topographical structures, double minutes (DMs) and homogeneously staining regions (HSRs). Whether DSB repair pathways, particularly homologous recombination (HR), also influence gene amplification is unknown. Here, in methotrexate‐resistant colon cancer cells, HR inhibition effectively reduced gene amplification, specifically the DM‐form, by blocking DM formation and promoting DM exclusion via micronuclei. HR inhibition had no influence on the HSR‐form of gene amplification. Loss of gene amplification by HR inhibition, through partial reversal of methotrexate resistance, may contribute to improved chemotherapeutic outcome.
Collapse
Affiliation(s)
- Mengdi Cai
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Huishu Zhang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Liqing Hou
- Department of Genetics, Inner Mongolia Maternal and Child Care Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Wei Gao
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Ying Song
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Xiaobo Cui
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Chunxiang Li
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Rongwei Guan
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Jinfa Ma
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Xu Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Yue Han
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Yafan Lv
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Feng Chen
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Ping Wang
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Xiangning Meng
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| | - Songbin Fu
- Laboratory of Medical Genetics, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
42
|
Analysis of ABL kinase domain mutations as a probable cause of imatinib resistance in Chronic Myeloid Leukemia patients of Kashmir. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
43
|
T315I mutation of BCR-ABL1 into human Philadelphia chromosome-positive leukemia cell lines by homologous recombination using the CRISPR/Cas9 system. Sci Rep 2018; 8:9966. [PMID: 29967475 PMCID: PMC6028382 DOI: 10.1038/s41598-018-27767-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/07/2018] [Indexed: 11/23/2022] Open
Abstract
In many cancers, somatic mutations confer tumorigenesis and drug-resistance. The recently established clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is a potentially elegant approach to functionally evaluate mutations in cancers. To reproduce mutations by homologous recombination (HR), the HR pathway must be functional, but DNA damage repair is frequently impaired in cancers. Imatinib is a tyrosine kinase inhibitor for BCR-ABL1 in Philadelphia chromosome-positive (Ph+) leukemia, and development of resistance due to kinase domain mutation is an important issue. We attempted to introduce the T315I gatekeeper mutation into three Ph+ myeloid leukemia cell lines with a seemingly functional HR pathway due to resistance to the inhibitor for poly (ADP) ribose polymerase1. Imatinib-resistant sublines were efficiently developed by the CRISPR/Cas9 system after short-term selection with imatinib; resulting sublines acquired the T315I mutation after HR. Thus, the usefulness of CRISPR/Cas9 system for functional analysis of somatic mutations in cancers was demonstrated.
Collapse
|
44
|
Tsubaki M, Takeda T, Kino T, Sakai K, Itoh T, Imano M, Nakayama T, Nishio K, Satou T, Nishida S. Contributions of MET activation to BCR-ABL1 tyrosine kinase inhibitor resistance in chronic myeloid leukemia cells. Oncotarget 2018; 8:38717-38730. [PMID: 28418880 PMCID: PMC5503566 DOI: 10.18632/oncotarget.16314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 02/20/2017] [Indexed: 12/02/2022] Open
Abstract
Resistance to the breakpoint cluster region-abelson 1 (BCR-ABL1) tyrosine kinase inhibitor (TKI) imatinib poses a major problem when treating chronic myeloid leukemia (CML). Imatinib resistance often results from a secondary mutation in BCR-ABL1. However, in the absence of a mutation in BCR-ABL1, the basis of BCR-ABL1-independent resistance must be elucidated. To gain insight into the mechanisms of BCR-ABL1-independent imatinib resistance, we performed an array-based comparative genomic hybridization. We identified various resistance-related genes, and focused on MET. Treatment with a MET inhibitor resensitized K562/IR cells to BCR-ABL1 TKIs. Combined treatment of K562/IR cells with imatinib and a MET inhibitor suppressed extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) activation, but did not affect AKT activation. Our findings implicate the MET/ERK and MET/JNK pathways in conferring resistance to imatinib, providing new insights into the mechanisms of BCR-ABL1 TKI resistance in CML.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Toshiki Kino
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Tatsuki Itoh
- Department of Food Science and Nutrition, Kindai University School of Agriculture, Nara, Nara, Japan
| | - Motohiro Imano
- Department of Surgery, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Takashi Nakayama
- Division of Chemotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Takao Satou
- Department of Pathology, Kindai University School of Medicine, Osakasayama, Osaka, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University School of Pharmacy, Kowakae, Higashi-Osaka, Japan
| |
Collapse
|
45
|
Nie D, Huang K, Yin S, Li Y, Xie S, Ma L, Wang X, Wu Y, Xiao J, Wang J, Yang W, Liu H. KPT-330 inhibition of chromosome region maintenance 1 is cytotoxic and sensitizes chronic myeloid leukemia to Imatinib. Cell Death Discov 2018; 4:48. [PMID: 29707241 PMCID: PMC5913223 DOI: 10.1038/s41420-018-0049-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/03/2018] [Accepted: 03/08/2018] [Indexed: 12/17/2022] Open
