1
|
Beauglehole AC, Roche Recinos D, Pegg CL, Lee YY, Turnbull V, Herrmann S, Marcellin E, Howard CB, Schulz BL. Recent advances in the production of recombinant factor IX: bioprocessing and cell engineering. Crit Rev Biotechnol 2022; 43:484-502. [PMID: 35430942 DOI: 10.1080/07388551.2022.2036691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Appropriate treatment of Hemophilia B is vital for patients' quality of life. Historically, the treatment used was the administration of coagulation Factor IX derived from human plasma. Advancements in recombinant technologies allowed Factor IX to be produced recombinantly. Successful recombinant production has triggered a gradual shift from the plasma derived origins of Factor IX, as it provides extended half-life and expanded production capacity. However, the complex post-translational modifications of Factor IX have made recombinant production at scale difficult. Considerable research has therefore been invested into understanding and optimizing the recombinant production of Factor IX. Here, we review the evolution of recombinant Factor IX production, focusing on recent developments in bioprocessing and cell engineering to control its post-translational modifications in its expression from Chinese Hamster Ovary (CHO) cells.
Collapse
Affiliation(s)
- Aiden C. Beauglehole
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- CSL Innovation, Parkville, Victoria, Australia
| | - Dinora Roche Recinos
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- CSL Innovation, Parkville, Victoria, Australia
| | - Cassandra L. Pegg
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Victor Turnbull
- CSL Innovation, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria, Australia
| | - Susann Herrmann
- CSL Innovation, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria, Australia
| | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Christopher B. Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Benjamin L. Schulz
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
2
|
Shen G, Gao M, Cao Q, Li W. The Molecular Basis of FIX Deficiency in Hemophilia B. Int J Mol Sci 2022; 23:2762. [PMID: 35269902 PMCID: PMC8911121 DOI: 10.3390/ijms23052762] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 12/15/2022] Open
Abstract
Coagulation factor IX (FIX) is a vitamin K dependent protein and its deficiency causes hemophilia B, an X-linked recessive bleeding disorder. More than 1000 mutations in the F9 gene have been identified in hemophilia B patients. Here, we systematically summarize the structural and functional characteristics of FIX and the pathogenic mechanisms of the mutations that have been identified to date. The mechanisms of FIX deficiency are diverse in these mutations. Deletions, insertions, duplications, and indels generally lead to severe hemophilia B. Those in the exon regions generate either frame shift or inframe mutations, and those in the introns usually cause aberrant splicing. Regarding point mutations, the bleeding phenotypes vary from severe to mild in hemophilia B patients. Generally speaking, point mutations in the F9 promoter region result in hemophilia B Leyden, and those in the introns cause aberrant splicing. Point mutations in the coding sequence can be missense, nonsense, or silent mutations. Nonsense mutations generate truncated FIX that usually loses function, causing severe hemophilia B. Silent mutations may lead to aberrant splicing or affect FIX translation. The mechanisms of missense mutation, however, have not been fully understood. They lead to FIX deficiency, often by affecting FIX's translation, protein folding, protein stability, posttranslational modifications, activation to FIXa, or the ability to form functional Xase complex. Understanding the molecular mechanisms of FIX deficiency will provide significant insight for patient diagnosis and treatment.
Collapse
Affiliation(s)
- Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang 471023, China; (M.G.); (Q.C.)
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Meng Gao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang 471023, China; (M.G.); (Q.C.)
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Qing Cao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang 471023, China; (M.G.); (Q.C.)
- School of Basic Medical Science, Henan University of Science and Technology, Luoyang 471023, China
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Abstract
Decades of preclinical and clinical studies developing gene therapy for hemophilia are poised to bear fruit with current promising pivotal studies likely to lead to regulatory approval. However, this recent success should not obscure the multiple challenges that were overcome to reach this destination. Gene therapy for hemophilia A and B benefited from advancements in the general gene therapy field, such as the development of adeno-associated viral vectors, as well as disease-specific breakthroughs, like the identification of B-domain deleted factor VIII and hyperactive factor IX Padua. The gene therapy field has also benefited from hemophilia B clinical studies, which revealed for the first time critical safety concerns related to immune responses to the vector capsid not anticipated in preclinical models. Preclinical studies have also investigated gene transfer approaches for other rare inherited bleeding disorders, including factor VII deficiency, von Willebrand disease, and Glanzmann thrombasthenia. Here we review the successful gene therapy journey for hemophilia and pose some unanswered questions. We then discuss the current state of gene therapy for these other rare inherited bleeding disorders and how the lessons of hemophilia gene therapy may guide clinical development.
Collapse
Affiliation(s)
- Valder R. Arruda
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania
| | - Jesse Weber
- Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin J. Samelson-Jones
- Department of Pediatrics, Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Division of Hematology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6:53. [PMID: 33558455 PMCID: PMC7868676 DOI: 10.1038/s41392-021-00487-6] [Citation(s) in RCA: 566] [Impact Index Per Article: 188.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.
Collapse
Affiliation(s)
- Jote T Bulcha
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Pegg CL, Zacchi LF, Recinos DR, Howard CB, Schulz BL. Identification of novel glycosylation events on human serum-derived factor IX. Glycoconj J 2020; 37:471-483. [PMID: 32378017 DOI: 10.1007/s10719-020-09922-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Human Factor IX is a highly post-translationally modified protein that is an important clotting factor in the blood coagulation cascade. Functional deficiencies in Factor IX result in the bleeding disorder haemophilia B, which is treated with plasma-derived or recombinant Factor IX concentrates. Here, we investigated the post-translational modifications of human serum-derived Factor IX and report previously undescribed O-linked monosaccharide compositions at serine 141 and a novel site of glycosylation. At serine 141 we observed two monosaccharide compositions, with HexNAc1Hex1NeuAc2 dominant and a low level of HexNAc1Hex1NeuAc1. This O-linked site lies N-terminal to the first cleavage site for the activation peptide, an important region of the protein that is removed to activate Factor IX. The novel site is an N-linked site in the serine protease domain with low occupancy in a non-canonical consensus motif at asparagine 258, observed with a HexNAc4Hex5NeuAc2 monosaccharide composition attached. This is the first reported instance of a site of modification in the serine protease domain. The description of these glycosylation events provides a basis for future functional studies and contributes to structural characterisation of native Factor IX for the production of effective therapeutic biosimilars and biobetters.
Collapse
Affiliation(s)
- Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Lucia F Zacchi
- Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dinora Roche Recinos
- Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christopher B Howard
- Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
6
|
Mehta AY, Heimburg-Molinaro J, Cummings RD, Goth CK. Emerging patterns of tyrosine sulfation and O-glycosylation cross-talk and co-localization. Curr Opin Struct Biol 2020; 62:102-111. [PMID: 31927217 DOI: 10.1016/j.sbi.2019.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Akul Y Mehta
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| | - Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, National Center for Functional Glycomics, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
7
|
Samelson-Jones BJ, Finn JD, George LA, Camire RM, Arruda VR. Hyperactivity of factor IX Padua (R338L) depends on factor VIIIa cofactor activity. JCI Insight 2019; 5:128683. [PMID: 31219805 DOI: 10.1172/jci.insight.128683] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Adeno-associated-viral (AAV) vector liver-directed gene therapy (GT) for hemophilia B (HB) is limited by a vector-dose-dependent hepatotoxicity. Recently, this obstacle has been partially circumvented by the use of a hyperactive factor IX (FIX) variant, R338L (Padua), which has an eightfold increased specific activity compared to FIX-WT. FIX-R338L has emerged as the standard for HB GT. However, the underlying mechanism of its hyperactivity is undefined; as such, safety concerns of unregulated coagulation and the potential for thrombotic complications have not been fully addressed. To this end, we evaluated the enzymatic and clotting activity as well as the activation, inactivation, and cofactor-dependence of FIX-R338L relative to FIX-WT. We observed that the high-specific-activity of FIX-R338L requires factor VIIIa (FVIIIa) cofactor. In a novel system utilizing emicizumab, a FVIII-mimicking bispecific antibody, the hyperactivity of both recombinant FIX-R338L and AAV-mediated-transgene-expressed FIX-R338L from HB GT subjects is ablated without FVIIIa activity. We conclude that the molecular regulation of activation, inactivation, and cofactor-dependence of FIX-R338L is similar to FIX-WT, but that the FVIIIa-dependent hyperactivity of FIX-R338L is the result of a faster rate of factor X activation. This mechanism helps mitigate safety concerns of unregulated coagulation and supports the expanded use of FIX-R338L in HB therapy.
