1
|
Cinicola BL, Uva A, Duse M, Zicari AM, Buonsenso D. Mucocutaneous Candidiasis: Insights Into the Diagnosis and Treatment. Pediatr Infect Dis J 2024; 43:694-703. [PMID: 38502882 PMCID: PMC11191067 DOI: 10.1097/inf.0000000000004321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Recent progress in the methods of genetic diagnosis of inborn errors of immunity has contributed to a better understanding of the pathogenesis of chronic mucocutaneous candidiasis (CMC) and potential therapeutic options. This review describes the latest advances in the understanding of the pathophysiology, diagnostic strategies, and management of chronic mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Bianca Laura Cinicola
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Uva
- Pediatrics and Neonatology Unit, Maternal-Child Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Marzia Duse
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
2
|
Kahraman AB, Yaz I, Gocmen R, Aytac S, Metin A, Kilic SS, Tezcan I, Cagdas D. Clinical and Osteopetrosis-Like Radiological Findings in Patients with Leukocyte Adhesion Deficiency Type III. J Clin Immunol 2023:10.1007/s10875-023-01479-7. [PMID: 37014583 DOI: 10.1007/s10875-023-01479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/25/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Leukocyte and platelet integrin function defects are present in leukocyte adhesion deficiency type III (LAD-III) due to mutations in FERMT3. Additionally, osteoclast/osteoblast dysfunction develops in LAD-III. AIM To discuss the distinguishing clinical, radiological, and laboratory features of LAD-III. METHODS This study included the clinical, radiological, and laboratory characteristics of twelve LAD-III patients. RESULTS The male/female ratio was 8/4. The parental consanguinity ratio was 100%. Half of the patients had a family history of patients with similar findings. The median age at presentation and diagnosis was 18 (1-60) days and 6 (1-20) months, respectively. The median leukocyte count on admission was 43,150 (30,900-75,700)/μL. The absolute eosinophil count was tested in 8/12 patients, and eosinophilia was found in 6/8 (75%). All patients had a history of sepsis. Other severe infections were pneumonia (66.6%), omphalitis (25%), osteomyelitis (16.6%), gingivitis/periodontitis (16%), chorioretinitis (8.3%), otitis media (8.3%), diarrhea (8.3%), and palpebral conjunctiva infection (8.3%). Four patients (33.3%) received hematopoietic stem cell transplantation (HSCT) from HLA-matched-related donors, and one deceased after HSCT. At initial presentation, 4 (33.3%) patients were diagnosed with other hematologic disorders, three patients (P5, P7, and P8) with juvenile myelomonocytic leukemia (JMML), and one (P2) with myelodysplastic syndrome (MDS). CONCLUSION In LAD-III, leukocytosis, eosinophilia, and bone marrow findings may mimic pathologies such as JMML and MDS. In addition to non-purulent infection susceptibility, patients with LAD-III exhibit Glanzmann-type bleeding disorder. In LAD-III, absent integrin activation due to kindlin-3 deficiency disrupts osteoclast actin cytoskeleton organization. This results in defective bone resorption and osteopetrosis-like radiological changes. These are distinctive features compared to other LAD types.
Collapse
Affiliation(s)
- Ayca Burcu Kahraman
- Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ismail Yaz
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
| | - Rahsan Gocmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Selin Aytac
- Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Department of Pediatrics, Division of Pediatric Hematology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ayse Metin
- Department of Pediatrics, Division of Immunology, University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Sara Sebnem Kilic
- Department of Pediatrics, Division of Immunology and Rheumatology, Uludag University Faculty of Medicine, Bursa, Turkey
| | - Ilhan Tezcan
- Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Cagdas
- Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey.
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.
- Department of Pediatrics, Division of Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
3
|
Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens 2023; 12:pathogens12030456. [PMID: 36986378 PMCID: PMC10058615 DOI: 10.3390/pathogens12030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In medical mycology, the main context of disease is iatrogenic-based disease. However, historically, and occasionally, even today, fungal diseases affect humans with no obvious risk factors, sometimes in a spectacular fashion. The field of “inborn errors of immunity” (IEI) has deduced at least some of these previously enigmatic cases; accordingly, the discovery of single-gene disorders with penetrant clinical effects and their immunologic dissection have provided a framework with which to understand some of the key pathways mediating human susceptibility to mycoses. By extension, they have also enabled the identification of naturally occurring auto-antibodies to cytokines that phenocopy such susceptibility. This review provides a comprehensive update of IEI and autoantibodies that inherently predispose humans to various fungal diseases.
Collapse
|
4
|
Vrachnis N, Zygouris D, Vrachnis D, Roussos N, Loukas N, Antonakopoulos N, Paltoglou G, Barbounaki S, Valsamakis G, Iliodromiti Z. Perinatal Inflammation: Could Partial Blocking of Cell Adhesion Molecule Function Be a Solution? CHILDREN-BASEL 2021; 8:children8050380. [PMID: 34065912 PMCID: PMC8150343 DOI: 10.3390/children8050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022]
Abstract
In spite of the great advances made in recent years in prenatal and perinatal medicine, inflammation can still frequently result in injury to vital organs and often constitutes a major cause of morbidity. It is today well established that in neonates—though vulnerability to infection among neonates is triggered by functional impairments in leukocyte adhesion—the decreased expression of cell adhesion molecules also decreases the inflammatory response. It is also clear that the cell adhesion molecules, namely, the integrins, selectins, and the immunoglobulin (Ig) gene super family, all play a crucial role in the inflammatory cascade. Thus, by consolidating our knowledge concerning the actions of these vital cell adhesion molecules during the prenatal period as well as regarding the genetic deficiencies of these molecules, notably leukocyte adhesion deficiency (LAD) I, II, and III, which can provoke severe clinical symptoms throughout the first year of life, it is anticipated that intervention involving blocking the function of cell adhesion molecules in neonatal leukocytes has the potential to constitute an effective therapeutic approach for inflammation. A promising perspective is the potential use of antibody therapy in preterm and term infants with perinatal inflammation and infection focusing on cases in which LAD is involved, while a further important scientific advance related to this issue could be the combination of small peptides aimed at the inhibition of cellular adhesion.
Collapse
Affiliation(s)
- Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 11526 Athens, Greece;
- Vascular Biology, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
- Research Centre in Obstetrics and Gynecology, Hellenic Society of Obstetric and Gynecologic Emergency, 11526 Athens, Greece; (D.Z.); (N.R.)
