1
|
Ram M, Fraser MR, Vieira dos Santos J, Tasakis R, Islam A, Abo-Donia JU, Parekh S, Lagana A. The Genetic and Molecular Drivers of Multiple Myeloma: Current Insights, Clinical Implications, and the Path Forward. Pharmgenomics Pers Med 2024; 17:573-609. [PMID: 39723112 PMCID: PMC11669356 DOI: 10.2147/pgpm.s350238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Background Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of malignant plasma cells within the bone marrow. The disease's complexity is underpinned by a variety of genetic and molecular abnormalities that drive its progression. Methods This review was conducted through a state-of-The-art literature search, primarily utilizing PubMed to gather peer-reviewed articles. We focused on the most comprehensive and cited studies to ensure a thorough understanding of the genetic and molecular landscapes of MM. Results We detail primary and secondary alterations such as translocations, hyperdiploidy, single nucleotide variants (SNVs), copy number alterations (CNAs), gene fusions, epigenetic modifications, non-coding RNAs, germline predisposing variants, and the influence of the tumor microenvironment (TME). Our analysis highlights the heterogeneity of MM and the challenges it poses in treatment and prognosis, emphasizing the distinction between driver mutations, which actively contribute to oncogenesis, and passenger mutations, which arise due to genomic instability and do not contribute to disease progression. Conclusion & Future Perspectives We report key controversies and challenges in defining the genetic drivers of MM, and examine their implications for future therapeutic strategies. We discuss the importance of systems biology approaches in understanding the dependencies and interactions among these alterations, particularly highlighting the impact of double and triple-hit scenarios on disease outcomes. By advancing our understanding of the molecular drivers and their interactions, this review sets the stage for novel therapeutic targets and strategies, ultimately aiming to improve clinical outcomes in MM patients.
Collapse
Affiliation(s)
- Meghana Ram
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Junia Vieira dos Santos
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafail Tasakis
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariana Islam
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jannah Usama Abo-Donia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samir Parekh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandro Lagana
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Skerget S, Penaherrera D, Chari A, Jagannath S, Siegel DS, Vij R, Orloff G, Jakubowiak A, Niesvizky R, Liles D, Berdeja J, Levy M, Wolf J, Usmani SZ, Christofferson AW, Nasser S, Aldrich JL, Legendre C, Benard B, Miller C, Turner B, Kurdoglu A, Washington M, Yellapantula V, Adkins JR, Cuyugan L, Boateng M, Helland A, Kyman S, McDonald J, Reiman R, Stephenson K, Tassone E, Blanski A, Livermore B, Kirchhoff M, Rohrer DC, D'Agostino M, Gamella M, Collison K, Stumph J, Kidd P, Donnelly A, Zaugg B, Toone M, McBride K, DeRome M, Rogers J, Craig D, Liang WS, Gutierrez NC, Jewell SD, Carpten J, Anderson KC, Cho HJ, Auclair D, Lonial S, Keats JJ. Comprehensive molecular profiling of multiple myeloma identifies refined copy number and expression subtypes. Nat Genet 2024; 56:1878-1889. [PMID: 39160255 PMCID: PMC11387199 DOI: 10.1038/s41588-024-01853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Multiple myeloma is a treatable, but currently incurable, hematological malignancy of plasma cells characterized by diverse and complex tumor genetics for which precision medicine approaches to treatment are lacking. The Multiple Myeloma Research Foundation's Relating Clinical Outcomes in Multiple Myeloma to Personal Assessment of Genetic Profile study ( NCT01454297 ) is a longitudinal, observational clinical study of newly diagnosed patients with multiple myeloma (n = 1,143) where tumor samples are characterized using whole-genome sequencing, whole-exome sequencing and RNA sequencing at diagnosis and progression, and clinical data are collected every 3 months. Analyses of the baseline cohort identified genes that are the target of recurrent gain-of-function and loss-of-function events. Consensus clustering identified 8 and 12 unique copy number and expression subtypes of myeloma, respectively, identifying high-risk genetic subtypes and elucidating many of the molecular underpinnings of these unique biological groups. Analysis of serial samples showed that 25.5% of patients transition to a high-risk expression subtype at progression. We observed robust expression of immunotherapy targets in this subtype, suggesting a potential therapeutic option.
