1
|
Navarro AM, Alonso M, Martínez-Pérez E, Lazar T, Gibson TJ, Iserte JA, Tompa P, Marino-Buslje C. Unveiling the Complexity of cis-Regulation Mechanisms in Kinases: A Comprehensive Analysis. Proteins 2024. [PMID: 39366918 DOI: 10.1002/prot.26751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 10/06/2024]
Abstract
Protein cis-regulatory elements (CREs) are regions that modulate the activity of a protein through intramolecular interactions. Kinases, pivotal enzymes in numerous biological processes, often undergo regulatory control via inhibitory interactions in cis. This study delves into the mechanisms of cis regulation in kinases mediated by CREs, employing a combined structural and sequence analysis. To accomplish this, we curated an extensive dataset of kinases featuring annotated CREs, organized into homolog families through multiple sequence alignments. Key molecular attributes, including disorder and secondary structure content, active and ATP-binding sites, post-translational modifications, and disease-associated mutations, were systematically mapped onto all sequences. Additionally, we explored the potential for conformational changes between active and inactive states. Finally, we explored the presence of these kinases within membraneless organelles and elucidated their functional roles therein. CREs display a continuum of structures, ranging from short disordered stretches to fully folded domains. The adaptability demonstrated by CREs in achieving the common goal of kinase inhibition spans from direct autoinhibitory interaction with the active site within the kinase domain, to CREs binding to an alternative site, inducing allosteric regulation revealing distinct types of inhibitory mechanisms, which we exemplify by archetypical representative systems. While this study provides a systematic approach to comprehend kinase CREs, further experimental investigations are imperative to unravel the complexity within distinct kinase families. The insights gleaned from this research lay the foundation for future studies aiming to decipher the molecular basis of kinase dysregulation, and explore potential therapeutic interventions.
Collapse
Affiliation(s)
- Alvaro M Navarro
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Macarena Alonso
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | | | - Tamas Lazar
- VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Javier A Iserte
- Structural Bioinformatics Unit, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Peter Tompa
- VIB-VUB Center for Structural Biology, Flanders Institute for Biotechnology (VIB), Brussels, Belgium
- Structural Biology Brussels, Department of Bioengineering, Vrije Universiteit Brussel, Brussels, Belgium
- Research Centre for Natural Sciences, Hungarian Research Network, Institute of Enzymology, Budapest, Hungary
| | | |
Collapse
|
2
|
Jakovic L, Djordjevic V, Kraguljac Kurtovic N, Virijevic M, Mitrovic M, Trajkovic L, Vidovic A, Bogdanovic A. Early Prediction and Streamline of Nucleophosmin Mutation Status in Acute Myeloid Leukemia Using Cup-Like Nuclear Morphology. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1443. [PMID: 39336484 PMCID: PMC11434006 DOI: 10.3390/medicina60091443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: With the advent of novel therapies for nucleophosmin gene (NPM1)-mutated acute myeloid leukemia (AML), there is a growing need for the reliable prediction of NPM1 mutations. This study explored the role of cytomorphological features in the early prediction of NPM1-mutated AML. Materials and Methods: Altogether, 212 de novo AML cases with normal karyotypes, diagnosed and treated at a single institution within 5 years (2018-2023), were retrospectively evaluated. A final diagnosis of NPM1-mutated AML, based on the World Health Organization (WHO) integrated criteria, including real-time based identification of NPM1 mutation and normal karyotype, was established in 83/212 (39.15%) cases. Results: Cup-like blasts (CLBs), a cytomorphological feature suggestive of NPM1-mutated AML, were detected in 56/83 (67%) patients. Most cases (44/56, 78.6%) had CLB ≥ 10%. In total, 27 of 83 AML NPM1-mutated patients had no CLB morphology (missed call). Additionally, two of 212 had CLB morphology without confirmed NPM1 mutation (wrong call). The positive/negative predictive values of cytomorphological evaluation for CLB ≥ 10% were 95.7%/75.6%, with sensitivity/specificity of 53%/98.5%, while the accuracy was 80.7%. We noted an increased percentage of CLBs (≥15%) in 77.8% and 50% of patients with AML without and with granulocytic maturation, respectively (the specificity for NPM1 mutation prediction was 100%). CLB was associated with fms-like tyrosine kinase 3 (FLT3) mutation (p = 0.03), but, without statistical significance for CLB ≥ 10% and CLB ≥ 15%. Conclusions: Our investigation confirmed that the morphological identification of CLB at diagnosis represents a reliable and easily reproducible tool for the early prediction of NPM1 mutations, enabling a streamlined genetic work-up for its confirmation. This may facilitate considering the early administration of individualized therapies by clinicians for specific patients.
Collapse
Affiliation(s)
- Ljubomir Jakovic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Vesna Djordjevic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
| | - Nada Kraguljac Kurtovic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
| | - Marijana Virijevic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Mirjana Mitrovic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Lazar Trajkovic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
| | - Ana Vidovic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Andrija Bogdanovic
- Clinic of Hematology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
- Medical Faculty, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| |
Collapse
|
3
|
Ruglioni M, Crucitta S, Luculli GI, Tancredi G, Del Giudice ML, Mechelli S, Galimberti S, Danesi R, Del Re M. Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated acute myeloid leukemia to guide treatment strategy. Crit Rev Oncol Hematol 2024; 201:104424. [PMID: 38917943 DOI: 10.1016/j.critrevonc.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of FLT3 mutations, including the most common FLT3-ITD (internal tandem duplications) and FLT3-TKD (tyrosine kinase domain), is associated with an unfavorable prognosis in patients affected by acute myeloid leukemia (AML). In this setting, in recent years, new FLT3 inhibitors have demonstrated efficacy in improving survival and treatment response. Nevertheless, the development of primary and secondary mechanisms of resistance poses a significant obstacle to their efficacy. Understanding these mechanisms is crucial for developing novel therapeutic approaches to overcome resistance and improve the outcomes of patients. In this context, the use of novel FLT3 inhibitors and the combination of different targeted therapies have been studied. This review provides an update on the molecular alterations involved in the resistance to FLT3 inhibitors, and describes how the molecular monitoring may be used to guide treatment strategy in FLT3-mutated AML.
Collapse
Affiliation(s)
- Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gaspare Tancredi
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Maria Livia Del Giudice
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sandra Mechelli
- Unit of Internal Medicine 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
4
|
Gorantla SP, Prince G, Osius J, Dinesh DC, Boddu V, Duyster J, von Bubnoff N. Type II mode of JAK2 inhibition and destabilization are potential therapeutic approaches against the ruxolitinib resistance driven myeloproliferative neoplasms. Front Oncol 2024; 14:1430833. [PMID: 39091915 PMCID: PMC11291247 DOI: 10.3389/fonc.2024.1430833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Background Ruxolitinib has been approved by the US FDA for the treatment of myeloproliferative neoplasms such as polycythemia vera and primary myelofibrosis. Ruxolitinib will remain a main stay in the treatment of MPN patients due to its effective therapeutic benefits. However, there have been instances of ruxolitinib resistance in MPN patients. As JAK2 is a direct target of ruxolitinib, we generated ruxolitinib-resistant clones to find out the mechanism of resistance. Methods Cell-based screening strategy was used to detect the ruxolitinib-resistant mutations in JAK2. The Sanger sequencing method was used to detect the point mutations in JAK2. Mutations were re-introduced using the site-directed mutagenesis method and stably expressed in Ba/F3 cells. Drug sensitivities against the JAK2 inhibitors were measured using an MTS-based assay. JAK2 and STAT5 activation levels and total proteins were measured using immunoblotting. Computational docking studies were performed using the Glide module of Schrodinger Maestro software. Results In this study, we have recovered seven residues in the kinase domain of JAK2 that affect ruxolitinib sensitivity. All these mutations confer cross-resistance across the panel of JAK2 kinase inhibitors except JAK2-L983F. JAK2-L983F reduces the sensitivity towards ruxolitinib. However, it is sensitive towards fedratinib indicating that our screen identifies the drug-specific resistance profiles. All the ruxolitinib-resistant JAK2 variants displayed sensitivity towards type II JAK2 inhibitor CHZ-868. In this study, we also found that JAK1-L1010F (homologous JAK2-L983F) is highly resistant towards ruxolitinib suggesting the possibility of JAK1 escape mutations in JAK2-driven MPNs and JAK1 mutated ALL. Finally, our study also shows that HSP90 inhibitors are potent against ruxolitinib-resistant variants through the JAK2 degradation and provides the rationale for clinical evaluation of potent HSP90 inhibitors in genetic resistance driven by JAK2 inhibitors. Conclusion Our study identifies JAK1 and JAK2 resistance variants against the type I JAK2 inhibitors ruxolitinib, fedratinib, and lestaurtinib. The sensitivity of these resistant variants towards the type II JAK2 inhibitor CHZ-868 indicates that this mode of type II JAK2 inhibition is a potential therapeutic approach against ruxolitinib refractory leukemia. This also proposes the development of potent and specific type II JAK2 inhibitors using ruxolitinib-resistance variants as a prototype.
Collapse
Affiliation(s)
- Sivahari P. Gorantla
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
- Department of Internal Medicine I, University Medical Center Freiburg, Freiburg, Germany
| | - Gerin Prince
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Jasmin Osius
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Dhurvas Chandrasekaran Dinesh
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Vijay Boddu
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Justus Duyster
- Department of Internal Medicine I, University Medical Center Freiburg, Freiburg, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
5
|
Wang Z, An Y, Wang J, Lu J. Deciphering the mechanism of HM43239 inhibiting the mutant F691L resistant to gilteritinib in FMS-like tyrosine kinase 3. J Biomol Struct Dyn 2024; 42:5817-5826. [PMID: 37382586 DOI: 10.1080/07391102.2023.2229447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
FMS-like tyrosine kinase (FLT3) has become the legitimate molecular therapeutic target for acute myeloid leukemia therapy. Though FLT3 inhibitors have impact on disease progression, drug resistance induced by secondary point mutations is the primary mechanism and urgent to overcome. Herein, we sought to decipher the mechanism of HM43239 inhibiting the mutant F691L resistant to gilteritinib in FLT3. A series of molecular modeling studies, including molecular dynamics (MD) simulation, dynamic cross-correlation (DCC) analysis, binding free energy (MM-GBSA) and docking study were explored to elucidate the differential tolerance mechanisms of two inhibitors to the same mutant. The F691L mutation had relatively larger effect on gilteritinib than HM43239, which showed as the changed and fixed conformation, respectively. These observations rationalized that the binding affinity of gilteritinib decreased more than that of HM43239 in the F691L mutant.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Pharmacy, Jinzhou Medical University, Linghe District, Jinzhou, China
| | - Yu An
- Department of Open Education, Jinzhou Open University, Linghe District, Jinzhou, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenhe District, Shenyang, China
| | - Jinghua Lu
- College of Pharmacy, Jinzhou Medical University, Linghe District, Jinzhou, China
| |
Collapse
|
6
|
Pravdić Z, Suvajdžić-Vuković N, Virijević M, Mitrović M, Pantić N, Sabljić N, Pavlović Đ, Marjanović I, Bukumirić Z, Vidović A, Jaković L, Pavlović S, Gašić V. Can pharmacogenetics impact the therapeutic effect of cytarabine and anthracyclines in adult acute myeloid leukaemia patients?: A Serbian experience. J Med Biochem 2024; 43:545-555. [PMID: 39139169 PMCID: PMC11318899 DOI: 10.5937/jomb0-47459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/21/2024] [Indexed: 08/15/2024] Open
Abstract
Background Cytarabine-anthracycline-based induction chemotherapy remains the standard of care for remission induction among patients with newly diagnosed acute myeloid leukaemia (AML). There are remarkable differences in therapy response among AML patients. This fact could be partly explained by the patients' genetic variability related to the metabolic paths of cytarabine and anthracyclines. This study aims to evaluate the effect of variants in pharmacogenes SLC29A1, DCK, ABCB1, GSTM1, and GSTT1, as well as laboratory and AML-related parameters on clinical outcomes in adult AML patients. Methods A total of 100 AML patients were included in the study. Pharmacogenetic variants SLC29A1 rs9394992, DCK rs12648166, ABCB1 rs2032582, and GSTM1 and GSTT1 gene deletions were detected by methodology based on PCR, fragment analysis and direct sequencing. The methods of descriptive and analytic statistics were used. Survival analysis was done using the Kaplan-Meier method using the Log-Rank test. Results This is the first study of adult AML pharmacogenetics in the Serbian population. Clinical outcomes in our cohort of AML patients were not impacted by analysed variants in SLC29A1, DCK, ABCB1 and GSTT1, and GSTM1 genes, independently or in combinations. Achievement of complete remission was identified as an independent prognostic indicator of clinical outcome. Conclusions The population-specific genomic profile has to be considered in pharmacogenetics. Since the data on AML pharmacogenetics in European populations is limited, our results contribute to knowledge in this field and strongly indicate that a high-throughput approach must be applied to find particular pharmacogenetic markers of AML in the European population.