- Correspondence: ; Tel.: +30-2107777442
| | - Dimitrios Zygouris
- Research Centre in Obstetrics and Gynecology, Hellenic Society of Obstetric and Gynecologic Emergency, 11526 Athens, Greece; (D.Z.); (N.R.)
| | - Dionysios Vrachnis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11526 Athens, Greece;
| | - Nikolaos Roussos
- Research Centre in Obstetrics and Gynecology, Hellenic Society of Obstetric and Gynecologic Emergency, 11526 Athens, Greece; (D.Z.); (N.R.)
| | - Nikolaos Loukas
- Department of Gynecology, General Hospital of Athens “G. Gennimatas”, 11527 Athens, Greece;
| | - Nikolaos Antonakopoulos
- Third Department of Obstetrics and Gynecology, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 11526 Athens, Greece;
| | - Georgios Paltoglou
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, School of Medicine, National and Kapodistrian University of Athens, Aretaieion Hospital, 11526 Athens, Greece; (G.P.); (G.V.)
| | | | - Georgios Valsamakis
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, School of Medicine, National and Kapodistrian University of Athens, Aretaieion Hospital, 11526 Athens, Greece; (G.P.); (G.V.)
| | - Zoi Iliodromiti
- Department of Neonatology, School of Medicine, National and Kapodistrian University of Athens, Aretaieio Hospital, 11526 Athens, Greece;
| |
Collapse
|
5
|
Etzioni A. Leukocyte adhesion deficiency III - when integrins activation fails. J Clin Immunol 2014; 34:900-3. [PMID: 25239689 DOI: 10.1007/s10875-014-0094-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/26/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Amos Etzioni
- Ruth Children Hospital, Haifa, Rappaport Medical School, Technion, Haifa, Israel,
| |
Collapse
|
6
|
Hugo TB, Heading KL. Leucocyte adhesion deficiency III in a mixed-breed dog. Aust Vet J 2014; 92:299-302. [PMID: 24954630 DOI: 10.1111/avj.12206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Leucocyte adhesion deficiencies are inherited disorders characterised by immunodeficiency leading to recurrent infections and a marked leucocytosis. We describe the clinical characteristics, diagnosis and management of an Australian mixed- breed dog with leucocyte adhesion deficiency III. CASE REPORT A 16-month-old male, neutered, German Shepherd × Rottweiler dog was investigated for pyrexia, persistent leucocytosis, marked periodontal disease, lameness, increased mucosal haemorrhages and poor wound healing. Numerous diagnostics were performed including a leucocyte adhesion deficiency III PCR test, which was positive. The patient was managed with topical pressure at bleeding sites, antibiotics, analgesics and dental prophylaxis when required. DISCUSSION Leucocyte adhesion deficiency III is a rare disorder that manifests because of impaired activation of beta integrins. This results in an absence of neutrophil chemotaxis and adhesion, and platelet dysfunction. Mutations within the KINDLIN3 gene resulting in the absence of the kindlin-3 protein have been identified as the cause of this disease. Leucocyte adhesion deficiency III has previously been reported in humans and a German Shepherd dog. This report describes the first reported case of leucocyte adhesion deficiency III in Australia and the first reported case in a mixed-breed dog worldwide.
Collapse
Affiliation(s)
- T B Hugo
- Melbourne Veterinary Specialist Centre, Glen Waverley, Victoria, Australia.
| | | |
Collapse
|
7
|
Angiostatin inhibits activation and migration of neutrophils. Cell Tissue Res 2013; 355:375-96. [PMID: 24297047 DOI: 10.1007/s00441-013-1753-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 10/30/2013] [Indexed: 01/10/2023]
Abstract
There is a critical need to identify molecules that modulate the biology of neutrophils because activated neutrophils, though necessary for host defense, cause exuberant tissue damage through production of reactive oxygen species and increased lifespan. Angiostatin, an endogenous anti-angiogenic cleavage product of plasminogen, binds to integrin αvβ3, ATP synthase and angiomotin and its expression is increased in inflammatory conditions. We test the hypothesis that angiostatin inhibits neutrophil activation, induces apoptosis and blocks recruitment in vivo and in vitro. The data show immuno-reactivity for plasminogen/angiostatin in resting neutrophils. Angiostatin conjugated to FITC revealed that angiostatin was endocytozed by activated mouse and human neutrophils in a lipid raft-dependent fashion. Co-immunoprecipitation of human neutrophil lysates, confocal microscopy of isolated mouse and human neutrophils and functional blocking experiments showed that angiostatin complexes with flotillin-1 along with integrin αvβ3 and ATP synthase. Angiostatin inhibited fMLP-induced neutrophil polarization, as well as caused inhibition of hsp-27 phosphorylation and stabilization of microtubules. Angiostatin treatment, before or after LPS-induced neutrophil activation, inhibited phosphorylation of p38 and p44/42 MAPKs, abolished reactive oxygen species production and released the neutrophils from suppressed apoptosis, as indicated by expression of activated caspase-3 and morphological evidence of apoptosis. Finally, intravital microscopy and myeloperoxidase assay showed inhibition of neutrophil recruitment in post-capillary venules of TNFα-treated cremaster muscle in mouse. These in vitro and in vivo data demonstrate angiostatin as a broad deactivator and silencer of neutrophils and an inhibitor of their migration. These data potentially open new avenues for the development of anti-inflammatory drugs.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW The leukocyte adhesion deficiency (LAD) syndromes are rare genetically determined conditions with challenging clinical features. These immunodeficiencies also provide insights that are broadly relevant to the biology of leukocytes, platelets, intercellular interactions, and intracellular signaling. Recent discoveries merit their review in the context of existing knowledge. RECENT FINDINGS New activities of β(2) integrins, which are deficient or absent in LAD-I, and new β(2) integrin-dependent functions of neutrophils and other leukocytes have recently been identified. Genetic defects and mechanisms accounting for impaired fucosylation of selectin ligands and defective selectin binding and signaling in LAD-II are now apparent. LAD-III, which presents with bleeding similar to that in Glanzmann thrombasthenia and platelet dysfunction in addition to impaired leukocyte adhesion, is now known to be due to absence of KINDLIN-3, a cytoplasmic protein that acts cooperatively with TALIN-1 in activating β(1), β(2), and β(3) integrins. Understanding of the leukocyte adhesion cascade and interactions of leukocytes with inflamed endothelium, which are impaired in each of the LAD syndromes, continues to be refined. SUMMARY Although LAD syndromes are rare maladies, their investigation is generating new knowledge directly applicable to the diagnosis and care of patients and to fundamental paradigms in immunobiology and hemostasis.
