1
|
Junge M, Liaukouskaya N, Schwarz N, Pinto-Espinoza C, Schaffrath AZ, Rissiek B, Krebs CF, Rattay G, Mittrücker HW, Tomas NM, Nicke A, Haag F, Huber TB, Meyer-Schwesinger C, Koch-Nolte F, Wanner N. ATP-Gated P2X7-Ion Channel on Kidney-Resident Natural Killer T Cells and Memory T Cells in Intrarenal Inflammation. J Am Soc Nephrol 2024:00001751-990000000-00489. [PMID: 39675762 DOI: 10.1681/asn.0000000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Key Points
Parenchymal T cells in the kidney expressed much higher levels of P2X7 than vascular T cells.P2X7-blocking nanobodies uncover a large fraction of kidney-resident natural killer T and tissue-resident memory T cells.These cells were lost during cell preparation because of activation of P2X7 by NAD+ released from damaged cells, unless blocked by nanobodies.
Background
The P2X7 ion channel, a key sensor of sterile inflammation, has been implicated as a therapeutic target in GN, and P2X7-antagonistic nanobodies can attenuate experimental GN. However, little is known about the expression of P2X7 on renal immune cells.
Methods
We used conventional immunofluorescence of kidney sections and intraperitoneal injection of nanobodies in mice followed by flow cytometry analysis of parenchymal T cells and RNA sequencing to elucidate the expression and function of P2X7 on parenchymal and vascular immune cells in the mouse kidney.
Results
Our study showed that parenchymal T cells, including a large subset of natural killer T cells and CD69+ tissue-resident memory T cells, display much higher cell surface levels of P2X7 than vascular T cells. After a single intraperitoneal injection of P2X7-blocking nanobodies, P2X7 on parenchymal T cells was fully occupied by the injected nanobodies within 30 minutes. This resulted in an effective protection of these cells from nicotinamide adenine dinucleotide–induced cell death during cell preparation. Conversely, systemic injection of nicotinamide adenine dinucleotide that mimics sterile inflammation results in the selective depletion of P2X7hiCD69hi T cells from the kidney parenchyma.
Conclusions
Our study uncovered a novel purinergic regulatory mechanism affecting kidney-resident T-cell populations.
Collapse
Affiliation(s)
- Marten Junge
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nastassia Liaukouskaya
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Schwarz
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carolina Pinto-Espinoza
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessa Z Schaffrath
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Rattay
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Willi Mittrücker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Kutryb-Zając B. Editorial for the Special Issue Titled "Adenosine Metabolism: Key Targets in Cardiovascular Pharmacology". Pharmaceuticals (Basel) 2024; 17:751. [PMID: 38931418 PMCID: PMC11206363 DOI: 10.3390/ph17060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Adenine nucleotides and adenosine maintain cardiovascular homeostasis, producing diverse effects by intracellular and extracellular mechanisms [...].
Collapse
|
3
|
Wang X, Yu Q, Bai X, Li X, Sun Y, Peng X, Zhao R. The role of the purinergic ligand-gated ion channel 7 receptor in common digestive system cancers. Eur J Cancer Prev 2024; 33:271-281. [PMID: 37942897 DOI: 10.1097/cej.0000000000000851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The incidence of digestive malignancies has increased in recent years, including colorectal cancer (CRC), hepatocellular carcinoma (HCC) and pancreatic cancer. Advanced stages of these cancers are prone to metastasis, which seriously reduce the standard of living of patients and lead to decline in the survival rate of patients. So far there are no good specific drugs to stop this phenomenon. It is very important and urgent to find new biomarkers and therapeutic targets. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is ATP-gated and nonselective ion channel receptor involved in many inflammatory processes and cancer progression. P2X7R is present in many cancer cells and promotes or inhibits cancer development through signal transduction. Studies have presented that P2X7R plays a role in the proliferation and migration of digestive system cancers, such as CRC, HCC and pancreatic cancer. Therefore, P2X7R may serve as a biomarker or therapeutic target for digestive system cancers. This paper describes the structure and function of P2X7R, and mainly reviews the research progress on the role of P2X7R in CRC, HCC and pancreatic cancer.
Collapse
Affiliation(s)
- Xin Wang
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Qingqing Yu
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xue Bai
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xinyu Li
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Yanli Sun
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
4
|
Tian S, Liu T, Jiang J, Zhao X, Fan Y, Zhang W, Ma W, Guo T, Wang W, Liu Y. Salvia miltiorrhiza ameliorates endometritis in dairy cows by relieving inflammation, energy deficiency and blood stasis. Front Pharmacol 2024; 15:1349139. [PMID: 38633614 PMCID: PMC11021767 DOI: 10.3389/fphar.2024.1349139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction: According to traditional Chinese veterinary medicine, endometritis is caused by a combination of Qi deficiency, blood stasis, and external evil invasion. Salvia miltiorrhiza is a traditional Chinese medicine that counteracts blood stasis and has additional demonstrated effects in boosting energy and restraining inflammation. Salvia miltiorrhiza has been employed in many traditional Chinese prescriptions that have proven effective in healing clinical dairy cow endometritis. Methods: the in vivo effect of Salvia miltiorrhiza in treating endometritis was evaluated in dairy cows. In addition, bovine endometrial epithelium cell inflammation and rat blood stasis models were employed to demonstrate the crosstalk between energy, blood circulation and inflammation. Network analysis, western blotting, qRT-PCR and ELISA were performed to investigate the molecular mechanism of Salvia miltiorrhiza in endometritis treatment. Results: The results demonstrate that treatment with Salvia miltiorrhiza relieves uterine inflammation, increases blood ATP concentrations, and prolongs blood clotting times. Four of the six Salvia miltiorrhiza main components (SMMCs) (tanshinone IIA, cryptotanshinone, salvianolic acid A and salvianolic acid B) were effective in reversing decreased ATP and increased IL-1β, IL-6, and IL-8 levels in an in vitro endometritis model, indicating their abilities to ameliorate the negative energy balance and external evil invasion effects of endometritis. Furthermore, in a blood stasis rat model, inflammatory responses were induced in the absence of external infection; and all six SMMCs inhibited thrombin-induced platelet aggregation. Network analysis of SMMC targets predicted that Salvia miltiorrhiza may mediate anti-inflammation via the Toll-like receptor signaling pathway; anti-aggregation via the Platelet activation pathway; and energy balance via the Thermogenesis and AMPK signaling pathways. Multiple molecular targets within these pathways were verified to be inhibited by SMMCs, including P38/ERK-AP1, a key molecular signal that may mediate the crosstalk between inflammation, energy deficiency and blood stasis. Conclusion: These results provide mechanistic understanding of the therapeutic effect of Salvia miltiorrhiza for endometritis achieved through Qi deficiency, blood stasis, and external evil invasion.
Collapse
Affiliation(s)
- Shiyang Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Tianyi Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Jingwei Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiting Zhao
- Department of Women HealthCare, Changchun Lvyuan Hospital of Traditional Chinese Medicine, Changchun, China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Tingting Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weiling Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Zorina-Lichtenwalter K, Ase AR, Verma V, Parra AIM, Komarova S, Khadra A, Séguéla P, Diatchenko L. Characterization of Common Genetic Variants in P2RX7 and Their Contribution to Chronic Pain Conditions. THE JOURNAL OF PAIN 2024; 25:545-556. [PMID: 37742908 DOI: 10.1016/j.jpain.2023.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
The adenosine triphosphate (ATP)-gated channel P2X7 is encoded by a gene enriched for common nonsynonymous variants. Many of these variants have functional cellular effects, and some have been implicated in chronic pain. In this study, we first systematically characterized all 17 common nonsynonymous variants using whole-cell patch clamp electrophysiology. Then, we analyzed these variants for statistical association with chronic pain phenotypes using both individual P2RX7 variants as predictors and cumulative allele counts of same-direction cellular effect in univariate models. Association and validation analyses were conducted in the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) cohort (N = 3260) and in the Complex Persistent Pain Conditions (CPPC) cohort (N = 900), respectively. Our results showed an association between allele A of rs7958311 and an increased risk of chronic pelvic pain, with convergent evidence for contribution to fibromyalgia and irritable bowel syndrome, confirmed in a meta-analysis. This allelic variant produced a unique cellular phenotype: a gain-of-function in channel opening, and a loss-of-function in pore opening. A computational study using a 12-state Markov model of ATP binding to the P2X7 receptor suggested that this cellular phenotype arises from an increased ATP binding affinity and an increased open channel conductance combined with a loss of sensitization. Cumulative allele count analysis did not provide additional insights. In conclusion, our results go beyond reproducing association for rs7958311 with chronic pain and suggest that its unique combination of gain-of-function in channel and loss-of-function in pore activity may explain why it is likely the only common P2RX7 variant with contribution to chronic pain. PERSPECTIVE: This study characterizes all common P2RX7 variants using cellular assays and statistical association analyses with chronic pain, with Markov state modeling of the most robustly associated variant.
Collapse
Affiliation(s)
- Katerina Zorina-Lichtenwalter
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Ariel R Ase
- Department of Neurology & Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Montreal Neurological Institute/Hospital, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Vivek Verma
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Arturo I M Parra
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Svetlana Komarova
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Anmar Khadra
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Philippe Séguéla
- Department of Neurology & Neurosurgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Montreal Neurological Institute/Hospital, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Alan Edwards Centre for Research on Pain, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Hasan T, Pasala AR, Hassan D, Hanotaux J, Allan DS, Maganti HB. Homing and Engraftment of Hematopoietic Stem Cells Following Transplantation: A Pre-Clinical Perspective. Curr Oncol 2024; 31:603-616. [PMID: 38392038 PMCID: PMC10888387 DOI: 10.3390/curroncol31020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Hematopoietic stem-cell (HSC) transplantation (HSCT) is used to treat various hematologic disorders. Use of genetically modified mouse models of hematopoietic cell transplantation has been critical in our fundamental understanding of HSC biology and in developing approaches for human patients. Pre-clinical studies in animal models provide insight into the journey of transplanted HSCs from infusion to engraftment in bone-marrow (BM) niches. Various signaling molecules and growth factors secreted by HSCs and the niche microenvironment play critical roles in homing and engraftment of the transplanted cells. The sustained equilibrium of these chemical and biologic factors ensures that engrafted HSCs generate healthy and durable hematopoiesis. Transplanted healthy HSCs compete with residual host cells to repopulate stem-cell niches in the marrow. Stem-cell niches, in particular, can be altered by the effects of previous treatments, aging, and the paracrine effects of leukemic cells, which create inhospitable bone-marrow niches that are unfavorable for healthy hematopoiesis. More work to understand how stem-cell niches can be restored to favor normal hematopoiesis may be key to reducing leukemic relapses following transplant.