Collapse
Affiliation(s)
- Sheri Skerget
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Daniel Penaherrera
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ajai Chari
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Sundar Jagannath
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David S Siegel
- Hackensack University Medical Center, Hackensack, NJ, USA
| | - Ravi Vij
- Division of Oncology, Washington University, St. Louis, MO, USA
| | | | | | | | - Darla Liles
- Division of Hematology/Oncology, East Carolina University, Greenville, NC, USA
| | | | - Moshe Levy
- Baylor Scott and White Research Institute, Dallas, TX, USA
| | - Jeffrey Wolf
- Department of Medicine, UCSF Medical Center, San Francisco, CA, USA
| | | | - Austin W Christofferson
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Sara Nasser
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jessica L Aldrich
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Christophe Legendre
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Brooks Benard
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Chase Miller
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Bryce Turner
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ahmet Kurdoglu
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Megan Washington
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Venkata Yellapantula
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jonathan R Adkins
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Lori Cuyugan
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Martin Boateng
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Adrienne Helland
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Shari Kyman
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Jackie McDonald
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Rebecca Reiman
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Kristi Stephenson
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Erica Tassone
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | | | | | | | - Mattia D'Agostino
- Division of Hematology, AOU Città della Salute e della Scienza di Torino, University of Torino and Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | - Manuela Gamella
- Division of Hematology, AOU Città della Salute e della Scienza di Torino, University of Torino and Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | | | | | - Pam Kidd
- Spectrum Health, Grand Rapids, MI, USA
| | | | | | | | | | - Mary DeRome
- Multiple Myeloma Research Foundation, Norwalk, CT, USA
| | | | - David Craig
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Winnie S Liang
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Norma C Gutierrez
- Department of Hematology, University Hospital of Salamanca, IBSAL, Cancer Research Center-IBMCC (USAL-CSIC), CIBERONC, Salamanca, Spain
| | | | - John Carpten
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Hearn Jay Cho
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Multiple Myeloma Research Foundation, Norwalk, CT, USA
| | | | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Jonathan J Keats
- Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
3
|
Maura F, Bergsagel PL. Molecular Pathogenesis of Multiple Myeloma: Clinical Implications. Hematol Oncol Clin North Am 2024; 38:267-279. [PMID: 38199896 DOI: 10.1016/j.hoc.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Multiple myeloma is a malignancy of bone-marrow-localized, isotype-switched plasma cells that secrete a monoclonal immunoglobulin and cause hyperCalcemia, Anemia, Renal failure, and lytic Bone disease. It is preceded, often for decades, by a relatively stable monoclonal gammopathy lacking these clinical and malignant features. Both conditions are characterized by the presence of types of immunoglobulin heavy gene translocations that dysregulate a cyclin D family gene on 11q13 (CCND1), 6p21 (CCND3), or 12q11 (CCND2), a maf family gene on 16q23 (MAF), 20q11 (MAFB), or 8q24 (MAFA), or NSD2/FGFR3 on 4p16, or the presence of hyperdiploidy. Subsequent loss of function of tumor suppressor genes and mutations activating MYC, RAS, NFkB, and cell cycle pathways are associated with the progression to malignant disease.
Collapse
Affiliation(s)
- Francesco Maura
- University of Miami, 1120 Northwest 14th Street, Miami, FL 33136, USA.
| | | |
Collapse
|
4
|
Daudignon A, Cuccuini W, Bracquemart C, Godon C, Quilichini B, Penther D. Cytogenetics in the management of multiple Myeloma: The guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103427. [PMID: 38035476 DOI: 10.1016/j.retram.2023.103427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells (PCs) in the bone marrow. Despite considerable advances in the treatment, MM is considered an incurable chronic disease with a very heterogeneous prognosis, mostly depending on genomic alterations whose complexity evolves over time. The cytogenetic analysis of MM is performed on CD138+ sorted PCs, in order to detect the following high risk cytogenetic abnormalities: t(4;14), 17p/TP53 deletion, 1q21 gain/amplification, 1p32 deletion, as well as t(11;14) because of its therapeutic implication. This minimal panel can be enlarged to detect other recurrent abnormalities, according to the prognostic score chosen by the laboratory. Although the knowledge of the genetic landscape of MM is evolving rapidly with improved molecular technologies, risk scores remain to be refined as they require more time for consensual validation. The GFCH present here the overview of genomics alterations identified in MM and related PCs diseases associated with their prognostic factor, when available, and recommendations from an expert group for identification and characterization of those alterations. This work is the update of previous 2016 recommendations.