Collapse
|
9
|
Harris ES, Smith TL, Springett GM, Weyrich AS, Zimmerman GA. Leukocyte adhesion deficiency-I variant syndrome (LAD-Iv, LAD-III): molecular characterization of the defect in an index family. Am J Hematol 2012; 87:311-3. [PMID: 22139635 DOI: 10.1002/ajh.22253] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 01/07/2023]
Abstract
Leukocyte adhesion deficiencies are rare clinical syndromes of impaired host defense that provide novel insights into regulation of immune and inflammatory responses. Leukocyte adhesion deficiency (LAD)-I variant (LAD-Iv), also called LAD-III, is a unique disorder in which inside-out signaling of β₁, β₂, and β₃ integrins on leukocytes and platelets is disrupted, leading to impaired cellular adhesion, recurrent infections, and bleeding. We originally reported the second patient with this disorder to be identified and characterized the adhesive deficiencies and functional phenotype of this subject's leukocytes. Here, we show that the molecular defect in this index subject is a new mutation in FERMT3 (KINDLIN-3) which encodes KINDLIN-3, a cytoskeletal protein that interacts with the cytoplasmic tails of β₁, β₂, and β₃ integrins and is required for inside-out and outside-in signaling of these heterodimers. We also report clinical features and previously unrecognized defects in cells from a new patient, a sibling of the original subject that we described who carries the same FERMT3 mutation. Mutations in FERMT3 have now been shown to be the basis for LAD-Iv/LAD-III in each of the four original patients or families that established this syndrome, including the family that we describe.
Collapse
Affiliation(s)
- Estelle S Harris
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | | | | | | | | |
Collapse
|
10
|
Martínez-Viñambres E, García-Trujillo JA, Rodríguez-Martín E, Villar LM, Coll J, Roldán E. CD29 expressed on plasma cells is activated by divalent cations and soluble CD106 contained in the bone marrow plasma: refractory activation is associated with enhanced proliferation and exit of clonal plasma cells to circulation in multiple myeloma patients. Leukemia 2011; 26:1098-105. [DOI: 10.1038/leu.2011.335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Sabnis H, Kirpalani A, Horan J, McDowall A, Svensson L, Cooley A, Merck T, Jobe S, Hogg N, Briones M. Leukocyte adhesion deficiency-III in an African-American patient. Pediatr Blood Cancer 2010; 55:180-2. [PMID: 20213844 DOI: 10.1002/pbc.22386] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leukocyte adhesion deficiency-III (LAD-III) is a rare disorder characterized by abnormal signaling to beta integrins, leading to defective leukocyte adhesion and chemotaxis and platelet aggregation. Here we present the first case of an African-American female infant with this disorder. She had history of multiple infections, bleeding, and leukocytosis since birth. She was successfully treated with allogeneic bone marrow transplant using a reduced intensity-conditioning regimen. Mutations in KINDLIN-3 have been described in LAD-III but the mutations in KINDLIN-3 in her case are unique.
Collapse
Affiliation(s)
- Himalee Sabnis
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Two mutations in the KINDLIN3 gene of a new leukocyte adhesion deficiency III patient reveal distinct effects on leukocyte function in vitro. Blood 2010; 115:4834-42. [PMID: 20357244 DOI: 10.1182/blood-2009-08-238709] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the disorder leukocyte adhesion deficiency III (LAD-III), integrins on platelets and leukocytes are expressed but fail to function and this leads to severe bleeding and infections at an early age. Mutation in the KINDLIN3 (FERMT3) gene is the cause of LAD-III in patients from the Middle East, Malta, and Turkey. We describe 2 novel homozygous mutations in the KINDLIN3 gene of a new African-American patient that destabilize KINDLIN3 mRNA leading to loss of kindlin-3 protein. Transfection of wild-type (WT) KINDLIN3 cDNA restored integrin-related adhesion and migration in the LAD-III patient's T and B lymphocytes. We analyzed the individual mutations separately in vitro to learn more about the function of the kindlin-3 protein. The first G>A mutation gives rise to a Gly308Arg change at the end of FERM (protein 4.1, ezrin, radixin, moesin) subdomain 2, and the second mutation is a base deletion causing early termination within the pleckstrin homology (PH) domain. This second mutation prevented membrane association of kindlin-3 and did not restore either adhesion or migration, whereas the FERM subdomain 2 mutation affected only migration. Thus, these LAD-III patient mutations have highlighted functionally important regions of kindlin-3 that alter leukocyte integrin-dependent function in 2 distinct ways.
Collapse
|
13
|
|
14
|
Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 2009; 15:306-12. [PMID: 19234463 DOI: 10.1038/nm.1931] [Citation(s) in RCA: 293] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 01/21/2009] [Indexed: 01/05/2023]
Abstract
Integrins are the major adhesion receptors of leukocytes and platelets. Beta1 and beta2 integrin function on leukocytes is crucial for a successful immune response and the platelet integrin alpha(IIb)beta3 initiates the process of blood clotting through binding fibrinogen. Integrins on circulating cells bind poorly to their ligands but become active after 'inside-out' signaling through other membrane receptors. Subjects with leukocyte adhesion deficiency-1 (LAD-I) do not express beta2 integrins because of mutations in the gene specifying the beta2 subunit, and they suffer recurrent bacterial infections. Mutations affecting alpha(IIb)beta3 integrin cause the bleeding disorder termed Glanzmann's thrombasthenia. Subjects with LAD-III show symptoms of both LAD-I and Glanzmann's thrombasthenia. Their hematopoietically-derived cells express beta1, beta2 and beta3 integrins, but defective inside-out signaling causes immune deficiency and bleeding problems. The LAD-III lesion has been attributed to a C --> A mutation in the gene encoding calcium and diacylglycerol guanine nucleotide exchange factor (CALDAGGEF1; official symbol RASGRP2) specifying the CALDAG-GEF1 protein, but we show that this change is not responsible for the LAD-III disorder. Instead, we identify mutations in the KINDLIN3 (official symbol FERMT3) gene specifying the KINDLIN-3 protein as the cause of LAD-III in Maltese and Turkish subjects. Two independent mutations result in decreased KINDLIN3 messenger RNA levels and loss of protein expression. Notably, transfection of the subjects' lymphocytes with KINDLIN3 complementary DNA but not CALDAGGEF1 cDNA reverses the LAD-III defect, restoring integrin-mediated adhesion and migration.