Collapse
Affiliation(s)
- Tanvir Hasan
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
| | - Ajay Ratan Pasala
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Dhuha Hassan
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
| | - Justine Hanotaux
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
| | - David S. Allan
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Clinical Epidemiology & Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Harinad B. Maganti
- Canadian Blood Services, Stem Cells and Centre for Innovation, Ottawa, ON K1G 4J5, Canada; (T.H.); (A.R.P.); (D.H.); (J.H.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
7
|
Ai Y, Wang H, Liu L, Qi Y, Tang S, Tang J, Chen N. Purine and purinergic receptors in health and disease. MedComm (Beijing) 2023; 4:e359. [PMID: 37692109 PMCID: PMC10484181 DOI: 10.1002/mco2.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Purines and purinergic receptors are widely distributed throughout the human body. Purine molecules within cells play crucial roles in regulating energy metabolism and other cellular processes, while extracellular purines transmit signals through specific purinergic receptors. The ubiquitous purinergic signaling maintains normal neural excitability, digestion and absorption, respiratory movement, and other complex physiological activities, and participates in cell proliferation, differentiation, migration, and death. Pathological dysregulation of purinergic signaling can result in the development of various diseases, including neurodegeneration, inflammatory reactions, and malignant tumors. The dysregulation or dysfunction of purines and purinergic receptors has been demonstrated to be closely associated with tumor progression. Compared with other subtypes of purinergic receptors, the P2X7 receptor (P2X7R) exhibits distinct characteristics (i.e., a low affinity for ATP, dual functionality upon activation, the mediation of ion channels, and nonselective pores formation) and is considered a promising target for antitumor therapy, particularly in patients with poor response to immunotherapy This review summarizes the physiological and pathological significance of purinergic signaling and purinergic receptors, analyzes their complex relationship with tumors, and proposes potential antitumor immunotherapy strategies from tumor P2X7R inhibition, tumor P2X7R overactivation, and host P2X7R activation. This review provides a reference for clinical immunotherapy and mechanism investigation.
Collapse
Affiliation(s)
- Yanling Ai
- Department of OncologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Hengyi Wang
- Department of Infectious DiseasesHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Lu Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yulin Qi
- Department of OphthalmologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
- Postdoctoral Research Station of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and EngineeringCollege of Biomedical EngineeringChongqing Medical UniversityChongqingChina
| |
Collapse
|
8
|
Furuta K, Onishi H, Ikada Y, Masaki K, Tanaka S, Kaito C. ATP and its metabolite adenosine cooperatively upregulate the antigen-presenting molecules on dendritic cells leading to IFN-γ production by T cells. J Biol Chem 2023; 299:104587. [PMID: 36889584 PMCID: PMC10124915 DOI: 10.1016/j.jbc.2023.104587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Dendritic cells (DCs) present foreign antigens to T cells via the major histocompatibility complex (MHC), thereby inducing acquired immune responses. ATP accumulates at sites of inflammation or in tumor tissues, which triggers local inflammatory responses. However, it remains to be clarified how ATP modulates the functions of DCs. In this study, we investigated the effects of extracellular ATP on mouse bone marrow-derived dendritic cells (BMDCs), as well as the potential for subsequent T cell activation. We found that high concentrations of ATP (1 mM) upregulated the cell surface expression levels of MHC-I, MHC-II, and co-stimulatory molecules CD80 and CD86, but not those of co-inhibitory molecules PD-L1 and PD-L2 in BMDCs. Increased surface expression of MHC-I, MHC-II, CD80, and CD86 was inhibited by a pan-P2 receptor antagonist. In addition, the upregulation of MHC-I and MHC-II expression was inhibited by an adenosine P1 receptor antagonist and by inhibitors of CD39 and CD73, which metabolize ATP to adenosine. These results suggest that adenosine is required for the ATP-induced upregulation of MHC-I and MHC-II. In the mixed leukocyte reaction assay, ATP-stimulated BMDCs activated CD4 and CD8 T cells and induced interferon-gamma (IFN-γ) production by these T cells. Collectively, these results suggest that high concentrations of extracellular ATP upregulate the expression of antigen-presenting and co-stimulatory molecules but not that of co-inhibitory molecules in BMDCs. Cooperative stimulation of ATP and its metabolite adenosine was required for the upregulation of MHC-I and MHC-II. These ATP-stimulated BMDCs induced the activation of IFN-γ-producing T cells upon antigen presentation.
Collapse
Affiliation(s)
- Kazuyuki Furuta
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan.
| | - Hiroka Onishi
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Yuki Ikada
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Kento Masaki
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Satoshi Tanaka
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, 5 Misasagi Nakauchi-cho, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Chikara Kaito
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
9
|
Di Virgilio F, Vultaggio-Poma V, Falzoni S, Giuliani AL. Extracellular ATP: A powerful inflammatory mediator in the central nervous system. Neuropharmacology 2023; 224:109333. [PMID: 36400278 DOI: 10.1016/j.neuropharm.2022.109333] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Nucleotides play a crucial role in extracellular signaling across species boundaries. All the three kingdoms of life (Bacteria, Archea and Eukariota) are responsive to extracellular ATP (eATP) and many release this and other nucleotides. Thus, eATP fulfills different functions, many related to danger-sensing or avoidance reactions. Basically all living organisms have evolved sensors for eATP and other nucleotides with very different affinity and selectivity, thus conferring a remarkable plasticity to this signaling system. Likewise, different intracellular transduction systems were associated during evolution to different receptors for eATP. In mammalian evolution, control of intracellular ATP (iATP) and eATP homeostasis has been closely intertwined with that of Ca2+, whether in the extracellular milieu or in the cytoplasm, establishing an inverse reciprocal relationship, i.e. high extracellular Ca2+ levels are associated to negligible eATP, while low intracellular Ca2+ levels are associated to high eATP concentrations. This inverse relationship is crucial for the messenger functions of both molecules. Extracellular ATP is sensed by specific plasma membrane receptors of widely different affinity named P2 receptors (P2Rs) of which 17 subtypes are known. This confers a remarkable plasticity to P2R signaling. The central nervous system (CNS) is a privileged site for purinergic signaling as all brain cell types express P2Rs. Accruing evidence suggests that eATP, in addition to participating in synaptic transmission, also plays a crucial homeostatic role by fine tuning microglia, astroglia and oligodendroglia responses. Drugs modulating the eATP concentration in the CNS are likely to be the new frontier in the therapy of neuroinflammation. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy.
| | | | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Medical Sciences, University of Ferrara, Via Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
10
|
Waad Sadiq Z, Brioli A, Al-Abdulla R, Çetin G, Schütt J, Murua Escobar H, Krüger E, Ebstein F. Immunogenic cell death triggered by impaired deubiquitination in multiple myeloma relies on dysregulated type I interferon signaling. Front Immunol 2023; 14:982720. [PMID: 36936919 PMCID: PMC10018035 DOI: 10.3389/fimmu.2023.982720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Proteasome inhibition is first line therapy in multiple myeloma (MM). The immunological potential of cell death triggered by defects of the ubiquitin-proteasome system (UPS) and subsequent perturbations of protein homeostasis is, however, less well defined. Methods In this paper, we applied the protein homeostasis disruptors bortezomib (BTZ), ONX0914, RA190 and PR619 to various MM cell lines and primary patient samples to investigate their ability to induce immunogenic cell death (ICD). Results Our data show that while BTZ treatment triggers sterile type I interferon (IFN) responses, exposure of the cells to ONX0914 or RA190 was mostly immunologically silent. Interestingly, inhibition of protein de-ubiquitination by PR619 was associated with the acquisition of a strong type I IFN gene signature which relied on key components of the unfolded protein and integrated stress responses including inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR) and general control nonderepressible 2 (GCN2). The immunological relevance of blocking de-ubiquitination in MM was further reflected by the ability of PR619-induced apoptotic cells to facilitate dendritic cell (DC) maturation via type I IFN-dependent mechanisms. Conclusion Altogether, our findings identify de-ubiquitination inhibition as a promising strategy for inducing ICD of MM to expand current available treatments.
Collapse
Affiliation(s)
- Zeinab Waad Sadiq
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Annamaria Brioli
- Klinik und Poliklinik für Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Ruba Al-Abdulla
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Gonca Çetin
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jacqueline Schütt
- Klinik und Poliklinik für Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Triazoles with inhibitory action on P2X7R impaired the acute inflammatory response in vivo and modulated the hemostatic balance in vitro and ex vivo. Inflamm Res 2022; 72:237-250. [PMID: 36463339 PMCID: PMC9734322 DOI: 10.1007/s00011-022-01664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE The present study aimed to investigate five triazole compounds as P2X7R inhibitors and evaluate their ability to reduce acute inflammation in vivo. MATERIAL The synthetic compounds were labeled 5e, 8h, 9i, 11, and 12. TREATMENT We administered 500 ng/kg triazole analogs in vivo, (1-10 µM) in vitro, and 1000 mg/kg for toxicological assays. METHODS For this, we used in vitro experiments, such as platelet aggregation, in vivo experiments of paw edema and peritonitis in mice, and in silico experiments. RESULTS The tested substances 5e, 8h, 9i, 11, and 12 produced a significant reduction in paw edema. Molecules 5e, 8h, 9i, 11, and 12 inhibited carrageenan-induced peritonitis. Substances 5e, 8h, 9i, 11, and 12 showed an anticoagulant effect, and 5e at a concentration of 10 µM acted as a procoagulant. All derivatives, except for 11, had pharmacokinetic, physicochemical, and toxicological properties suitable for substances that are candidates for new drugs. In addition, the ADMET risk assessment shows that derivatives 8h, 11, 5e, and 9i have high pharmacological potential. Finally, docking tests indicated that the derivatives have binding energies comparable to the reference antagonist with a competitive inhibition profile. CONCLUSIONS Together, the results indicate that the molecules tested as antagonist drugs of P2X7R had anti-inflammatory action against the acute inflammatory response.
Collapse
|
12
|
Lin JMG, Kourtis S, Ghose R, Pardo Lorente N, Kubicek S, Sdelci S. Metabolic modulation of transcription: The role of one-carbon metabolism. Cell Chem Biol 2022; 29:S2451-9456(22)00415-9. [PMID: 36513079 DOI: 10.1016/j.chembiol.2022.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022]
Abstract
While it is well known that expression levels of metabolic enzymes regulate the metabolic state of the cell, there is mounting evidence that the converse is also true, that metabolite levels themselves can modulate gene expression via epigenetic modifications and transcriptional regulation. Here we focus on the one-carbon metabolic pathway, which provides the essential building blocks of many classes of biomolecules, including purine nucleotides, thymidylate, serine, and methionine. We review the epigenetic roles of one-carbon metabolic enzymes and their associated metabolites and introduce an interactive computational resource that places enzyme essentiality in the context of metabolic pathway topology. Therefore, we briefly discuss examples of metabolic condensates and higher-order complexes of metabolic enzymes downstream of one-carbon metabolism. We speculate that they may be required to the formation of transcriptional condensates and gene expression control. Finally, we discuss new ways to exploit metabolic pathway compartmentalization to selectively target these enzymes in cancer.
Collapse
Affiliation(s)
- Jung-Ming G Lin
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Vienna 1090, Austria
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Ritobrata Ghose
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Natalia Pardo Lorente
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Vienna 1090, Austria
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona, Catalonia 08003, Spain.
| |
Collapse
|
13
|
Schäfer W, Stähler T, Pinto Espinoza C, Danquah W, Knop JH, Rissiek B, Haag F, Koch-Nolte F. Origin, distribution, and function of three frequent coding polymorphisms in the gene for the human P2X7 ion channel. Front Pharmacol 2022; 13:1033135. [DOI: 10.3389/fphar.2022.1033135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2022] Open
Abstract
P2X7, an ion channel gated by extracellular ATP, is widely expressed on the plasma membrane of immune cells and plays important roles in inflammation and apoptosis. Several single nucleotide polymorphisms have been identified in the human P2RX7 gene. In contrast to other members of the P2X family, non-synonymous polymorphisms in P2X7 are common. Three of these occur at overall frequencies of more than 25% and affect residues in the extracellular “head”-domain of P2X7 (155 Y/H), its “lower body” (270 R/H), and its “tail” in the second transmembrane domain (348 T/A). Comparison of the P2X7 orthologues of human and other great apes indicates that the ancestral allele is Y—R—T (at 155–270–348). Interestingly, each single amino acid variant displays lower ATP-sensitivity than the ancestral allele. The originally published reference sequence of human P2X7, often referred to as “wildtype,” differs from the ancestral allele at all three positions, i.e. H—H—A. The 1,000 Genome Project determined the sequences of both alleles of 2,500 human individuals, including roughly 500 persons from each of the five major continental regions. This rich resource shows that the ancestral alleles Y155, R270, and T348 occur in all analyzed human populations, albeit at strikingly different frequencies in various subpopulations (e.g., 25%–59% for Y155, 59%–77% for R270, and 13%–47% for T348). BLAST analyses of ancient human genome sequences uncovered several homozygous carriers of variant P2X7 alleles, possibly reflecting a high degree of inbreeding, e.g., H—R—T for a 50.000 year old Neanderthal, H—R—A for a 24.000 year old Siberian, and Y—R—A for a 7,000 year old mesolithic European. In contrast, most present-day individuals co-express two copies of P2X7 that differ in one or more amino acids at positions 155, 270, and 348. Our results improve the understanding of how P2X7 structure affects its function and suggest the importance of considering P2X7 variants of participants when designing clinical trials targeting P2X7.