Collapse
Affiliation(s)
- Agnès Daudignon
- Institut de Génétique Médicale - Hôpital Jeanne de Flandre - CHU de Lille, Lille, France
| | - Wendy Cuccuini
- Laboratoire d'hématologie, Hôpital Saint-Louis -Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Claire Bracquemart
- Normandie Univ, UNICAEN, CHU de Caen Normandie, Structure Fédérative d'Oncogénétique cyto-moléculaire (MOCAE), Caen, France
| | - Catherine Godon
- Laboratoire d'Hématologie Biologique, CHU Nantes, Nantes, France
| | | | | |
Collapse
|
5
|
Giguère A, Raymond-Bouchard I, Collin V, Claveau JS, Hébert J, LeBlanc R. Optical Genome Mapping Reveals the Complex Genetic Landscape of Myeloma. Cancers (Basel) 2023; 15:4687. [PMID: 37835381 PMCID: PMC10571866 DOI: 10.3390/cancers15194687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 10/15/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) on enriched CD138 plasma cells is the standard method for identification of clinically relevant genetic abnormalities in multiple myeloma. However, FISH is a targeted analysis that can be challenging due to the genetic complexity of myeloma. The aim of this study was to evaluate the potential of optical genome mapping (OGM) to detect clinically significant cytogenetic abnormalities in myeloma and to provide larger pangenomic information. OGM and FISH analyses were performed on CD138-purified cells of 20 myeloma patients. OGM successfully detected structural variants (SVs) (IGH and MYC rearrangements), copy number variants (CNVs) (17p/TP53 deletion, 1p deletion and 1q gain/amplification) and aneuploidy (gains of odd-numbered chromosomes, monosomy 13) classically expected with myeloma and led to a 30% increase in prognosis yield at our institution when compared to FISH. Despite challenges in the interpretation of OGM calls for CNV and aneuploidy losses in non-diploid genomes, OGM has the potential to replace FISH as the standard of care analysis in clinical settings and to efficiently change how we identify prognostic and predictive markers for therapies in the future. To our knowledge, this is the first study highlighting the feasibility and clinical utility of OGM in myeloma.
Collapse
Affiliation(s)
- Amélie Giguère
- Cytogenetics Laboratory, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada; (I.R.-B.); (V.C.); (J.H.)
| | - Isabelle Raymond-Bouchard
- Cytogenetics Laboratory, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada; (I.R.-B.); (V.C.); (J.H.)
| | - Vanessa Collin
- Cytogenetics Laboratory, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada; (I.R.-B.); (V.C.); (J.H.)
| | - Jean-Sébastien Claveau
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Université de Montréal, Montreal, QC H1T 2M4, Canada; (J.-S.C.); (R.L.)
| | - Josée Hébert
- Cytogenetics Laboratory, Maisonneuve-Rosemont Hospital, Montreal, QC H1T 2M4, Canada; (I.R.-B.); (V.C.); (J.H.)
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Université de Montréal, Montreal, QC H1T 2M4, Canada; (J.-S.C.); (R.L.)
| | - Richard LeBlanc
- Division of Hematology, Oncology and Transplantation, Department of Medicine, Maisonneuve-Rosemont Hospital, Université de Montréal, Montreal, QC H1T 2M4, Canada; (J.-S.C.); (R.L.)
| |
Collapse
|
6
|
Yang P, Qu Y, Wang M, Chu B, Chen W, Zheng Y, Niu T, Qian Z. Pathogenesis and treatment of multiple myeloma. MedComm (Beijing) 2022; 3:e146. [PMID: 35665368 PMCID: PMC9162151 DOI: 10.1002/mco2.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma (MM) is the second‐ranking malignancy in hematological tumors. The pathogenesis of MM is complex with high heterogeneity, and the development of the disease is a multistep process. Chromosomal translocations, aneuploidy, genetic mutations, and epigenetic aberrations are essential in disease initiation and progression. The correlation between MM cells and the bone marrow microenvironment is associated with the survival, progression, migration, and drug resistance of MM cells. In recent decades, there has been a significant change in the paradigm for the management of MM. With the development of proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, chimeric antigen receptor T‐cell therapies, and novel agents, the survival of MM patients has been significantly improved. In addition, nanotechnology acts as both a nanocarrier and a treatment tool for MM. The properties and responsive conditions of nanomedicine can be tailored to reach different goals. Nanomedicine with a precise targeting property has offered great potential for drug delivery and assisted in tumor immunotherapy. In this review, we summarize the pathogenesis and current treatment options of MM, then overview recent advances in nanomedicine‐based systems, aiming to provide more insights into the treatment of MM.