Abstract
As tyrosine kinase inhibitors (e.g., Imatinib, IM) fail to induce long-term response in some chronic myeloid leukemia (CML), novel therapies targeting leukemia-dysregulated pathways are necessary. Nuclear-cytoplasmic trafficking of proteins play a key role in the development of leukemia and drug resistance. KPT-330 (Selinexor), an inhibitor of chromosome region maintenance 1 (CRM1, nuclear receptor exportin 1, XPO1), demonstrated activities against a few hematological malignancies. We examined the anti-leukemic efficacy of KPT-330 in IM-resistant CML. Cell viability was examined by MTS assay. Apoptosis and cell cycle were assessed by flow cytometry. CRM1 mRNA was detected by PCR. Expression of CRM1 protein and its cargo proteins were determined by western blot or immunofluorescent staining. Furthermore, we engrafted nude mice subcutaneously with IM-resistant CML K562G. Mice were treated with IM, KPT-330 alone or in combination. Expression of CRM1 in CML were markedly higher than control. KPT-330 inhibited proliferation, induced cell cycle arrest and apoptosis of K562 and K562G. IC50 of IM on K562G was reduced by KPT-330. Mechanistically, KPT-330 inhibited CRM1 and increased the nuclear/cytoplasm ratio of BCR-ABL and P27. p-AKT was downregulated while p-STAT1 and caspase-3 were upregulated. Furthermore, KPT-330 showed anti-leukemic effect in primary IM-resistant CML with T315I mutation in CRM1-dependent manner. In K562G xenograft mice model, KPT-330 inhibited tumor growth and sensitized K562G to IM in vivo. To conclude, KPT-330 showed anti-leukemic activity and sensitized CML to IM in CRM1-dependent manner in vitro and in vivo. KPT-330 represents an alternative therapy for IM-refractory CML, warranting further investigation of CRM1 as therapeutic target.
Collapse
Affiliation(s)
- Danian Nie
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120 Guangzhou, China
| | - Kezhi Huang
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120 Guangzhou, China.,2Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Songmei Yin
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120 Guangzhou, China
| | - Yiqing Li
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120 Guangzhou, China.,3Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Suite 910, Houston, TX 77030 USA
| | - Shuangfeng Xie
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120 Guangzhou, China
| | - Liping Ma
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120 Guangzhou, China
| | - Xiuju Wang
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120 Guangzhou, China
| | - Yudan Wu
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120 Guangzhou, China
| | - Jie Xiao
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120 Guangzhou, China
| | - Jieyu Wang
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120 Guangzhou, China
| | - Wenjuan Yang
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120 Guangzhou, China
| | - Hongyun Liu
- 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation and Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 510120 Guangzhou, China
| |
Collapse
|
46
|
Rinaldetti S, Pfirrmann M, Manz K, Guilhot J, Dietz C, Panagiotidis P, Spiess B, Seifarth W, Fabarius A, Müller M, Pagoni M, Dimou M, Dengler J, Waller CF, Brümmendorf TH, Herbst R, Burchert A, Janβen C, Goebeler ME, Jost PJ, Hanzel S, Schafhausen P, Prange-Krex G, Illmer T, Janzen V, Klausmann M, Eckert R, Büschel G, Kiani A, Hofmann WK, Mahon FX, Saussele S. Effect of ABCG2 , OCT1 , and ABCB1 ( MDR1 ) Gene Expression on Treatment-Free Remission in a EURO-SKI Subtrial. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:266-271. [DOI: 10.1016/j.clml.2018.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/02/2018] [Indexed: 12/17/2022]
|
47
|
Abstract
Resistance to chemotherapeutic drugs exemplifies the greatest hindrance to effective treatment of cancer patients. The molecular mechanisms responsible have been investigated for over 50 years and have revealed the lack of a single cause, but instead, multiple mechanisms including induced expression of membrane transporters that pump drugs out of cells (multidrug resistance (MDR) phenotype), changes in the glutathione system, and altered metabolism. Treatment of cancer patients/cancer cells with chemotherapeutic agents and/or molecularly targeted drugs is accompanied by acquisition of resistance to the treatment administered. Chemotherapeutic agent resistance was initially assumed to be due to induction of mutations leading to a resistant phenotype. While this has occurred for molecularly targeted drugs, it is clear that drugs selectively targeting tyrosine kinases (TKs) cause the acquisition of mutational changes and resistance to inhibition. The first TK to be targeted, Bcr-Abl, led to the generation of several drugs including imatinib, dasatinib, and sunitinib that provided a rich understanding of this phenomenon. It became clear that mutations alone were not the only cause of resistance. Additional mechanisms were involved, including alternative splicing, alternative/compensatory signaling pathways, and epigenetic changes. This review will focus on resistance to tyrosine kinase inhibitors (TKIs), receptor TK (RTK)-directed antibodies, and antibodies that inactivate specific RTK ligands. New approaches and concepts aimed at avoiding the generation of drug resistance will be examined. Many RTKs, including the IGF-1R, are dependence receptors that induce ligand-independent apoptosis. How this signaling paradigm has implications on therapeutic strategies will also be considered.