Collapse
|
14
|
Ubah UDB, Triyasakorn K, Roan B, Conlin M, Lai JCK, Awale PS. Pan HDACi Valproic Acid and Trichostatin A Show Apparently Contrasting Inflammatory Responses in Cultured J774A.1 Macrophages. EPIGENOMES 2022; 6:epigenomes6040038. [PMID: 36412793 PMCID: PMC9680436 DOI: 10.3390/epigenomes6040038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
This study was initiated as an attempt to clarify some of the apparent conflicting data regarding the so-called anti-inflammatory versus proinflammatory properties of histone deacetylase inhibitors (HDACis). In cell culture, typically, chronic pretreatment with the HDACi valproic acid (VPA) and trichostatin A (TSA) exhibits an anti-inflammatory effect. However, the effect of acute treatment with VPA and TSA on the levels of inflammatory cytokines in J774A.1 macrophage cell line is unknown. Therefore, this study investigated the effect of acute treatment with VPA and TSA on levels of key inflammatory cytokines in maximally stimulated J774A.1 cells. J774A.1 macrophages were treated with either VPA or TSA for 1 h (acute treatment), followed by maximal stimulation with LPS + IFNγ for 24 h. ELISA was used to measure the levels of proinflammatory cytokines TNFα, NO and IL-1β from the culture medium. Acute treatment with VPA showed a dose-dependent increase in levels of all three cytokines. Similar to VPA, TSA also showed a dose-dependent increase in levels of IL-1β alone. This study sheds new light on the conflicting data in the literature that may partly be explained by acute or short-term exposure versus chronic or long-term exposure to HDACi.
Collapse
Affiliation(s)
- Ubah Dominic Babah Ubah
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Korawin Triyasakorn
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Brandon Roan
- Division of Health Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Minsyusheen Conlin
- Department of Biological Sciences, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - James C. K. Lai
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
| | - Prabha S. Awale
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, 921 S 8th Avenue, Mail Stop 8288, Pocatello, ID 83209, USA
- Correspondence:
| |
Collapse
|
15
|
Eker OF, Lubicz B, Cortese M, Delporte C, Berhouma M, Chopard B, Costalat V, Bonafé A, Alix-Panabières C, Van Anwterpen P, Zouaoui Boudjeltia K. Effects of the flow diversion technique on nucleotide levels in intra-cranial aneurysms: A feasibility study providing new research perspectives. Front Cardiovasc Med 2022; 9:885426. [PMID: 36186973 PMCID: PMC9515454 DOI: 10.3389/fcvm.2022.885426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The flow diverter stent (FDS) has become a first-line treatment for numerous intra-cranial aneurysms (IAs) by promoting aneurysm thrombosis. However, the biological phenomena underlying its efficacy remain unknown. We proposed a method to collect in situ blood samples to explore the flow diversion effect within the aneurysm sac. In this feasibility study, we assessed the plasma levels of nucleotides within the aneurysm sac before and after flow diversion treatment. Materials and methods In total, 14 patients with unruptured IAs who were selected for FDS implantation were prospectively recruited from February 2015 to November 2015. Two catheters dedicated to (1) FDS deployment and (2) the aneurysm sac were used to collect blood samples within the parent artery (P1) and the aneurysm sac before (P2) and after (P3) flow diversion treatment. The plasma levels of adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP) at each collection point were quantified with liquid chromatography and tandem mass spectrometry. Results The aneurysms were extradural in nine (64.3%) patients and intra-dural in five (35.7%) patients. They presented an average diameter of 15.5 ± 7.1 mm, height of 15.8 ± 4.6 mm, and volume of 2,549 ± 2,794 ml. In all patients (100%), 16 FDS implantations and 42 in situ blood collections were performed successfully without any complications associated with the procedure. The ATP, ADP, and AMP concentrations within the aneurysm sac were decreased after flow diversion (p = 0.005, p = 0.03, and p = 0.12, respectively). Only the ATP levels within the aneurysm sac after flow diversion were significantly correlated with aneurysm volume (adjusted R2 = 0.43; p = 0.01). Conclusion In situ blood collection within unruptured IAs during a flow diversion procedure is feasible and safe. Our results suggest that the flow diversion technique is associated with changes in the nucleotide plasma levels within the aneurysm sac.
Collapse
Affiliation(s)
- Omer F. Eker
- Department of Neuroradiology, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
- CREATIS Laboratory, UMR 5220, U1206, Université Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Lyon, France
- *Correspondence: Omer F. Eker,
| | - Boris Lubicz
- Department of Interventional Neuroradiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Melissa Cortese
- RD3–Pharmacognosy, Bioanalysis, and Drug Discovery and Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Cedric Delporte
- RD3–Pharmacognosy, Bioanalysis, and Drug Discovery and Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Moncef Berhouma
- Department of Vascular Neurosurgery, Hôpital Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Bastien Chopard
- Scientific and Parallel Computing Group, CUI, University of Geneva, Geneva, Switzerland
| | - Vincent Costalat
- Department of Neuroradiology, Hôpital Gui de Chauliac, Montpellier, France
| | - Alain Bonafé
- Department of Neuroradiology, Hôpital Gui de Chauliac, Montpellier, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, University of Montpellier, Montpellier, France
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Pierre Van Anwterpen
- RD3–Pharmacognosy, Bioanalysis, and Drug Discovery and Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222), Medicine Faculty, Université Libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium
| |
Collapse
|
16
|
Misiti F. Sphingosine Increases ATP Release From Red Blood Cells. Open Biochem J 2022. [DOI: 10.2174/1874091x-v16-e2204210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
RBC plays a pivotal role in oxygen delivery, improving distribution where it needs. When RBC enters a low oxygen area, a mechanism mediated by a signaling pathway releases ATP, responsible for vasodilatation.
Objective:
Clarify the potential role of sphingosine on the release of ATP from RBC.
Methods:
ATP release increases after sphingosine exposure in RBC under low oxygen conditions. ATP release in deoxygenated RBC shows data like that of control RBC: (1) RBC after band 3 modification by 4,4'- diisothio-cyanato-stilbene- 2,2'-disulphonic acid (DIDS); (2) CO-treated RBC.
Unlike phosphofructokinase, adenylate cyclase (AC) activity increases after exposure to sphingosine.
Results:
We show that cAMP synthesis and ATP release are not failed in sphingosine-treated red blood cells in response to incubation with mastoparan 7, forskolin plus 3-isobutyl-1-methyl xanthine, agents that stimulate cAMP synthesis.
Conclusion:
Deoxy-hemoglobin, band 3, and AC are involved in the signaling pathway responsible for ATP released after sphingosine exposure.
Collapse
|
17
|
Misiti F. Sphingosine Increases ATP Release From Red Blood Cells. Open Biochem J 2022. [DOI: 10.2174/874091x-v16-e2204210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
RBC plays a pivotal role in oxygen delivery, improving distribution where it needs. When RBC enters a low oxygen area, a mechanism mediated by a signaling pathway releases ATP, responsible for vasodilatation.
Objective:
Clarify the potential role of sphingosine on the release of ATP from RBC.
Methods:
ATP release increases after sphingosine exposure in RBC under low oxygen conditions. ATP release in deoxygenated RBC shows data like that of control RBC: (1) RBC after band 3 modification by 4,4'- diisothio-cyanato-stilbene- 2,2'-disulphonic acid (DIDS); (2) CO-treated RBC.
Unlike phosphofructokinase, adenylate cyclase (AC) activity increases after exposure to sphingosine.
Results:
We show that cAMP synthesis and ATP release are not failed in sphingosine-treated red blood cells in response to incubation with mastoparan 7, forskolin plus 3-isobutyl-1-methyl xanthine, agents that stimulate cAMP synthesis.
Conclusion:
Deoxy-hemoglobin, band 3, and AC are involved in the signaling pathway responsible for ATP released after sphingosine exposure.
Collapse
|
18
|
The Interplay of Endothelial P2Y Receptors in Cardiovascular Health: From Vascular Physiology to Pathology. Int J Mol Sci 2022; 23:ijms23115883. [PMID: 35682562 PMCID: PMC9180512 DOI: 10.3390/ijms23115883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
The endothelium plays a key role in blood vessel health. At the interface of the blood, it releases several mediators that regulate local processes that protect against the development of cardiovascular disease. In this interplay, there is increasing evidence for a role of extracellular nucleotides and endothelial purinergic P2Y receptors (P2Y-R) in vascular protection. Recent advances have revealed that endothelial P2Y1-R and P2Y2-R mediate nitric oxide-dependent vasorelaxation as well as endothelial cell proliferation and migration, which are processes involved in the regeneration of damaged endothelium. However, endothelial P2Y2-R, and possibly P2Y1-R, have also been reported to promote vascular inflammation and atheroma development in mouse models, with endothelial P2Y2-R also being described as promoting vascular remodeling and neointimal hyperplasia. Interestingly, at the interface with lipid metabolism, P2Y12-R has been found to trigger HDL transcytosis through endothelial cells, a process known to be protective against lipid deposition in the vascular wall. Better characterization of the role of purinergic P2Y-R and downstream signaling pathways in determination of the endothelial cell phenotype in healthy and pathological environments has clinical potential for the prevention and treatment of cardiovascular diseases.