Collapse
|
15
|
Abstract
Leukocyte adhesion deficiency-1/variant (LAD1v) syndrome presents early in life and manifests by infections without pus formation in the presence of a leukocytosis combined with a Glanzmann-type bleeding disorder, resulting from a hematopoietic defect in integrin activation. In 7 consanguineous families, we previously established that this defect was not the result of defective Rap1 activation, as proposed by other investigators. In search of the genetic defect, we carried out homozygosity mapping in 3 of these patients, and a 13-Mb region on chromosome 11 was identified. All 7 LAD1v families share the same haplotype, in which 3 disease-associated sequence variants were identified: a putative splice site mutation in CALDAGGEF1 (encoding an exchange factor for Rap1), an intronic 1.8-kb deletion in NRXN2, and a premature stop codon (p.Arg509X) in FERMT3. Two other LAD1v patients were found to carry different stop codons in FERMT3 (p.Arg573X and p.Trp229X) and lacked the CALDAGGEF1 and NRXN2 mutations, providing convincing evidence that FERMT3 is the gene responsible for LAD1v. FERMT3 encodes kindlin-3 in hematopoietic cells, a protein present together with integrins in focal adhesions. Kindlin-3 protein expression was undetectable in the leukocytes and platelets of all patients tested. These results indicate that the LAD1v syndrome is caused by truncating mutations in FERMT3.
Collapse
|
16
|
The Clinical Spectrum of Leukocyte Adhesion Deficiency (LAD) III due to Defective CalDAG-GEF1. J Clin Immunol 2008; 29:117-22. [DOI: 10.1007/s10875-008-9226-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/15/2008] [Indexed: 12/20/2022]
|
17
|
Smith A, Stanley P, Jones K, Svensson L, McDowall A, Hogg N. The role of the integrin LFA-1 in T-lymphocyte migration. Immunol Rev 2007; 218:135-46. [PMID: 17624950 DOI: 10.1111/j.1600-065x.2007.00537.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A successful immune response depends on the migration of lymphocytes into lymph nodes or inflamed tissues where they make contact with antigen-presenting cells. We are interested in how one member of the integrin family, leukocyte function-associated antigen-1 (LFA-1), controls the function and, in particular, the migration of immune cells. We find that this integrin operates not only as an adhesion receptor for T lymphoblasts (T cells) but also induces their migration in vitro at approximately 15 microm/min. Migration requires active myosin light chain kinase at the leading edge and Rho kinase at the trailing edge of the cell. Two active conformations of LFA-1 are differently distributed on the T-cell membrane and regulate independent aspects of migration. High-affinity LFA-1 is located in a midcell 'focal zone' and influences the speed of migration, whereas intermediate affinity LFA-1 controls leading edge adhesions. Manipulating LFA-1 conformation in vivo can be performed, for example, by creating the active conformation in a transgenic mouse, and this model gives further insight into the role of LFA-1 in migration. In humans, the beneficial effect of functioning CD18 integrins in combating infections in vivo is illustrated by rare patients displaying two forms of leukocyte adhesion deficiency. In summary, we speculate that T cells have evolved a mode of rapid migration that is of paramount importance in achieving the high-speed immune surveillance upon which depends the body's protection against diverse invaders from pathogens to cancer cells.
Collapse
Affiliation(s)
- Andrew Smith
- Leukocyte Adhesion Laboratory, Cancer Research UK, London Research Institute, London, UK
| | | | | | | | | | | |
Collapse
|
18
|
Pasvolsky R, Feigelson SW, Kilic SS, Simon AJ, Tal-Lapidot G, Grabovsky V, Crittenden JR, Amariglio N, Safran M, Graybiel AM, Rechavi G, Ben-Dor S, Etzioni A, Alon R. A LAD-III syndrome is associated with defective expression of the Rap-1 activator CalDAG-GEFI in lymphocytes, neutrophils, and platelets. ACTA ACUST UNITED AC 2007; 204:1571-82. [PMID: 17576779 PMCID: PMC2118641 DOI: 10.1084/jem.20070058] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Leukocyte and platelet integrins rapidly alter their affinity and adhesiveness in response to various activation (inside-out) signals. A rare leukocyte adhesion deficiency (LAD), LAD-III, is associated with severe defects in leukocyte and platelet integrin activation. We report two new LAD cases in which lymphocytes, neutrophils, and platelets share severe defects in β1, β2, and β3 integrin activation. Patients were both homozygous for a splice junction mutation in their CalDAG-GEFI gene, which is a key Rap-1/2 guanine exchange factor (GEF). Both mRNA and protein levels of the GEF were diminished in LAD lymphocytes, neutrophils, and platelets. Consequently, LAD-III platelets failed to aggregate because of an impaired αIIbβ3 activation by key agonists. β2 integrins on LAD-III neutrophils were unable to mediate leukocyte arrest on TNFα-stimulated endothelium, despite normal selectin-mediated rolling. In situ subsecond activation of neutrophil β2 integrin adhesiveness by surface-bound chemoattractants and of primary T lymphocyte LFA-1 by the CXCL12 chemokine was abolished. Chemokine inside-out signals also failed to stimulate lymphocyte LFA-1 extension and high affinity epitopes. Chemokine-triggered VLA-4 adhesiveness in T lymphocytes was partially defective as well. These studies identify CalDAG-GEFI as a critical regulator of inside-out integrin activation in human T lymphocytes, neutrophils, and platelets.