Collapse
Affiliation(s)
- Zlatko Pravdić
- University Clinical Centre of Serbia, Clinic of Haematology, Belgrade
| | | | | | - Mirjana Mitrović
- University Clinical Centre of Serbia, Clinic of Haematology, Belgrade
| | - Nikola Pantić
- University Clinical Centre of Serbia, Clinic of Haematology, Belgrade
| | - Nikica Sabljić
- University Clinical Centre of Serbia, Clinic of Haematology, Belgrade
| | - Đorđe Pavlović
- University of Belgrade, Institute of Molecular Genetics and Genetical Engineering, Belgrade
| | - Irena Marjanović
- University of Belgrade, Institute of Molecular Genetics and Genetical Engineering, Belgrade
| | - Zoran Bukumirić
- University of Belgrade, Faculty of Medicine, Institute of Medical Statistics and Informatics, Belgrade
| | - Ana Vidović
- University Clinical Centre of Serbia, Clinic of Haematology, Belgrade
| | - Ljubomir Jaković
- University Clinical Centre of Serbia, Clinic of Haematology, Belgrade
| | - Sonja Pavlović
- University of Belgrade, Institute of Molecular Genetics and Genetical Engineering, Belgrade
| | - Vladimir Gašić
- University of Belgrade, Institute of Molecular Genetics and Genetical Engineering, Belgrade
| |
Collapse
|
7
|
Nwosu GO, Ross DM, Powell JA, Pitson SM. Venetoclax therapy and emerging resistance mechanisms in acute myeloid leukaemia. Cell Death Dis 2024; 15:413. [PMID: 38866760 PMCID: PMC11169396 DOI: 10.1038/s41419-024-06810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Acute myeloid leukaemia (AML) is a highly aggressive and devastating malignancy of the bone marrow and blood. For decades, intensive chemotherapy has been the frontline treatment for AML but has yielded only poor patient outcomes as exemplified by a 5-year survival rate of < 30%, even in younger adults. As knowledge of the molecular underpinnings of AML has advanced, so too has the development new strategies with potential to improve the treatment of AML patients. To date the most promising of these targeted agents is the BH3-mimetic venetoclax which in combination with standard of care therapies, has manageable non-haematological toxicity and exhibits impressive efficacy. However, approximately 30% of AML patients fail to respond to venetoclax-based regimens and almost all treatment responders eventually relapse. Here, we review the emerging mechanisms of intrinsic and acquired venetoclax resistance in AML and highlight recent efforts to identify novel strategies to overcome resistance to venetoclax.
Collapse
Affiliation(s)
- Gus O Nwosu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - David M Ross
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
- Department of Haematology, Flinders University and Medical Centre, Adelaide, SA, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health Sciences, University of Adelaide, Adelaide, SA, Australia.
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
8
|
Tecik M, Adan A. Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors. Curr Treat Options Oncol 2024; 25:719-751. [PMID: 38696033 PMCID: PMC11222205 DOI: 10.1007/s11864-024-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 07/04/2024]
Abstract
OPINION STATEMENT The internal tandem duplication (ITD) mutation of the FMS-like receptor tyrosine kinase 3 (FLT3-ITD) is the most common mutation observed in approximately 30% of acute myeloid leukemia (AML) patients. It represents poor prognosis due to continuous activation of downstream growth-promoting signaling pathways such as STAT5 and PI3K/AKT. Hence, FLT3 is considered an attractive druggable target; selective small FLT3 inhibitors (FLT3Is), such as midostaurin and quizartinib, have been clinically approved. However, patients possess generally poor remission rates and acquired resistance when FLT3I used alone. Various factors in patients could cause these adverse effects including altered epigenetic regulation, causing mainly abnormal gene expression patterns. Epigenetic modifications are required for hematopoietic stem cell (HSC) self-renewal and differentiation; however, critical driver mutations have been identified in genes controlling DNA methylation (such as DNMT3A, TET2, IDH1/2). These regulators cause leukemia pathogenesis and affect disease diagnosis and prognosis when they co-occur with FLT3-ITD mutation. Therefore, understanding the role of different epigenetic alterations in FLT3-ITD AML pathogenesis and how they modulate FLT3I's activity is important to rationalize combinational treatment approaches including FLT3Is and modulators of methylation regulators or pathways. Data from ongoing pre-clinical and clinical studies will further precisely define the potential use of epigenetic therapy together with FLT3Is especially after characterized patients' mutational status in terms of FLT3 and DNA methlome regulators.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
9
|
Bruzzese A, Vigna E, Martino EA, Labanca C, Mendicino F, Lucia E, Olivito V, Stanzione G, Zimbo A, Lugli E, Neri A, Morabito F, Gentile M. The potential of triplet combination therapies for patients with FLT3-ITD -mutated acute myeloid leukemia. Expert Rev Hematol 2024; 17:241-253. [PMID: 38748404 DOI: 10.1080/17474086.2024.2356258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) encompasses a heterogeneous group of aggressive myeloid malignancies, where FMS-like tyrosine kinase 3 (FLT3) mutations are prevalent, accounting for approximately 25-30% of adult patients. The presence of this mutation is related to a dismal prognosis and high relapse rates. In the lasts years many FLT3 inhibitors have been developed. AREAS COVERED This review provides a comprehensive overview of FLT3mut AML, summarizing the state of art of current treatment and available data about combination strategies including an FLT3 inhibitor. EXPERT OPINION In addition, the review discusses the emergence of drug resistance and the need for a nuanced approaches in treating patients who are ineligible for or resistant to intensive chemotherapy. Specifically, it explores the historical context of FLT3 inhibitors (FLT3Is) and their impact on treatment outcomes, emphasizing the pivotal role of midostaurin, as well as gilteritinib and quizartinib, and providing detailed insights into ongoing trials exploring the safety and efficacy of novel triplet combinations involving FLT3Is in different AML settings.
Collapse
Affiliation(s)
| | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Gaia Stanzione
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Division of Hematology, Azienda Policlinico-S. Marco, University of Catania, Catania, Italy
| | - Annamaria Zimbo
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- UOC Laboratorio Analisi Cliniche, Biomolecolari e Genetica, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Elisabetta Lugli
- Ematologia Azienda USL-IRCSS Reggio Emilia, Emilia-Romagna, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Emilia-Romagna, Reggio Emilia, Italy
| | | | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
10
|
Damiani D, Tiribelli M. CAR-T Cells in Acute Myeloid Leukemia: Where Do We Stand? Biomedicines 2024; 12:1194. [PMID: 38927401 PMCID: PMC11200794 DOI: 10.3390/biomedicines12061194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Despite recent advances, the prognosis of acute myeloid leukemia (AML) remains unsatisfactory due to disease recurrence and the development of resistance to both conventional and novel therapies. Engineered T cells expressing chimeric antigen receptors (CARs) on their cellular surface represent one of the most promising anticancer agents. CAR-T cells are increasingly used in patients with B cell malignancies, with remarkable clinical results despite some immune-related toxicities. However, at present, the role of CAR-T cells in myeloid neoplasms, including AML, is extremely limited, as specific molecular targets for immune cells are generally lacking on AML blasts. Besides the paucity of dispensable targets, as myeloid antigens are often co-expressed on normal hematopoietic stem and progenitor cells with potentially intolerable myeloablation, the AML microenvironment is hostile to T cell proliferation due to inhibitory soluble factors. In addition, the rapidly progressive nature of the disease further complicates the use of CAR-T in AML. This review discusses the current state of CAR-T cell therapy in AML, including the still scanty clinical evidence and the potential approaches to overcome its limitations, including genetic modifications and combinatorial strategies, to make CAR-T cell therapy an effective option for AML patients.
Collapse
Affiliation(s)
- Daniela Damiani
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| | - Mario Tiribelli
- Division of Hematology and Stem Cell Transplantation, University Hospital, 33100 Udine, Italy;
- Department of Medicine (DMED), University of Udine, 33100 Udine, Italy
| |
Collapse
|
11
|
Short NJ, Daver N, Dinardo CD, Kadia T, Nasr LF, Macaron W, Yilmaz M, Borthakur G, Montalban-Bravo G, Garcia-Manero G, Issa GC, Chien KS, Jabbour E, Nasnas C, Huang X, Qiao W, Matthews J, Stojanik CJ, Patel KP, Abramova R, Thankachan J, Konopleva M, Kantarjian H, Ravandi F. Azacitidine, Venetoclax, and Gilteritinib in Newly Diagnosed and Relapsed or Refractory FLT3-Mutated AML. J Clin Oncol 2024; 42:1499-1508. [PMID: 38277619 PMCID: PMC11095865 DOI: 10.1200/jco.23.01911] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 01/28/2024] Open
Abstract
PURPOSE Azacitidine plus venetoclax is a standard of care for patients with newly diagnosed AML who are unfit for intensive chemotherapy. However, FLT3 mutations are a common mechanism of resistance to this regimen. The addition of gilteritinib, an oral FLT3 inhibitor, to azacitidine and venetoclax may improve outcomes in patients with FLT3-mutated AML. METHODS This phase I/II study evaluated azacitidine, venetoclax, and gilteritinib in two cohorts: patients with (1) newly diagnosed FLT3-mutated AML who were unfit for intensive chemotherapy or (2) relapsed/refractory FLT3-mutated AML (ClinicalTrials.gov identifier: NCT04140487). The primary end points were the maximum tolerated dose of gilteritinib (phase I) and the combined complete remission (CR)/CR with incomplete hematologic recovery (CRi) rate (phase II). RESULTS Fifty-two patients were enrolled (frontline [n = 30]; relapsed/refractory [n = 22]). The recommended phase II dose was gilteritinib 80 mg once daily in combination with azacitidine and venetoclax. In the frontline cohort, the median age was 71 years and 73% of patients had an FLT3-internal tandem duplication (ITD) mutation. The CR/CRi rate was 96% (CR, 90%; CRi, 6%). Sixty-five percent of evaluable patients achieved FLT3-ITD measurable residual disease <5 × 10-5 within four cycles. With a median follow-up of 19.3 months, the median relapse-free survival (RFS) and overall survival (OS) have not been reached and the 18-month RFS and OS rates are 71% and 72%, respectively. In the relapsed/refractory cohort, the CR/CRi rate was 27%; nine additional patients (41%) achieved a morphologic leukemia-free state. The most common grade 3 or higher nonhematologic adverse events were infection (62%) and febrile neutropenia (38%), which were more frequent in the relapsed/refractory cohort. CONCLUSION The combination of azacitidine, venetoclax, and gilteritinib resulted in high rates of CR/CRi, deep FLT3 molecular responses, and encouraging survival in newly diagnosed FLT3-mutated AML. Myelosuppression was manageable with mitigative dosing strategies.