Collapse
|
19
|
Tajbakhsh A, Yousefi F, Abedi SM, Rezaee M, Savardashtaki A, Teng Y, Sahebkar A. The cross-talk between soluble "Find me" and "Keep out" signals as an initial step in regulating efferocytosis. J Cell Physiol 2022; 237:3113-3126. [PMID: 35578547 DOI: 10.1002/jcp.30770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
The rapid clearance of apoptotic cells (ACs), known as efferocytosis, prompts the inhibition of inflammatory responses and autoimmunity and maintains homeostatic cell turnover by controlling the release of intracellular contents. The fast clearance of ACs requires professional and nonprofessional phagocytic cells that can accurately and promptly recognize ACs and migrate towards them. Cells undergoing apoptosis alarm their presence by releasing special soluble chemotactic factors, such as lactoferrin, that act as "Find me," "Keep out," or "Stay away" signals to recruit phagocytic cells, such as macrophages or prevent granulocyte migration. Efferocytosis effectively serves to prevent damage-associated molecular pattern release and secondary necrosis and inhibit inflammation/autoimmunity at the very first step. Since less attention has been given to the cross-talk and balance of "Find me" and "Keep out" signals released from ACs in efferocytosis, we set out to investigate the current knowledge of the roles of "Find me" and "Keep out" signals in the efferocytosis process.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh M Abedi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amir Savardashtaki
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Depatment of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Gajecki D, Gawryś J, Szahidewicz-Krupska E, Doroszko A. Role of Erythrocytes in Nitric Oxide Metabolism and Paracrine Regulation of Endothelial Function. Antioxidants (Basel) 2022; 11:antiox11050943. [PMID: 35624807 PMCID: PMC9137828 DOI: 10.3390/antiox11050943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 01/27/2023] Open
Abstract
Emerging studies provide new data shedding some light on the complex and pivotal role of red blood cells (RBCs) in nitric oxide (NO) metabolism and paracrine regulation of endothelial function. NO is involved in the regulation of vasodilatation, platelet aggregation, inflammation, hypoxic adaptation, and oxidative stress. Even though tremendous knowledge about NO metabolism has been collected, the exact RBCs’ status still requires evaluation. This paper summarizes the actual knowledge regarding the role of erythrocytes as a mobile depot of amino acids necessary for NO biotransformation. Moreover, the complex regulation of RBCs’ translocases is presented with a particular focus on cationic amino acid transporters (CATs) responsible for the NO substrates and derivatives transport. The main part demonstrates the intraerythrocytic metabolism of L-arginine with its regulation by reactive oxygen species and arginase activity. Additionally, the process of nitrite and nitrate turnover was demonstrated to be another stable source of NO, with its reduction by xanthine oxidoreductase or hemoglobin. Additional function of hemoglobin in NO synthesis and its subsequent stabilization in steady intermediates is also discussed. Furthermore, RBCs regulate the vascular tone by releasing ATP, inducing smooth muscle cell relaxation, and decreasing platelet aggregation. Erythrocytes and intraerythrocytic NO metabolism are also responsible for the maintenance of normotension. Hence, RBCs became a promising new therapeutic target in restoring NO homeostasis in cardiovascular disorders.
Collapse
|
21
|
Mori Y, Shiratsuchi N, Sato N, Chaya A, Tanimura N, Ishikawa S, Kato M, Kameda I, Kon S, Haraoka Y, Ishitani T, Fujita Y. Extracellular ATP facilitates cell extrusion from epithelial layers mediated by cell competition or apoptosis. Curr Biol 2022; 32:2144-2159.e5. [PMID: 35417667 DOI: 10.1016/j.cub.2022.03.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022]
Abstract
For the maintenance of epithelial homeostasis, various aberrant or dysfunctional cells are actively eliminated from epithelial layers. This cell extrusion process mainly falls into two modes: cell-competition-mediated extrusion and apoptotic extrusion. However, it is not clearly understood whether and how these processes are governed by common molecular mechanisms. In this study, we demonstrate that the reactive oxygen species (ROS) levels are elevated within a wide range of epithelial layers around extruding transformed or apoptotic cells. The downregulation of ROS suppresses the extrusion process. Furthermore, ATP is extracellularly secreted from extruding cells, which promotes the ROS level and cell extrusion. Moreover, the extracellular ATP and ROS pathways positively regulate the polarized movements of surrounding cells toward extruding cells in both cell-competition-mediated and apoptotic extrusion. Hence, extracellular ATP acts as an "extrude me" signal and plays a prevalent role in cell extrusion, thereby sustaining epithelial homeostasis and preventing pathological conditions or disorders.
Collapse
Affiliation(s)
- Yusuke Mori
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan; Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Naoka Shiratsuchi
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan
| | - Nanami Sato
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan; Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Azusa Chaya
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan
| | - Nobuyuki Tanimura
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan; Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Susumu Ishikawa
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Mugihiko Kato
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Ikumi Kameda
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Shunsuke Kon
- Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Yukinari Haraoka
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Division of Cellular and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan; Division of Molecular Oncology, Institute for Genetic Medicine, Hokkaido University Graduate School of Chemical Sciences and Engineering, Kita-15 Nishi-7, Kita-Ku, Sapporo 060-0815, Japan.
| |
Collapse
|
22
|
The Purinergic Landscape of Type 2 Diabetes Mellitus. Molecules 2022; 27:molecules27061838. [PMID: 35335211 PMCID: PMC8951306 DOI: 10.3390/molecules27061838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Adenosine triphosphate (ATP) is the key energy intermediate of cellular metabolic processes and a ubiquitous extracellular messenger. As an extracellular messenger, ATP acts at plasma membrane P2 receptors (P2Rs). The levels of extracellular ATP (eATP) are set by both passive and active release mechanisms and degradation processes. Under physiological conditions, eATP concentration is in the low nanomolar range but can rise to tens or even hundreds of micromoles/L at inflammatory sites. A dysregulated eATP homeostasis is a pathogenic factor in several chronic inflammatory diseases, including type 2 diabetes mellitus (T2DM). T2DM is characterized by peripheral insulin resistance and impairment of insulin production from pancreatic β-cells in a landscape of systemic inflammation. Although various hypoglycemic drugs are currently available, an effective treatment for T2DM and its complications is not available. However, counteracting systemic inflammation is anticipated to be beneficial. The postulated eATP increase in T2DM is understood to be a driver of inflammation via P2X7 receptor (P2X7R) activation and the release of inflammatory cytokines. Furthermore, P2X7R stimulation is thought to trigger apoptosis of pancreatic β-cells, thus further aggravating hyperglycemia. Targeting eATP and the P2X7R might be an appealing novel approach to T2DM therapy.
Collapse
|
23
|
Brock VJ, Wolf IMA, Er-Lukowiak M, Lory N, Stähler T, Woelk LM, Mittrücker HW, Müller CE, Koch-Nolte F, Rissiek B, Werner R, Guse AH, Diercks BP. P2X4 and P2X7 are essential players in basal T cell activity and Ca 2+ signaling milliseconds after T cell activation. SCIENCE ADVANCES 2022; 8:eabl9770. [PMID: 35119925 PMCID: PMC8816335 DOI: 10.1126/sciadv.abl9770] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/14/2021] [Indexed: 05/20/2023]
Abstract
Initial T cell activation is triggered by the formation of highly dynamic, spatiotemporally restricted Ca2+ microdomains. Purinergic signaling is known to be involved in Ca2+ influx in T cells at later stages compared to the initial microdomain formation. Using a high-resolution Ca2+ live-cell imaging system, we show that the two purinergic cation channels P2X4 and P2X7 not only are involved in the global Ca2+ signals but also promote initial Ca2+ microdomains tens of milliseconds after T cell stimulation. These Ca2+ microdomains were significantly decreased in T cells from P2rx4-/- and P2rx7-/- mice or by pharmacological inhibition or blocking. Furthermore, we show a pannexin-1-dependent activation of P2X4 in the absence of T cell receptor/CD3 stimulation. Subsequently, upon T cell receptor/CD3 stimulation, ATP release is increased and autocrine activation of both P2X4 and P2X7 then amplifies initial Ca2+ microdomains already in the first second of T cell activation.
Collapse
Affiliation(s)
- Valerie J. Brock
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Insa M. A. Wolf
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marco Er-Lukowiak
- Department of Neurology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Niels Lory
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Tobias Stähler
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Lena-Marie Woelk
- Department of Computational Neuroscience, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Hans-Willi Mittrücker
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | | | - Friedrich Koch-Nolte
- Department of Immunology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - René Werner
- Department of Computational Neuroscience, University Medical Centre Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Andreas H. Guse
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Björn-Philipp Diercks
- The Ca Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Corresponding author.
| |
Collapse
|
24
|
Misiti F, Carelli-Alinovi C, Rodio A. ATP release from erythrocytes: A role of adenosine1. Clin Hemorheol Microcirc 2022; 80:61-71. [DOI: 10.3233/ch-221379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: The oxygen required to meet metabolic needs of all tissues is delivered by the red blood cell, a small, flexible cell which, in mammals, is devoid of a nucleus and mitochondria. Despite its simple appearance, this cell has an important role in its own distribution, enabling the delivery of oxygen to precisely meet localized metabolic need. When red blood cells enter in hypoxic area, a signalling pathway is activated within the cell, resulting in the release of ATP in amounts adequate to activate purinergic receptors on vascular endothelium, which trigger secretion of nitric oxide and other factors resulting in vasodilatation. OBJECTIVE: The present study investigates the effect of adenosine exposure on this molecular mechanism. METHODS AND RESULTS: We report that RBC in the presence of adenosine in low oxygen conditions, ATP release increase after 24 h exposure. Adenosine induced-ATP release in deoxygenated red blood cell show data similar to that of RBC in high oxygen conditions: (1) RBC after band 3 modification by 4,4′- diisothio-cyanatostilbene- 2,2′-disulphonic acid; (2) CO-treated RBC. In the presence of Sphingosine kinase (SphK1) inhibitor, adenosine mediated effects on ATP release were abolished. Activity of adenylate cyclase increase following to adenosine exposure, on the contrary red cell phosphofructokinase is not modified within the RBC in the presence of adenosine. CONCLUSION: Our data support involvement of band 3/deoxyHb binding and adenylate cyclase in the pathway responsible for ATP release from RBC following exposure to adenosine.
Collapse
Affiliation(s)
- Francesco Misiti
- Human, Social and Health Department, University of Cassino and Lazio Meridionale, V. S. Angelo, Loc. Folcara, Cassino (FR), Italy
| | - Cristiana Carelli-Alinovi
- Biochemistry and Clinical Biochemistry Institute, Catholic University, School of Medicine, L. go F. Rome, Italy
| | - Angelo Rodio
- Human, Social and Health Department, University of Cassino and Lazio Meridionale, V. S. Angelo, Loc. Folcara, Cassino (FR), Italy
| |
Collapse
|
25
|
P2Y 12-dependent activation of hematopoietic stem and progenitor cells promotes emergency hematopoiesis after myocardial infarction. Basic Res Cardiol 2022; 117:16. [PMID: 35353230 PMCID: PMC8967792 DOI: 10.1007/s00395-022-00927-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 01/31/2023]
Abstract
Emergency hematopoiesis is the driving force of the inflammatory response to myocardial infarction (MI). Increased proliferation of hematopoietic stem and progenitor cells (LSK) after MI enhances cell production in the bone marrow (BM) and replenishes leukocyte supply for local cell recruitment to the infarct. Decoding the regulation of the inflammatory cascade after MI may provide new avenues to improve post-MI remodeling. In this study, we describe the influence of adenosine diphosphate (ADP)-dependent P2Y12-mediated signaling on emergency hematopoiesis and cardiac remodeling after MI. Permanent coronary ligation was performed to induce MI in a murine model. BM activation, inflammatory cell composition and cardiac function were assessed using global and platelet-specific gene knockout and pharmacological inhibition models for P2Y12. Complementary in vitro studies allowed for investigation of ADP-dependent effects on LSK cells. We found that ADP acts as a danger signal for the hematopoietic BM and fosters emergency hematopoiesis by promoting Akt phosphorylation and cell cycle progression. We were able to detect P2Y12 in LSK, implicating a direct effect of ADP on LSK via P2Y12 signaling. P2Y12 knockout and P2Y12 inhibitor treatment with prasugrel reduced emergency hematopoiesis and the excessive inflammatory response to MI, translating to lower numbers of downstream progeny and inflammatory cells in the blood and infarct. Ultimately, P2Y12 inhibition preserved cardiac function and reduced chronic adverse cardiac remodeling after MI. P2Y12-dependent signaling is involved in emergency hematopoiesis after MI and fuels post-ischemic inflammation, proposing a novel, non-canonical value for P2Y12 antagonists beyond inhibition of platelet-mediated atherothrombosis.