Collapse
|
48
|
Celecoxib inhibits proliferation and survival of chronic myelogeous leukemia (CML) cells via AMPK-dependent regulation of β-catenin and mTORC1/2. Oncotarget 2018; 7:81555-81570. [PMID: 27835591 PMCID: PMC5348412 DOI: 10.18632/oncotarget.13146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
CML is effectively treated with tyrosine kinase inhibitors (TKIs). However, the efficacy of these drugs is confined to the chronic phase of the disease and development of resistance to TKIs remains a pressing issue. The anti-inflammatory COX2 inhibitor celecoxib has been utilized as anti-tumour drug due to its anti-proliferative activity. However, its effects in hematological malignancies, in particular CML, have not been investigated yet. Thus, we tested biological effects and mechanisms of action of celecoxib in Philadelphia-positive (Ph+) CML and ALL cells. We show here that celecoxib suppresses the growth of Ph+ cell lines by increasing G1-phase and apoptotic cells and reducing S- and G2-phase cells. These effects were independent of COX2 inhibition but required the rapid activation of AMP-activated protein kinase (AMPK) and the consequent inhibition mTORC1 and 2. Treatment with celecoxib also restored GSK3β function and led to down-regulation of β-catenin activity through transcriptional and post-translational mechanisms, two effects likely to contribute to Ph+ cell growth suppression by celecoxib. Celecoxib inhibited colony formation of TKI-resistant Ph+ cell lines including those with the T315I BCR-ABL mutation and acted synergistically with imatinib in suppressing colony formation of TKI-sensitive Ph+ cell lines. Finally, it suppressed colony formation of CD34+ cells from CML patients, while sparing most CD34+ progenitors from healthy donors, and induced apoptosis of primary Ph+ ALL cells. Together, these findings indicate that celecoxib may serve as a COX2-independent lead compound to simultaneously target the mTOR and β-catenin pathways, key players in the resistance of CML stem cells to TKIs.
Collapse
|
49
|
Wu S, Fu L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer 2018; 17:25. [PMID: 29455646 PMCID: PMC5817862 DOI: 10.1186/s12943-018-0775-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/01/2018] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance (MDR) triggered by ATP binding cassette (ABC) transporter such as ABCB1, ABCC1, ABCG2 limited successful cancer chemotherapy. Unfortunately, no commercial available MDR modulator approved by FDA was used in clinic. Tyrosine kinase inhibitors (TKIs) have been administrated to fight against cancer for decades. Almost TKI was used alone in clinic. However, drug combinations acting synergistically to kill cancer cells have become increasingly important in cancer chemotherapy as an approach for the recurrent resistant disease. Here, we summarize the effect of TKIs on enhancing the efficacy of conventional chemotherapeutic drug in ABC transporter-mediated MDR cancer cells, which encourage to further discuss and study in clinic.
Collapse
Affiliation(s)
- Shaocong Wu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
50
|
Massimino M, Stella S, Tirrò E, Romano C, Pennisi MS, Puma A, Manzella L, Zanghì A, Stagno F, Di Raimondo F, Vigneri P. Non ABL-directed inhibitors as alternative treatment strategies for chronic myeloid leukemia. Mol Cancer 2018; 17:56. [PMID: 29455672 PMCID: PMC5817805 DOI: 10.1186/s12943-018-0805-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
The introduction of ABL Tyrosine Kinase Inhibitors (TKIs) has significantly improved the outcome of Chronic Myeloid Leukemia (CML) patients that, in large part, achieve satisfactory hematological, cytogenetic and molecular remissions. However, approximately 15-20% fail to obtain optimal responses according to the current European Leukemia Network recommendation because of drug intolerance or resistance.Moreover, a plethora of evidence suggests that Leukemic Stem Cells (LSCs) show BCR-ABL1-independent survival. Hence, they are unresponsive to TKIs, leading to disease relapse if pharmacological treatment is discontinued.All together, these biological events generate a subpopulation of CML patients in need of alternative therapeutic strategies to overcome TKI resistance or to eradicate LSCs in order to allow cure of the disease.In this review we update the role of "non ABL-directed inhibitors" targeting signaling pathways downstream of the BCR-ABL1 oncoprotein and describe immunological approaches activating specific T cell responses against CML cells.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor
- Combined Modality Therapy
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Molecular Targeted Therapy
- Signal Transduction/drug effects
- Treatment Outcome
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy
| | - Antonino Zanghì
- Department of Surgical Medical Sciences and Advanced Technologies, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
| | - Fabio Stagno
- Division of Hematology and Bone Marrow Transplant, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
| | - Francesco Di Raimondo
- Division of Hematology and Bone Marrow Transplant, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
- Department of Surgery, Medical and Surgical Specialties, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia, 78, Catania, 95123, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico Vittorio Emanuele, Via Santa Sofia, 78, 95123, Catania, Italy.
| |
Collapse
|