Collapse
Affiliation(s)
- Nicholas J. Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Courtney D. Dinardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tapan Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lewis F. Nasr
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Walid Macaron
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Musa Yilmaz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Ghayas C. Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kelly S. Chien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Cedric Nasnas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Xuelin Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Wei Qiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jairo Matthews
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Keyur P. Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Regina Abramova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jennifer Thankachan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
12
|
Macečková D, Vaňková L, Holubová M, Jindra P, Klieber R, Jandová E, Pitule P. Current knowledge about FLT3 gene mutations, exploring the isoforms, and protein importance in AML. Mol Biol Rep 2024; 51:521. [PMID: 38625438 DOI: 10.1007/s11033-024-09452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/15/2024] [Indexed: 04/17/2024]
Abstract
Acute myeloid leukaemia (AML) is a complex haematological malignancy characterised by diverse genetic alterations leading to abnormal proliferation of myeloid precursor cells. One of the most significant genetic alterations in AML involves mutations in the FLT3 gene, which plays a critical role in haematopoiesis and haematopoietic homeostasis. This review explores the current understanding of FLT3 gene mutations and isoforms and the importance of the FLT3 protein in AML. FLT3 mutations, including internal tandem duplications (FLT3-ITD) and point mutations in the tyrosine kinase domain (FLT3-TKD), occur in 25-30% in AML and are associated with poor prognosis. FLT3-ITD mutations lead to constitutive activation of the FLT3 signalling pathway, promoting cell survival and proliferation. FLT3-TKD mutations affect the tyrosine kinase domain and affect AML prognosis in various ways. Furthermore, FLT3 isoforms, including shorter variants, contribute to the complexity of FLT3 biology. Additionally, nonpathological polymorphisms in FLT3 are being explored for their potential impact on AML prognosis and treatment response. This review also discusses the development of molecular treatments targeting FLT3, including first-generation and next-generation tyrosine kinase inhibitors, highlighting the challenges of resistance that often arise during therapy. The final chapter describes FLT3 protein domain rearrangements and their relevance to AML pathogenesis.
Collapse
Affiliation(s)
- Diana Macečková
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia.
| | - Lenka Vaňková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Monika Holubová
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Pavel Jindra
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Robin Klieber
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia
- Department of Haematology and Oncology, University Hospital Pilsen, Pilsen, Czechia
| | - Eliška Jandová
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia
| | - Pavel Pitule
- Laboratory of Tumor Biology and Immunotherapy Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, Pilsen, 32300, Czechia
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
13
|
Abaza Y, McMahon C, Garcia JS. Advancements and Challenges in the Treatment of AML. Am Soc Clin Oncol Educ Book 2024; 44:e438662. [PMID: 38662975 DOI: 10.1200/edbk_438662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The therapeutic arsenal for the management of AML has expanded significantly in recent years. Before 2017, newly diagnosed AML was treated with either standard cytarabine- and anthracycline-based induction chemotherapy (for all fit patients) or a single-agent hypomethylating agent (in unfit patients or those 75 years and older). While assessing patient fitness remains important, characterizing the disease biology has become critical to select the optimal initial therapy for each patient with more options available. FLT3 inhibitors, gemtuzumab ozogamicin, and CPX-351 have been shown to improve outcomes for specific subsets of patients. Venetoclax (VEN) with a hypomethylating agent (HMA) is the standard-of-care frontline regimen for most older patients, except perhaps for those with an IDH1 mutation where ivosidenib with azacitidine may also be considered. On the basis of the success seen with HMA/VEN in older patients, there is now increasing interest in incorporating VEN into frontline regimens in younger patients, with promising data from multiple early phase studies. This article focuses on recent updates and ongoing challenges in the management of AML, with a particular focus on the ongoing challenge of secondary AML and considerations regarding the selection of initial therapy in younger patients. An overview of common side effects and toxicities associated with targeted therapies is also presented here, along with recommended strategies to mitigate these risks.
Collapse
Affiliation(s)
- Yasmin Abaza
- Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Christine McMahon
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| | | |
Collapse
|
14
|
Murdock HM, Ho VT, Garcia JS. Innovations in conditioning and post-transplant maintenance in AML: genomically informed revelations on the graft-versus-leukemia effect. Front Immunol 2024; 15:1359113. [PMID: 38571944 PMCID: PMC10987864 DOI: 10.3389/fimmu.2024.1359113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024] Open
Abstract
Acute Myeloid Leukemia (AML) is the prototype of cancer genomics as it was the first published cancer genome. Large-scale next generation/massively parallel sequencing efforts have identified recurrent alterations that inform prognosis and have guided the development of targeted therapies. Despite changes in the frontline and relapsed standard of care stemming from the success of small molecules targeting FLT3, IDH1/2, and apoptotic pathways, allogeneic stem cell transplantation (alloHSCT) and the resulting graft-versus-leukemia (GVL) effect remains the only curative path for most patients. Advances in conditioning regimens, graft-vs-host disease prophylaxis, anti-infective agents, and supportive care have made this modality feasible, reducing transplant related mortality even among patients with advanced age or medical comorbidities. As such, relapse has emerged now as the most common cause of transplant failure. Relapse may occur after alloHSCT because residual disease clones persist after transplant, and develop immune escape from GVL, or such clones may proliferate rapidly early after alloHSCT, and outpace donor immune reconstitution, leading to relapse before any GVL effect could set in. To address this issue, genomically informed therapies are increasingly being incorporated into pre-transplant conditioning, or as post-transplant maintenance or pre-emptive therapy in the setting of mixed/falling donor chimerism or persistent detectable measurable residual disease (MRD). There is an urgent need to better understand how these emerging therapies modulate the two sides of the GVHD vs. GVL coin: 1) how molecularly or immunologically targeted therapies affect engraftment, GVHD potential, and function of the donor graft and 2) how these therapies affect the immunogenicity and sensitivity of leukemic clones to the GVL effect. By maximizing the synergistic action of molecularly targeted agents, immunomodulating agents, conventional chemotherapy, and the GVL effect, there is hope for improving outcomes for patients with this often-devastating disease.
Collapse
Affiliation(s)
- H. Moses Murdock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Vincent T. Ho
- Bone Marrow Transplant Program, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
15
|
Wang P, Zhang Y, Xiang R, Yang J, Xu Y, Deng T, Zhou W, Wang C, Xiao X, Wang S. Foretinib Is Effective in Acute Myeloid Leukemia by Inhibiting FLT3 and Overcoming Secondary Mutations That Drive Resistance to Quizartinib and Gilteritinib. Cancer Res 2024; 84:905-918. [PMID: 38231480 PMCID: PMC10940854 DOI: 10.1158/0008-5472.can-23-1534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
FLT3 internal tandem duplication (FLT3-ITD) mutations are one of the most prevalent somatic alterations associated with poor prognosis in patients with acute myeloid leukemia (AML). The clinically approved FLT3 kinase inhibitors gilteritinib and quizartinib improve the survival of patients with AML with FLT3-ITD mutations, but their long-term efficacy is limited by acquisition of secondary drug-resistant mutations. In this study, we conducted virtual screening of a library of 60,411 small molecules and identified foretinib as a potent FLT3 inhibitor. An integrated analysis of the BeatAML database showed that foretinib had a lower IC50 value than other existing FLT3 inhibitors in patients with FLT3-ITD AML. Foretinib directly bound to FLT3 and effectively inhibited FLT3 signaling. Foretinib potently inhibited proliferation and promoted apoptosis in human AML cell lines and primary AML cells with FLT3-ITD mutations. Foretinib also significantly extended the survival of mice bearing cell-derived and patient-derived FLT3-ITD xenografts, exhibiting stronger efficacy than clinically approved FLT3 inhibitors in treating FLT3-ITD AML. Moreover, foretinib showed potent activity against secondary mutations of FLT3-ITD that confer resistance to quizartinib and gilteritinib. These findings support the potential of foretinib for treating patients with AML with FLT3-ITD mutations, especially for those carrying secondary mutations after treatment failure with other FLT3 inhibitors. SIGNIFICANCE Foretinib exhibits superior efficacy to approved drugs in AML with FLT3-ITD mutations and retains activity in AML with secondary FLT3 mutations that mediate resistance to clinical FLT3 inhibitors.
Collapse
Affiliation(s)
- Peihong Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Yvyin Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Rui-Jin Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Rufang Xiang
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jie Yang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Yanli Xu
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Tingfen Deng
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Wei Zhou
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Caixia Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| | - Xinhua Xiao
- Department of Hematology and Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P.R. China
| | - Shunqing Wang
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R. China
| |
Collapse
|
16
|
Brown A, Batra S. Rare Hematologic Malignancies and Pre-Leukemic Entities in Children and Adolescents Young Adults. Cancers (Basel) 2024; 16:997. [PMID: 38473358 DOI: 10.3390/cancers16050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
There are a variety of rare hematologic malignancies and germline predispositions syndromes that occur in children and adolescent young adults (AYAs). These entities are important to recognize, as an accurate diagnosis is essential for risk assessment, prognostication, and treatment. This descriptive review summarizes rare hematologic malignancies, myelodysplastic neoplasms, and germline predispositions syndromes that occur in children and AYAs. We discuss the unique biology, characteristic genomic aberrations, rare presentations, diagnostic challenges, novel treatments, and outcomes associated with these rare entities.
Collapse
Affiliation(s)
- Amber Brown
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - Sandeep Batra
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Alkhatabi HA, Alqahtani W, Alsolami R, Elaimi A, Hazzazi MS, Almashjary MN, Alkhatabi HA, Alghuthami ME, Daous YM, Yasin EB, Barefah A. Application of Newly Customized Myeloid NGS Panel in the Diagnosis of Myeloid Malignancies. Int J Gen Med 2024; 17:37-48. [PMID: 38204493 PMCID: PMC10777859 DOI: 10.2147/ijgm.s437327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Purpose Genetic mutations are major factors in the diagnosis and prognosis of leukemia, and it is difficult to assess these variants using single-gene analysis. Therefore, this study aimed to develop a fast and cost-effective method for genetic screening of myeloid malignancies using a customized next-generation sequencing (NGS) panel. Patients and Methods A customized myeloid panel was designed and investigated in 15 acute myeloid leukemia patients. The panel included 11 genes that were most commonly mutated in myeloid malignancies. This panel was designed to sequence the complete genome of CALR, IDH1, IDH2, JAK2, FLT3, NPM1, MPL, TET2, SF3B1, TP53, and MLL. Results Among the 15 patients, 14 actual pathogenic variants were identified in nine samples, and negative results were found in six samples. Positive findings were observed for JAK2, FLT3, SF3B1, and TET2. Interestingly, non-classical FLT3 mutations (c.1715A>C, c.2513delG, and c.2507dupT) were detected in patients who were negative for FLT3-ITD and TKD by routine molecular results. All identified variants were pathogenic, and the high coverage of the assay allowed us to predict variants at a low frequency (1%) with 1000x coverage. Conclusion Utilizing a custom panel allowed us to identify variants that were not detected by routine tests or those that were not routinely investigated. Using the costuming panel will enable us to sequence all genes and discover new potential pathogenic variants that are not possible with other commercially available panels that focus only on hotspot regions. This study's strength in utilizing NGS and implanting a customized panel to identify new pathogenic variants that might be common in our population and important in routine diagnosis for providing optimal healthcare for personalized medicine.
Collapse
Affiliation(s)
- Heba A Alkhatabi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
- Hematology Research Unit (HRU), King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| | - Wejdan Alqahtani
- Department of Medical Laboratory, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Reem Alsolami
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
- Hematology Research Unit (HRU), King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| | - Aisha Elaimi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| | - Mohannad S Hazzazi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
- Hematology Research Unit (HRU), King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| | - Majed N Almashjary
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
- Hematology Research Unit (HRU), King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| | - Hind A Alkhatabi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | | | - Yara M Daous
- Hematology Research Unit (HRU), King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
| | - Elrashed B Yasin
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Rabigh, 25732, Saudi Arabia
| | - Ahmed Barefah
- Hematology Research Unit (HRU), King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 22254, Saudi Arabia
- Hematology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
18
|
Sun SL, Wu JZ, Wang JJ, Zhou H, Zhang CQ, Tong ZJ, Wang YB, Sha JK, Wang QX, Liu JC, Zheng XR, Li QQ, Zhang MY, Yang J, Wei TH, Wang ZX, Yu YC, Ding N, Leng XJ, Xue X, Li HM, Dai WC, Yin XY, Yang Y, Duan JA, Li NG, Shi ZH. Preclinical characterization of danatinib as a novel FLT3 inhibitor with excellent efficacy against resistant acute myeloid leukemia. Biomed Pharmacother 2023; 169:115905. [PMID: 38000356 DOI: 10.1016/j.biopha.2023.115905] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic benefits of available FLT3 inhibitors for AML are limited by drug resistance, which is related to mutations, as well toxicity caused by off-target effects. In this study, we introduce a new small molecule FLT3 inhibitor called danatinib, which was designed to overcome the limitations of currently approved agents. Danatinib demonstrated greater potency and selectivity, resulting in cytotoxic activity specific to FLT3-ITD and/or FLT3-TKD mutated models. It also showed a superior kinome inhibition profile compared to several currently approved FLT3 inhibitors. In diverse FLT3-TKD models, danatinib exhibited substantially improved activity at clinically relevant doses, outperforming approved FLT3 inhibitors. In vivo safety evaluations performed on the granulopoiesis of transgenic myeloperoxidase (MPO) zebrafish and mice models proved danatinib to have an acceptable safety profile. Danatinib holds promise as a new and improved FLT3 inhibitor for the treatment of AML, offering long-lasting remissions and improved overall survival rates.