Collapse
|
26
|
He X, Zhang Y, Xu Y, Xie L, Yu Z, Zheng J. Function of the P2X7 receptor in hematopoiesis and leukemogenesis. Exp Hematol 2021; 104:40-47. [PMID: 34687808 DOI: 10.1016/j.exphem.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
Adenosine triphosphate (ATP) accumulates at tissue injury and inflammation sites. The P2X7 receptor is an ATP-gated ion channel known for its cytotoxic activity. However, P2X7 receptors also play important roles in the growth of cancer and the immune regulation. Functional P2X7 receptor is widely expressed in murine and human hematopoietic stem cells and their lineages, including monocytes, macrophages, mast cells, and B or T lymphocytes, and participates in various physiological and pathologic activities. Therefore, it is not surprising that the P2X7 receptor is important for the normal hematopoiesis and leukemogenesis. Here, we summarize the biological functions of P2X7 receptor during both normal hematopoiesis and leukemogenesis. In particular, we found that ATP levels are dramatically increased in the leukemic bone marrow niche and the fates of leukemia-initiating cells of acute myeloid leukemia are tightly controlled by P2X7 expression and ATP-P2X7-mediated signaling pathways. These findings strongly indicate that the P2X7 receptor may be considered a potential biomarker of hematological malignancies in bone marrow niches, and its antagonists may be useful for the leukemia treatment in addition to the traditional chemotherapy.
Collapse
Affiliation(s)
- Xiaoxiao He
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilu Xu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Fernandes TDO, Rodrigues AM, Punaro GR, Lima DYD, Higa EMS. P2X7 receptor-nitric oxide interaction mediates apoptosis in mouse immortalized mesangial cells exposed to high glucose. J Bras Nefrol 2021; 44:147-154. [PMID: 34694316 PMCID: PMC9269184 DOI: 10.1590/2175-8239-jbn-2021-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) is a chronic disease characterized by hyperglycemia that leads to diabetic nephropathy (DN). We showed that P2X7, a purinergic receptor, was highly expressed in DM; however, when oxidative stress was controlled, renal NO recovered, and the activation of this receptor remained significantly reduced. The aim of this study was to assess the influence of NO on the P2X7 and apoptosis in mouse immortalized mesangial cells (MiMC) cultured in high glucose (HG) medium. METHODS MiMCs were cultured with DMEM and exposed to normal glucose (NG), mannitol (MA), or HG. Cell viability was assessed by an automated counter. Supernatants were collected for NO quantification, and proteins were extracted for analysis of NO synthases (iNOS and eNOS), caspase-3, and P2X7. RESULTS Cell viability remained above 90% in all groups. There was a significant increase in the proliferation of cells in HG compared to MA and NG. NO, iNOS, caspase-3, and P2X7 were significantly increased in HG compared to NG and MA, with no changes in eNOS. We observed that there was a strong and significant correlation between P2X7 and NO. DISCUSSION The main finding was that the production of NO by iNOS was positively correlated with the increase of P2X7 in MCs under HG conditions, showing that there is a common stimulus between them and that NO interacts with the P2X7 pathway, contributing to apoptosis in experimental DM. These findings could be relevant to studies of therapeutic targets for the prevention and/or treatment of hyperglycemia-induced kidney damage to delay DN progression.
Collapse
Affiliation(s)
- Thamires de Oliveira Fernandes
- Universidade Federal de São Paulo, Divisão de Nefrologia, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Laboratório de Óxido Nítrico e Estresse Oxidativo, São Paulo, SP, Brasil
| | - Adelson Marçal Rodrigues
- Universidade Federal de São Paulo, Depardamento de Medicina, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Laboratório de Óxido Nítrico e Estresse Oxidativo, São Paulo, SP, Brasil
| | - Giovana Rita Punaro
- Universidade Federal de São Paulo, Divisão de Nefrologia, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Laboratório de Óxido Nítrico e Estresse Oxidativo, São Paulo, SP, Brasil
| | - Deyse Yorgos de Lima
- Universidade Federal de São Paulo, Divisão de Nefrologia, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Laboratório de Óxido Nítrico e Estresse Oxidativo, São Paulo, SP, Brasil
| | - Elisa Mieko Suemitsu Higa
- Universidade Federal de São Paulo, Divisão de Nefrologia, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Depardamento de Medicina, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Laboratório de Óxido Nítrico e Estresse Oxidativo, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Divisão de Emergência, São Paulo, SP, Brasil
| |
Collapse
|
28
|
Adefegha SA, Saccol RDSP, Jantsch MH, da Silveira KL, Leal DBR. Hesperidin mitigates inflammation and modulates ectoenzymes activity and some cellular processes in complete Freund's adjuvant-induced arthritic rats. J Pharm Pharmacol 2021; 73:1547-1561. [PMID: 34427673 DOI: 10.1093/jpp/rgab100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022]
Abstract
OBJECTIVES This study was aimed at assessing the anti-arthritic effects of hesperidin on the inflammatory markers in serum/plasma, ectoenzymes activity in platelet, reactive oxygen species (ROS), apoptosis and cell cycle in bone marrow cells of a rat model of arthritis. METHODS Fifty-six adult female Wistar rats (245-274 g) were grouped into eight of seven rats each: control rats given normal saline or 40 mg/kg of hesperidin or 80 mg/kg of hesperidin, 0.2 mg/kg of dexamethasone, arthritic rats given normal saline, or 40 mg/kg of hesperidin or 80 mg/kg of hesperidin, and 0.2 mg/kg of dexamethasone. Myeloperoxidase and nitrate plus nitrite levels were evaluated in the plasma and serum, respectively. The ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase and ecto-adenosine deaminase activities were assessed in platelets. Subsequently, the cells of the bone marrow were obtained, and the assays for ROS, apoptosis and cell cycle were evaluated using flow cytometry. KEY FINDINGS The results showed that hesperidin mitigated inflammation, modulated adenosine nucleotides and nucleoside hydrolysing enzymes and levels, minimized ROS intracellularly, attenuated apoptotic process and activated cell cycle arrest in arthritic rat. CONCLUSION This study suggests that hesperidin could be a natural and promising anti-inflammatory compound for the management of arthritis.
Collapse
Affiliation(s)
- Stephen Adeniyi Adefegha
- Department of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
- Department of Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Departament of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Renata da Silva Pereira Saccol
- Department of Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Departament of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Matheus Henrique Jantsch
- Department of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
- Department of Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Departament of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Karine Lanes da Silveira
- Department of Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Departament of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Daniela Bitencourt Rosa Leal
- Department of Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
- Department of Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Departament of Microbiology and Parasitology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
29
|
He X, Wan J, Yang X, Zhang X, Huang D, Li X, Zou Y, Chen C, Yu Z, Xie L, Zhang Y, Liu L, Li S, Zhao Y, Shao H, Yu Y, Zheng J. Bone marrow niche ATP levels determine leukemia-initiating cell activity via P2X7 in leukemic models. J Clin Invest 2021; 131:140242. [PMID: 33301426 DOI: 10.1172/jci140242] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
How particular bone marrow niche factors contribute to the leukemogenic activities of leukemia-initiating cells (LICs) remains largely unknown. Here, we showed that ATP levels were markedly increased in the bone marrow niches of mice with acute myeloid leukemia (AML), and LICs preferentially localized to the endosteal niche with relatively high ATP levels, as indicated by a sensitive ATP indicator. ATP could efficiently induce the influx of ions into LICs in an MLL-AF9-induced murine AML model via the ligand-gated ion channel P2X7. P2x7 deletion led to notably impaired homing and self-renewal capacities of LICs and contributed to an approximately 5-fold decrease in the number of functional LICs but had no effect on normal hematopoiesis. ATP/P2X7 signaling enhanced the calcium flux-mediated phosphorylation of CREB, which further transactivated phosphoglycerate dehydrogenase (Phgdh) expression to maintain serine metabolism and LIC fates. P2X7 knockdown resulted in a markedly extended survival of recipients transplanted with either human AML cell lines or primary leukemia cells. Blockade of ATP/P2X7 signaling could efficiently inhibit leukemogenesis. Here, we provide a perspective for understanding how ATP/P2X7 signaling sustains LIC activities, which may benefit the development of specific strategies for targeting LICs or other types of cancer stem cells.
Collapse
Affiliation(s)
- Xiaoxiao He
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangbo Wan
- Department of Hematology, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaona Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiuze Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Research Unit of Chinese Academy of Medical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dan Huang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xie Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Research Unit of Chinese Academy of Medical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yejun Zou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Research Unit of Chinese Academy of Medical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Chiqi Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuo Yu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xie
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaping Zhang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ligen Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangang Li
- Yunnan Key Laboratory of Primate Biomedicine Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Research Unit of Chinese Academy of Medical Sciences, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hongfang Shao
- Center of Reproductive Medicine, Shanghai Sixth People's Hospital, Shanghai, China
| | - Ye Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junke Zheng
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Territo PR, Zarrinmayeh H. P2X 7 Receptors in Neurodegeneration: Potential Therapeutic Applications From Basic to Clinical Approaches. Front Cell Neurosci 2021; 15:617036. [PMID: 33889073 PMCID: PMC8055960 DOI: 10.3389/fncel.2021.617036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS), where the bulk of these receptors are implicated in neuroinflammatory responses and regulation of cellular function of neurons, microglial and astrocytes. Within the P2X receptor family, P2X7 receptor is generally known for its inactivity in normal conditions and activation by moderately high concentrations (>100 μM) of extracellular adenosine 5′-triphosphate (ATP) released from injured cells as a result of brain injury or pathological conditions. Activation of P2X7R contributes to the activation and proliferation of microglia and directly contribute to neurodegeneration by provoking microglia-mediated neuronal death, glutamate-mediated excitotoxicity, and NLRP3 inflammasome activation that results in initiation, maturity and release of the pro-inflammatory cytokines and generation of reactive oxygen and nitrogen species. These components of the inflammatory response play important roles in many neural pathologies and neurodegeneration disorders. In CNS, expression of P2X7R on microglia, astrocytes, and oligodendrocytes are upregulated under neuroinflammatory conditions. Several in vivo studies have demonstrated beneficial effects of the P2X7 receptor antagonists in animal model systems of neurodegenerative diseases. A number of specific and selective P2X7 receptor antagonists have been developed, but only few of them have shown efficient brain permeability. Finding potent and selective P2X7 receptor inhibitors which are also CNS penetrable and display acceptable pharmacokinetics (PK) has presented challenges for both academic researchers and pharmaceutical companies. In this review, we discuss the role of P2X7 receptor function in neurodegenerative diseases, the pharmacological inhibition of the receptor, and PET radiopharmaceuticals which permit non-invasive monitoring of the P2X7 receptor contribution to neuroinflammation associated with neurodegeneration.