Collapse
Affiliation(s)
- Ronit Pasvolsky
- Department of Immunology, the Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bergmeier W, Goerge T, Wang HW, Crittenden JR, Baldwin AC, Cifuni SM, Housman DE, Graybiel AM, Wagner DD. Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. J Clin Invest 2007; 117:1699-707. [PMID: 17492052 PMCID: PMC1865026 DOI: 10.1172/jci30575] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 02/27/2007] [Indexed: 12/22/2022] Open
Abstract
Single gene mutations in beta integrins can account for functional defects of individual cells of the hematopoietic system. In humans, mutations in beta(2) integrin lead to leukocyte adhesion deficiency (LAD) syndrome and mutations in beta(3) integrin cause the bleeding disorder Glanzmann thrombasthenia. However, multiple defects in blood cells involving various beta integrins (beta(1), beta(2), and beta(3)) occur simultaneously in patients with the recently described LAD type III (LAD-III). Here we show that the product of a single gene, Ca(2+) and diacylglycerol-regulated guanine nucleotide exchange factor I (CalDAG-GEFI), controlled the activation of all 3 integrins in the hematopoietic system. Neutrophils from CalDAG-GEFI(-/-) mice exhibited strong defects in Rap1 and beta(1) and beta(2) integrin activation while maintaining normal calcium flux, degranulation, and ROS generation. Neutrophils from CalDAG-GEFI-deficient mice failed to adhere firmly to stimulated venules and to migrate into sites of inflammation. Furthermore, CalDAG-GEFI regulated the activation of beta(1) and beta(3) integrins in platelets, and CalDAG-GEFI deficiency caused complete inhibition of arterial thrombus formation in mice. Thus, mice engineered to lack CalDAG-GEFI have a combination of defects in leukocyte and platelet functions similar to that of LAD-III patients.
Collapse
Affiliation(s)
- Wolfgang Bergmeier
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Tobias Goerge
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Hong-Wei Wang
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Jill R. Crittenden
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Andrew C.W. Baldwin
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Stephen M. Cifuni
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - David E. Housman
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Ann M. Graybiel
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Denisa D. Wagner
- CBR Institute for Biomedical Research and
Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research and
Center for Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| |
Collapse
|
20
|
Kuijpers TW, van Bruggen R, Kamerbeek N, Tool ATJ, Hicsonmez G, Gurgey A, Karow A, Verhoeven AJ, Seeger K, Sanal O, Niemeyer C, Roos D. Natural history and early diagnosis of LAD-1/variant syndrome. Blood 2007; 109:3529-37. [PMID: 17185466 DOI: 10.1182/blood-2006-05-021402] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The syndrome of leukocyte adhesion deficiency (LAD) combined with a severe Glanzmann-type bleeding disorder has been recognized as a separate disease entity. The variability in clinical and cell biological terms has remained largely unclear. We present data on 9 cases from 7 unrelated families, with 3 patients being actively followed for more than 12 years. The disease entity, designated LAD-1/variant syndrome, presents early in life and consists of nonpussing infections from bacterial and fungal origin, as well as a severe bleeding tendency. This is compatible with 2 major blood cell types contributing to the clinical symptoms (ie, granulocytes and platelets). In granulocytes of the patients, we found adhesion and chemotaxis defects, as well as a defect in NADPH oxidase activity triggered by unopsonized zymosan. This last test can be used as a screening test for the syndrome. Many proteins and genes involved in adhesion and signaling, including small GTPases such as Rap1 and Rap2 as well as the major Rap activity-regulating molecules, were normally present. Moreover, Rap1 activation was intact in patients' blood cells. Defining the primary defect awaits genetic linkage analysis, which may be greatly helped by a more precise understanding and awareness of the disease combined with the early identification of affected patients.
Collapse
Affiliation(s)
- Taco W Kuijpers
- Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Etzioni A. Leukocyte adhesion deficiencies: molecular basis, clinical findings, and therapeutic options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 601:51-60. [PMID: 17712991 DOI: 10.1007/978-0-387-72005-0_5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Leukocyte trafficking from bloodstream to tissue is important for the continuous surveillance for foreign antigens, as well as for rapid leukocyte accumulation at sites of inflammatory response or tissue injury. Leukocyte interaction with vascular endothelial cells is a pivotal event in the inflammatory response and is mediated by several families of adhesion molecules. The crucial role of the beta2-integrin subfamily in leukocyte emigration was established after leukocyte adhesion deficiency (LAD) I was discovered. Patients with this disorder suffer from life-threatening bacterial infections, and in its severe form, death usually occurs in early childhood unless bone marrow transplantation is performed. The LAD II disorder clarifies the role of the selectin receptors and their fucosylated ligands. Clinically, patients with LAD II suffer from a less severe form of disease, resembling the moderate phenotype of LAD I. LAD III emphasizes the importance of the integrin activation phase in the adhesion cascade. Although the primary defect is still unknown, it is clear that all hematopoietic integrin activation processes are defective, which lead to severe infection as observed in LAD I and to marked increase tendency for bleeding problems.
Collapse
Affiliation(s)
- Amos Etzioni
- Meyer Children Hospital, the Rappaport School of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
22
|
Garrood T, Lee L, Pitzalis C. Molecular mechanisms of cell recruitment to inflammatory sites: general and tissue-specific pathways. Rheumatology (Oxford) 2005; 45:250-60. [PMID: 16319101 DOI: 10.1093/rheumatology/kei207] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T Garrood
- Rheumatology Unit, 5th Floor, Thomas Guy House, Guy's Hospital , London SE1 9RT, UK
| | | | | |
Collapse
|
23
|
Bonilla FA, Bernstein IL, Khan DA, Ballas ZK, Chinen J, Frank MM, Kobrynski LJ, Levinson AI, Mazer B, Nelson RP, Orange JS, Routes JM, Shearer WT, Sorensen RU. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol 2005; 94:S1-63. [PMID: 15945566 DOI: 10.1016/s1081-1206(10)61142-8] [Citation(s) in RCA: 311] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Francisco A Bonilla
- Department of Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
In this review, selected immunodeficiency disorders are presented in which the cutaneous signs are distinctive and contribute to the diagnosis of the condition. Among these cutaneous abnormalities are alopecia, cutaneous granulomas, cutaneous infections, atopic-like or seborrheic-like dermatitis, petechiae or purpura, silvery pigmentation, poor wound healing, and telangiectasias. Immunodeficiency should be considered in children with a history of infections that are recurrent, respond poorly to antibiotics, are of increased duration and severity, and/or result from unusual organisms. In addition to their high risk of infection, patients with immunodeficiency disorders have a risk of the development of malignancy that is 10,000 times higher than that of healthy age-matched controls. The underlying molecular basis for most genetic immunodeficiencies is now understood, allowing improved genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Amy S Paller
- Department of Pediatrics, Children's Memorial Hospital, Northwestern University's Feinberg School of Medicine, Chicago, IL 60614, USA.