Collapse
Affiliation(s)
- Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Hai Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Chen-Qian Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jiu-Kai Sha
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Chuan Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin-Rui Zheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - He-Min Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xiao-Ying Yin
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
19
|
Canichella M, Molica M, Mazzone C, de Fabritiis P. Chimeric Antigen Receptor T-Cell Therapy in Acute Myeloid Leukemia: State of the Art and Recent Advances. Cancers (Basel) 2023; 16:42. [PMID: 38201469 PMCID: PMC10777995 DOI: 10.3390/cancers16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Chimeric antigen receptors (CAR)-T-cell therapy represents the most important innovation in onco-hematology in recent years. The progress achieved in the management of complications and the latest generations of CAR-T-cells have made it possible to anticipate in second-line the indication of this type of treatment in large B-cell lymphoma. While some types of B-cell lymphomas and B-cell acute lymphoid leukemia have shown extremely promising results, the same cannot be said for myeloid leukemias-in particular, acute myeloid leukemia (AML), which would require innovative therapies more than any other blood disease. The heterogeneities of AML cells and the immunological complexity of the interactions between the bone marrow microenvironment and leukemia cells have been found to be major obstacles to the clinical development of CAR-T in AML. In this review, we report on the main results obtained in AML clinical trials, the preclinical studies testing potential CAR-T constructs, and future perspectives.
Collapse
Affiliation(s)
- Martina Canichella
- Hematology, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy; (C.M.); (P.d.F.)
| | - Matteo Molica
- Department of Hematology-Oncology, Azienda Ospedaliera Pugliese-Ciaccio, 88100 Catanzaro, Italy;
| | - Carla Mazzone
- Hematology, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy; (C.M.); (P.d.F.)
| | - Paolo de Fabritiis
- Hematology, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy; (C.M.); (P.d.F.)
- Department of Biomedicina e Prevenzione, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
20
|
Bergeron J, Capo-Chichi JM, Tsui H, Mahe E, Berardi P, Minden MD, Brandwein JM, Schuh AC. The Clinical Utility of FLT3 Mutation Testing in Acute Leukemia: A Canadian Consensus. Curr Oncol 2023; 30:10410-10436. [PMID: 38132393 PMCID: PMC10742150 DOI: 10.3390/curroncol30120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations are detected in approximately 20-30% of patients with acute myeloid leukemia (AML), with the presence of a FLT3 internal tandem duplication (FLT3-ITD) mutation being associated with an inferior outcome. Assessment of FLT3 mutational status is now essential to define optimal upfront treatment in both newly diagnosed and relapsed AML, to support post-induction allogeneic hematopoietic stem cell transplantation (alloSCT) decision-making, and to evaluate treatment response via measurable (minimal) residual disease (MRD) evaluation. In view of its importance in AML diagnosis and management, the Canadian Leukemia Study Group/Groupe canadien d'étude sur la leucémie (CLSG/GCEL) undertook the development of a consensus statement on the clinical utility of FLT3 mutation testing, as members reported considerable inter-center variability across Canada with respect to testing availability and timing of use, methodology, and interpretation. The CLSG/GCEL panel identified key clinical and hematopathological questions, including: (1) which patients should be tested for FLT3 mutations, and when?; (2) which is the preferred method for FLT3 mutation testing?; (3) what is the clinical relevance of FLT3-ITD size, insertion site, and number of distinct FLT3-ITDs?; (4) is there a role for FLT3 analysis in MRD assessment?; (5) what is the clinical relevance of the FLT3-ITD allelic burden?; and (6) how should results of FLT3 mutation testing be reported? The panel followed an evidence-based approach, taken together with Canadian clinical and laboratory experience and expertise, to create a consensus document to facilitate a more uniform approach to AML diagnosis and treatment across Canada.
Collapse
Affiliation(s)
- Julie Bergeron
- CEMTL Installation Maisonneuve-Rosemont, Institut Universitaire d’Hématologie-Oncologie et de Thérapie Cellulaire, Université de Montréal, Montréal, QC H1T 2M4, Canada
| | - Jose-Mario Capo-Chichi
- Division of Clinical Laboratory Genetics, Department of Laboratory Medicine and Pathobiology, Laboratory Medicine Program, University Health Network, University of Toronto, Toronto, ON M5G 2C4, Canada;
| | - Hubert Tsui
- Division of Hematological Pathology, Department of Laboratory Medicine and Molecular Diagnostics, Precision Diagnostics and Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
- Department of Laboratory Medicine and Pathobiology, Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Etienne Mahe
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Division of Hematology and Hematological Malignancies, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Philip Berardi
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital/Eastern Ontario Regional Laboratory Association, Ottawa, ON K1H 8M2, Canada;
- Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mark D. Minden
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.D.M.); (A.C.S.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Joseph M. Brandwein
- Division of Hematology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Andre C. Schuh
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada; (M.D.M.); (A.C.S.)
- Department of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
21
|
Lian X, Gao Y, Li X, Wang P, Tong L, Li J, Zhou Y, Liu T. Design, synthesis and biological evaluation of 2-aminopyrimidine derivatives as potent FLT3 inhibitors. Bioorg Med Chem Lett 2023; 96:129519. [PMID: 37838343 DOI: 10.1016/j.bmcl.2023.129519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive cancer, which is characterized by clonal expansion of myeloid progenitors in the bone marrow and peripheral blood. FMS-like tyrosine kinase 3 (FLT3) mutations are the most frequently identified mutations, present in approximately 25-30 % AML patients, making FLT3 inhibitors a crucial treatment option for AML. In this study, we described the design, synthesis and biological evaluation of a series of 2-aminopyrimidine derivatives as potent FLT3 inhibitors. Notably, compound 15 displayed potent kinase inhibitory activities against FLT3 (FLT3-WT IC50 = 7.42 ± 1.23 nM; FLT3-D835Y IC50 = 9.21 ± 0.04 nM) and robust antiproliferative activities against MV4-11 cells (IC50 = 0.83 ± 0.15 nM) and MOLM-13 cells (IC50 = 10.55 ± 1.70 nM). Compound 15 also possessed potent antiproliferative activities against BaF3 cells carrying various FLT3-TKD and FLT3-ITD-TKD mutations, indicating its potential to overcome on-target resistance caused by FLT3 mutations. In summary, compound 15 showed promising potential for further exploration as a treatment of AML.
Collapse
Affiliation(s)
- Xuanmin Lian
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuemei Li
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peipei Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lexian Tong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang 310018, China
| | - Jia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China.
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Abdel-Aziz AK, Dokla EME, Saadeldin MK. FLT3 inhibitors and novel therapeutic strategies to reverse AML resistance: An updated comprehensive review. Crit Rev Oncol Hematol 2023; 191:104139. [PMID: 37717880 DOI: 10.1016/j.critrevonc.2023.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) mutations occur in almost 30% of acute myeloid leukemia (AML) patients. Despite the initial clinical efficacy of FLT3 inhibitors, many treated AML patients with mutated FLT3 eventually relapse. This review critically discusses the opportunities and challenges of FLT3-targeted therapies and sheds light on their drug interactions as well as potential biomarkers. Furthermore, we focus on the molecular mechanisms underlying the resistance of FLT3 internal tandem duplication (FLT3-ITD) AMLs to FLT3 inhibitors alongside novel therapeutic strategies to reverse resistance. Notably, dynamic heterogeneous patterns of clonal selection and evolution contribute to the resistance of FLT3-ITD AMLs to FLT3 inhibitors. Ongoing preclinical research and clinical trials are actively directed towards devising rational "personalized" or "patient-tailored" combinatorial therapeutic regimens to effectively treat patients with FLT3 mutated AML.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Smart Health Initiative, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| | - Eman M E Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Mona Kamal Saadeldin
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Leahy Drive, Notre Dame, IN 46556, USA
| |
Collapse
|
23
|
Nelde A, Schuster H, Heitmann JS, Bauer J, Maringer Y, Zwick M, Volkmer JP, Chen JY, Stanger AMP, Lehmann A, Appiah B, Märklin M, Rücker-Braun E, Salih HR, Roerden M, Schroeder SM, Häring MF, Schlosser A, Schetelig J, Schmitz M, Boerries M, Köhler N, Lengerke C, Majeti R, Weissman IL, Rammensee HG, Walz JS. Immune Surveillance of Acute Myeloid Leukemia Is Mediated by HLA-Presented Antigens on Leukemia Progenitor Cells. Blood Cancer Discov 2023; 4:468-489. [PMID: 37847741 PMCID: PMC10618727 DOI: 10.1158/2643-3230.bcd-23-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/13/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Therapy-resistant leukemia stem and progenitor cells (LSC) are a main cause of acute myeloid leukemia (AML) relapse. LSC-targeting therapies may thus improve outcome of patients with AML. Here we demonstrate that LSCs present HLA-restricted antigens that induce T-cell responses allowing for immune surveillance of AML. Using a mass spectrometry-based immunopeptidomics approach, we characterized the antigenic landscape of patient LSCs and identified AML- and AML/LSC-associated HLA-presented antigens absent from normal tissues comprising nonmutated peptides, cryptic neoepitopes, and neoepitopes of common AML driver mutations of NPM1 and IDH2. Functional relevance of shared AML/LSC antigens is illustrated by presence of their cognizant memory T cells in patients. Antigen-specific T-cell recognition and HLA class II immunopeptidome diversity correlated with clinical outcome. Together, these antigens shared among AML and LSCs represent prime targets for T cell-based therapies with potential of eliminating residual LSCs in patients with AML. SIGNIFICANCE The elimination of therapy-resistant leukemia stem and progenitor cells (LSC) remains a major challenge in the treatment of AML. This study identifies and functionally validates LSC-associated HLA class I and HLA class II-presented antigens, paving the way to the development of LSC-directed T cell-based immunotherapeutic approaches for patients with AML. See related commentary by Ritz, p. 430 . This article is featured in Selected Articles from This Issue, p. 419.
Collapse
Affiliation(s)
- Annika Nelde
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Heiko Schuster
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Jonas S. Heitmann
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Jens Bauer
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Yacine Maringer
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
| | - Melissa Zwick
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens-Peter Volkmer
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California
| | - James Y. Chen
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California
| | - Anna M. Paczulla Stanger
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Ariane Lehmann
- Faculty of Medicine, Medical Center, Institute of Medical Bioinformatics and Systems Medicine (IBSM), University of Freiburg, Germany
| | - Bismark Appiah
- Faculty of Medicine, Medical Center, Institute of Medical Bioinformatics and Systems Medicine (IBSM), University of Freiburg, Germany
| | - Melanie Märklin
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Elke Rücker-Braun
- Department of Medicine I, University Hospital of Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Helmut R. Salih
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Malte Roerden
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Sarah M. Schroeder
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Max-Felix Häring
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | | | - Johannes Schetelig
- Department of Medicine I, University Hospital of Dresden, Dresden, Germany
- German Bone Marrow Donor Center (DKMS), Clinical Trials Unit, Dresden, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), partner site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Faculty of Medicine, Medical Center, Institute of Medical Bioinformatics and Systems Medicine (IBSM), University of Freiburg, Germany
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site, Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natalie Köhler
- Department of Medicine I, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Claudia Lengerke
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
- Clinic for Hematology, University of Basel and University Hospital Basel, Basel, Switzerland
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Germany
| | - Ravindra Majeti
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, California
| | - Hans-Georg Rammensee
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Germany
| | - Juliane S. Walz
- Department of Peptide-Based Immunotherapy, University and University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, Tübingen, Germany
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Short NJ, Nguyen D, Ravandi F. Treatment of older adults with FLT3-mutated AML: Emerging paradigms and the role of frontline FLT3 inhibitors. Blood Cancer J 2023; 13:142. [PMID: 37696819 PMCID: PMC10495326 DOI: 10.1038/s41408-023-00911-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
FLT3 is the most frequently mutated gene in acute myeloid leukemia (AML), with FLT3 internal tandem duplication (ITD) mutations being associated with a more aggressive clinical course. While two large, randomized clinical trials have shown a survival benefit with the frontline use of an oral FLT3 inhibitor (midostaurin or quizartinib) in patients with FLT3-mutated AML, the role of FLT3 inhibitors in older adults with newly diagnosed FLT3-mutated AML remains unclear. A definitive improvement in survival has not been observed in intensively treated patients over 60 years of age receiving frontline FLT3 inhibitors. Furthermore, many patients with FLT3-mutated AML are unsuitable for intensive chemotherapy due to age and/or comorbidities, and this population represents a particular unmet need. For these older patients who are unfit for intensive approaches, azacitidine + venetoclax is a new standard of care and is used by many clinicians irrespective of FLT3 mutation status. However, FLT3-ITD mutations confer resistance to venetoclax and are a well-established mechanism of relapse to lower-intensity venetoclax-based regimens, leading to short durations of remission and poor survival. Preclinical and clinical data suggest synergy between FLT3 inhibitors and venetoclax, providing rationale for their combination. Novel strategies to safely incorporate FLT3 inhibitors into the standard hypomethylating agent + venetoclax backbone are now being explored in this older, less fit population with newly diagnosed FLT3-mutated AML, with encouraging early results. Herein, we discuss the frontline use of FLT3 inhibitors in older adults with FLT3-mutated AML, including the potential role of FLT3 inhibitors in combination with intensive chemotherapy and as part of novel, lower-intensity doublet and triplet regimens in this older population.