Collapse
Affiliation(s)
- Paul R Territo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
31
|
Tripathy A, Padhan P, Swain N, Raghav SK, Gupta B. Increased Extracellular ATP in Plasma of Rheumatoid Arthritis Patients Activates CD8 +T Cells. Arch Med Res 2021; 52:423-433. [PMID: 33541740 DOI: 10.1016/j.arcmed.2020.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disorder with genetic and environmental causes often linked with the disease etiology. A disrupted metabolism has often been a characteristic of RA and an altered metabolic state of immune cells has been associated with their phenotypic and functional changes. The energy in the form of ATP produced by the metabolically active cells may thus initiate a cascade of immune responses there by influencing the disease pathogenesis or progression. AIM OF THE STUDY Through this study we have focused on determining the role of ATP in etiology of RA and aberrant cellular functions. METHODS Blood samples of 80 healthy controls (HC) and 95 RA patients were screened for extracellular ATP concentration, transcriptome analyses, an inflammatory mediator and the results were statistically analysed. RESULTS In this study, ATP is shown to be excessive in the plasma of RA patients (453.5 ± 16.09% in RA vs. 233.9 ± 10.07% in HC, p <0.0001) and significantly increases with the disease severity. The abundant extracellular ATP could activate circulating cytotoxic CD8+T cells in RA patients to produce Granzyme B. CONCLUSION Plasma ATP is thus identified to have a significant potential in progression and prognosis of RA and may thus be studied further to design better therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Archana Tripathy
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Prasanta Padhan
- Department of Rheumatology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Nitish Swain
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India
| | - Sunil K Raghav
- Laboratory of Immuno-Genomics and Systems Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Bhawna Gupta
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
32
|
Zöphel D, Hof C, Lis A. Altered Ca 2+ Homeostasis in Immune Cells during Aging: Role of Ion Channels. Int J Mol Sci 2020; 22:ijms22010110. [PMID: 33374304 PMCID: PMC7794837 DOI: 10.3390/ijms22010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Aging is an unstoppable process and begins shortly after birth. Each cell of the organism is affected by the irreversible process, not only with equal density but also at varying ages and with different speed. Therefore, aging can also be understood as an adaptation to a continually changing cellular environment. One of these very prominent changes in age affects Ca2+ signaling. Especially immune cells highly rely on Ca2+-dependent processes and a strictly regulated Ca2+ homeostasis. The intricate patterns of impaired immune cell function may represent a deficit or compensatory mechanisms. Besides, altered immune function through Ca2+ signaling can profoundly affect the development of age-related disease. This review attempts to summarize changes in Ca2+ signaling due to channels and receptors in T cells and beyond in the context of aging.
Collapse
Affiliation(s)
| | | | - Annette Lis
- Correspondence: ; Tel.: +49-(0)-06841-1616318; Fax: +49-(0)-6841-1616302
| |
Collapse
|
33
|
Vargas-Martínez EM, Gómez-Coronado KS, Espinosa-Luna R, Valdez-Morales EE, Barrios-García T, Barajas-Espinosa A, Ochoa-Cortes F, Montaño LM, Barajas-López C, Guerrero-Alba R. Functional expression of P2X1, P2X4 and P2X7 purinergic receptors in human monocyte-derived macrophages. Eur J Pharmacol 2020; 888:173460. [PMID: 32805257 DOI: 10.1016/j.ejphar.2020.173460] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Abstract
This study sought to examine the co-expression of the following purinergic receptor subunits: P2X1, P2X1del, P2X4, and P2X7 and characterize the P2X response in human monocyte-derived macrophages (MDMs). Single-cell RT-PCR shows the presence of P2X1, P2X1del, P2X4, and P2X7 mRNA in 40%, 5%, 20%, and 90% of human MDMs, respectively. Of the studied human MDMs, 25% co-expressed P2X1 and P2X7 mRNA; 5% co-expressed P2X4 and P2X7; and 15% co-expressed P2X1, P2X4, and P2X7 mRNA. In whole-cell patch clamp recordings of human MDMs, rapid application of ATP (0.01 mM) evoked fast current activation and two different desensitization kinetics: 1. a rapid desensitizing current antagonized by PPADS (1 μM), reminiscent of the P2X1 receptor's current; 2. a slow desensitizing current, insensitive to PPADS but potentiated by ivermectin (3 μM), similar to the P2X4 receptor's current. Application of 5 mM ATP induced three current modalities: 1. slow current activation with no desensitization, similar to the P2X7 receptor current, present in 69% of human macrophages and antagonized by A-804598 (0.1 μM); 2. fast current activation and fast desensitization, present in 15% of human MDMs; 3. fast activation current followed by biphasic desensitization, observed in 15% of human MDMs. Both rapid and biphasic desensitization kinetics resemble those observed for the recombinant human P2X1 receptor expressed in oocytes. These data demonstrate, for the first time, the co-expression of P2X1, P2X4, and P2X7 transcripts and confirm the presence of functional P2X1, P2X4, and P2X7 receptors in human macrophages.
Collapse
Affiliation(s)
- Eydie M Vargas-Martínez
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Karen S Gómez-Coronado
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Rosa Espinosa-Luna
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Eduardo E Valdez-Morales
- Catedras CONACYT, Departamento de Medicina, Centro de Ciencias de la Salud, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Tonatiuh Barrios-García
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México
| | - Alma Barajas-Espinosa
- Licenciatura en Enfermería, Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes, Hidalgo, México
| | - Fernando Ochoa-Cortes
- Licenciatura en Enfermería, Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes, Hidalgo, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, México
| | - Carlos Barajas-López
- División de Biología Molecular, Instituto Potosino Investigación Científica y Tecnológica, San Luis Potosí, SLP, México
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, México.
| |
Collapse
|
34
|
Takeda A, Yanai R, Murakami Y, Arima M, Sonoda KH. New Insights Into Immunological Therapy for Retinal Disorders. Front Immunol 2020; 11:1431. [PMID: 32719682 PMCID: PMC7348236 DOI: 10.3389/fimmu.2020.01431] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022] Open
Abstract
In the twentieth century, a conspicuous lack of effective treatment strategies existed for managing several retinal disorders, including age-related macular degeneration; diabetic retinopathy (DR); retinopathy of prematurity (ROP); retinitis pigmentosa (RP); uveitis, including Behçet's disease; and vitreoretinal lymphoma (VRL). However, in the first decade of this century, advances in biomedicine have provided new treatment strategies in the field of ophthalmology, particularly biologics that target vascular endothelial growth factor or tumor necrosis factor (TNF)-α. Furthermore, clinical trials on gene therapy specifically for patients with autosomal recessive or X-linked RP have commenced. The overall survival rates of patients with VRL have improved, owing to earlier diagnoses and better treatment strategies. However, some unresolved problems remain such as primary or secondary non-response to biologics or chemotherapy, and the lack of adequate strategies for treating most RP patients. In this review, we provide an overview of the immunological mechanisms of the eye under normal conditions and in several retinal disorders, including uveitis, DR, ROP, RP, and VRL. In addition, we discuss recent studies that describe the inflammatory responses that occur during the course of these retinal disorders to provide new insights into their diagnosis and treatment.
Collapse
Affiliation(s)
- Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Ophthalmology, Clinical Research Institute, Kyushu Medical Center, National Hospital Organization, Fukuoka, Japan
| | - Ryoji Yanai
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
Filippin KJ, de Souza KFS, de Araujo Júnior RT, Torquato HFV, Dias DA, Parisotto EB, Ferreira AT, Paredes-Gamero EJ. Involvement of P2 receptors in hematopoiesis and hematopoietic disorders, and as pharmacological targets. Purinergic Signal 2020; 16:1-15. [PMID: 31863258 PMCID: PMC7166233 DOI: 10.1007/s11302-019-09684-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Several reports have shown the presence of P2 receptors in hematopoietic stem cells (HSCs). These receptors are activated by extracellular nucleotides released from different sources. In the hematopoietic niche, the release of purines and pyrimidines in the milieu by lytic and nonlytic mechanisms has been described. The expression of P2 receptors from HSCs until maturity is still intriguing scientists. Several reports have shown the participation of P2 receptors in events associated with modulation of the immune system, but their participation in other physiological processes is under investigation. The presence of P2 receptors in HSCs and their ability to modulate this population have awakened interest in exploring the involvement of P2 receptors in hematopoiesis and their participation in hematopoietic disorders. Among the P2 receptors, the receptor P2X7 is of particular interest, because of its different roles in hematopoietic cells (e.g., infection, inflammation, cell death and survival, leukemias and lymphomas), making the P2X7 receptor a promising pharmacological target. Additionally, the role of P2Y12 receptor in platelet activation has been well-documented and is the main example of the importance of the pharmacological modulation of P2 receptor activity. In this review, we focus on the role of P2 receptors in the hematopoietic system, addressing these receptors as potential pharmacological targets.
Collapse
Affiliation(s)
- Kelly Juliana Filippin
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Kamylla F S de Souza
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | | | - Heron Fernandes Vieira Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
- Universidade Braz Cubas, Av. Francisco Rodrigues Filho 1233, Mogi das Cruzes, SP, 08773-380, Brazil
| | - Dhébora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP, 04023-062, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| | - Edgar J Paredes-Gamero
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil.
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| |
Collapse
|
36
|
Wypych D, Barańska J. Cross-Talk in Nucleotide Signaling in Glioma C6 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:35-65. [PMID: 32034708 DOI: 10.1007/978-3-030-30651-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The chapter is focused on the mechanism of action of metabotropic P2Y nucleotide receptors: P2Y1, P2Y2, P2Y12, P2Y14 and the ionotropic P2X7 receptor in glioma C6 cells. P2Y1 and P2Y12 both respond to ADP, but while P2Y1 links to PLC and elevates cytosolic Ca2+ concentration, P2Y12 negatively couples to adenylate cyclase, maintaining cAMP at low level. In glioma C6, these two P2Y receptors modulate activities of ERK1/2 and PI3K/Akt signaling and the effects depend on physiological conditions of the cells. During prolonged serum deprivation, cell growth is arrested, the expression of the P2Y1 receptor strongly decreases and P2Y12 becomes a major player responsible for ADP-evoked signal transduction. The P2Y12 receptor activates ERK1/2 kinase phosphorylation (a known cell proliferation regulator) and stimulates Akt activity, contributing to glioma invasiveness. In contrast, P2Y1 has an inhibitory effect on Akt pathway signaling. Furthermore, the P2X7 receptor, often responsible for apoptotic fate, is not involved in Ca2+elevation in C6 cells. The shift in nucleotide receptor expression from P2Y1 to P2Y12 during serum withdrawal, the cross talk between both receptors and the lack of P2X7 activity shows the precise self-regulating mechanism, enhancing survival and preserving the neoplastic features of C6 cells.
Collapse
Affiliation(s)
- Dorota Wypych
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jolanta Barańska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
37
|
Gheorghe RO, Deftu A, Filippi A, Grosu A, Bica-Popi M, Chiritoiu M, Chiritoiu G, Munteanu C, Silvestro L, Ristoiu V. Silencing the Cytoskeleton Protein Iba1 (Ionized Calcium Binding Adapter Protein 1) Interferes with BV2 Microglia Functioning. Cell Mol Neurobiol 2020; 40:1011-1027. [PMID: 31950314 DOI: 10.1007/s10571-020-00790-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/07/2020] [Indexed: 01/31/2023]
Abstract
Iba1 (ionized calcium binding adapter protein 1) is a cytoskeleton protein specific only for microglia and macrophages, where it acts as an actin-cross linking protein. Although frequently regarded as a marker of activation, its involvement in cell migration, membrane ruffling, phagocytosis or in microglia remodeling during immunological surveillance of the brain suggest that Iba1 is not a simple cytoskeleton protein, but a signaling molecule involved in specific signaling pathways. In this study we investigated if Iba1 could also represent a drug target, and tested the hypothesis that its specific silencing with customized Iba1-siRNA can modulate microglia functioning. The results showed that Iba1-silenced BV2 microglia migrate less due to reduced proliferation and cell adhesion, while their phagocytic activity and P2x7 functioning was significantly increased. Our data are the proof of concept that Iba1 protein is a new microglia target, which opens a new therapeutic avenue for modulating microglia behavior.