| |
Collapse
|
25
|
Abstract
As our understanding of integrins as multifunctional adhesion and signaling molecules has grown, so has their recognition as potential therapeutic targets in human diseases. Leukocyte integrins are of particular interest in this regard, as they are key molecules in immune-mediated and inflammatory processes and are thus critically involved in diverse clinical disorders, ranging from asthma to atherosclerosis. Antagonists that interfere with integrin-dependent leukocyte trafficking and/or post-trafficking events have shown efficacy in multiple preclinical models, but these have not always predicted success in subsequent clinical trials (e.g., ischemia-reperfusion disorders and transplantation). However, recent successes of integrin antagonists in psoriasis, inflammatory bowel disease, and multiple sclerosis demonstrate the tremendous potential of antiadhesion therapy directed at leukocyte integrins. This article will review the role of the leukocyte integrins in the inflammatory process, approaches to targeting leukocyte integrins and their ligands, and the results of completed clinical trials.
Collapse
Affiliation(s)
- Karyn Yonekawa
- Division of Nephrology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
26
|
Alon R, Etzioni A. LAD-III, a novel group of leukocyte integrin activation deficiencies. Trends Immunol 2004; 24:561-6. [PMID: 14552841 DOI: 10.1016/j.it.2003.08.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To extravasate the bloodstream at specific targets, circulating immune cells must activate their integrins to undergo rapid in situ modulation of affinity or avidity for their endothelial ligands. This activation involves specialized sub-second G-protein signal transduction triggered by endothelium-displayed chemoattractants--primarily chemokines--and their cognate leukocyte-expressed G-protein-coupled receptors (GPCRs). Recently, we reported a rare autosomal-recessive leukocyte adhesion deficiency (LAD) syndrome associated with a defective ability of integrins to undergo GPCR-mediated stimulation at endothelial contacts. This LAD shows significant similarities to a group of integrin-activation syndromes reported in leukocytes and platelets. Here, the mechanisms by which GPCRs might regulate leukocyte and platelet integrins are outlined with respect to this new family of LAD cases. We propose to term this the LAD-III family.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, 76100 Rehovot, Israel.
| | | |
Collapse
|
27
|
Hogg N, Laschinger M, Giles K, McDowall A. T-cell integrins: more than just sticking points. J Cell Sci 2003; 116:4695-705. [PMID: 14600256 DOI: 10.1242/jcs.00876] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
T cells use integrins in essentially all of their functions. They use integrins to migrate in and out of lymph nodes and, following infection, to migrate into other tissues. At the beginning of an immune response, integrins also participate in the immunological synapse formed between T cells and antigen-presenting cells. Because the ligands for integrins are widely expressed, integrin activity on T cells must be tightly controlled. Integrins become active following signalling through other membrane receptors, which cause both affinity alteration and an increase in integrin clustering. Lipid raft localization may increase integrin activity. Signalling pathways involving ADAP, Vav-1 and SKAP-55, as well as Rap1 and RAPL, cause clustering of leukocyte function-associated antigen-1 (LFA-1; integrin αLβ2). T-cell integrins can also signal, and the pathways dedicated to the migratory activity of T cells have been the most investigated so far. Active LFA-1 causes T-cell attachment and lamellipodial movement induced by myosin light chain kinase at the leading edge, whereas RhoA and ROCK cause T-cell detachment at the trailing edge. Another important signalling pathway acts through CasL/Crk, which might regulate the activity of the GTPases Rac and Rap1 that have important roles in T-cell migration.
Collapse
Affiliation(s)
- Nancy Hogg
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, London WC2A 3PX, UK.
| | | | | | | |
Collapse
|
28
|
Andrews T, Sullivan KE. Infections in patients with inherited defects in phagocytic function. Clin Microbiol Rev 2003; 16:597-621. [PMID: 14557288 PMCID: PMC207096 DOI: 10.1128/cmr.16.4.597-621.2003] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Patients with defects in phagocytic function are predisposed to intracellular microorganisms and typically have early dissemination of the infection. Recognition of the underlying disorder and aggressive antimicrobial therapy has been beneficial for the patients. Improved understanding of the pathophysiology has also affected patient management by allowing specific, targeted immunomodulatory intervention. The disorders described in this review are not common but have had a significant impact on our understanding of the role of phagocytic cells in host defense. Conversely, understanding the role of the neutrophil and macrophage in infection has benefited not just the patients described in this review but also other patients with similar disease processes.
Collapse
Affiliation(s)
- Timothy Andrews
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
29
|
Abstract
Cell adhesion and migration are essential for embryonic development, tissue regeneration, and immune defence. The physical link between the extracellular substrate and the actin cytoskeleton is mediated by receptors of the integrin family and a large set of adaptor proteins. During cell migration this physical link is dynamically modified, allowing the cell to sense and adapt to the microenvironment. This includes the formation of integrin clusters at the cell front, their stabilization in the cell body and subsequent disassembly of these clusters at the rear of the cell. The modulation of the adhesion strength of the cell to the substrate is regulated by the affinity switch of integrin molecules and increased avidity through clustering of integrins. Here we explain how integrins mediate cell migration and how genetic defects of integrins and their adaptors lead to cellular dysfunction and generate pathological situations.