Collapse
Affiliation(s)
- Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Daniel Nguyen
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
25
|
Sun X, Liu X, Li Y, Shi X, Li Y, Tan R, Jiang Y, Sui X, Ge X, Xu H, Wang X, Fang X. Characteristics of Molecular Genetic Mutations and Their Correlation with Prognosis in Adolescent and Adult Patients with Acute Lymphoblastic Leukemia. Oncology 2023; 102:85-98. [PMID: 37437551 DOI: 10.1159/000531522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION The prognosis of acute lymphoblastic leukemia (ALL) in adolescents and adults is poor, and recurrence is an important cause of their death. Changes of genetic information play a vital role in the pathogenesis and recurrence of ALL; however, the impact of molecular genetic mutations on disease diagnosis and prognosis remains unexplored. This study aimed to explore the frequency spectrum of gene mutations and their prognostic significance, along with the minimal residual disease (MRD) level and hematopoietic stem cell transplantation (HSCT), in adolescent and adult patients aged ≥15 years with ALL. METHODS The basic characteristics, cytogenetics, molecular genetics, MRD level, treatment regimen, and survival outcome of patients with untreated ALL (≥15 years) were collected, and the correlation and survival analysis were performed using the SPSS 25.0 and R software. RESULTS This study included 404 patients, of which 147 were selected for next-generation sequencing (NGS). NGS results revealed that 91.2% of the patients had at least one mutation, and 67.35% had multiple (≥2) mutations. NOTCH1, PHF6, RUNX1, PTEN, JAK3, TET2, and JAK1 were the most common mutations in T-ALL, whereas FAT1, TET2, NARS, KMT2D, FLT3, and RELN were the most common mutations in B-ALL. Correlation analysis revealed the mutation patterns, which were significantly different between T-ALL and B-ALL. In the prognostic analysis of 107 patients with B-ALL, multivariate analysis showed that the number of mutations ≥5 was an independent risk factor for overall survival and the RELN mutation was an independent poor prognostic factor for event-free survival. DISCUSSION The distribution of gene mutations and the co-occurrence and repulsion of mutant genes in patients with ALL were closely related to the immunophenotype of the patients. The number of mutations ≥5 and the RELN mutation were significantly associated with poor prognosis in adolescent and adult patients with ALL.
Collapse
Affiliation(s)
- Xue Sun
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, China,
| | - Xiaoqian Liu
- Department of Hematology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ying Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xue Shi
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yahan Li
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ran Tan
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujie Jiang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaohui Sui
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongzhi Xu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- School of Medicine, Shandong University, Jinan, China
- Shandong Provincial Engineering Research Center of Lymphoma, Jinan, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
26
|
Katagiri S, Furuya N, Akahane D, Chi S, Minami Y, Harada Y, Harada H, Gotoh A. Gilteritinib Affects the Selection of Dominant Clones in Clonal Hematopoiesis: Sequential Genetic Analysis of an FLT3-ITD Positive AML Patient with Long-Term Gilteritinib Therapy. Onco Targets Ther 2023; 16:571-576. [PMID: 37465589 PMCID: PMC10350419 DOI: 10.2147/ott.s417137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
We performed sequential molecular analyses of a 75-year-old woman with de novo FLT3-ITD positive acute myeloid leukemia (AML) who had received gilteritinib therapy for 43 months. At the time of diagnosis, her karyotype was normal; however, FLT3-ITD, NPM1, DNMT3A, and IDH2 mutations were detected. She received induction therapy with daunorubicin and cytarabine and achieved hematological complete remission (HCR). After attaining HCR, she underwent consolidation therapy with azacytidine or cytarabine, aclarubicin, and granulocyte-colony stimulating factor. However, AML relapsed eight months after the first HCR. FLT3-ITD and NPM1 mutations were persistently positive, and the patient received gilteritinib therapy. Although the FLT3-ITD clone was not detected during gilteritinib treatment, a clone harboring monosomy 7 and CBL mutations emerged. Bone marrow examinations at 15, 24, and 32 months after gilteritinib treatment revealed multi-lineage blood cell dysplasia without an increase in myeloblasts. After 33 months of treatment, gilteritinib was discontinued for two months because to ileus development, and the FLT3-ITD clone was detected again. Gilteritinib treatment was restarted, and FLT3-ITD became negative. Our analysis demonstrated that: (1) hematopoiesis derived from gilteritinib-resistant clones was generated by long-term gilteritinib treatment, and (2) FLT3-ITD clones regained clonal dominance in the absence of FLT3 inhibition. These findings suggest that gilteritinib affects the selection of dominant clones during clonal hematopoiesis.
Collapse
Affiliation(s)
| | - Nahoko Furuya
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - Daigo Akahane
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Chiba, Japan
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Chiba, Japan
| | - Yuka Harada
- Department of Clinical Laboratory, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Hironori Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
27
|
Ezelarab HAA, Ali TFS, Abbas SH, Hassan HA, Beshr EAM. Indole-based FLT3 inhibitors and related scaffolds as potential therapeutic agents for acute myeloid leukemia. BMC Chem 2023; 17:73. [PMID: 37438819 DOI: 10.1186/s13065-023-00981-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Fms-like tyrosine kinase 3 (FLT3) mutation mechanisms are among the most common genetic abnormalities detected in about 30% of acute myeloid leukemia (AML) patients. These mutations are accompanied by poor clinical response, although all these progressions in identifying and interpreting biological AML bio-targets. Several small structured FLT3 inhibitors have been ameliorated to struggle against AML. Despite all these developments regarding these inhibitors, the Overall survival rate is about five years or more in less than one-third of diagnosed AML patients. Midostaurin was the first FDA-approved FLT3 inhibitor in 2017 in the United States and Europe for AML remedy. Next, Gilteritinib was an FDA-approved FLT3 inhibitor in 2018 and in the next year, Quizartinib was approved an as FLT3 inhibitor in Japan. Interestingly, indole-based motifs had risen as advantaged scaffolds with unusual multiple kinase inhibitory activity. This review summarises indole-based FLT3 inhibitors and related scaffolds, including FDA-approved drugs, clinical candidates, and other bioactive compounds. Furthermore, their chemotypes, mechanism of action, and interaction mode over both wild and mutated FLT3 target proteins had been judgmentally discussed. Therefore, this review could offer inspiring future perspectives into the finding of new FLT3-related AML therapies.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
28
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
29
|
Singh H, Kumar M, Kanungo H. Role of Gene Mutations in Acute Myeloid Leukemia: A Review Article. Glob Med Genet 2023; 10:123-128. [PMID: 37360004 PMCID: PMC10289861 DOI: 10.1055/s-0043-1770768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Acute myeloid leukemia (AML) is an immensely heterogeneous disease characterized by the clonal growth of promyelocytes or myeloblasts in bone marrow as well as in peripheral blood or tissue. Enhancement in the knowledge of the molecular biology of cancer and recognition of intermittent mutations in AML contribute to favorable circumstances to establish targeted therapies and enhance the clinical outcome. There is high interest in the development of therapies that target definitive abnormalities in AML while eradicating leukemia-initiating cells. In recent years, there has been a better knowledge of the molecular abnormalities that lead to the progression of AML, and the application of new methods in molecular biology techniques has increased that facilitating the advancement of investigational drugs. In this review, literature or information on various gene mutations for AML is discussed. English language articles were scrutinized in plentiful directories or databases like PubMed, Science Direct, Web of Sciences, Google Scholar, and Scopus. The important keywords used for searching databases is "Acute myeloid leukemia", "Gene mutation in Acute myeloid leukemia", "Genetic alteration in Acute myeloid leukemia," and "Genetic abnormalities in Acute myeloid leukemia."
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| | - Magesh Kumar
- Department of Periodontics, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| | - Himanshu Kanungo
- Department of Orthodontics and Dentofacial Orthopaedics, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| |
Collapse
|
30
|
Ge SS, Qiu QC, Dai HP, Shen XD, Wu TM, Du JH, Wan CL, Shen HJ, Wu DP, Xue SL, Liu SB. Mutation spectrum of FLT3 and significance of non-canonical FLT3 mutations in haematological malignancy. Br J Haematol 2023. [PMID: 37246158 DOI: 10.1111/bjh.18877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023]
Abstract
Fms-like tyrosine kinase 3 (FLT3) is frequently mutated in haematological malignancies. Although canonical FLT3 mutations including internal tandem duplications (ITDs) and tyrosine kinase domains (TKDs) have been extensively studied, little is known about the clinical significance of non-canonical FLT3 mutations. Here, we first profiled the spectrum of FLT3 mutations in 869 consecutively newly diagnosed acute myeloid leukaemia (AML), myelodysplastic syndrome and acute lymphoblastic leukaemia patients. Our results showed four types of non-canonical FLT3 mutations depending on the affected protein structure: namely non-canonical point mutations (NCPMs) (19.2%), deletion (0.7%), frameshift (0.8%) and ITD outside the juxtamembrane domain (JMD) and TKD1 regions (0.5%). Furthermore, we found that the survival of patients with high-frequency (>1%) FLT3-NCPM in AML was comparable to those with canonical TKD. In vitro studies using seven representative FLT3-deletion or frameshift mutant constructs showed that the deletion mutants of TKD1 and the FLT3-ITD mutant of TKD2 had significantly higher kinase activity than wild-type FLT3, whereas the deletion mutants of JMD had phosphorylation levels comparable with wild-type FLT3. All tested deletion mutations and ITD were sensitive to AC220 and sorafenib. Collectively, these data enrich our understanding of FLT3 non-canonical mutations in haematological malignancies. Our results may also facilitate prognostic stratification and targeted therapy of AML with FLT3 non-canonical mutations.
Collapse
Affiliation(s)
- Shuai-Shuai Ge
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qiao-Cheng Qiu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiang-Dong Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tian-Mei Wu
- Gusu District Maternal and Child Health Center, Suzhou, China
| | - Jia-Hui Du
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Chao-Ling Wan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hong-Jie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| |
Collapse
|
31
|
Kurzer JH, Weinberg OK. Updates in molecular genetics of acute myeloid leukemia. Semin Diagn Pathol 2023; 40:140-151. [PMID: 37059636 DOI: 10.1053/j.semdp.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Acute myeloid leukemia (AML) is a type of cancer caused by aggressive neoplastic proliferations of immature myeloid cells that is fatal if untreated. AML accounts for 1.0% of all new cancer cases in the United States, with a 5-year relative survival rate of 30.5%. Once defined primarily morphologically, advances in next generational sequencing have expanded the role of molecular genetics in categorizing the disease. As such, both the World Health Organization Classification of Haematopoietic Neoplasms and The International Consensus Classification System now define a variety of AML subsets based on mutations in driver genes such as NPM1, CEBPA, TP53, ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and ZRSR2. This article provides an overview of some of the genetic mutations associated with AML and compares how the new classification systems incorporate molecular genetics into the definition of AML.