Collapse
Affiliation(s)
- Benjamin J Samelson-Jones
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Jonathan D Finn
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lindsey A George
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Rodney M Camire
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| | - Valder R Arruda
- The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Complete correction of hemophilia B phenotype by FIX-Padua skeletal muscle gene therapy in an inhibitor-prone dog model. Blood Adv 2019; 2:505-508. [PMID: 29500218 DOI: 10.1182/bloodadvances.2017015313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/01/2018] [Indexed: 01/31/2023] Open
Abstract
Key Points
Skeletal muscle–directed expression of FIX-Padua resulted in complete correction of HB phenotype in an inhibitor-prone dog model. Long-term immune tolerance to FIX is sustained over years upon multiple challenges with recombinant FIX protein in 2 HB models.
Collapse
|
9
|
Chen G, Zhang Y, Trinidad JC, Dann C. Distinguishing Sulfotyrosine Containing Peptides from their Phosphotyrosine Counterparts Using Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:455-462. [PMID: 29313205 DOI: 10.1007/s13361-017-1854-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/15/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
Sulfotyrosine and phosphotyrosine are two post-translational modifications present in higher eukaryotes. A simple and direct mass spectrometry method to distinguish between these modifications is crucial to advance our understanding of the sulfoproteome. While sulfation and phosphorylation are nominally isobaric, the accurate mass of the sulfuryl moiety is 9.6 mDa less than the phosphoryl moiety. Based on this difference, we have used an Orbitrap Fusion Lumos mass spectrometer to characterize, resolve, and distinguish between sulfotyrosine and phosphotyrosine modifications using a set of model peptides. Multiple fragmentation techniques, namely HCD, CID, ETD, ETciD, and EThcD, have been used to compare the different fragmentation behaviors between peptides modified with these species. Sulfotyrosine undergoes neutral loss using HCD and CID, but the sulfuryl moiety is largely stable under ETD. In contrast, phosphotyrosine is stable during fragmentation using all these methods. This differential stability provides a mechanism to distinguish sulfopeptides from phosphopeptides. Based on the rigorous characterization presented herein, this work serves as a model for accurate identification of phosphotyrosine and, more challenging, sulfotyrosine, in complex proteomic samples. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Guangming Chen
- Department of Chemistry and Interdisciplinary Graduate Program in Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Yixiang Zhang
- Department of Chemistry and Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, IN, 47405, USA
| | - Jonathan C Trinidad
- Department of Chemistry and Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, IN, 47405, USA.
| | - Charles Dann
- Department of Chemistry and Interdisciplinary Graduate Program in Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
10
|
Robinson MR, Brodbelt JS. Integrating Weak Anion Exchange and Ultraviolet Photodissociation Mass Spectrometry with Strategic Modulation of Peptide Basicity for the Enrichment of Sulfopeptides. Anal Chem 2016; 88:11037-11045. [PMID: 27768275 DOI: 10.1021/acs.analchem.6b02899] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tyrosine sulfation is an important post-translational modification but remains difficult to detect in biological samples owing to its low stoichiometric abundance and the lack of effective enrichment methods. In the present study, weak anion exchange (WAX) is evaluated for the enrichment of sulfopeptides that have been modified via carbamylation to convert all primary amines to less basic carbamates. The decrease in basicity enhanced the binding of carbamylated sulfopeptides to WAX resin relative to nonsulfated peptides. Upon elution and electrospray ionization in the negative mode, ultraviolet photodissociation (UVPD) was applied for peptide sequencing. Application of the method to a tryptic digest of bovine coagulation factor V resulted in identification of sulfation on tyrosine 1513.
Collapse
Affiliation(s)
- Michelle R Robinson
- Department of Chemistry, The University of Texas , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas , Austin, Texas 78712, United States
| |
Collapse
|
11
|
Abstract
Hemophilia B is an X-linked genetic deficiency of coagulation factor IX (FIX) activity associated with recurrent deep tissue and joint bleeding that may lead to long-term disability. FIX replacement therapy using plasma-derived protein or recombinant protein has significantly reduced bleeding and disability from hemophilia B, particularly when used in a prophylactic fashion. Although modern factor replacement has excellent efficacy and safety, barriers to the broader use of prophylaxis remain, including the need for intravenous (IV) access, frequent dosing, variability in individual pharmacokinetics, and cost. To overcome the requirement for frequent factor dosing, novel forms of recombinant FIX have been developed that possess extended terminal half-lives. Two of these products (FIXFc and rIX-FP) represent fusion proteins with the immunoglobulin G1 (IgG1) Fc domain and albumin, respectively, resulting in proteins that are recycled in vivo by the neonatal Fc receptor. The third product has undergone site-specific PEGylation on the activation peptide of FIX, similarly resulting in a long-lived FIX form. Clinical trials in previously treated hemophilia B patients have demonstrated excellent efficacy and confirmed less-frequent dosing requirements for the extended half-life forms. However, gaps in knowledge remain with regard to the risk of inhibitor formation and allergic reactions in previously untreated patient populations, safety in elderly patients with hemophilia, effects on in vivo FIX distribution, and cost-effectiveness. Additional strategies designed to rebalance hemostasis in hemophilia patients include monoclonal-antibody-mediated inhibition of tissue factor pathway inhibitor activity and siRNA-mediated reduction in antithrombin expression by the liver. Both of these approaches are long acting and potentially involve subcutaneous administration of the drug. In this review, we will discuss the biology of FIX, the evolution of FIX replacement therapy, the emerging FIX products possessing extended half-lives, and novel “rebalancing” approaches to hemophilia therapy.
Collapse
Affiliation(s)
- Moniba Nazeef
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - John P Sheehan
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
12
|
Sam MR, Azadbakhsh AS, Farokhi F, Rezazadeh K, Sam S, Zomorodipour A, Haddad-Mashadrizeh A, Delirezh N, Mokarizadeh A. Genetic modification of bone-marrow mesenchymal stem cells and hematopoietic cells with human coagulation factor IX-expressing plasmids. Biologicals 2016; 44:170-7. [PMID: 26928674 DOI: 10.1016/j.biologicals.2016.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 11/17/2022] Open
Abstract
Ex-vivo gene therapy of hemophilias requires suitable bioreactors for secretion of hFIX into the circulation and stem cells hold great potentials in this regard. Viral vectors are widely manipulated and used to transfer hFIX gene into stem cells. However, little attention has been paid to the manipulation of hFIX transgene itself. Concurrently, the efficacy of such a therapeutic approach depends on determination of which vectors give maximal transgene expression. With this in mind, TF-1 (primary hematopoietic lineage) and rat-bone marrow mesenchymal stem cells (BMSCs) were transfected with five hFIX-expressing plasmids containing different combinations of two human β-globin (hBG) introns inside the hFIX-cDNA and Kozak element and hFIX expression was evaluated by different methods. In BMSCs and TF-1 cells, the highest hFIX level was obtained from the intron-less and hBG intron-I,II containing plasmids respectively. The highest hFIX activity was obtained from the cells that carrying the hBG intron-I,II containing plasmids. BMSCs were able to produce higher hFIX by 1.4 to 4.7-fold increase with activity by 2.4 to 4.4-fold increase compared to TF-1 cells transfected with the same constructs. BMSCs and TF-1 cells could be effectively bioengineered without the use of viral vectors and hFIX minigene containing hBG introns could represent a particular interest in stem cell-based gene therapy of hemophilias.
Collapse
Affiliation(s)
- Mohammad Reza Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran; Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Iran.
| | - Azadeh Sadat Azadbakhsh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran; Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Iran
| | - Farrah Farokhi
- Department of Histology and Embryology, Faculty of Science, Urmia University, Urmia, Iran
| | - Kobra Rezazadeh
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Sohrab Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Alireza Zomorodipour
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Nowruz Delirezh
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Aram Mokarizadeh
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
13
|
Abstract
INTRODUCTION The recent success of early-phase clinical trials for adeno-associated viral (AAV) liver-directed gene therapy for hemophilia B (HB) demonstrates the potential for gene therapy, in the future, to succeed protein-based prophylaxis therapy for HB. Significant obstacles, however, need to be overcome prior to widespread adoption. The largest obstacles include immune responses to the AAV capsid including preexisting neutralizing antibodies (NAbs) and a delayed cellular immune response. Emerging evidence suggests that the latter is vector-dose dependent. Furthermore, the development and eradication of inhibitors remains a significant safety concern. Similarly, biological differences between Factor VIII and Factor IX (FIX) impose challenges to direct adoption of the successes for HB to hemophilia A (HA). AREAS COVERED The advantages and limitations of the current strategies addressing these obstacles for gene therapy for HB and HA are discussed, as well as vector manufacturing issues relevant to widespread adoption. Alternative strategies including both ex-vivo and in-vivo lentiviral-based methods are discussed, though we focus on AAV-based approaches because of their recent clinical success and potential. EXPERT OPINION Our opinion is that these obstacles can be overcome with current approaches, and AAV-based gene therapy for HB will likely translate into future clinical care. Innovative approaches are, however, likely needed to solve the current problems obstructing HA gene therapy.