Collapse
Affiliation(s)
- Bernhard Wehrle-Haller
- Department of Pathology, Centre Médical Universitaire, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland.
| | | |
Collapse
|
30
|
Alon R, Aker M, Feigelson S, Sokolovsky-Eisenberg M, Staunton DE, Cinamon G, Grabovsky V, Shamri R, Etzioni A. A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood 2003; 101:4437-45. [PMID: 12595312 DOI: 10.1182/blood-2002-11-3427] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Leukocyte arrest on vascular endothelium under disruptive shear flow is a multistep process that requires in situ integrin activation on the leukocyte surface by endothelium-displayed chemoattractants, primarily chemokines. A genetic deficiency of leukocyte adhesion to endothelium associated with defective beta2 integrin expression or function (LAD-1) has been described. We now report a novel severe genetic disorder in this multistep process associated with functional defects in multiple leukocyte integrins, reflected in recurrent infections, profound leukocytosis, and a bleeding tendency. This syndrome is associated with an impaired ability of neutrophil and lymphocyte beta1 and beta2 integrins to generate high avidity to their endothelial ligands and arrest cells on vascular endothelium in response to endothelial chemoattractant signals. Patient leukocytes roll normally on endothelial selectins, express intact integrins and G protein-coupled chemokine receptors (GPCR), spread on integrin ligands, and migrate normally along a chemotactic gradient. Activation of beta2 integrins in response to GPCR signals and intrinsic soluble ligand binding properties of the very late activation antigen-4 (VLA-4) integrin are also retained in patient leukocytes. Nevertheless, all integrins fail to generate firm adhesion to immobilized ligands in response to in situ GPCR-mediated activation by chemokines or chemoattractants, a result of a primary defect in integrin rearrangement at ligand-bearing contacts. This syndrome is the first example of a human integrin-activation deficiency associated with defective GPCR stimulation of integrin avidity at subsecond contacts, a key step in leukocyte arrest on vascular endothelium under shear flow.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, The Weizmann Institute of Science Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
McDowall A, Inwald D, Leitinger B, Jones A, Liesner R, Klein N, Hogg N. A novel form of integrin dysfunction involving β1, β2, and β3 integrins. J Clin Invest 2003. [DOI: 10.1172/jci200314076] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
32
|
Affiliation(s)
- Yoji Shimizu
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
33
|
Suzuki K, Kobayashi N, Doi T, Hijikata T, Machida I, Namiki H. Inhibition of Mg2+-dependent Adhesion of Polymorphonuclear Leukocytes by Serum Hemopexin: Differences in Divalent-Cation Dependency of Cell Adhesion in the Presence and Absence of Serum. Cell Struct Funct 2003; 28:243-53. [PMID: 14586134 DOI: 10.1247/csf.28.243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Circulating and nonadherent polymorphonuclear leukocytes (PMNs) become activated to attain adhesive state in an integrin-dependent manner by various stimuli, and perform a variety of microbicidal functions such as phagocytosis and superoxide production. We found that, in the absence of serum, a physiological concentration of hemopexin has a strong inhibitory action on Mg(2+)-dependent adhesion of PMA-activated PMNs to fibrinogen- and serum-coated surfaces. Under these conditions, Ca(2+) had no effect on Mg(2+)-dependent adhesion or the adhesion-inhibitory activity of hemopexin. In contrast, PMNs suspended in serum containing sufficient amounts of hemopexin to inhibit adhesion showed marked adherence, which was inhibited by EGTA. Next, we prepared a small-molecule fraction of serum by ultrafiltration followed by boiling. PMA-activated PMNs was found to adhere in the presence of both hemopexin and the small-molecule fraction, and the adhesion was enhanced by exogenous Ca(2+). EGTA abolished the effect of the small molecule fraction. The data suggest that serum contains adhesion-promoting factor(s) which allows PMNs to adhere despite the presence of hemopexin and that Ca(2+) is required for adhesion-promoting activity. Further study of hemopexin may provide clues for new therapeutic strategies aimed at interfering with PMN adhesion to control inflammation and tissue injury.
Collapse
Affiliation(s)
- Kingo Suzuki
- Department of Biology, School of Education, Waseda University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
McDowall A, Inwald D, Leitinger B, Jones A, Liesner R, Klein N, Hogg N. A novel form of integrin dysfunction involving beta1, beta2, and beta3 integrins. J Clin Invest 2003; 111:51-60. [PMID: 12511588 PMCID: PMC151830 DOI: 10.1172/jci14076] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The adhesion receptors known as integrins perform key functions for hematopoietic cells. The platelet integrin alphaIIbbeta3 is critical in hemostasis, and the beta1 and beta2 integrins on leukocytes have many roles in cell-mediated immunity. Mutations in the beta2 subunit lead to integrin nonexpression and to an immune deficiency, leukocyte adhesion deficiency-1. Mutations in either the alpha or beta subunit of alphaIIbbeta3 usually lead to integrin nonexpression and a bleeding tendency termed Glanzmann thrombasthenia. Here we describe a unique patient with clinical features of both Glanzmann thrombasthenia and leukocyte adhesion deficiency-1. The patient has normal expression of beta1, beta2, and beta3 integrins, but all are dysfunctional. The key findings are that "inside-out" signaling pathways leading to integrin activation are defective and that this is associated with abnormal integrin clustering. The integrins themselves are intact and capable of function following extracellular stimulation. T cell motility is normal, as are the expression levels and electrophoretic characteristics of all cytoskeletal and signaling proteins tested, except PKC-alpha, which has enhanced expression in the patient's cells. To our knowledge, this is the first description of a dysfunction affecting three classes of integrins. We propose that it is caused by a lesion in an intracellular factor or signaling pathway essential for integrin activation in hematopoietic cells and results in lack of regulation of clustering, an essential component of integrin-mediated adhesion.
Collapse
Affiliation(s)
- Alison McDowall
- Leukocyte Adhesion Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Among the myriad receptors expressed by T cells, the sine qua non is the CD3/T cell receptor (CD3/TCR) complex, because it is uniquely capable of translating the presence of a specific antigen into intracellular signals necessary to trigger an immune response against a pathogen or tumor. Much work over the past 2 decades has attempted to define the signaling pathways leading from the CD3/TCR complex that culminate ultimately in the functions necessary for effective T cell immune responses, such as cytokine production. Here, we summarize recent advances in our understanding of the mechanisms by which the CD3/TCR complex controls integrin-mediated T cell adhesion, and discuss new information that suggests that there may be unexpected facets to this pathway that distinguish it from those previously defined.
Collapse
Affiliation(s)
- Sirid-Aimée Kellermann
- Department of Laboratory Medicine and Pathology, Center for Immunology, Cancer Center, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
36
|
Abstract
This article discusses the potential for clinical translation of the large amount of information on the molecular basis of leukocyte-endothelial cell interactions that has been collected over the last twenty years. Areas of current interest include the identification of adhesion molecule expression in inflammation by diagnostic imaging, understanding variability in inflammatory responsiveness and disease susceptibility through identification of adhesion molecule and chemokine polymorphisms and the application to the treatment of inflammatory diseases of monoclonal antibodies and conventional drugs with specific actions on leukocyte adhesion and migration.