Collapse
Affiliation(s)
- Roxana-Olimpia Gheorghe
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Sector 5, 050095, Bucharest, Romania
| | - Alexandru Deftu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Sector 5, 050095, Bucharest, Romania
| | - Alexandru Filippi
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Andreea Grosu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Sector 5, 050095, Bucharest, Romania
| | - Melania Bica-Popi
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Sector 5, 050095, Bucharest, Romania
| | - Marioara Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Romanian Academy, Splaiul Independentei 296, 06003, Bucharest, Romania
| | - Gabriela Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Romanian Academy, Splaiul Independentei 296, 06003, Bucharest, Romania
| | - Cristian Munteanu
- Department of Molecular Cell Biology, Institute of Biochemistry, Romanian Academy, Splaiul Independentei 296, 06003, Bucharest, Romania
| | - Luigi Silvestro
- Pharma Serv International, Sabinelor 52, 050853, Bucharest, Romania
| | - Violeta Ristoiu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, Sector 5, 050095, Bucharest, Romania.
| |
Collapse
|
38
|
Tajbakhsh A, Kovanen PT, Rezaee M, Banach M, Moallem SA, Sahebkar A. Regulation of efferocytosis by caspase-dependent apoptotic cell death in atherosclerosis. Int J Biochem Cell Biol 2020; 120:105684. [PMID: 31911118 DOI: 10.1016/j.biocel.2020.105684] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/02/2019] [Accepted: 01/02/2020] [Indexed: 01/05/2023]
Abstract
During the growing process of the atherosclerotic lesions, lipid-filled macrophage foam cells form, accumulate, and ultimately undergo apoptotic death. If the apoptotic foam cells are not timely removed, they may undergo secondary necrosis, and form a necrotic lipid core which renders the plaque unstable and susceptible to rupture. Therefore, the non-lipid-filled fellow macrophages, as the main phagocytic cells in atherosclerotic lesions, need to effectively remove the apoptotic foam cells. In general, in apoptotic macrophages, caspases are the central regulators of several key processes required for their efficient efferocytosis. The processes include the generation of "Find-Me" signals (such as adenosine triphosphate/uridine triphosphate, fractalkine, lysophosphatidylcholine, and sphingosine-1-phosphate) for the recruitment of viable macrophages, generation of the "Eat-Me" signals (for example, phosphatidylserine) for the engulfment process, and, finally, release of anti-inflammatory mediators (including transforming factor β and interleukin-10) as a tolerance-enhancing and an anti-inflammatory response, and for the motile behavior of the apoptotic cell. The caspase-dependent mechanisms are operative also in apoptotic macrophages driving the atherogenesis. In this review, we explore the role of the molecular pathways related to the caspase-dependent events in efferocytosis in the context of atherosclerosis. Understanding of the molecular mechanisms of apoptotic cell death in atherosclerotic lesions is essential when searching for new leads to treat atherosclerosis.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Halal Research Center of IRI, FDA, Tehran, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Al-Zahraa University, Karbala, Iraq
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
39
|
Akhtari M, Zargar SJ, Vojdanian M, Ashraf-Ganjouei A, Javinani A, Hamzeh E, Rezaiemanesh A, Jamshidi A, Mahmoudi M. P2 receptors mRNA expression profiles in macrophages from ankylosing spondylitis patients and healthy individuals. Int J Rheum Dis 2019; 23:350-357. [PMID: 31884692 DOI: 10.1111/1756-185x.13783] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a multifactorial rheumatic disease which mainly involves the axial skeleton. Macrophages and extracellular nucleotides have been shown to contribute to the inflammation process in autoimmune diseases. Membrane-bound purinergic P2 receptors might be involved in the modulation of immune cells in AS. Therefore, we aimed to analyze the messenger RNA (mRNA) expression of P2 receptors in the macrophages of AS patients and healthy controls. METHODS Twenty-three AS patients and 23 age- and sex-matched healthy individuals were included in our study. Whole blood-separated monocytes of study participants were stimulated by macrophage colony-stimulating factor for 7 days and differentiated to macrophages. Monocyte and macrophage markers were analyzed by flow cytometry. SYBR green real-time polymerase chain reaction was used to measure the relative expression levels of P2RX1 , P2RX2 , P2RX3 , P2RX4 , P2RX5 , P2RX6 , P2RX7 , P2RY1 , P2RY2 , P2RY4 , P2RY6 , P2RY11 , P2RY12 , P2RY13 , P2RY14 , and PANX1 genes. RESULTS P2RY13 and P2RY6 genes had the highest expression levels in macrophages among P2RY genes. P2RY1 mRNA expression was significantly down-regulated (-1.75 fold) and P2RY14 was up-regulated (2.6 fold) in macrophages of AS patients compared to healthy individuals. P2RX4 gene had the highest expression in monocyte-derived macrophages, followed by P2RX7 and P2RX1 genes. There was no significant difference in P2X receptor mRNA expression level between macrophages of AS patients and healthy individuals. CONCLUSIONS Our results indicate that AS patients show altered expression levels of P2 receptor genes. Moreover, these changes might be associated with disease activity and patients' status.
Collapse
Affiliation(s)
- Maryam Akhtari
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.,Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalal Zargar
- Department of Cell & Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahdi Vojdanian
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Javinani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hamzeh
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Ryoden Y, Fujii T, Segawa K, Nagata S. Functional Expression of the P2X7 ATP Receptor Requires Eros. THE JOURNAL OF IMMUNOLOGY 2019; 204:559-568. [PMID: 31862710 DOI: 10.4049/jimmunol.1900448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 02/04/2023]
Abstract
In response to extracellular ATP, the purinergic receptor P2X7 mediates various biological processes, including phosphatidylserine (PtdSer) exposure, phospholipid scrambling, dye uptake, ion transport, and IL-1β production. A genome-wide CRISPR screen for molecules responsible for ATP-induced PtdSer exposure identified a transmembrane protein, essential for reactive oxygen species (Eros), as a necessary component for P2X7 expression. An Eros-null mouse T cell line lost the ability to expose PtdSer, to scramble phospholipids, and to internalize a dye YO-PRO-1 and Ca2+ ions. Eros-null mutation abolished the ability of an LPS-primed human THP-1 macrophage cell line and mouse bone marrow-derived macrophages to secrete IL-1β in response to ATP. Eros is localized to the endoplasmic reticulum and functions as a chaperone for NADPH oxidase components. Similarly, Eros at the endoplasmic reticulum transiently associated with P2X7 to promote the formation of a stable homotrimeric complex of P2X7. These results indicated that Eros acts as a chaperone not only for NADPH oxidase, but also for P2X7, and contributes to the innate immune reaction.
Collapse
Affiliation(s)
- Yuta Ryoden
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshihiro Fujii
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsumori Segawa
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International Research Center, Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
41
|
Marinho Y, Marques-da-Silva C, Santana PT, Chaves MM, Tamura AS, Rangel TP, Gomes-E-Silva IV, Guimarães MZP, Coutinho-Silva R. MSU Crystals induce sterile IL-1β secretion via P2X7 receptor activation and HMGB1 release. Biochim Biophys Acta Gen Subj 2019; 1864:129461. [PMID: 31676289 DOI: 10.1016/j.bbagen.2019.129461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUD The mechanism by which monosodium urate (MSU) crystals induce inflammation is not completely understood. Few studies have shown that MSU is capable of stimulating the release of IL-1β in the absence of LPS treatment. The purinergic P2X7 receptor is involved in the release of IL-1β in inflammatory settings caused by crystals, as is the case in silicosis. METHODS We investigated the role of P2X7 receptor in sterile MSU-induced inflammation by evaluating peritonitis and paw edema. In in vitro models, we performed the experiments using peritoneal macrophages and THP-1 cells. We measured inflammatory parameters using ELISA and immunoblotting. We measured cell recruitment using cell phenotypic identification and hemocytometer counts. RESULTS Our in vivo data showed that animals without P2X7 receptors generated less paw edema, less cell recruitment, and lower levels of IL-1β release in a peritonitis model. In the in vitro model, we observed that MSU induced dye uptake by the P2X7 receptor. In the absence of the receptor, or when it was blocked, MSU crystals induced less IL-1β release and this effect corresponded to the concentration of extracellular ATP. Moreover, MSU treatment induced HMGB1 release; pre-treatment with P2X7 antagonist reduced the amount of HMGB1 in cell supernatants. CONCLUSIONS IL-1β secretion induced by MSU depends on P2X7 receptor activation and involves HMGB1 release. GENERAL SIGNIFICANCE We propose that cell activation caused by MSU crystals induces peritoneal macrophages and THP-1 cells to release ATP and HMGB1, causing IL-1β secretion via P2X7 receptor activation.
Collapse
Affiliation(s)
- Ygor Marinho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Camila Marques-da-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Patricia Teixeira Santana
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Mariana Martins Chaves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Augusto Shuiti Tamura
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Thuany Prado Rangel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Isabel Virgínia Gomes-E-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
42
|
Role of the P2X7 receptor in in vitro and in vivo glioma tumor growth. Oncotarget 2019; 10:4840-4856. [PMID: 31448051 PMCID: PMC6690673 DOI: 10.18632/oncotarget.27106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Human glioblastoma cells are strikingly refractory to ATP-stimulated, P2X7 receptor (P2X7R)-mediated cytotoxicity. To elucidate the mechanistic basis of this feature, we investigated P2X7R-dependent responses in wild type and P2X7R-transfected U138 cells. Mouse GL261 glioma cells were used as an additional control. Here, we report that wild type U138 glioma cells expressed the P2X7R to very low level. Contrary to human U138 cells, mouse GL261 cells showed strong P2X7R expression and P2X7R-dependent responses. Transfection of wild type P2RX7 into U138 cells fully restored P2X7R-dependent responses. P2RX7 transfection conferred a negligible in vitro growth advantage to U138 cells, while strongly accelerated in vivo growth. In silico analysis showed that the P2RX7 gene is seldom mutated in specimens from glioblastoma multiforme (GBM) patients. These observations suggest that the P2X7R might be an important receptor promoting GBM growth.
Collapse
|
43
|
García-Moreno D, Tyrkalska SD, Valera-Pérez A, Gómez-Abenza E, Pérez-Oliva AB, Mulero V. The zebrafish: A research model to understand the evolution of vertebrate immunity. FISH & SHELLFISH IMMUNOLOGY 2019; 90:215-222. [PMID: 31039438 DOI: 10.1016/j.fsi.2019.04.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The zebrafish has unique advantages for understanding the evolution of vertebrate immunity and to model human diseases. In this review, we will firstly give an overview of the current knowledge on vertebrate innate immune receptors with special emphasis on the inflammasome and then summarize the main contribution of the zebrafish model to this field, including to the identification of novel inflammasome components and to the mechanisms involved in its activation, assembly and clearance of intracellular bacteria.