Collapse
Affiliation(s)
- Jason H Kurzer
- Department of Pathology, Stanford University Medical School, Palo Alto, CA, United States.
| | - Olga K Weinberg
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
32
|
Germon ZP, Sillar JR, Mannan A, Duchatel RJ, Staudt D, Murray HC, Findlay IJ, Jackson ER, McEwen HP, Douglas AM, McLachlan T, Schjenken JE, Skerrett-Byrne DA, Huang H, Melo-Braga MN, Plank MW, Alvaro F, Chamberlain J, De Iuliis G, Aitken RJ, Nixon B, Wei AH, Enjeti AK, Huang Y, Lock RB, Larsen MR, Lee H, Vaghjiani V, Cain JE, de Bock CE, Verrills NM, Dun MD. Blockade of ROS production inhibits oncogenic signaling in acute myeloid leukemia and amplifies response to precision therapies. Sci Signal 2023; 16:eabp9586. [PMID: 36976863 DOI: 10.1126/scisignal.abp9586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Mutations in the type III receptor tyrosine kinase FLT3 are frequent in patients with acute myeloid leukemia (AML) and are associated with a poor prognosis. AML is characterized by the overproduction of reactive oxygen species (ROS), which can induce cysteine oxidation in redox-sensitive signaling proteins. Here, we sought to characterize the specific pathways affected by ROS in AML by assessing oncogenic signaling in primary AML samples. The oxidation or phosphorylation of signaling proteins that mediate growth and proliferation was increased in samples from patient subtypes with FLT3 mutations. These samples also showed increases in the oxidation of proteins in the ROS-producing Rac/NADPH oxidase-2 (NOX2) complex. Inhibition of NOX2 increased the apoptosis of FLT3-mutant AML cells in response to FLT3 inhibitors. NOX2 inhibition also reduced the phosphorylation and cysteine oxidation of FLT3 in patient-derived xenograft mouse models, suggesting that decreased oxidative stress reduces the oncogenic signaling of FLT3. In mice grafted with FLT3 mutant AML cells, treatment with a NOX2 inhibitor reduced the number of circulating cancer cells, and combining FLT3 and NOX2 inhibitors increased survival to a greater extent than either treatment alone. Together, these data raise the possibility that combining NOX2 and FLT3 inhibitors could improve the treatment of FLT3 mutant AML.
Collapse
Affiliation(s)
- Zacary P Germon
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan R Sillar
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, Australia
| | - Abdul Mannan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Ryan J Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Dilana Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Heather C Murray
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Izac J Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Evangeline R Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Holly P McEwen
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alicia M Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tabitha McLachlan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - John E Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Honggang Huang
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
| | - Marcella N Melo-Braga
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maximilian W Plank
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- GlaxoSmithKline, Abbotsford, Victoria, Australia
| | - Frank Alvaro
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Janis Chamberlain
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Geoff De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew H Wei
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Anoop K Enjeti
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, Australia
- NSW Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Yizhou Huang
- Children's Cancer Institute, Lowy Cancer Centre, School of Women's and Children's Health, University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Centre, School of Women's and Children's Health, University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Martin R Larsen
- Department of Molecular Biology and Biochemistry, Protein Research Group, University of Southern Denmark, Odense, Denmark
| | - Heather Lee
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Vijesh Vaghjiani
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Jason E Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Centre, School of Women's and Children's Health, University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Nicole M Verrills
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
33
|
Mecklenbrauck R, Heuser M. Resistance to targeted therapies in acute myeloid leukemia. Clin Exp Metastasis 2023; 40:33-44. [PMID: 36318439 PMCID: PMC9898349 DOI: 10.1007/s10585-022-10189-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2023]
Abstract
The introduction of new targeted therapies to the treatment algorithm of acute myeloid leukemia (AML) offers new opportunities, but also presents new challenges. Patients diagnosed with AML receiving targeted therapies as part of lower intensity regimens will relapse inevitably due to primary or secondary resistance mechanisms. In this review, we summarize the current knowledge on the main mechanisms of resistance to targeted therapies in AML. Resistance to FLT3 inhibitors is mainly mediated by on target mutations and dysregulation of downstream pathways. Switching the FLT3 inhibitor has a potential therapeutic benefit. During treatment with IDH inhibitors resistance can develop due to aberrant cell metabolism or secondary site IDH mutations. As a unique resistance mechanism the mutated IDH isotype may switch from IDH1 to IDH2 or vice versa. Resistance to gemtuzumab-ozogamicin is determined by the CD33 isotype and the degradation of the cytotoxin. The main mechanisms of resistance to venetoclax are the dysregulation of alternative pathways especially the upregulation of the BCL-2-analogues MCL-1 and BCL-XL or the induction of an aberrant cell metabolism. The introduction of therapies targeting immune processes will lead to new forms of therapy resistance. Knowing those mechanisms will help to develop strategies that can overcome resistance to treatment.
Collapse
Affiliation(s)
- Rabea Mecklenbrauck
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
34
|
Garciaz S, Hospital MA. FMS-Like Tyrosine Kinase 3 Inhibitors in the Treatment of Acute Myeloid Leukemia: An Update on the Emerging Evidence and Safety Profile. Onco Targets Ther 2023; 16:31-45. [PMID: 36698434 PMCID: PMC9869913 DOI: 10.2147/ott.s236740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is one of the most frequently mutated genes in acute myeloid leukemia (AML). Approximately 30% of the adult cases harbor an internal tandem duplication (FLT3-ITD) and 5-10% a tyrosine kinase domain (TKD) amino acid substitution (FLT3-TKD). The treatment paradigm of AML patients harboring FLT3 mutations (30%) has been modified by the discovery of tyrosine kinase inhibitors. First- and second-generation inhibitors classify FLT3 inhibitors according to FLT3 specificity: first-generation FLT3 inhibitors include sorafenib and midostaurin and second-generation inhibitors are represented by quizartinib, gilteritinib and crenolanib, among others. Activity of these inhibitors depends on their mechanism of receptor binding (active vs inactive conformation) and efficacy against the FLT3-ITD and -TKD mutations (type 1 inhibitors are active both on FLT3-ITD and TKD, whereas type 2 inhibitors are active only on FLT3-ITD). The FLT3 inhibitors sorafenib, midostaurin, quizartinib and gilteritinib have been tested in monotherapy in several settings including refractory or relapsed AML (R/R AML), post-transplant maintenance as well as in combination with intensive chemotherapy (ICT) or non-intensity regimens. The results of published randomized studies support the use of sorafenib in a post-transplant setting (SORMAIN trial), midostaurin in combination with ICT based (RATIFY trial) and gilteritinib for R/R AML (ADMIRAL trial). Gilteritinib in combination with hypomethylating agent as well as quizartinib are not supported by solid randomized trial results for their use in FLT3-mutated AML patients.
Collapse
Affiliation(s)
- Sylvain Garciaz
- Department of Hematology, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR7258, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Marseille, France,Correspondence: Sylvain Garciaz, Institut Paoli-Calmettes, Hematology Department, 232 Bd Sainte-Marguerite, Marseille, 13009, France, Tel + 33 4 91 22 37 54, Fax + 33 4 91 22 30 63, Email
| | - Marie-Anne Hospital
- Department of Hematology, Institut Paoli-Calmettes, Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR7258, Centre de Recherche en Cancérologie de Marseille, INSERM U1068, Marseille, France
| |
Collapse
|
35
|
Synthesis and biological activity evaluation of novel 3,5,7-trisubstituted pyrazolo[1,5-a]pyrimidines. Bioorg Med Chem Lett 2023; 80:129096. [PMID: 36496201 DOI: 10.1016/j.bmcl.2022.129096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Mutation of FLT3 protein kinase is often associated with deregulated cell proliferation in acute myeloid leukemia and the inhibition of this kinase is a potential therapeutic strategy. We report a novel series of 3,5,7-trisubstituted pyrazolo[1,5-a]pyrimidines prepared in an effort to study their biological activity particularly toward FLT3-ITD and its downstream regulators as well as toward CDK2 and CDK9. Derivative 10b was capable to strongly inhibit all kinases and its selectivity in FLT3-ITD expressing cell lines MOLM13 and MV4-11 was in line with FLT3-ITD inhibition. Further biochemical analyses and molecular docking confirmed FLT3 as a cellular target of 10b.
Collapse
|
36
|
Li S, Li N, Chen Y, Zheng Z, Guo Y. FLT3-TKD in the prognosis of patients with acute myeloid leukemia: A meta-analysis. Front Oncol 2023; 13:1086846. [PMID: 36874106 PMCID: PMC9982020 DOI: 10.3389/fonc.2023.1086846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Background Fms-like tyrosine kinase 3 (FLT3) gene mutations occur in approximately 30% of all patients with acute myeloid leukemia (AML). Internal tandem duplication (ITD) in the juxtamembrane domain and point mutations within the tyrosine kinase domain (TKD) are two distinct types of FLT3 mutations. FLT3-ITD has been determined as an independent poor prognostic factor, but the prognostic impact of potentially metabolically related FLT3-TKD remains controversial. Hence, we performed a meta-analysis to investigate the prognostic significance of FLT3-TKD in patients with AML. Methods A systematic retrieval of studies on FLT3-TKD in patients with AML was performed in PubMed, Embase, and Chinese National Knowledge Infrastructure databases on 30 September 2020. Hazard ratio (HR) and its 95% confidence intervals (95% CIs) were used to determine the effect size. Meta-regression model and subgroup analysis were used for heterogeneity analysis. Begg's and Egger's tests were performed to detect potential publication bias. The sensitivity analysis was performed to evaluate the stability of findings in meta-analysis. Results Twenty prospective cohort studies (n = 10,970) on the prognostic effect of FLT3-TKD in AML were included: 9,744 subjects with FLT3-WT and 1,226 subjects with FLT3-TKD. We found that FLT3-TKD revealed no significant effect on disease-free survival (DFS) (HR = 1.12, 95% CI: 0.90-1.41) and overall survival (OS) (HR = 0.98, 95% CI: 0.76-1.27) in general. However, meta-regressions demonstrated that patient source contributed to the high heterogeneity observed in the prognosis of FLT3-TKD in AML. To be specific, FLT3-TKD represented a beneficial prognosis of DFS (HR = 0.56, 95% CI: 0.37-0.85) and OS (HR = 0.63, 95% CI: 0.42-0.95) for Asians, whereas it represented an adverse prognosis of DFS for Caucasians with AML (HR = 1.34, 95% CI: 1.07-1.67). Conclusion FLT3-TKD revealed no significant effects on DFS and OS of patients with AML, which is consistent with the controversial status nowadays. Patient source (Asians or Caucasians) can be partially explained the different effects of FLT3-TKD in the prognosis of patients with AML.
Collapse
Affiliation(s)
- Shuping Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,Department of Nephrology, Center of Nephrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Na Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China.,Department of Nephrology, Center of Nephrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Nephrology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
37
|
Daver N, Perl AE, Maly J, Levis M, Ritchie E, Litzow M, McCloskey J, Smith CC, Schiller G, Bradley T, Tiu RV, Naqvi K, Dail M, Brackman D, Siddani S, Wang J, Chyla B, Lee P, Altman JK. Venetoclax Plus Gilteritinib for FLT3-Mutated Relapsed/Refractory Acute Myeloid Leukemia. J Clin Oncol 2022; 40:4048-4059. [PMID: 35849791 PMCID: PMC9746764 DOI: 10.1200/jco.22.00602] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The FMS-related tyrosine kinase 3 (FLT3) inhibitor gilteritinib is standard therapy for relapsed/refractory FLT3-mutated (FLT3mut) acute myeloid leukemia (AML) but seldom reduces FLT3mut burden or induces sustained efficacy. Gilteritinib combines synergistically with the BCL-2 inhibitor venetoclax in preclinical models of FLT3mut AML. METHODS This phase Ib open-label, dose-escalation/dose-expansion study (ClinicalTrials.gov identifier: NCT03625505) enrolled patients with FLT3 wild-type and FLT3mut (escalation) or FLT3mut (expansion) relapsed/refractory AML. Patients received 400 mg oral venetoclax once daily and 80 mg or 120 mg oral gilteritinib once daily. The primary objectives were safety, identification of the recommended phase II dose, and the modified composite complete response (mCRc) rate (complete response [CR] + CR with incomplete blood count recovery + CR with incomplete platelet recovery + morphologic leukemia-free state) using ADMIRAL phase III-defined response criteria. RESULTS Sixty-one patients were enrolled (n = 56 FLT3mut); 64% (n = 36 of 56) of FLT3mut patients had received prior FLT3 inhibitor therapy. The recommended phase II dose was 400 mg venetoclax once daily and 120 mg gilteritinib once daily. The most common grade 3/4 adverse events were cytopenias (n = 49; 80%). Adverse events prompted venetoclax and gilteritinib dose interruptions in 51% and 48%, respectively. The mCRc rate for FLT3mut patients was 75% (CR, 18%; CR with incomplete blood count recovery, 4%; CR with incomplete platelet recovery, 18%; and morphologic leukemia-free state, 36%) and was similar among patients with or without prior FLT3 inhibitor therapy (80% v 67%, respectively). The median follow-up was 17.5 months. The median time to response was 0.9 months, and the median remission duration was 4.9 months (95% CI, 3.4 to 6.6). FLT3 molecular response (< 10-2) was achieved in 60% of evaluable mCRc patients (n = 15 of 25). The median overall survival for FLT3mut patients was 10.0 months. CONCLUSION The combination of venetoclax and gilteritinib was associated with high mCRc and FLT3 molecular response rates regardless of prior FLT3 inhibitor exposure. Dose interruptions were needed to mitigate myelosuppression.