Collapse
Affiliation(s)
- Peipei Yang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Ying Qu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Mengyao Wang
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Bingyang Chu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Wen Chen
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Yuhuan Zheng
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Ting Niu
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| | - Zhiyong Qian
- Department of Hematology and Institute of Hematology, State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu Sichuan China
| |
Collapse
|
7
|
Wiedmeier-Nutor JE, Bergsagel PL. Review of Multiple Myeloma Genetics including Effects on Prognosis, Response to Treatment, and Diagnostic Workup. Life (Basel) 2022; 12:life12060812. [PMID: 35743843 PMCID: PMC9225019 DOI: 10.3390/life12060812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 12/03/2022] Open
Abstract
Multiple myeloma is a disorder of the monoclonal plasma cells and is the second most common hematologic malignancy. Despite improvements in survival with newer treatment regimens, multiple myeloma remains an incurable disease and most patients experience multiple relapses. Multiple myeloma disease initiation and progression are highly dependent on complex genetic aberrations. This review will summarize the current knowledge of these genetic aberrations, how they affect prognosis and the response to treatment, and review sensitive molecular techniques for multiple myeloma workup, with the ultimate goal of detecting myeloma progression early, allowing for timely treatment initiation.
Collapse
|
8
|
Hanamura I. Multiple myeloma with high-risk cytogenetics and its treatment approach. Int J Hematol 2022; 115:762-777. [PMID: 35534749 PMCID: PMC9160142 DOI: 10.1007/s12185-022-03353-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Despite substantial advances in anti-myeloma treatments, early recurrence and death remain an issue in certain subpopulations. Cytogenetic abnormalities (CAs) are the most widely accepted predictors for poor prognosis in multiple myeloma (MM), such as t(4;14), t(14;16), t(14;20), gain/amp(1q21), del(1p), and del(17p). Co-existing high-risk CAs (HRCAs) tend to be associated with an even worse prognosis. Achievement of sustained minimal residual disease (MRD)-negativity has recently emerged as a surrogate for longer survival, regardless of cytogenetic risk. Information from newer clinical trials suggests that extended intensified treatment can help achieve MRD-negativity in patients with HRCAs, which may lead to improved outcomes. Therapy should be considered to include a 3- or 4-drug induction regimen (PI/IMiD/Dex or PI/IMiD/Dex/anti-CD38 antibody), auto-transplantation, and consolidation/maintenance with lenalidomide ± a PI. Results from ongoing clinical trials for enriched high-risk populations will reveal the precise efficacy of the investigated regimens. Genetic abnormalities of MM cells are intrinsic critical factors determining tumor characteristics, which reflect the natural course and drug sensitivity of the disease. This paper reviews the clinicopathological features of genomic abnormalities related to adverse prognosis, focusing on HRCAs that are the most relevant in clinical practice, and outline current optimal therapeutic approaches for newly diagnosed MM with HRCAs.
Collapse
Affiliation(s)
- Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, 1 Karimata, Yazako, Nagakute, Aichi, 480-1195, Japan.
| |
Collapse
|
9
|
Fitzpatrick MJ, Nardi V, Sohani AR. Plasma cell myeloma: role of histopathology, immunophenotyping, and genetic testing. Skeletal Radiol 2022; 51:17-30. [PMID: 33687521 DOI: 10.1007/s00256-021-03754-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 02/02/2023]
Abstract
Myeloma is a malignant neoplasm of plasma cells with complex pathogenesis. Diagnosis and risk stratification require the integration of histology, radiology, serology, and genetic data. Bone marrow biopsies are essential for myeloma diagnosis by providing material for histologic and cytologic assessment as well as immunophenotypic and genetic studies. Flow cytometry and genetic studies are, in particular, becoming increasingly important for diagnosis, risk stratification, and assessment of treatment response. Myeloma has traditionally been characterized by recurrent cytogenetic abnormalities that can be divided into two subtypes: hyperdiploid, characterized by trisomies, and non-hyperdiploid, characterized by translocations involving chromosome 14. These abnormalities are thought to be primary events, initiating a premalignant state, which progresses to myeloma through the acquisition of secondary mutations. The emergence of next-generation sequencing has led to the discovery of numerous mutations and gene fusions that comprise the heterogenous genomic landscape of myeloma. As the underlying pathogenesis of myeloma continues to be delineated, possible therapeutic targets have also emerged. Herein, we describe the importance of histology, immunophenotype, and mutational analysis in the assessment of myeloma.
Collapse
Affiliation(s)
- Megan J Fitzpatrick
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, WRN 219, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, WRN 219, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Aliyah R Sohani
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, WRN 219, Boston, MA, 02114, USA.