Collapse
Affiliation(s)
- Valder R Arruda
- University of Pennsylvania, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd, 5056 Colket Translational Research Center, Philadelphia, PA 19104, USA ; University of Pennsylvania, Center for Cell and Molecular Therapeutics, Philadelphia, PA 19104, USA ; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ben J Samelson-Jones
- University of Pennsylvania, The Children's Hospital of Philadelphia, 3501 Civic Center Blvd, 5056 Colket Translational Research Center, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Role of tyrosine-sulfated proteins in retinal structure and function. Exp Eye Res 2015; 133:126-31. [PMID: 25819460 DOI: 10.1016/j.exer.2014.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 01/13/2023]
Abstract
The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins' tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases.
Collapse
|
15
|
Enjolras N, Perot E, Le Quellec S, Indalecio A, Girard J, Negrier C, Dargaud Y. In vivo efficacy of human recombinant factor IX produced by the human hepatoma cell line HuH-7. Haemophilia 2015; 21:e317-21. [PMID: 25981983 DOI: 10.1111/hae.12688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2015] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Post-translational modifications of the CHO-cell-derived-recombinant human factor IX (FIX) currently used for the treatment of hemophilia B (HB) are different from plasma derived FIX. Our previous studies described a rFIX (HIX) having better profile of post-translational modifications than rFIX produced by CHO cells. The aim of the study consisted to verify the improved post-translational modifications effect of HIX on in vivo recovery. MATERIALS AND METHODS HIX has been produced in a bioreactor and then purified from supernatants. In vitro activation and activity were evaluated measured by thrombin generation tests (TGT) and compared to commercial molecules, Benefix(®) , Mononine(®) . The three molecules were then administrated (i.v.) to FIX-knockout mice and two minutes after injection, blood samples were collected and subjected to human FIX-specific-ELISA and TGT. RESULTS The clotting function of HIX, activation courses of HIX by FXIa and FVIIa-TF complex appear normal as did activation of Benefix(®) , Mononine(®) and TG constants of each FIX were equivalent. After injection to HB mice, circulating HIX did not present any significant difference in term of antigen value with Benefix(®) . Intriguingly, TGT were clearly exhibiting a better velocity for HIX than Benefix(®) and Mononine(®) . These data suggested that HIX may improve in vivo coagulant efficacy in comparison with the two commercial FIX injected at the same dose. CONCLUSION The study shows that HuH-7-derived-rFIX has better in vivo haemostatic activity in hemophilia B mice compared to the reference rFIX molecule despite similar in vivo recovery rates, suggesting that HuH-7 cells could represent an effective cellular system for production of rFIX.
Collapse
Affiliation(s)
- N Enjolras
- Unite Hemostase, Inflammation and Sepsis EA 4174, Faculte de Medecine Laennec, Universite Lyon 1-Hospices Civils de Lyon, Lyon, France
| | - E Perot
- Unite Hemostase, Inflammation and Sepsis EA 4174, Faculte de Medecine Laennec, Universite Lyon 1-Hospices Civils de Lyon, Lyon, France
| | - S Le Quellec
- Unite Hemostase, Inflammation and Sepsis EA 4174, Faculte de Medecine Laennec, Universite Lyon 1-Hospices Civils de Lyon, Lyon, France
| | - A Indalecio
- Unite Hemostase, Inflammation and Sepsis EA 4174, Faculte de Medecine Laennec, Universite Lyon 1-Hospices Civils de Lyon, Lyon, France
| | - J Girard
- Unite Hemostase, Inflammation and Sepsis EA 4174, Faculte de Medecine Laennec, Universite Lyon 1-Hospices Civils de Lyon, Lyon, France
| | - C Negrier
- Unite Hemostase, Inflammation and Sepsis EA 4174, Faculte de Medecine Laennec, Universite Lyon 1-Hospices Civils de Lyon, Lyon, France
| | - Y Dargaud
- Unite Hemostase, Inflammation and Sepsis EA 4174, Faculte de Medecine Laennec, Universite Lyon 1-Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
16
|
Nichols TC, Whitford MH, Arruda VR, Stedman HH, Kay MA, High KA. Translational data from adeno-associated virus-mediated gene therapy of hemophilia B in dogs. HUM GENE THER CL DEV 2015; 26:5-14. [PMID: 25675273 DOI: 10.1089/humc.2014.153] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Preclinical testing of new therapeutic strategies in relevant animal models is an essential part of drug development. The choice of animal models of disease that are used in these studies is driven by the strength of the translational data for informing about safety, efficacy, and success or failure of human clinical trials. Hemophilia B is a monogenic, X-linked, inherited bleeding disorder that results from absent or dysfunctional coagulation factor IX (FIX). Regarding preclinical studies of adeno-associated virus (AAV)-mediated gene therapy for hemophilia B, dogs with severe hemophilia B (<1% FIX) provide well-characterized phenotypes and genotypes in which a species-specific transgene can be expressed in a mixed genetic background. Correction of the hemophilic coagulopathy by sustained expression of FIX, reduction of bleeding events, and a comprehensive assessment of the humoral and cell-mediated immune responses to the expressed transgene and recombinant AAV vector are all feasible end points in these dogs. This review compares the preclinical studies of AAV vectors used to treat dogs with hemophilia B with the results obtained in subsequent human clinical trials using muscle- and liver-based approaches.
Collapse
Affiliation(s)
- Timothy C Nichols
- 1 Francis Owen Blood Research Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill , Chapel Hill, NC 27516
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is currently treatable with intravenous delivery of replacement recombinant clotting factor, this approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-long correction of clotting activity with a single injection. In this review, we will discuss the multitude of approaches that have been explored for the treatment of both hemophilia A and B, including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.
Collapse
Affiliation(s)
- Geoffrey L Rogers
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| | - Roland W Herzog
- University of Florida, Department of Pediatrics, Division of Cellular and Molecular Therapy, Gainesville, FL 32610
| |
Collapse
|
18
|
Nichols T, Whitford MH, Arruda VR, Stedman HH, Kay MA, High KA. Translational Data from AAV-Mediated Gene Therapy of Hemophilia B in Dogs. HUM GENE THER CL DEV 2014. [DOI: 10.1089/hum.2014.153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
19
|
Wang D, Zhong L, Nahid MA, Gao G. The potential of adeno-associated viral vectors for gene delivery to muscle tissue. Expert Opin Drug Deliv 2014; 11:345-364. [PMID: 24386892 PMCID: PMC4098646 DOI: 10.1517/17425247.2014.871258] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Muscle-directed gene therapy is rapidly gaining attention primarily because muscle is an easily accessible target tissue and is also associated with various severe genetic disorders. Localized and systemic delivery of recombinant adeno-associated virus (rAAV) vectors of several serotypes results in very efficient transduction of skeletal and cardiac muscles, which has been achieved in both small and large animals, as well as in humans. Muscle is the target tissue in gene therapy for many muscular dystrophy diseases, and may also be exploited as a biofactory to produce secretory factors for systemic disorders. Current limitations of using rAAVs for muscle gene transfer include vector size restriction, potential safety concerns such as off-target toxicity and the immunological barrier composing of pre-existing neutralizing antibodies and CD8(+) T-cell response against AAV capsid in humans. AREAS COVERED In this article, we will discuss basic AAV vector biology and its application in muscle-directed gene delivery, as well as potential strategies to overcome the aforementioned limitations of rAAV for further clinical application. EXPERT OPINION Delivering therapeutic genes to large muscle mass in humans is arguably the most urgent unmet demand in treating diseases affecting muscle tissues throughout the whole body. Muscle-directed, rAAV-mediated gene transfer for expressing antibodies is a promising strategy to combat deadly infectious diseases. Developing strategies to circumvent the immune response following rAAV administration in humans will facilitate clinical application.