Collapse
Affiliation(s)
- Diane Marshall
- BHF Cardiovascular Medicine Unit, Faculty of Medicine, Imperial College, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK
| | | |
Collapse
|
37
|
Bunting M, Harris ES, McIntyre TM, Prescott SM, Zimmerman GA. Leukocyte adhesion deficiency syndromes: adhesion and tethering defects involving beta 2 integrins and selectin ligands. Curr Opin Hematol 2002; 9:30-5. [PMID: 11753075 DOI: 10.1097/00062752-200201000-00006] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leukocyte adhesion deficiency (LAD) syndromes are failures of innate host defenses against bacteria, fungi, and other microorganisms resulting from defective tethering, adhesion, and targeting of myeloid leukocytes to sites of microbial invasion. LAD I and variant LAD I syndromes are caused by mutations that impair expression or function of integrins of the beta 2 class (CD11/CD18 integrins, or "leukocyte" integrins). In contrast, subjects with LAD II have similar clinical features but intact leukocyte integrin expression and function. The molecular basis for LAD II is defective glycosylation of ligands on leukocytes recognized by the selectin family of adhesion molecules as well as defective glycosylation of other glycoconjugates. The defect has recently been attributed to mutations in a novel fucose transporter localized to the Golgi apparatus. Establishing the molecular basis for LAD syndromes has generated insights into mechanisms of leukocyte accumulation relevant to a broad variety of immunodeficiency syndromes as well as to diseases and disorders of unregulated inflammation that result in tissue damage.
Collapse
Affiliation(s)
- Michaeline Bunting
- Program in Human Molecular Biology and Genetics, Huntsman Cancer Institute, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | |
Collapse
|
38
|
Hsiao LL, Dangond F, Yoshida T, Hong R, Jensen RV, Misra J, Dillon W, Lee KF, Clark KE, Haverty P, Weng Z, Mutter GL, Frosch MP, MacDonald ME, Milford EL, Crum CP, Bueno R, Pratt RE, Mahadevappa M, Warrington JA, Stephanopoulos G, Stephanopoulos G, Gullans SR. A compendium of gene expression in normal human tissues. Physiol Genomics 2001; 7:97-104. [PMID: 11773596 DOI: 10.1152/physiolgenomics.00040.2001] [Citation(s) in RCA: 301] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study creates a compendium of gene expression in normal human tissues suitable as a reference for defining basic organ systems biology. Using oligonucleotide microarrays, we analyze 59 samples representing 19 distinct tissue types. Of approximately 7,000 genes analyzed, 451 genes are expressed in all tissue types and designated as housekeeping genes. These genes display significant variation in expression levels among tissues and are sufficient for discerning tissue-specific expression signatures, indicative of fundamental differences in biochemical processes. In addition, subsets of tissue-selective genes are identified that define key biological processes characterizing each organ. This compendium highlights similarities and differences among organ systems and different individuals and also provides a publicly available resource (Human Gene Expression Index, the HuGE Index, http://www.hugeindex.org) for future studies of pathophysiology.
Collapse
Affiliation(s)
- L L Hsiao
- Renal Division, Department of Medicine, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
This review highlights the various numerical and functional defects in the phagocyte system. It mainly focuses on newly discovered genetic defects in the system and the role played by these defects in the clinical symptoms presented by patients. Novel therapeutic modalities to treat phagocyte abnormalities, which are currently under clinical trials, are also discussed.
Collapse
Affiliation(s)
- A Etzioni
- Department of Pediatrics, Rambam Medical Centre and B. Rappaport School of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
40
|
Abstract
Leukocyte adhesion deficiency (LAD) is an immunodeficiency caused by defects in the adhesion of leukocytes (especially neutrophils) to the blood vessel wall. As a result, patients with LAD suffer from severe bacterial infections and impaired wound healing. In LAD-I, mutations are found in INTG2, the gene that encodes the beta subunit of the beta(2) integrins. In the rare LAD-II disease, the fucosylation of selectin ligands is disturbed, caused by mutations in the gene for a GDP-fucose transporter of the Golgi. This article summarizes all known patient mutations and polymorphisms in these genes.
Collapse
Affiliation(s)
- D Roos
- Department of Experimental Immunohematology, CLB, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | |
Collapse
|
41
|
Kylänpää-Bäck ML, Takala A, Kemppainen E, Puolakkainen P, Kautiainen H, Jansson SE, Haapiainen R, Repo H. Cellular markers of systemic inflammation and immune suppression in patients with organ failure due to severe acute pancreatitis. Scand J Gastroenterol 2001; 36:1100-7. [PMID: 11589386 DOI: 10.1080/003655201750422738] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Few data are available on cellular markers of systemic inflammation and immune suppression in early acute pancreatitis. The aim of this study was to describe the cellular immune inflammatory status of patients with acute pancreatitis in relation to development of organ failure. METHODS Prospective study including 89 patients who presented within 72 h of onset of pain. Fifty-eight of them had mild disease (Grade I group), 19 had severe disease with no organ dysfunction (Grade II group) and 12 had severe disease with organ dysfunction (Grade III group). Serial blood samples were collected on admission and following 2 days. Phagocyte surface markers were analysed using flow cytometry. RESULTS The proportion of HLA-DR-positive monocytes, a marker of immune suppression, and CD11b expression level on neutrophils and monocytes, a marker of systemic inflammation, were related to Grades I-III (P for trend <0.001). In Grade III patients, the proportion of HLA-DR-positive monocytes was low on presentation, or decreased rapidly during follow-up, whereas CD11b expression levels were persistently high. L-selectin and monocyte CD14 expression levels were not related to disease severity. CONCLUSIONS Immune suppression develops early, rapidly and unexpectedly in patients with acute pancreatitis. Monitoring immune inflammatory status may provide the means by which to identify patients who benefit from biological response modifier therapy.
Collapse
|
42
|
Zimmerman GA. Two by two: the pairings of P-selectin and P-selectin glycoprotein ligand 1. Proc Natl Acad Sci U S A 2001; 98:10023-4. [PMID: 11526223 PMCID: PMC56905 DOI: 10.1073/pnas.191367898] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- G A Zimmerman
- Department of Internal Medicine and Program in Human Molecular Biology and Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|