- Department of Pathology, Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Offermann A, Kang D, Watermann C, Weingart A, Hupe MC, Saraji A, Stegmann-Frehse J, Kruper R, Schüle R, Pantel K, Taubert H, Duensing S, Culig Z, Aigner A, Klapper W, Jonigk D, Philipp Kühnel M, Merseburger AS, Kirfel J, Sailer V, Perner S. Manuscript Title: Analysis of tripartite motif (TRIM) family gene expression in prostate cancer bone metastases. Carcinogenesis 2021; 42:1475-1484. [PMID: 34487169 DOI: 10.1093/carcin/bgab083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 12/27/2022] Open
Abstract
Tripartite motif (TRIM) family proteins are post-translational protein modifiers with E3-ubiquitin ligase activity, thereby involved in various biological processes. The molecular mechanisms driving prostate cancer (PCa) bone metastasis (BM) are incompletely understood, and targetable genetic alterations are lacking in the majority of cases. Therefore, we aimed to explore the expression and potential functional relevance of 71 TRIM members in bone metastatic PCa. We performed transcriptome analysis of all human TRIM family members and 770 cancer-related genes in 29 localized PCa and 30 PCa BM using Nanostring. KEGG, STRING and Ubibrowser were used for further bioinformatic gene correlation and pathway enrichment analyses. Compared to localized tumors, six TRIMs are under-expressed while nine TRIMs are over-expressed in BM. The differentially expressed TRIM proteins are linked to TNF-, TGFβ-, PI3K/AKT- and HIF-1-signaling, and to features such as proteoglycans, platelet activation, adhesion and ECM-interaction based on correlation to cancer-related genes. The identification of TRIM-specific E3-ligase-substrates revealed insight into functional connections to oncogenes, tumor suppressors and cancer-related pathways including androgen receptor- and TGFβ signaling, cell cycle regulation and splicing. In summary, this is the first study that comprehensively and systematically characterizes the expression of all TRIM members in PCa BM. Our results describe post-translational protein modification as an important regulatory mechanism of oncogenes, tumor suppressors, and pathway molecules in PCa progression. Therefore, this study may provide evidence for novel therapeutic targets, in particular for the treatment or prevention of BM.
Collapse
Affiliation(s)
- Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Duan Kang
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Christian Watermann
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Anika Weingart
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Marie C Hupe
- Department of Urology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Alireza Saraji
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Janine Stegmann-Frehse
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | | | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Klinikum der Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Klaus Pantel
- Institute for Tumor Biology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Helge Taubert
- Department of Urology and Paediatric Urology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Duensing
- Molecular Urooncology, Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | - Zoran Culig
- Experimental Urology, Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, University of Leipzig, Germany
| | - Wolfram Klapper
- Institute of Pathology, Hematopathology Section and Lymph Node Registry, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| | - Mark Philipp Kühnel
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
11
|
Ding T, Hao J. Sirtuin 2 knockdown inhibits cell proliferation and RAS/ERK signaling, and promotes cell apoptosis and cell cycle arrest in multiple myeloma. Mol Med Rep 2021; 24:760. [PMID: 34476507 PMCID: PMC8436222 DOI: 10.3892/mmr.2021.12400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 11/02/2020] [Indexed: 01/29/2023] Open
Abstract
The present study aimed to explore the regulatory role of sirtuin 2 (SIRT2) in malignant progression of multiple myeloma (MM) and the potential associated signaling pathways. In total, 30 patients with MM and 15 healthy bone marrow donors were enrolled in the current study and their bone marrow samples were collected to isolate the plasma cells. The expression levels of SIRT2 were detected in MM cell lines (KMS-28BM, U266, RPMI-8226 and NCI-H929) and normal plasma cells (collected from healthy bone marrow donors as the control) via reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis. SIRT2 knockdown was established by transfecting two MM cell lines (RPMI-8226 and NCI-H929 cells) with short hairpin RNA-SIRT2 recombinant plasmid; the control group was transfected with a control recombinant plasmid. Subsequently, the effect of SIRT2 knockdown on MM cell proliferation, apoptosis, cell cycle progression and RAS/ERK signaling was investigated via Cell Counting Kit-8, flow cytometry, RT-qPCR and western blot assays, respectively. The mRNA and protein expression levels of SIRT2 were increased in U266 (P<0.001), KMS-28BM (P<0.001), RPMI-8226 (P<0.001) and NCI-H929 (P<0.001) cells compared with those in the control cells. In NCI-H929 and RPMI-8226 cells, cell proliferation was decreased 48 h (P<0.05) and 72 h (P<0.05) after SIRT2 knockdown. Furthermore, the cell apoptotic rate was elevated 48 h after SIRT2 knockdown (P<0.01). In addition, the percentage of cells at the G0/G1 phase was increased (P<0.01), whereas the percentage of cells at the S phase was reduced (P<0.01) 48 h after SIRT2 knockdown. The expression levels of HRAS and phosphorylated-ERK were also reduced 48 h after SIRT2 knockdown. In conclusion, SIRT2 was highly expressed in MM cell lines, and knockdown of SIRT2 inhibited MM cell proliferation, inactivated the RAS/ERK signaling pathway, and promoted cell apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- Tianling Ding
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jie Hao
- Department of Hematology, Shanghai Jing'an District Beizhan Hospital, Shanghai 200070, P.R. China
| |
Collapse
|
12
|
Hassan H, Szalat R. Genetic Predictors of Mortality in Patients with Multiple Myeloma. APPLICATION OF CLINICAL GENETICS 2021; 14:241-254. [PMID: 33953598 PMCID: PMC8092627 DOI: 10.2147/tacg.s262866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/31/2021] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a heterogeneous disease featured by clonal plasma cell proliferation and genomic instability. The advent of next-generation sequencing allowed unraveling the complex genomic landscape of the disease. Several recurrent genomic aberrations including immunoglobulin genes translocations, copy number abnormalities, complex chromosomal events, transcriptomic and epigenomic deregulation, and mutations define various molecular subgroups with distinct outcomes. In this review, we describe the recurrent genomic events identified in MM impacting patients’ outcome and survival. These genomic aberrations constitute new markers that could be incorporated into a prognostication model to eventually guide therapy at every stage of the disease.