Collapse
Affiliation(s)
- Dan Wang
- University of Massachusetts Medical School, Gene Therapy Center, 368 Plantation Street, AS6-2049, Worcester, MA 01605, USA
- University of Massachusetts Medical School, Department of Microbiology and Physiology Systems, Worcester, MA 01605, USA
| | - Li Zhong
- University of Massachusetts Medical School, Gene Therapy Center, 368 Plantation Street, AS6-2049, Worcester, MA 01605, USA
- University of Massachusetts Medical School, Division of Hematology/Oncology, Department of Pediatrics, Worcester, MA 01605, USA
| | - M Abu Nahid
- University of Massachusetts Medical School, Gene Therapy Center, 368 Plantation Street, AS6-2049, Worcester, MA 01605, USA
- University of Massachusetts Medical School, Department of Microbiology and Physiology Systems, Worcester, MA 01605, USA
| | - Guangping Gao
- University of Massachusetts Medical School, Gene Therapy Center, 368 Plantation Street, AS6-2049, Worcester, MA 01605, USA
- University of Massachusetts Medical School, Department of Microbiology and Physiology Systems, Worcester, MA 01605, USA
- Sichuan University, West China Hospital, State Key Laboratory of Biotherapy, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
20
|
Rogers GL, Martino AT, Zolotukhin I, Ertl HCJ, Herzog RW. Role of the vector genome and underlying factor IX mutation in immune responses to AAV gene therapy for hemophilia B. J Transl Med 2014; 12:25. [PMID: 24460861 PMCID: PMC3904690 DOI: 10.1186/1479-5876-12-25] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/23/2014] [Indexed: 11/24/2022] Open
Abstract
Background Self-complementary adeno-associated virus (scAAV) vectors have become a desirable vector for therapeutic gene transfer due to their ability to produce greater levels of transgene than single-stranded AAV (ssAAV). However, recent reports have suggested that scAAV vectors are more immunogenic than ssAAV. In this study, we investigated the effects of a self-complementary genome during gene therapy with a therapeutic protein, human factor IX (hF.IX). Methods Hemophilia B mice were injected intramuscularly with ss or scAAV1 vectors expressing hF.IX. The outcome of gene transfer was assessed, including transgene expression as well as antibody and CD8+ T cell responses to hF.IX. Results Self-complementary AAV1 vectors induced similar antibody responses (which eliminated systemic hF.IX expression) but stronger CD8+ T cell responses to hF.IX relative to ssAAV1 in mice with F9 gene deletion. As a result, hF.IX-expressing muscle fibers were effectively eliminated in scAAV-treated mice. In contrast, mice with F9 nonsense mutation (late stop codon) lacked antibody or T cell responses, thus showing long-term expression regardless of the vector genome. Conclusions The nature of the AAV genome can impact the CD8+ T cell response to the therapeutic transgene product. In mice with endogenous hF.IX expression, however, this enhanced immunogenicity did not break tolerance to hF.IX, suggesting that the underlying mutation is a more important risk factor for transgene-specific immunity than the molecular form of the AAV genome.
Collapse
Affiliation(s)
| | | | | | | | - Roland W Herzog
- Department of Pediatrics, Division of Cellular and Molecular Therapy, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
21
|
Yu Y, Millar CM. Measurement of factor IX activity in plasma-derived and recombinant concentrates: insights from thrombin generation and activation-based assays. J Thromb Haemost 2014; 12:62-70. [PMID: 24215160 DOI: 10.1111/jth.12452] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hemophilia B, resulting from a deficiency of coagulation factor IX, is treated effectively with either recombinant FIX (r-FIX) or plasma-derived FIX (pd-FIX) concentrates, although differences in pharmacokinetics are observed. FIX is activated in vivo by both activated FXI (FXIa) and tissue factor (TF)-activated FVII (FVIIa); however, conventional activated partial thromboplastin time (APTT)-based assays assess only activation by FXIa. OBJECTIVES To examine the differences between pd-FIX and r-FIX concentrates with respect to their thrombogenicity and activation. METHODS AND RESULTS FIX ELISA was used to quantify antigenic FIX. Calibrated automated thrombography was performed to evaluate the effect of FIX on thrombin generation. FIXa was quantified by the cleavage of FIXa-specific chromogenic substrate. FIX activation was studied in a purified system. RESULTS We found that r-FIX had ~ 1.6-fold greater specific activity than pd-FIX. r-FIX generated a markedly higher thrombin peak than pd-FIX at an equivalent antigen level when coagulation was initiated by TF, but this was not seen in contact activation-triggered thrombin generation (TG). Interestingly, the amount of FIXa in r-FIX concentrate was 10 times higher than that in pd-FIX concentrate. In a purified system, the amount of r-FIXa generated by FXIa in the first 10 min of activation was 1.37-fold that of pd-FIXa, whereas no difference between the concentrates was observed when triggered by TF-FVIIa. CONCLUSIONS Clear differences were observed between pd-FIX and r-FIX concentrates, including the proportion of FIXa and the activation by FXIa. These may explain some of the discrepancies observed clinically, and suggest that the APTT may not reflect their resultant in vivo properties.
Collapse
Affiliation(s)
- Y Yu
- Centre for Haematology, Department of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
22
|
Minimal modification in the factor VIII B-domain sequence ameliorates the murine hemophilia A phenotype. Blood 2013; 121:4396-403. [PMID: 23372167 DOI: 10.1182/blood-2012-10-464164] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recombinant canine B-domain deleted (BDD) factor VIII (FVIII) is predominantly expressed as a single-chain protein and exhibits greater stability after activation compared with human FVIII-BDD. We generated a novel BDD-FVIII variant (FVIII-RH) with an amino acid change at the furin cleavage site within the B domain (position R1645H) that mimics the canine sequence (HHQR vs human RHQR). Compared with human FVIII-BDD, expression of FVIII-RH protein revealed a 2.5-fold increase in the single-chain form. Notably, FVIII-RH exhibited a twofold increase in biological activity compared with FVIII-BDD, likely due to its slower dissociation of the A2-domain upon thrombin activation. Injection of FVIII-RH protein in hemophilia A (HA) mice resulted in more efficacious hemostasis following vascular injury in both the macro- and microcirculation. These findings were successfully translated to adeno-associated viral (AAV)-based liver gene transfer in HA mice. Expression of circulating FVIII-RH was approximately twofold higher compared with AAV-FVIII-BDD-injected mice. Moreover, FVIII-RH exhibits superior procoagulant effects compared with FVIII-BDD following a series of hemostatic challenges. Notably, the immunogenicity of FVIII-RH did not differ from FVIII-BDD. Thus, FVIII-RH is an attractive bioengineered molecule for improving efficacy without increased immunogenicity and may be suitable for both protein- and gene-based strategies for HA.
Collapse
|
23
|
Enjolras N, Dargaud Y, Pérot E, Guillaume F, Becchi M, Négrier C. Human hepatoma cell line HuH-7 is an effective cellular system to produce recombinant factor IX with improved post-translational modifications. Thromb Res 2012; 130:e266-73. [DOI: 10.1016/j.thromres.2012.08.313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 08/14/2012] [Accepted: 08/28/2012] [Indexed: 11/26/2022]
|
24
|
Guse K, Suzuki M, Sule G, Bertin TK, Tyynismaa H, Ahola-Erkkilä S, Palmer D, Suomalainen A, Ng P, Cerullo V, Hemminki A, Lee B. Capsid-modified adenoviral vectors for improved muscle-directed gene therapy. Hum Gene Ther 2012; 23:1065-70. [PMID: 22888960 DOI: 10.1089/hum.2012.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Skeletal muscle represents an attractive target tissue for adenoviral gene therapy to treat muscle disorders and as a production platform for systemic expression of therapeutic proteins. However, adenovirus serotype 5 vectors do not efficiently transduce adult muscle tissue. Here we evaluated whether capsid modifications on adenoviral vectors could improve transduction in mature murine muscle tissue. First-generation and helper-dependent serotype 5 adenoviral vectors featuring the serotype 3 knob (5/3) showed significantly increased transduction of skeletal muscle after intramuscular injection in adult mice. Furthermore, we showed that full-length dystrophin could be more efficiently transferred to muscles of mdx mice using a 5/3-modified helper-dependent adenoviral vector. In contrast to first-generation vectors, helper-dependent adenoviral vectors mediated stable marker gene expression for at least 1 year after intramuscular injection. In conclusion, 5/3 capsid-modified helper-dependent adenoviral vectors show enhanced transduction in adult murine muscle tissue and mediate long-term gene expression, suggesting the suitability of these vectors for muscle-directed gene therapy.