Collapse
Affiliation(s)
- Diana García-Moreno
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Sylwia D Tyrkalska
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Ana Valera-Pérez
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Elena Gómez-Abenza
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain.
| |
Collapse
|
44
|
Ruchel JB, Bernardes VM, Braun JBS, Manzoni AG, Passos DF, Castilhos LG, Abdalla FH, de Oliveira JS, de Andrade CM, Casali EA, da Cruz IBM, Leal DBR. Lipotoxicity-associated inflammation is prevented by guarana ( Paullinia cupana) in a model of hyperlipidemia. Drug Chem Toxicol 2019; 44:524-532. [PMID: 31195840 DOI: 10.1080/01480545.2019.1624767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hyperlipidemia causes lipotoxicity which prompts an inflammatory response linked to the development of cardiovascular diseases. Natural compounds have been receiving special attention for its potential to treat diseases, inexpensiveness, and safety. Guarana (Paullinia cupana) has demonstrated notable anti-inflammatory and antioxidant effects, which may prevent chronic diseases caused by changes in lipid profile. Thus, this study aims to evaluate the effect of guarana powder (Paullinia cupana) in the purine metabolism and inflammatory profile in lymphocytes and serum of rats with Poloxamer-407-induced hyperlipidemia. Pretreatment with guarana 12.5, 25, and 50 mg/kg/day or caffeine (0.2 mg/kg/day) by gavage was applied to adult male Wistar rats for a period of 30 days. As a comparative standard, we used simvastatin (0.04 mg/kg) post-induction. Hyperlipidemia was acutely induced with intraperitoneally injection of Poloxamer-407 (500 mg/kg). Guarana powder and caffeine increased the activity of the E-NTPDase (ecto-apyrase), and all pretreatments decreased the E-ADA (ecto-adenosine deaminase) activity, reducing the inflammatory process caused by lipotoxicity. In hyperlipidemic rats, ATP levels were increased while adenosine levels were decreased, guarana and caffeine reverted these changes. Guarana powder, caffeine, and simvastatin also prevented the increase in INF-γ and potentiated the increase in IL-4 levels, promoting an anti-inflammatory profile. Guarana promoted a more robust effect than caffeine. Our results show that guarana powder and caffeine have an anti-inflammatory as seen by the shift from a proinflammatory to an anti-inflammatory profile. The effects of guarana were more pronounced, suggesting that guarana powder may be used as a complementary therapy to improve the lipotoxicity-associated inflammation.
Collapse
Affiliation(s)
- Jader B Ruchel
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Viviane M Bernardes
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Josiane B S Braun
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Alessandra G Manzoni
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daniela F Passos
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Lívia G Castilhos
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Fátima H Abdalla
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Juliana S de Oliveira
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cinthia M de Andrade
- Departamento de Clínica de Pequenos Animais, Laboratório de Patologia Clínica Veterinária, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Emerson A Casali
- Departamento de Ciências Morfológicas, Laboratório de Estudos Sobre as Alterações Celulares e Teciduais, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ivana B M da Cruz
- Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Daniela B R Leal
- Departamento de Microbiologia e Parasitologia, Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, Brazil.,Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
45
|
da Silva JLG, Passos DF, Bernardes VM, Cabral FL, Schimites PG, Manzoni AG, de Oliveira EG, de Bona da Silva C, Beck RCR, Jantsch MH, Maciel RM, Leal DBR. Co-Nanoencapsulation of Vitamin D3 and Curcumin Regulates Inflammation and Purine Metabolism in a Model of Arthritis. Inflammation 2019; 42:1595-1610. [DOI: 10.1007/s10753-019-01021-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Pérez de Lara MJ, Avilés-Trigueros M, Guzmán-Aránguez A, Valiente-Soriano FJ, de la Villa P, Vidal-Sanz M, Pintor J. Potential role of P2X7 receptor in neurodegenerative processes in a murine model of glaucoma. Brain Res Bull 2019; 150:61-74. [PMID: 31102752 DOI: 10.1016/j.brainresbull.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/23/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022]
Abstract
Glaucoma is a common cause of visual impairment and blindness, characterized by retinal ganglion cell (RGC) death. The mechanisms that trigger the development of glaucoma remain unknown and have gained significant relevance in the study of this neurodegenerative disease. P2X7 purinergic receptors (P2X7R) could be involved in the regulation of the synaptic transmission and neuronal death in the retina through different pathways. The aim of this study was to characterize the molecular signals underlying glaucomatous retinal injury. The time-course of functional, morphological, and molecular changes in the glaucomatous retina of the DBA/2J mice were investigated. The expression and localization of P2X7R was analysed in relation with retinal markers. Caspase-3, JNK, and p38 were evaluated in control and glaucomatous mice by immunohistochemical and western-blot analysis. Furthermore, electroretinogram recordings (ERG) were performed to assess inner retina dysfunction. Glaucomatous mice exhibited changes in P2X7R expression as long as the pathology progressed. There was P2X7R overexpression in RGCs, the primary injured neurons, which correlated with the loss of function through ERG measurements. All analyzed MAPK and caspase-3 proteins were upregulated in the DBA/2J retinas suggesting a pro-apoptotic cell death. The increase in P2X7Rs presence may contribute, together with other factors, to the changes in retinal functionality and the concomitant death of RGCs. These findings provide evidence of possible intracellular pathways responsible for apoptosis regulation during glaucomatous degeneration.
Collapse
Affiliation(s)
- María J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, E-28037, Madrid, Spain
| | - Marcelino Avilés-Trigueros
- Laboratory of Experimental Ophthalmology, Dept. of Ophthalmology, Faculty of Medicine, University of Murcia and Murcia Institute of Bio-Health Research (IMIB), E-30120, El Palmar, Murcia, Spain
| | - Ana Guzmán-Aránguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, E-28037, Madrid, Spain
| | - F Javier Valiente-Soriano
- Laboratory of Experimental Ophthalmology, Dept. of Ophthalmology, Faculty of Medicine, University of Murcia and Murcia Institute of Bio-Health Research (IMIB), E-30120, El Palmar, Murcia, Spain
| | - Pedro de la Villa
- Systems Biology Department, Faculty of Medicine, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Manuel Vidal-Sanz
- Laboratory of Experimental Ophthalmology, Dept. of Ophthalmology, Faculty of Medicine, University of Murcia and Murcia Institute of Bio-Health Research (IMIB), E-30120, El Palmar, Murcia, Spain.
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, E-28037, Madrid, Spain
| |
Collapse
|
47
|
Rutin and curcumin reduce inflammation, triglyceride levels and ADA activity in serum and immune cells in a model of hyperlipidemia. Blood Cells Mol Dis 2019; 76:13-21. [DOI: 10.1016/j.bcmd.2018.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
|
48
|
Guerra Martinez C. P2X7 receptor in cardiovascular disease: The heart side. Clin Exp Pharmacol Physiol 2019; 46:513-526. [PMID: 30834550 DOI: 10.1111/1440-1681.13079] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 01/10/2023]
Abstract
The P2X7 receptor is a ligand-gated purinergic receptor activated by extracellular ATP. The receptor is highly expressed in immune cells and in the brain, and, upon activation, the P2X7 receptor allows a cation flux, leading to the distinct activation of intracellular signalling pathways as the secretion of pro-inflammatory cytokines, and modulation of cell survival. Through these molecular mechanisms, P2X7 is known to play important roles in physiology and pathophysiology of a wide spectrum of diseases, including cancer, inflammatory diseases, neurological, respiratory and more recently cardiovascular diseases. Recent studies demonstrated that the P2X7 could modulate the assembly of the NLRP3 inflammasome, leading to the secretion of pro-inflammatory factors and worsen the cardiac disease phenotypes. This review discusses the critical molecular function of P2X7 in the modulation of the onset, progression and resolution of cardiovascular diseases and analyses the putative future use of P2X7-based therapies that modulate the IL-1β secretion arm and direct P2X7 antagonists.
Collapse
Affiliation(s)
- Camila Guerra Martinez
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas
| |
Collapse
|
49
|
Vijayamahantesh, Vijayalaxmi. Tinkering with targeting nucleotide signaling for control of intracellular Leishmania parasites. Cytokine 2019; 119:129-143. [PMID: 30909149 DOI: 10.1016/j.cyto.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/23/2022]
Abstract
Nucleotides are one of the most primitive extracellular signalling molecules across all phyla and regulate a multitude of responses. The biological effects of extracellular nucleotides/sides are mediated via the specific purinergic receptors present on the cell surface. In mammalian system, adenine nucleotides are the predominant nucleotides found in the extracellular milieu and mediate a constellation of physiological functions. In the context of host-pathogen interaction, extracellular ATP is recognized as a danger signal and potentiates the release of pro-inflammatory mediators from activated immune cells, on the other hand, its breakdown product adenosine exerts potential anti-inflammatory and immunosuppressive actions. Therefore, it is increasingly apparent that the interplay between extracellular ATP/adenosine ratios has a significant role in coordinating the regulation of the immune system in health and diseases. Several pathogens express ectonucleotidases on their surface and exploit the purinergic signalling as one of the mechanisms to modulate the host immune response. Leishmania pathogens are one of the most successful intracellular pathogens which survive within host macrophages and manipulate protective Th1 response into disease promoting Th2 response. In this review, we discuss the regulation of extracellular ATP and adenosine levels, the role of ATP/adenosine counter signalling in regulating the inflammation and immune responses during infection and how Leishmania parasites exploit the purinergic signalling to manipulate host response. We also discuss the challenges and opportunities in targeting purinergic signalling and the future prospects.
Collapse
Affiliation(s)
- Vijayamahantesh
- Department of Biochemistry, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| | - Vijayalaxmi
- Department of Zoology, Karnatak University, Dharwad, Karnataka, India
| |
Collapse
|
50
|
Chen X, Xiao B, Yang M, Chen M, Xiao Z. Adenosine diphosphate-sensitive P2Y11 receptor inhibits endothelial cell proliferation by induction of cell cycle arrest in the S phase and induces the expression of inflammatory mediators. J Cell Biochem 2019; 120:1783-1793. [PMID: 30144157 DOI: 10.1002/jcb.27482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 07/19/2018] [Indexed: 01/24/2023]
Abstract
Extracellular adenosine diphosphate (ADP) mediates a wide range of physiological effects as an extracellular signaling molecule, including platelet aggregation, vascular tone, cell proliferation, and apoptosis by interacting with plasma membrane P2 receptors. However, the effect of ADP on cell proliferation was contradictory. In this study, we found that ADP significantly inhibited cell proliferation of human umbilical vein endothelial cells at high concentrations (50 to 100 µM). Treatment with ADP did not induce cell apoptosis but instead induced cell cycle arrest in the S phase, which may be partly due to the downregulation of cyclin B1. The inhibition of cell proliferation was blocked by suramin, a nonspecific antagonist of the P2 receptors, and high concentrations of ADP significantly upregulated the messenger RNA (mRNA) and protein expression of P2Y11 in endothelial cells. Moreover, the downregulation of P2Y11 by RNA interference reversed the inhibition of cell proliferation. In addition, ADP (100 µM) can induce the formation of cytosolic autophagy in endothelial cells and a rapid phosphorylation of extracellular signal regulated kinase (ERK) 1/2, which is a canonical signal molecule downstream of P2Y receptors, accompanied by a mRNA expression of proinflammatory cytokines such as intercellular adhesion molecule 1 and vascular cell adhesion molecule 1. Taken together, our study excludes a mechanism for extracellular ADP impairing endothelial cells proliferation via P2Y11 receptor by downregulating cyclin B1 and arresting cell cycle at the S phase, besides, ADP induces cell autophagy and mRNA expression of inflammatory cytokines, whether it is mediated by Erk signaling pathways needs further studies to confirm.
Collapse
Affiliation(s)
- Xiaobin Chen
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Bolin Xiao
- Department of Stomatology, School of Stomatological, Lanzhou University, Lanzhou, China
| | - Mei Yang
- Department of Geriatric Cardiology, National Center for Clinical Research of Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Meifang Chen
- Department of Geriatric Cardiology, National Center for Clinical Research of Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Zhilin Xiao
- Department of Geriatric Cardiology, National Center for Clinical Research of Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|