Collapse
Affiliation(s)
- Hamza Hassan
- Department of Hematology and Medical Oncology, Boston University Medical Center, Boston, MA, USA
| | - Raphael Szalat
- Department of Hematology and Medical Oncology, Boston University Medical Center, Boston, MA, USA.,Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Moser-Katz T, Joseph NS, Dhodapkar MV, Lee KP, Boise LH. Game of Bones: How Myeloma Manipulates Its Microenvironment. Front Oncol 2021; 10:625199. [PMID: 33634031 PMCID: PMC7900622 DOI: 10.3389/fonc.2020.625199] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma is a clonal disease of long-lived plasma cells and is the second most common hematological cancer behind Non-Hodgkin's Lymphoma. Malignant transformation of plasma cells imparts the ability to proliferate, causing harmful lesions in patients. In advanced stages myeloma cells become independent of their bone marrow microenvironment and form extramedullary disease. Plasma cells depend on a rich array of signals from neighboring cells within the bone marrow for survival which myeloma cells exploit for growth and proliferation. Recent evidence suggests, however, that both the myeloma cells and the microenvironment have undergone alterations as early as during precursor stages of the disease. There are no current therapies routinely used for treating myeloma in early stages, and while recent therapeutic efforts have improved patients' median survival, most will eventually relapse. This is due to mutations in myeloma cells that not only allow them to utilize its bone marrow niche but also facilitate autocrine pro-survival signaling loops for further progression. This review will discuss the stages of myeloma cell progression and how myeloma cells progress within and outside of the bone marrow microenvironment.
Collapse
Affiliation(s)
- Tyler Moser-Katz
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Nisha S. Joseph
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Madhav V. Dhodapkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Kelvin P. Lee
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Li C, Wendlandt EB, Darbro B, Xu H, Thomas GS, Tricot G, Chen F, Shaughnessy JD, Zhan F. Genetic Analysis of Multiple Myeloma Identifies Cytogenetic Alterations Implicated in Disease Complexity and Progression. Cancers (Basel) 2021; 13:cancers13030517. [PMID: 33572851 PMCID: PMC7866300 DOI: 10.3390/cancers13030517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease characterized by genomic chaos making it difficult to distinguish driver from passenger mutations. In this study, we integrated data from whole genome gene expression profiling (GEP) microarrays and CytoScan HD high-resolution genomic arrays to integrate GEP with copy number variations (CNV) to more precisely define molecular alterations in MM important for disease initiation, progression and poor clinical outcome. We utilized gene expression arrays from 351 MM samples and CytoScan HD arrays from 97 MM samples to identify eight CNV events that represent possible MM drivers. By integrating GEP and CNV data we divided the MM into eight unique subgroups and demonstrated that patients within one of the eight distinct subgroups exhibited common and unique protein network signatures that can be utilized to identify new therapeutic interventions based on pathway dysregulation. Data also point to the central role of 1q gains and the upregulated expression of ANP32E, DTL, IFI16, UBE2Q1, and UBE2T as potential drivers of MM aggressiveness. The data presented here utilized a novel approach to identify potential driver CNV events in MM, the creation of an improved definition of the molecular basis of MM and the identification of potential new points of therapeutic intervention.