Collapse
Affiliation(s)
- Kilian Guse
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sabatino DE, Arruda VR. Muscle Gene Therapy for Hemophilia. JOURNAL OF GENETIC SYNDROMES & GENE THERAPY 2012; Suppl 1:S1-010. [PMID: 24883231 PMCID: PMC4038336 DOI: 10.4172/2157-7412.s1-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Muscle-directed gene therapy for hemophilia is an attractive strategy for expression of therapeutic levels of clotting factor as evident from preclinical studies and an early phase clinical trial. Notably, local FIX expression by AAV-mediated direct intramuscular injection to skeletal muscle persists for years. Development of intravascular delivery of AAV vector approaches to skeletal muscle resulted in vector in widespread areas of the limb and increased expression of FIX in hemophilia B dogs. The use of FIX variants with improved biological activity may provide the opportunity to increase the efficacy of these approaches. Studies for hemophilia A are less developed at this point, but utilizing transgenes that improve hemostasis independent of FIX and FVIII has potential therapeutic application for both hemophilia A and B. Continuous monitoring of humoral and T cell responses to the transgene and AAV capsid in human trials will be critical for the translation of these promising approaches for muscle gene therapy for hemophilia.
Collapse
Affiliation(s)
- Denise E. Sabatino
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Valder R. Arruda
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
de Castilho Fernandes A, Fontes A, Gonsales N, Swiech K, Picanco-Castro V, Faca S, Covas D. Stable and high-level production of recombinant Factor IX in human hepatic cell line. Biotechnol Appl Biochem 2011; 58:243-9. [PMID: 21838798 DOI: 10.1002/bab.32] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 04/15/2011] [Indexed: 11/06/2022]
Abstract
Hemophilia B is a genetic disease of the coagulation system that affects one in 30,000 males worldwide. Recombinant human Factor IX (rhFIX) has been used for hemophilia B treatment, but the amount of active protein generated by these systems is inefficient, resulting in a high-cost production of rhFIX. In this study, we developed an alternative for rhFIX production. We used a retrovirus system to obtain two recombinant cell lines. We first tested rhFIX production in the human embryonic kidney 293 cells (293). Next, we tested a hepatic cell line (HepG2) because FIX is primarily expressed in the liver. Our results reveal that intracellular rhFIX expression was more efficient in HepG2/rhFIX (46%) than in 293/rhFIX (21%). The activated partial thromboplastin time test showed that HepG2/rhFIX expressed biologically active rhFIX 1.5 times higher than 293/rhFIX (P = 0.016). Recovery of rhFIX from the HepG2 by reversed-phase chromatography was straightforward. We found that rhFIX has a pharmacokinetic profile similar to that of FIX purified from human plasma when tested in hemophilic B model. HepG2/rhFIX cell line produced the highest levels of rhFIX, representing an efficient in vitro expression system. This work opens up the possibility of significantly reducing the costs of rhFIX production, with implications for expanding hemophilia B treatment in developing countries.
Collapse
|
27
|
Gaso-Sokac D, Kovac S, Clifton J, Josic D. Therapeutic plasma proteins--application of proteomics in process optimization, validation, and analysis of the final product. Electrophoresis 2011; 32:1104-17. [PMID: 21544836 DOI: 10.1002/elps.201000641] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An overview is given on the application of proteomic technology in the monitoring of different steps during the production of therapeutic proteins from human plasma. Recent advances in this technology enable the use of proteomics as an advantageous tool for the validation of already existing processes, the development and fine tuning of new production steps, the characterization and quality control of final products, the detection of both harmful impurities and modifications of the therapeutic protein and the auditing of batch-to-batch variations. Further, use of proteomics for preclinical testing of new products, which can be either recombinant or plasma-derived, is also discussed.
Collapse
Affiliation(s)
- Dajana Gaso-Sokac
- Department of Chemistry, J. J. Strossmayer Univeristy, Osijek, Croatia
| | | | | | | |
Collapse
|
28
|
Isotani M, Miyake K, Miyake N, Hirai Y, Shimada T. Direct Comparison of Four Adeno-Associated Virus Serotypes in Mediating the Production of Antiangiogenic Proteins in Mouse Muscle. Cancer Invest 2011; 29:353-9. [DOI: 10.3109/07357907.2011.584585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Coutu DL, Cuerquis J, El Ayoubi R, Forner KA, Roy R, François M, Griffith M, Lillicrap D, Yousefi AM, Blostein MD, Galipeau J. Hierarchical scaffold design for mesenchymal stem cell-based gene therapy of hemophilia B. Biomaterials 2011; 32:295-305. [PMID: 20864158 DOI: 10.1016/j.biomaterials.2010.08.094] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/29/2010] [Indexed: 12/14/2022]
Abstract
Gene therapy for hemophilia B and other hereditary plasma protein deficiencies showed great promise in pre-clinical and early clinical trials. However, safety concerns about in vivo delivery of viral vectors and poor post-transplant survival of ex vivo modified cells remain key hurdles for clinical translation of gene therapy. We here describe a 3D scaffold system based on porous hydroxyapatite-PLGA composites coated with biomineralized collagen 1. When combined with autologous gene-engineered factor IX (hFIX) positive mesenchymal stem cells (MSCs) and implanted in hemophilic mice, these scaffolds supported long-term engraftment and systemic protein delivery by MSCs in vivo. Optimization of the scaffolds at the macro-, micro- and nanoscales provided efficient cell delivery capacity, MSC self-renewal and osteogenesis respectively, concurrent with sustained delivery of hFIX. In conclusion, the use of gene-enhanced MSC-seeded scaffolds may be of practical use for treatment of hemophilia B and other plasma protein deficiencies.
Collapse
Affiliation(s)
- Daniel L Coutu
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Barrowcliffe TW. Insights from factor IX activation studies with chromogenic assays: implications of disparate product results. Haemophilia 2011; 16 Suppl 6:9-12. [PMID: 20561352 DOI: 10.1111/j.1365-2516.2010.02300.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- T W Barrowcliffe
- National Institute for Biological Standards and Control, Potters Bar, UK.
| |
Collapse
|
31
|
Petrus I, Chuah M, VandenDriessche T. Gene therapy strategies for hemophilia: benefits versus risks. J Gene Med 2011; 12:797-809. [PMID: 20848668 DOI: 10.1002/jgm.1500] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hemophilia is an inherited bleeding disorder caused by a deficiency of functional clotting factors VIII or IX in the blood plasma. The drawbacks of the classical protein substitution therapy fueled interest in alternative treatments by gene therapy. Hemophilia has been recognized as an ideal target disease for gene therapy because a relatively modest increase in clotting factor levels can result in a significant therapeutic benefit. Consequently, introducing a functional FVIII or FIX gene copy into the appropriate target cells could ultimately provide a cure for hemophilic patients. Several cell types have been explored for hemophilia gene therapy, including hepatocytes, muscle, endothelial and hematopoietic cells. Both nonviral and viral vectors have been considered for the development of hemophilia gene therapy, including transposons, γ-retroviral, lentiviral, adenoviral and adeno-associated viral vectors. Several of these strategies have resulted in stable correction of the bleeding diathesis in hemophilia A and B murine as well as canine models, paving the way towards clinical trials. Although clotting factor expression has been detected in hemophilic patients treated by gene therapy, the challenge now lies in obtaining prolonged therapeutic FVIII or FIX levels in these patients. This review highlights the benefits and potential risks of the different gene therapy strategies for hemophilia that have been developed.
Collapse
Affiliation(s)
- Inge Petrus
- Free University of Brussels, Vesalius Research Center, Flanders Institute of Biotechnology (VIB) & University of Leuven, Belgium
| | | | | |
Collapse
|
32
|
An adeno-associated virus vector efficiently and specifically transduces mouse skeletal muscle. Mol Biotechnol 2011; 49:1-10. [PMID: 21197588 DOI: 10.1007/s12033-010-9369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Expression of a therapeutic gene in the skeletal muscle is a practical strategy to compensate a patients' insufficient circulating factor. Its clinical application requires a muscle-targeting vector capable of inducing a continuous high-level transgene expression. We modified an adeno-associated virus serotype 2 (AAV2) vector expressing luciferase from the mouse muscle creatine kinase gene promoter-enhancer (Ckm). First, AAVS1 insulator was inserted into the vector genome for transcriptional enhancement. This increased transduction of mouse quadriceps muscle by 11-fold at 4 weeks after intramuscular injection. Second, two capsid modifications were combined (21F capsid): incorporation of a segment of AAV1 capsid to produce a hybrid capsid and substitution of a tyrosine with a phenylalanine. Use of 21F capsid increased muscle transduction further by 18-fold, resulting in 200-fold higher efficacy than that of the unmodified vector. Compared with a vector having human elongation factor 1α promoter which showed similar efficacy in the muscle, this vector having Ckm transduced non-muscle organs less efficiently after intravenous administration. The AAV2 vector composed of the modified genome and capsid provides a backbone to develop a clinical vector expressing a therapeutic gene in the muscle.