Collapse
Affiliation(s)
- Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexander E. Perl
- Division of Hematology/Oncology, Department of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Joseph Maly
- Department of Hematologic Malignancies and Cellular Therapy, Norton Cancer Institute, Louisville, KY
| | - Mark Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Ellen Ritchie
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY
| | - Mark Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN
| | - James McCloskey
- Department of Leukemia, John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ
| | - Catherine C. Smith
- Department of Medicine, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA
| | - Gary Schiller
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Terrence Bradley
- Department of Medicine, University of Miami, Miami, FL,Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | | | | | | | | | | | | | | | | | - Jessica K. Altman
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL,Jessica K. Altman, MD, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Lurie Research Building 3-119, 303 E. Superior St, Chicago, IL 60611; e-mail:
| |
Collapse
|
38
|
Tecik M, Adan A. Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches. Onco Targets Ther 2022; 15:1449-1478. [PMID: 36474506 PMCID: PMC9719701 DOI: 10.2147/ott.s384293] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/19/2022] [Indexed: 08/13/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is mutated in approximately 30% of acute myeloid leukemia (AML) patients. The presence of FLT3-ITD (internal tandem duplication, 20-25%) mutation and, to a lesser extent, FLT3-TKD (tyrosine kinase domain, 5-10%) mutation is associated with poorer diagnosis and therapy response since the leukemic cells become hyperproliferative and resistant to apoptosis after continuous activation of FLT3 signaling. Targeting FLT3 has been the focus of many pre-clinical and clinical studies. Hence, many small-molecule FLT3 inhibitors (FLT3is) have been developed, some of which are approved such as midostaurin and gilteritinib to be used in different clinical settings, either in combination with chemotherapy or alone. However, many questions regarding the best treatment strategy remain to be answered. On the other hand, various FLT3-dependent and -independent resistance mechanisms could be evolved during FLT3i therapy which limit their clinical impact. Therefore, identifying molecular mechanisms of resistance and developing novel strategies to overcome this obstacle is a current interest in the field. In this review, recent studies of approved FLT3i and knowledge about major resistance mechanisms of clinically approved FLT3i's will be discussed together with novel treatment approaches such as designing novel FLT3i and dual FLT3i and combination strategies including approved FLT3i plus small-molecule agents targeting altered molecules in the resistant cells to abrogate resistance. Moreover, how to choose an appropriate FLT3i for the patients will be summarized based on what is currently known from available clinical data. In addition, strategies beyond FLT3i's including immunotherapeutics, small-molecule FLT3 degraders, and flavonoids will be summarized to highlight potential alternatives in FLT3-mutated AML therapy.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
39
|
Jang SH, Sivakumar D, Mudedla SK, Choi J, Lee S, Jeon M, Bvs SK, Hwang J, Kang M, Shin EG, Lee KM, Jung KY, Kim JS, Wu S. PCW-A1001, AI-assisted de novo design approach to design a selective inhibitor for FLT-3(D835Y) in acute myeloid leukemia. Front Mol Biosci 2022; 9:1072028. [PMID: 36504722 PMCID: PMC9732455 DOI: 10.3389/fmolb.2022.1072028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Treating acute myeloid leukemia (AML) by targeting FMS-like tyrosine kinase 3 (FLT-3) is considered an effective treatment strategy. By using AI-assisted hit optimization, we discovered a novel and highly selective compound with desired drug-like properties with which to target the FLT-3 (D835Y) mutant. In the current study, we applied an AI-assisted de novo design approach to identify a novel inhibitor of FLT-3 (D835Y). A recurrent neural network containing long short-term memory cells (LSTM) was implemented to generate potential candidates related to our in-house hit compound (PCW-1001). Approximately 10,416 hits were generated from 20 epochs, and the generated hits were further filtered using various toxicity and synthetic feasibility filters. Based on the docking and free energy ranking, the top compound was selected for synthesis and screening. Of these three compounds, PCW-A1001 proved to be highly selective for the FLT-3 (D835Y) mutant, with an IC50 of 764 nM, whereas the IC50 of FLT-3 WT was 2.54 μM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Minsung Kang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Eun Gyeong Shin
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, South Korea
| | - Kyu Myung Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Kwan-Young Jung
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science & Technology, Daejeon, South Korea
| | - Jae-Sung Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Sangwook Wu
- R&D Center, PharmCADD, Busan, South Korea
- Department of Physics, Pukyong National University, Busan, South Korea
| |
Collapse
|
40
|
Song MK, Park BB, Uhm JE. Clinical Efficacies of FLT3 Inhibitors in Patients with Acute Myeloid Leukemia. Int J Mol Sci 2022; 23:ijms232012708. [PMID: 36293564 PMCID: PMC9604443 DOI: 10.3390/ijms232012708] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
FLT3 mutations are the most common genomic alteration detected in acute myeloid leukemia (AML) with a worse clinical prognosis. The highly frequent FLT3 mutations, together with the side effects associated with clinical prognosis, make FLT3 promising treatment targets and have provoked the advancement of FLT3 inhibitors. Recently, numerous FLT3 inhibitors were actively developed, and thus the outcomes of this aggressive subtype of AML were significantly improved. Recently, midostaurin and gilteritinib were approved as frontline treatment of AML and as therapeutic agents in the recurred disease by the United States Food and Drug Administration. Recently, numerous promising clinical trials attempted to seek appropriate management in frontline settings, in relapsed/refractory disease, or after stem cell transplantation in AML. This review follows numerous clinical trials about the usefulness of FLT3 inhibitors as frontline therapy, as relapsed/refractory conditioning, and as maintenance therapy of stem cell transplantation. The cumulative data of FLT3 inhibitors would be important clinical evidence for further management with FLT3 inhibitors in AML patients with FLT3 mutations.
Collapse
Affiliation(s)
- Moo-Kon Song
- Department of Hematology-Oncology, Hanyang University Hanmaeum Changwon Hospital, Changwon 51497, Korea
| | - Byeong-Bae Park
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2290-8114; Fax: +82-2-2290-7112
| | - Ji-Eun Uhm
- Division of Hematology-Oncology, Department of Internal Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul 04763, Korea
| |
Collapse
|
41
|
Ge SS, Liu SB, Xue SL. Developments and challenges of FLT3 inhibitors in acute myeloid leukemia. Front Oncol 2022; 12:996438. [PMID: 36185253 PMCID: PMC9515417 DOI: 10.3389/fonc.2022.996438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
FLT3 mutations are one of the most common genetic alterations in acute myeloid leukemia (AML) and are identified in approximately one-third of newly diagnosed patients. Aberrant FLT3 receptor signaling has important implications for the biology and clinical management of AML. In recent years, targeting FLT3 has been a part of every course of treatment in FLT3-ITD/TKD-mutated AML and contributes to substantially prolonged survival. At the same time, wide application of next-generation sequencing (NGS) technology has revealed a series of non-canonical FLT3 mutations, including point mutations and small insertions/deletions. Some of these mutations may be able to influence downstream phosphorylation and sensitivity to FLT3 inhibitors, while the correlation with clinical outcomes remains unclear. Exploration of FLT3-targeted therapy has made substantial progress, but resistance to FLT3 inhibitors has become a pressing issue. The mechanisms underlying FLT3 inhibitor tolerance can be roughly divided into primary resistance and secondary resistance. Primary resistance is related to abnormalities in signaling factors, such as FL, CXCL12, and FGF2, and secondary resistance mainly involves on-target mutations and off-target aberrations. To overcome this problem, novel agents such as FF-10101 have shown promising potential. Multitarget strategies directed at FLT3 and anomalous signaling factors simultaneously are in active clinical development and show promising results.
Collapse
Affiliation(s)
- Shuai-Shuai Ge
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
42
|
Biavasco F, Zeiser R. FLT3-inhibitor therapy for prevention and treatment of relapse after allogeneic hematopoietic cell transplantation. Int J Hematol 2022; 116:341-350. [PMID: 35460465 PMCID: PMC9392688 DOI: 10.1007/s12185-022-03352-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/05/2023]
Abstract
The curative potential of allogeneic hematopoietic cell transplantation (allo-HCT) for acute myeloid leukemia (AML) relies on the graft-versus-leukemia (GVL)-effect. Relapse after allo-HCT occurs in a considerable proportion of patients, and has a dismal prognosis with very limited curative potential, especially for patients with FLT-ITD-mutated AML. Since the first description of sorafenib for treatment of FLT3-ITD-mutated AML, several clinical trials have tried to determine the efficacy of FLT3 inhibitors for preventing and treating AML relapse after allo-HSCT, but many questions regarding differences among compounds and mechanisms of action remain unanswered. This review provides an overview on the established and evolving use of FLT3 inhibitors to prevent or treat relapse of AML in the context of allo-HCT, focusing on the recently discovered immunogenic potential of some FLT3 inhibitors and addressing the possible mechanisms of leukemia drug-escape.
Collapse
Affiliation(s)
- Francesca Biavasco
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, University Hospital Freiburg, 79106, Freiburg, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, University Hospital Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
43
|
Jakovic L, Fekete MD, Virijevic M, Kurtovic NK, Todoric-Zivanovic B, Stamatovic D, Karan-Djurasevic T, Pavlovic S, Lekovic D, Bogdanovic A. De novo acute myeloid leukemia harboring concomitant t(8;21)(q22;q22);RUNX1::RUNX1T1 and BCR::ABL1 (p190 minor transcript). J Hematop 2022. [DOI: 10.1007/s12308-022-00509-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
44
|
Ip PP, Fang LH, Shen YL, Tung KC, Lai MT, Juan LY, Chen LY, Chen RL. Evolution of Graves' Disease during Immune Reconstitution following Nonmyeloablative Haploidentical Peripheral Blood Stem Cell Transplantation in a Boy Carrying Germline SAMD9L and FLT3 Variants. Int J Mol Sci 2022; 23:ijms23169494. [PMID: 36012751 PMCID: PMC9409095 DOI: 10.3390/ijms23169494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Graves’ disease, characterized by hyperthyroidism resulting from loss of immune tolerance to thyroid autoantigens, may be attributable to both genetic and environmental factors. Allogeneic hematopoietic stem cell transplantation (HSCT) represents a means to induce immunotolerance via an artificial immune environment. We present a male patient with severe aplastic anemia arising from a germline SAMD9L missense mutation who successfully underwent HSCT from his HLA-haploidentical SAMD9L non-mutated father together with nonmyeloablative conditioning and post-transplant cyclophosphamide at 8 years of age. He did not suffer graft-versus-host disease, but Graves’ disease evolved 10 months post-transplant when cyclosporine was discontinued for one month. Reconstitution of peripheral lymphocyte subsets was found to be transiently downregulated shortly after Graves’ disease onset but recovered upon antithyroid treatment. Our investigation revealed the presence of genetic factors associated with Graves’ disease, including HLA-B*46:01 and HLA-DRB1*09:01 haplotypes carried by the asymptomatic donor and germline FLT3 c.2500C>T mutation carried by both the patient and the donor. Given his current euthyroid state with normal hematopoiesis, the patient has returned to normal school life. This rare event of Graves’ disease in a young boy arising from special HSCT circumstances indicates that both the genetic background and the HSCT environment can prompt the evolution of Graves’ disease.