Collapse
Affiliation(s)
- Can Li
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Erik B. Wendlandt
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (E.B.W.); (G.S.T.)
| | - Benjamin Darbro
- Cytogenetics and Molecular Laboratory, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Hongwei Xu
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
| | - Gregory S. Thomas
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (E.B.W.); (G.S.T.)
| | - Guido Tricot
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
| | - Fangping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - John D. Shaughnessy
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
| | - Fenghuang Zhan
- Myeloma Center, Department of Internal Medicine, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.); (H.X.); (G.T.); (J.D.S.J.)
- Correspondence:
| |
Collapse
|
15
|
Hanamura I. Gain/Amplification of Chromosome Arm 1q21 in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13020256. [PMID: 33445467 PMCID: PMC7827173 DOI: 10.3390/cancers13020256] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Multiple myeloma (MM), a plasma cell neoplasm, is an incurable hematological malignancy. Gain/amplification of chromosome arm 1q21 (1q21+) is the most common adverse genomic abnormality associated with disease progression and drug resistance. While possible mechanisms of 1q21+ occurrence and candidate genes in the 1q21 amplicon have been suggested, the precise pathogenesis of MM with 1q21+ is unknown. Herein, we review the current knowledge about the clinicopathological features of 1q21+ MM, which can assist in effective therapeutic approaches for MM patients with 1q21+. Abstract Multiple myeloma (MM), a plasma cell neoplasm, is an incurable hematological malignancy characterized by complex genetic and prognostic heterogeneity. Gain or amplification of chromosome arm 1q21 (1q21+) is the most frequent adverse chromosomal aberration in MM, occurring in 40% of patients at diagnosis. It occurs in a subclone of the tumor as a secondary genomic event and is more amplified as the tumor progresses and a risk factor for the progression from smoldering multiple myeloma to MM. It can be divided into either 1q21 gain (3 copies) or 1q21 amplification (≥4 copies), and it has been suggested that the prognosis is worse in cases of amplification than gain. Trisomy of chromosome 1, jumping whole-arm translocations of chromosome1q, and tandem duplications lead to 1q21+ suggesting that its occurrence is not consistent at the genomic level. Many studies have reported that genes associated with the malignant phenotype of MM are situated on the 1q21 amplicon, including CKS1B, PSMD4, MCL1, ANP32E, and others. In this paper, we review the current knowledge regarding the clinical features, prognostic implications, and the speculated pathology of 1q21+ in MM, which can provide clues for an effective treatment approach to MM patients with 1q21+.
Collapse
Affiliation(s)
- Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, 1-1, Karimata, Yazako, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
16
|
Liang L, He Y, Wang H, Zhou H, Xiao L, Ye M, Kuang Y, Luo S, Zuo Y, Feng P, Yang C, Cao W, Liu T, Roy M, Xiao X, Liu J. The Wee1 kinase inhibitor MK1775 suppresses cell growth, attenuates stemness and synergises with bortezomib in multiple myeloma. Br J Haematol 2020; 191:62-76. [PMID: 32314355 DOI: 10.1111/bjh.16614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Multiple myeloma stem-like cells (MMSCs) are responsible for initiation and relapse, though novel treatment paradigms that effectively eradicate MMSCs are yet to be developed. Selective inhibition of the cell cycle regulatory kinase Wee1 by MK1775 is being explored as a potential anti-cancer therapeutic. We report that higher expression of Wee1 is correlated with poor survival in multiple myeloma (MM). The MM models and patient-derived CD138+ plasma cells are particularly sensitive to the growth-inhibitory effects of the Wee1 inhibitor MK1775. MK1775 induces Mus81-Eme1 endonuclease-mediated DNA damage in S-phase cell cycle that results in a blockade of replication and then apoptosis. Furthermore, MK1775 strongly suppresses the features of stemness in vitro, in vivo and in primary CD138+ cells by decreasing ALDH1+ cell fraction and the expression of ALDH1. In addition, co-treatment of MK1775 with bortezomib is synergistic in vitro and in vivo. Bortezomib, although it enhances ALDH1+ cells, when combined with MK1775 abrogates this stimulatory effect on stemness. Considering MM as an invariably incurable malignancy due to the presence of heterogenic myeloma stem-like cells, our study presents inhibition of Wee1 as a promising targeted therapy for MM and provides a compelling rationale to further investigate the activity of MK1775 against myeloma in clinical settings.