Collapse
|
33
|
Soluble TNF-α receptor secretion from healthy or dystrophic mice after AAV6-mediated muscle gene transfer. Gene Ther 2010; 17:1400-10. [PMID: 20596058 DOI: 10.1038/gt.2010.94] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Muscle is an attractive target because it is easily accessible; it also offers a permissive environment for adeno-associated virus (AAV)-mediated gene transfer and has an abundant blood vascular supply providing an efficient transport system for the secretion of proteins. However, gene therapy of dystrophic muscle may be more difficult than that of healthy tissue because of degenerative-regenerative processes, and also because of the inflammatory context. In this study we followed the expression levels of secreted inhibitors of the proinflammatory tumor necrosis factor (TNF) cytokine after intramuscular (i.m.) injection of AAV6 into dystrophic mdx and healthy C57BL/10 mice. We used two chimeric proteins, namely, the human or murine TNF-soluble receptor I fused with the murine heavy immunoglobulin chain. We conducted an AAV6 dose-response study and determined the kinetics of transgene expression. In addition, we followed the antibody response against the transgenes and studied their expression pattern in the muscle. Our results show that transduction efficiency is reduced in dystrophic muscles as compared with healthy ones. Furthermore, we found that the immune response against the secreted protein is stronger in mdx mice. Together, our results underscore that the pathological state of the muscle has to be taken into consideration when designing gene therapy approaches.
Collapse
|
34
|
Arruda VR, Stedman HH, Haurigot V, Buchlis G, Baila S, Favaro P, Chen Y, Franck HG, Zhou S, Wright JF, Couto LB, Jiang H, Pierce GF, Bellinger DA, Mingozzi F, Nichols TC, High KA. Peripheral transvenular delivery of adeno-associated viral vectors to skeletal muscle as a novel therapy for hemophilia B. Blood 2010; 115:4678-88. [PMID: 20335222 PMCID: PMC2890180 DOI: 10.1182/blood-2009-12-261156] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 03/09/2010] [Indexed: 11/20/2022] Open
Abstract
Muscle represents an important tissue target for adeno-associated viral (AAV) vector-mediated gene transfer of the factor IX (FIX) gene in hemophilia B (HB) subjects with advanced liver disease. Previous studies of direct intramuscular administration of an AAV-FIX vector in humans showed limited efficacy. Here we adapted an intravascular delivery system of AAV vectors encoding the FIX transgene to skeletal muscle of HB dogs. The procedure, performed under transient immunosuppression (IS), resulted in widespread transduction of muscle and sustained, dose-dependent therapeutic levels of canine FIX transgene up to 10-fold higher than those obtained by intramuscular delivery. Correction of bleeding time correlated clinically with a dramatic reduction of spontaneous bleeding episodes. None of the dogs (n = 14) receiving the AAV vector under transient IS developed inhibitory antibodies to canine FIX; transient inhibitor was detected after vector delivery without IS. The use of AAV serotypes with high tropism for muscle and low susceptibility to anti-AAV2 antibodies allowed for efficient vector administration in naive dogs and in the presence of low- but not high-titer anti-AAV2 antibodies. Collectively, these results demonstrate the feasibility of this approach for treatment of HB and highlight the importance of IS to prevent immune responses to the FIX transgene product.
Collapse
Affiliation(s)
- Valder R Arruda
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ohashi K, Tatsum K, Utoh R, Takagi S, Shima M, Okano T. Engineering Liver Tissues under the Kidney Capsule Site Provides Therapeutic Effects to Hemophilia B Mice. Cell Transplant 2010; 19:807-13. [DOI: 10.3727/096368910x508924] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent advances in liver tissue engineering have encouraged further investigation into the evaluation of therapeutic benefits based on animal disease models. In the present study, liver tissues were engineered in coagulation factor IX knockout (FIX-KO) mice, a mouse model of hemophilia B, to determine if the tissue engineering approach would provide therapeutic benefits. Primary hepatocytes were isolated from the liver of wild-type mice and suspended in a mixture of culture medium and extracellular matrix components. The hepatocyte suspension was injected into the space under the bilateral kidney capsules of the FIX-KO mice to engineer liver tissues. The plasma FIX activities (FIX:C) of the untreated FIX-KO mice were undetectable at any time point. In contrast, the liver tissue engineered FIX-KO mice achieved 1.5–2.5% of plasma FIX activities (FIX:C) and this elevated FIX:C level persisted throughout the 90 day experimental period. Significant FIX mRNA expression levels were found in the engineered liver tissues at levels similar to the wild-type livers. The present study demonstrates that liver tissue engineering could provide therapeutic benefits in the treatment of hemophilia B.
Collapse
Affiliation(s)
- Kazuo Ohashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Kohei Tatsum
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Pediatrics, Nara Medical University, Nara, Japan
| | - Rie Utoh
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Soichi Takagi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Midori Shima
- Department of Pediatrics, Nara Medical University, Nara, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
36
|
Toromanoff A, Adjali O, Larcher T, Hill M, Guigand L, Chenuaud P, Deschamps JY, Gauthier O, Blancho G, Vanhove B, Rolling F, Chérel Y, Moullier P, Anegon I, Le Guiner C. Lack of immunotoxicity after regional intravenous (RI) delivery of rAAV to nonhuman primate skeletal muscle. Mol Ther 2010; 18:151-60. [PMID: 19888197 PMCID: PMC2839209 DOI: 10.1038/mt.2009.251] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 09/27/2009] [Indexed: 12/28/2022] Open
Abstract
In the absence of an immune response from the host, intramuscular (IM) injection of recombinant adeno-associated virus (rAAV) results in the permanent expression of the transgene from mouse to primate models. However, recent gene transfer studies into animal models and humans indicate that the risk of transgene and/or capsid-specific immune responses occurs and depends on multiple factors. Among these factors, the route of delivery is important, although poorly addressed in large animal models. Here, we compare the IM and the drug-free regional intravenous (RI) deliveries of rAAV in nonhuman primate (NHP) skeletal muscle monitoring the host immune response toward the transgene. We show that IM is consistently associated with immunotoxicity and the destruction of the genetically modified myofibers, whereas RI allows the stable expression of the transgene. This has important implications for the design of clinical trials for gene transfer in skeletal muscle.
Collapse
Affiliation(s)
- Alice Toromanoff
- INSERM UMR 649, CHU de Nantes, Université de Nantes, Faculté de Médecine, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Baroni M, Pavani G, Marescotti D, Kaabache T, Borgel D, Gandrille S, Marchetti G, Legnani C, D'Angelo A, Pinotti M, Bernardi F. Membrane binding and anticoagulant properties of protein S natural variants. Thromb Res 2009; 125:e33-9. [PMID: 19878975 DOI: 10.1016/j.thromres.2009.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Protein S (PS) is a vitamin K-dependent plasma glycoprotein with a key role in the control of coagulation pathway on phospholipid membranes. We compared anticoagulant and membrane binding properties of PS altered by natural mutations (N217S, DelI203D204) affecting the epidermal growth factor like-domain 4 (EGF4) and causing PS deficiency. MATERIALS AND METHODS Binding of recombinant, immunopurified PS (rPS) to several conformation-specific antibodies, to C4BP and to phospholipid liposomes was investigated by ELISA. PS binding to cells was analysed by flow cytometry. PS inhibitory activities were studied in plasma and purified systems. RESULTS AND CONCLUSIONS Conformational changes produced by mutations were revealed by mapping with calcium-dependent antibodies. The immunopurified recombinant mutants (rPS) showed at 200-800 nM concentration reduced inhibition of coagulation (rPS217S, 10.2-17.3%; rPSDelI203D204, 5.8-8.9% of rPSwt) in FXa 1-stage clotting assay with APC. In thrombin generation assays the inhibition of ETP was reduced to 51.6% (rPS217S) and 24.1% (rPSDelI203D204) of rPSwt. A slightly shortened lag time (minutes) was also observed (rPS217S, 2.58; rPSDelI203D204, 2.33; rPSwt, 3.17; PS deficient plasma, 2.17). In flow cytometry analysis both mutants efficiently bound apoptotic cells in adhesion or in suspension. The affinity for phosphatidylserine-rich vesicles (apparent Kd: rPSwt 27.7+/-1.6 nM, rPS217S 146.0+/-16.1 nM and rPSDelI203D204 234.1+/-28.1 nM) was substantially increased by membrane oxidation (10.9+/-0.6, 38.2+/-3.5 and 81.4+/-6.0 nM), which resulted in a virtually normal binding capacity of mutants at physiological PS concentration. These properties help to define the molecular bases of PS deficiency, and provide further elements for PS-mediated bridging of coagulation and inflammation.