Collapse
Affiliation(s)
- Peng Peng Ip
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan
| | - Li-Hua Fang
- Department of Pharmacy, Koo Foundation Sun Yat-Sen Cancer Center, Taipei City 112, Taiwan
| | - Yi-Ling Shen
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan
| | - Kuan-Chiun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan
| | - Ming-Tsong Lai
- Taiwan Genome Industry Alliance Inc., Taipei City 115, Taiwan
| | - Li-Ying Juan
- Division of Endocrinology, Department of Internal Medicine, Koo Foundation Sun Yat-Sen Cancer Center, Taipei City 112, Taiwan
| | - Liuh-Yow Chen
- Institute of Molecular Biology, Academia Sinica, Taipei City 115, Taiwan
- Correspondence: (L.-Y.C.); (R.-L.C.); Tel.: +886-2-2897-0011 (L.-Y.C. & R.-L.C.)
| | - Rong-Long Chen
- Department of Pediatric Hematology and Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei City 112, Taiwan
- Correspondence: (L.-Y.C.); (R.-L.C.); Tel.: +886-2-2897-0011 (L.-Y.C. & R.-L.C.)
| |
Collapse
|
45
|
Acharya B, Saha D, Armstrong D, Lakkaniga NR, Frett B. FLT3 inhibitors for acute myeloid leukemia: successes, defeats, and emerging paradigms. RSC Med Chem 2022; 13:798-816. [PMID: 35923716 PMCID: PMC9298189 DOI: 10.1039/d2md00067a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/21/2022] [Indexed: 09/10/2023] Open
Abstract
FLT3 mutations are one of the most common genetic aberrations found in nearly 30% of acute myeloid leukemias (AML). The mutations are associated with poor prognosis despite advances in the understanding of the biological mechanisms of AML. Numerous small molecule FLT3 inhibitors have been developed in an effort to combat AML. Even with the development of these inhibitors, the five-year overall survival for newly diagnosed AML is less than 30%. In 2017, midostaurin received FDA approval to treat AML, which was the first approved FLT3 inhibitor in the U.S. and Europe. Following, gilteritinib received FDA approval in 2018 and in 2019 quizartinib received approval in Japan. This review parallels these clinical success stories along with other pre-clinical and clinical investigations of FLT3 inhibitors.
Collapse
Affiliation(s)
- Baku Acharya
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Debasmita Saha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Daniel Armstrong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| | - Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad Jharkhand 826004 India
| | - Brendan Frett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences Little Rock AR 72205 USA
| |
Collapse
|
46
|
A novel RARA-SNX15 fusion in PML-RARA-positive acute promyelocytic leukemia with t(11;17;15)(q13;q21.2;q24.1). Int J Hematol 2022; 116:956-960. [PMID: 35854096 DOI: 10.1007/s12185-022-03421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Acute promyelocytic leukemia (APL) is characterized by a series of retinoic acid receptor (RAR) fusion genes that lead to the dysregulation of RAR signaling and onset of APL. PML-RARA is the most common fusion generated from t(15;17)(q24;q21). In addition, the reciprocal fusion RARA-PML is present in over 80% of t(15;17) APL cases. The bcr3 types of RARA-PML and RARA-PLZF in particular are reciprocal fusions that contribute to leukemogenesis. Here, we report a variant APL case with t(11;17;15)(q13;q21.2;q24.1). Massive parallel sequencing of patient RNA detected the novel fusion transcripts RARA-SNX15 and SNX15-LINC02255 along with the bcr3 type of PML-RARA. Genetic analysis revealed that RARA-SNX15L is an in-frame fusion due to intron retention caused by RNA mis-splicing. RARA-SNX15L consisted mainly of SNX15 domains, including the Phox-homology domain, which has a critical role in protein-protein interactions among sorting nexins and with other partners. Co-immunoprecipitation analysis revealed that RARA-SNX15L is directly associated with SNX15 and with itself. Further studies are needed to evaluate the biological significance of RARA-SNX15L in APL. In conclusion, this is the first report of APL with a complex chromosomal rearrangement involving SNX15.
Collapse
|
47
|
Knight TE, Edwards H, Meshinchi S, Taub JW, Ge Y. "FLipping" the Story: FLT3-Mutated Acute Myeloid Leukemia and the Evolving Role of FLT3 Inhibitors. Cancers (Basel) 2022; 14:3398. [PMID: 35884458 PMCID: PMC9315611 DOI: 10.3390/cancers14143398] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/19/2022] Open
Abstract
The treatment of many types of cancers, including acute myeloid leukemia (AML), has been revolutionized by the development of therapeutics targeted at crucial molecular drivers of oncogenesis. In contrast to broad, relatively indiscriminate conventional chemotherapy, these targeted agents precisely disrupt key pathways within cancer cells. FMS-like tyrosine kinase 3 (FLT3)-encoding a critical regulator of hematopoiesis-is the most frequently mutated gene in patients with AML, and these mutations herald reduced survival and increased relapse in these patients. Approximately 30% of newly diagnosed AML carries an FLT3 mutation; of these, approximately three-quarters are internal tandem duplication (ITD) mutations, and the remainder are tyrosine kinase domain (TKD) mutations. In contrast to its usual, tightly controlled expression, FLT3-ITD mutants allow constitutive, "run-away" activation of a large number of key downstream pathways which promote cellular proliferation and survival. Targeted inhibition of FLT3 is, therefore, a promising therapeutic avenue. In April 2017, midostaurin became both the first FLT3 inhibitor and the first targeted therapy of any kind in AML to be approved by the US FDA. The use of FLT3 inhibitors has continued to grow as clinical trials continue to demonstrate the efficacy of this class of agents, with an expanding number available for use as both experimental standard-of-care usage. This review examines the biology of FLT3 and its downstream pathways, the mechanism of FLT3 inhibition, the development of the FLT3 inhibitors as a class and uses of the agents currently available clinically, and the mechanisms by which resistance to FLT3 inhibition may both develop and be overcome.
Collapse
Affiliation(s)
- Tristan E. Knight
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Division of Hematology and Oncology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Soheil Meshinchi
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA;
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey W. Taub
- Division of Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA;
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Department of Pediatrics, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48202, USA; (H.E.); (Y.G.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
48
|
Ding Y, Smith GH, Deeb K, Schneider T, Campbell A, Zhang L. Revealing molecular architecture of FLT3 internal tandem duplication: Development and clinical validation of a web-based application to generate accurate nomenclature. Int J Lab Hematol 2022; 44:918-927. [PMID: 35795913 DOI: 10.1111/ijlh.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/18/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION FLT3 internal tandem duplicate (ITD) is associated with unfavorable prognosis of acute myeloid leukemia; targeted therapy improves clinical outcome. We propose that FLT3-ITD detected by next generation sequencing (NGS) should be reported with the same nomenclature pattern as single nucleotide variants so that the mutation can be better interpreted clinically. METHODS A Python-based web application was developed to generate FLT3-ITD nomenclature as recommended by the Human Genome Variation Society (HGVS). Assembled FLT3-ITD sequences from 84 patients and 11 artificially created ITD sequences were used for the validation of this web-based application. Each sequence was inspected manually to confirm that the nomenclature was accurate. RESULTS Accurate nomenclatures were generated for 113 of 114 sequencing results and 7 artificial sequences. One assembled sequence and four artificial sequences were not named accurately; warning statements were automatically generated to alert further inspection. Of the 105 unique FLT3-ITDs, the ITD lengths range from 18 to 300 bp. Depending whether the ITD involves intron or extends into exon 15, three patterns were recognized. Only 44 (42%) ITDs were pure duplications, and three types of variants were identified at the 5' of ITD. When ITD involves intronic sequence, the protein may comprise inserted amino acids encoded by the intron, due to disrupted RNA splicing. CONCLUSION The web application generates accurate FLT3-ITD nomenclature from NGS results except in rare situations. The HGVS nomenclatures provide information on the molecular architecture of FLT3-ITDs and reveal details of complex insertions with partial duplications.
Collapse
Affiliation(s)
- Yi Ding
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Geoffrey Hughes Smith
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kristin Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Thomas Schneider
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrew Campbell
- Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Linsheng Zhang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
49
|
Poor outcome of pediatric patients with acute myeloid leukemia harboring high FLT3/ITD allelic ratios. Nat Commun 2022; 13:3679. [PMID: 35760968 PMCID: PMC9237020 DOI: 10.1038/s41467-022-31489-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/17/2022] [Indexed: 11/08/2022] Open
Abstract
Activating FLT3 mutations are the most common mutations in acute myeloid leukemia (AML), but the optimal threshold of FLT3/ITD allelic ratio (AR) among pediatric AML patients remains controversial. Here, we present the outcome and prognostic significance of FLT3/ITD AR analysis among pediatric patients with AML from the TARGET dataset. Applying fitting curve models and threshold effect analysis using the restrictive cubic spline function following Cox proportional hazards models identifies the cut-off value of 0.5 on FLT3/ITD AR. Moreover, we observe that high FLT3/ITD AR patients have an inferior outcome when compared to low AR patients. Our study also demonstrates that stem cell transplantation may improve the outcome in pediatric AML patients with high FLT3/ITD AR and may be further improved when combined with additional therapies such as Gemtuzumab Ozogamicin. These findings underline the importance of individualized treatment of pediatric AML. Activating FLT3 mutations are the most common mutations in AML. Here, the authors explore the relationship between the FLT3/ITD allelic ratio and prognosis in pediatric AML patients and identify an optimal threshold to stratify patients.
Collapse
|
50
|
Yen SC, Wu YW, Huang CC, Chao MW, Tu HJ, Chen LC, Lin TE, Sung TY, Tseng HJ, Chu JC, Huang WJ, Yang CR, HuangFu WC, Pan SL, Hsu KC. O-methylated flavonol as a multi-kinase inhibitor of leukemogenic kinases exhibits a potential treatment for acute myeloid leukemia. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154061. [PMID: 35364561 DOI: 10.1016/j.phymed.2022.154061] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous disease with poor overall survival characterized by various genetic changes. The continuous activation of oncogenic pathways leads to the development of drug resistance and limits current therapeutic efficacy. Therefore, a multi-targeting inhibitor may overcome drug resistance observed in AML treatment. Recently, groups of flavonoids, such as flavones and flavonols, have been shown to inhibit a variety of kinase activities, which provides potential opportunities for further anticancer applications. PURPOSE In this study, we evaluated the anticancer effects of flavonoid compounds collected from our in-house library and investigated their potential anticancer mechanisms by targeting multiple kinases for inhibition in AML cells. METHODS The cytotoxic effect of the compounds was detected by cell viability assays. The kinase inhibitory activity of the selected compound was detected by kinase-based and cell-based assays. The binding conformation and interactions were investigated by molecular docking analysis. Flow cytometry was used to evaluate the cell cycle distribution and cell apoptosis. The protein and gene expression were estimated by western blotting and qPCR, respectively. RESULTS In this study, an O-methylated flavonol (compound 11) was found to possess remarkable cytotoxic activity against AML cells compared to treatment in other cancer cell lines. The compound was demonstrated to act against multiple kinases, which play critical roles in survival signaling in AML, including FLT3, MNK2, RSK, DYRK2 and JAK2 with IC50 values of 1 - 2 μM. Compared to our previous flavonoid compounds, which only showed inhibitions against MNKs or FLT3, compound 11 exhibited multiple kinase inhibitory abilities. Moreover, compound 11 showed effectiveness in inhibiting internal tandem duplications of FLT3 (FLT3-ITDs), which accounts for 25% of AML cases. The interactions between compound 11 and targeted kinases were investigated by molecular docking analysis. Mechanically, compound 11 caused dose-dependent accumulation of leukemic cells at the G0/G1 phase and followed by the cells undergoing apoptosis. CONCLUSION O-methylated flavonol, compound 11, can target multiple kinases, which may provide potential opportunities for the development of novel therapeutics for drug-resistant AMLs. This work provides a good starting point for further compound optimization.
Collapse
Affiliation(s)
- Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, China
| | - Yi-Wen Wu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, China; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chiao Huang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan; Division of General Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Min-Wu Chao
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Huang-Ju Tu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Liang-Chieh Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Master Program in Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Ju Tseng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Jung-Chun Chu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Drug Discovery, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|