Collapse
Affiliation(s)
- Marcello Baroni
- Department of Biochemistry and Molecular Biology, ICSI, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Simioni P, Tormene D, Tognin G, Gavasso S, Bulato C, Iacobelli NP, Finn JD, Spiezia L, Radu C, Arruda VR. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med 2009; 361:1671-5. [PMID: 19846852 DOI: 10.1056/nejmoa0904377] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We report a case of juvenile thrombophilia associated with a substitution of leucine for arginine at position 338 (R338L) in the factor IX gene (factor IX-R338L). The level of the mutant factor IX protein in plasma was normal, but the clotting activity of factor IX from the proband was approximately eight times the normal level. In vitro, recombinant factor IX-R338L had a specific activity that was 5 to 10 times as high as that in the recombinant wild-type factor IX. The R338 substitution causes a gain-of-function mutation, resulting in factor IX that is hyperfunctional.
Collapse
Affiliation(s)
- Paolo Simioni
- Department of Cardiologic, Thoracic and Vascular Sciences, University of Padua Medical School, Padua, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Recombinant canine B-domain-deleted FVIII exhibits high specific activity and is safe in the canine hemophilia A model. Blood 2009; 114:4562-5. [PMID: 19770361 DOI: 10.1182/blood-2009-05-220327] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Production of recombinant B-domain-deleted canine factor VIII (cFVIII-BDD) unexpectedly revealed superior protein yields with 3-fold increased specific activity relative to human FVIII-BDD (hFVIII-BDD). We also determined that activated cFVIII-BDD is more stable than activated hFVIII-BDD. Furthermore, cFVIII-BDD is efficient at inducing hemostasis in human plasma containing FVIII inhibitors. Infusion of cFVIII-BDD in hemophilia A dogs resulted in correction of the disease phenotype with a pharmacokinetic profile similar to clinical experience with hFVIII-BDD. Notably, immune tolerance challenges with cFVIII-BDD in young and adult hemophilia A dogs did not induce the formation of neutralizing or nonneutralizing antibodies to cFVIII. These data establish the framework to quantitatively investigate the efficacy and safety in preclinical studies of novel therapies for hemophilia A.
Collapse
|
40
|
Abstract
Abstract
Blood haemostasis is accomplished by a complex network of coagulatory and fibrinolytic processes. These processes have to be delicately balanced, as clinically manifested by bleeding disorders, such as haemophilia A and B. These disorders are caused by defects in coagulation factor VIII and factor IX, respectively. Following a dual strategy, we emphasise on the one hand principles conserved in most coagulation enzymes, thus mirroring much of the underlying complexity in haemostasis; on the other hand, we identify enzymatic properties of the factor IXa-factor VIIIa system (Xase) that distinguish this proteolytic machine from other components of the coagulation system. While the exact mechanisms of its activity modulation remain baffling until today, superactive factor IX mutants significantly improve our current understanding and serve as a specific and testable model of Xase action.
Collapse
Affiliation(s)
- Thomas Zögg
- Department of Molecular Biology, Division of Structural Biology, University of Salzburg, Billrothstraße 11, A-5020 Salzburg, Austria
| | - Hans Brandstetter
- Department of Molecular Biology, Division of Structural Biology, University of Salzburg, Billrothstraße 11, A-5020 Salzburg, Austria
| |
Collapse
|
41
|
Marchetti-Deschmann M, Kemptner J, Reichel C, Allmaier G. Comparing standard and microwave assisted staining protocols for SDS-PAGE of glycoproteins followed by subsequent PMF with MALDI MS. J Proteomics 2008; 72:628-39. [PMID: 19154801 DOI: 10.1016/j.jprot.2008.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 12/13/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
Abstract
The detection of glycoproteins on SDS-PAGE gels is a very challenging task as glycan moieties can inhibit the protein-dye interaction or protein-silver reaction slowing down or even completely preventing the staining process. Additionally the applied staining procedure can influence the total number of detected peptides after in-gel digestion. Three in SDS-PAGE commonly used staining procedures (silver nitrate, CBB R250 and colloidal CBB G250) were evaluated in terms of duration, sensitivity and obtainable sequence coverage after PMF. The staining procedures were performed with and without the assistance of microwave irradiation. Microwave treatment resulted in comparable band intensities and sensitivities as obtained by the original staining protocols (limit of detection for microwave assisted silver staining: 50 ng), but staining duration was significantly reduced, to 30 min for silver nitrate and to 1.5 h for CBB and cCBB staining method. PMF analysis by MALDI mass spectrometry was not affected by the microwave treatment. It was found that the total number of detected tryptic peptides has increased when applying microwave irradiation during the staining process (average sequence coverage 31-56% and 76% for Avidin).
Collapse
Affiliation(s)
- Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, Vienna, Austria.
| | | | | | | |
Collapse
|
42
|
Tatsumi K, Ohashi K, Shima M, Nakajima Y, Okano T, Yoshioka A. Therapeutic effects of hepatocyte transplantation on hemophilia B. Transplantation 2008; 86:167-70. [PMID: 18622295 DOI: 10.1097/tp.0b013e31817b9160] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hepatocyte transplantation offers an alternative therapeutic approach in the treatment of liver-related diseases. Hemophilia B is a bleeding disorder lacking factor IX (FIX) production in the liver, and achieving more than 1% coagulation activity results in significant improvement in the quality of life of the patients. The aim of this study was to investigate the efficacy of hepatocyte transplantation in the mouse model of hemophilia B. We transplanted isolated normal mouse hepatocytes into the liver of FIX knock-out mice. In some recipient mice, additional hepatocyte transplantations were performed 15 days after the first transplant. The recipient plasma FIX activities increased at 1% to 2% and persisted throughout the experimental period. An additional increase was achieved by the repeated transplantation. Close correlation between FIX messenger RNA levels of the liver and plasma FIX activity levels was observed. These results demonstrate that hepatocyte transplantation can provide therapeutic benefits in the treatment of hemophilia B.
Collapse
Affiliation(s)
- Kohei Tatsumi
- Department of Pediatrics, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Trollet C, Scherman D, Bigey P. Delivery of DNA into muscle for treating systemic diseases: advantages and challenges. Methods Mol Biol 2008; 423:199-214. [PMID: 18370200 DOI: 10.1007/978-1-59745-194-9_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
An efficient and safe method to deliver DNA in vivo is a requirement for several purposes, such as the study of gene function and gene therapy applications. Among the different nonviral delivery methods currently under investigation, in vivo DNA electrotransfer has proven to be one of the most efficient and simple methods. This technique is a physical method of gene delivery consisting of a local application of electric pulses after injection of DNA. This technique can be applied to almost any tissue of a living animal, including tumors, skin, liver, kidney, artery, retina, cornea, or even brain, but the focus of this review will be on electrotransfer of plasmid DNA into skeletal muscle and its possible therapeutic uses for systemic diseases. Skeletal muscle is a good target for electrotransfer of DNA because of the following features: a large volume of easily accessible tissue, an endocrine organ capable of expressing several local and systemic factors, and muscle fibers as postmitotic cells have a long lifespan, which allows long-term gene expression. In this review, we will describe the main characteristics of DNA electrotransfer, including toxicity and safety issues related to this technique. We will focus on the important possible therapeutic applications of electrotransfer for systemic diseases demonstrated in animal models in the recent years, in the fields of monogenic diseases, tissue-specific diseases, metabolic disorders, immune-system-related diseases, and cancer. Finally, we will discuss the advantages and challenges of this technique.
Collapse
Affiliation(s)
- Capucine Trollet
- Unité de Pharmacologie Chimique et Génétique, Faculté de Pharmacie, René Descartes Paris 5 University, Paris, France
| | | | | |
Collapse
|
44
|
Abstract
The ultimate goal of gene therapy is the replacement of a defective gene sequence with a corrected version to eliminate disease for the lifetime of the patient. This challenging task is not yet accomplished, however significant progress is evident. An initial spate of clinical trials attempting the treatment of haemophilia with gene transfer primarily resulted in the demonstration of good safety profiles, but without efficacy. Subsequent reengineering of vector plasmids and delivery systems resulted in markedly improved outcomes in animal models of the disease. The most recent clinical trial for the treatment of haemophilia B with gene transfer showed transient achievement of efficacy in the highest dose cohort tested, but also exposed a previously hidden barrier to the future success of these treatments. The progress and problems of gene therapies for haemorrhagic disorders will be discussed. This review will concentrate on approaches in or near clinical application.
Collapse
Affiliation(s)
- Samuel L Murphy
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
45
|
Toromanoff A, Chérel Y, Guilbaud M, Penaud-Budloo M, Snyder RO, Haskins ME, Deschamps JY, Guigand L, Podevin G, Arruda VR, High KA, Stedman HH, Rolling F, Anegon I, Moullier P, Le Guiner C. Safety and efficacy of regional intravenous (r.i.) versus intramuscular (i.m.) delivery of rAAV1 and rAAV8 to nonhuman primate skeletal muscle. Mol Ther 2008; 16:1291-1299. [PMID: 18461055 DOI: 10.1038/mt.2008.87] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 04/02/2008] [Indexed: 11/09/2022] Open
Abstract
We developed a drug-free regional intravenous (r.i.) delivery protocol of recombinant adeno-associated virus (rAAV) 1 and 8 to an entire limb in the nonhuman primate (NHP), and compared the results with those produced by intramuscular (i.m.) delivery of the same dose of vector. We show that r.i. delivery of both serotypes was remarkably well tolerated with no adverse side-effects. After i.m., muscle transduction was restricted to the site of injection with a high number of vector copies per cell for rAAV1. In contrast, although r.i. delivery resulted in a lower vector copy per cell, it was detectable in the vast majority of muscles of the injected limb. The amounts of circulating infectious rAAV were similar for both serotypes and modes of delivery. At autopsy at up to 34 months after vector administration, similar biodistribution patterns were found for both vectors and for both modes of delivery, with numerous organs found to be positive for vector sequence when assayed using PCR and Southern blot. Altogether, we demonstrated that r.i. is a simple and efficient transduction protocol in NHPs, resulting in higher expression of the transgene with a lower number of vector genomes per cell. However, regardless of the mode of delivery, concerns continue to be raised by the presence of vector sequences detected at distant sites.
Collapse
Affiliation(s)
- Alice Toromanoff
- INSERM UMR 649, CHU Nantes, Faculté de Médecine, Université de Nantes, Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fewell JG. Factor IX gene therapy for hemophilia. Methods Mol Biol 2008; 423:375-382. [PMID: 18370215 DOI: 10.1007/978-1-59745-194-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Using gene therapy to produce systemic levels of human factor IX for the treatment of hemophilia B has been clinically evaluated using viral-based vectors. The efficacy of this approach has been limited because of immune responses against the viral components. An alternative approach is to use physical methods such as in vivo electroporation to deliver plasmid DNA, thereby avoiding some of the complications associated with viral-based delivery systems. A method describing intramuscular injection of plasmid formulated with an anionic polymer and followed by electroporation, which can produce high transfection efficiency and high levels of systemic factor IX protein following a single administration, is provided here.
Collapse
|
47
|
Hoffman BE, Dobrzynski E, Wang L, Hirao L, Mingozzi F, Cao O, Herzog RW. Muscle as a target for supplementary factor IX gene transfer. Hum Gene Ther 2007; 18:603-13. [PMID: 17594244 DOI: 10.1089/hum.2007.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immune responses to the factor IX (F.IX) transgene product are a concern in gene therapy for the X-linked bleeding disorder hemophilia B. The risk for such responses is determined by several factors, including the vector, target tissue, and others. Previously, we have demonstrated that hepatic gene transfer with adeno-associated viral (AAV) vectors can induce F.IX-specific immune tolerance. Muscle-derived F.IX expression, however, is limited by a local immune response. Here, skeletal muscle was investigated as a target for supplemental gene transfer. Given the low invasiveness of intramuscular injections, this route would be ideal for secondary gene transfer, thereby boosting levels of transgene expression. However, this is feasible only if immune tolerance established by compartmentalization of expression to the liver extends to other sites. Immune tolerance to human F.IX established by prior hepatic AAV-2 gene transfer was maintained after subsequent injection of AAV-1 or adenoviral vector into skeletal muscle, and tolerized mice failed to form antibodies or an interferon (IFN)-gamma(+) T cell response to human F.IX. A sustained increase in systemic transgene expression was obtained for AAV-1, whereas an increase after adenoviral gene transfer was transient. A CD8(+) T cell response specifically against adenovirus-transduced fibers was observed, suggesting that cytotoxic T cell responses against viral antigens were sufficient to eliminate expression in muscle. In summary, the data demonstrate that supplemental F.IX gene transfer to skeletal muscle does not break tolerance achieved by liver-derived expression. The approach is efficacious, if the vector for muscle gene transfer does not express immunogenic viral proteins.
Collapse
Affiliation(s)
- Brad E Hoffman
- Department of Pediatrics and Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Wu Z, Sun J, Zhang T, Yin C, Yin F, Van Dyke T, Samulski RJ, Monahan PE. Optimization of self-complementary AAV vectors for liver-directed expression results in sustained correction of hemophilia B at low vector dose. Mol Ther 2007; 16:280-9. [PMID: 18059373 DOI: 10.1038/sj.mt.6300355] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Self-complementary adeno-associated virus (scAAV) vectors can significantly minimize the vector load required to achieve sustained transgene expression. In this study, transcriptional regulatory elements were systematically screened to produce constitutive and liver-specific scAAV factor IX (FIX) expression cassettes. In addition, optimization of GC content, cis- regulatory elements, and codon usage in the human FIX (hFIX) transgene increased expression 4-20-fold. A vector was developed that was capable of expressing high FIX levels in comparison with the single-stranded (ss) AAV vector used in a recent clinical trial. The ssAAV and scAAV vectors display different transgene expression and genome stability patterns in the liver, as determined by immunohistochemical staining, in situ messenger RNA (mRNA) hybridization and vector genome quantitation. The ssAAV2 vector promoted strong FIX expression in only a subset of hepatocytes. The scAAV2-hFIX vector showed widespread ( approximately 80% of hepatocytes), moderate FIX expression levels similar to normal livers with correction of coagulation function in FIX-deficient mice. The ability of low dose scAAV-FIX vectors to achieve near-physiological expression may circumvent inflammatory responses in the liver. In addition to providing an improved scAAV vector for potential application in future hemophilia B clinical trials and liver-directed gene delivery, these studies underscore the need for rigorous analysis and optimization of vector genome cassettes.
Collapse
Affiliation(s)
- Zhijian Wu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7352, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Yang C, Feng J, Song W, Wang J, Tsai B, Zhang Y, Scaringe WA, Hill KA, Margaritis P, High KA, Sommer SS. A mouse model for nonsense mutation bypass therapy shows a dramatic multiday response to geneticin. Proc Natl Acad Sci U S A 2007; 104:15394-9. [PMID: 17881586 PMCID: PMC2000501 DOI: 10.1073/pnas.0610878104] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aminoglycosides can bypass nonsense mutations and are the prototypic agents for translational bypass therapy (TBT). Initial results demonstrate the need for more potent drugs and an in vivo model system for quantitative assessment of TBT. Herein, we present an in vivo system for evaluating the efficacy of premature stop codon management therapies: in vivo quantitative stop codon management repli-sampling TBT efficacy assay (IQSCMaRTEA). Application of IQSCMaRTEA reveals that geneticin is much more efficacious in vivo than gentamicin. Treatment with geneticin elicits a multiday response, and residual F9 antigen can be detected after 3 weeks. These data demonstrate the utility of IQSCMaRTEA for evaluating drugs that bypass nonsense mutations. In addition, IQSCMaRTEA may be helpful for testing inhibitors of nonsense-mediated decay, as stop codon management therapy will sometimes require inhibition of nonsense-mediated decay and translational bypass of the nonsense mutation. Furthermore, geneticin, its metabolites, or better tolerated analogues should be evaluated as a general treatment with multiday response for severe genetic disease caused by nonsense mutation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William A. Scaringe
- Departments of *Molecular Genetics and
- Molecular Diagnosis, City of Hope National Medical Center, Duarte, CA 91010
| | - Kathleen A. Hill
- Departments of *Molecular Genetics and
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | | | - Katherine A. High
- Department of Pediatrics, University of Pennsylvania School of Medicine and Division of Hematology
- Howard Hughes Medical Institute, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Steve S. Sommer
- Departments of *Molecular Genetics and
- Molecular Diagnosis, City of Hope National Medical Center, Duarte, CA 91010
- **To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Baoutina A, Alexander IE, Rasko JEJ, Emslie KR. Developing strategies for detection of gene doping. J Gene Med 2007; 10:3-20. [DOI: 10.1002/jgm.1114] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|