Collapse
Affiliation(s)
- Long Liang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Haiqin Wang
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Hui Zhou
- Lymphoma & Hematology Department, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, China
| | - Ling Xiao
- Department of Histology and Embryology of School of Basic Medical Sciences, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yijin Kuang
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Saiqun Luo
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Yuna Zuo
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Chaoying Yang
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Wenjie Cao
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China.,Department of Histology and Embryology of School of Basic Medical Sciences, Central South University, Changsha, China
| | - Taohua Liu
- Department of Clinical Medicine, Xiangya Medical School, Changsha, China
| | - Mridul Roy
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Jing Liu
- Molecular Biology Research Center & Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
17
|
Barwick BG, Gupta VA, Vertino PM, Boise LH. Cell of Origin and Genetic Alterations in the Pathogenesis of Multiple Myeloma. Front Immunol 2019; 10:1121. [PMID: 31231360 PMCID: PMC6558388 DOI: 10.3389/fimmu.2019.01121] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/02/2019] [Indexed: 12/22/2022] Open
Abstract
B cell activation and differentiation yields plasma cells with high affinity antibodies to a given antigen in a time-frame that allows for host protection. Although the end product is most commonly humoral immunity, the rapid proliferation and somatic mutation of the B cell receptor also results in oncogenic mutations that cause B cell malignancies including plasma cell neoplasms such as multiple myeloma. Myeloma is the second most common hematological malignancy and results in over 100,000 deaths per year worldwide. The genetic alterations that occur in the germinal center, however, are not sufficient to cause myeloma, but rather impart cell proliferation potential on plasma cells, which are normally non-dividing. This pre-malignant state, referred to as monoclonal gammopathy of undetermined significance or MGUS, provides the opportunity for further genetic and epigenetic alterations eventually resulting in a progressive disease that becomes symptomatic. In this review, we will provide a brief history of clonal gammopathies and detail how some of the key discoveries were interwoven with the study of plasma cells. We will also review the genetic and epigenetic alterations discovered over the past 25 years, how these are instrumental to myeloma pathogenesis, and what these events teach us about myeloma and plasma cell biology. These data will be placed in the context of normal B cell development and differentiation and we will discuss how understanding the biology of plasma cells can lead to more effective therapies targeting multiple myeloma.
Collapse
Affiliation(s)
- Benjamin G. Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Vikas A. Gupta
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Paula M. Vertino
- Department of Biomedical Genetics and the Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| |
Collapse
|
18
|
Janz S, Zhan F, Sun F, Cheng Y, Pisano M, Yang Y, Goldschmidt H, Hari P. Germline Risk Contribution to Genomic Instability in Multiple Myeloma. Front Genet 2019; 10:424. [PMID: 31139207 PMCID: PMC6518313 DOI: 10.3389/fgene.2019.00424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022] Open
Abstract
Genomic instability, a well-established hallmark of human cancer, is also a driving force in the natural history of multiple myeloma (MM) - a difficult to treat and in most cases fatal neoplasm of immunoglobulin producing plasma cells that reside in the hematopoietic bone marrow. Long recognized manifestations of genomic instability in myeloma at the cytogenetic level include abnormal chromosome numbers (aneuploidy) caused by trisomy of odd-numbered chromosomes; recurrent oncogene-activating chromosomal translocations that involve immunoglobulin loci; and large-scale amplifications, inversions, and insertions/deletions (indels) of genetic material. Catastrophic genetic rearrangements that either shatter and illegitimately reassemble a single chromosome (chromotripsis) or lead to disordered segmental rearrangements of multiple chromosomes (chromoplexy) also occur. Genomic instability at the nucleotide level results in base substitution mutations and small indels that affect both the coding and non-coding genome. Sometimes this generates a distinctive signature of somatic mutations that can be attributed to defects in DNA repair pathways, the DNA damage response (DDR) or aberrant activity of mutator genes including members of the APOBEC family. In addition to myeloma development and progression, genomic instability promotes acquisition of drug resistance in patients with myeloma. Here we review recent findings on the genetic predisposition to myeloma, including newly identified candidate genes suggesting linkage of germline risk and compromised genomic stability control. The role of ethnic and familial risk factors for myeloma is highlighted. We address current research gaps that concern the lack of studies on the mechanism by which germline risk alleles promote genomic instability in myeloma, including the open question whether genetic modifiers of myeloma development act in tumor cells, the tumor microenvironment (TME), or in both. We conclude with a brief proposition for future research directions, which concentrate on the biological function of myeloma risk and genetic instability alleles, the potential links between the germline genome and somatic changes in myeloma, and the need to elucidate genetic modifiers in the TME.
Collapse
Affiliation(s)
- Siegfried Janz
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fenghuang Zhan
- Department of Internal Medicine, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States.,Holden Comprehensive Cancer Center, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States
| | - Fumou Sun
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yan Cheng
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael Pisano
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States.,Interdisciplinary Graduate Program in Immunology, The University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA, United States
| | - Ye Yang
- The Third Affiliated Hospital, Nanjing University of Chinese Medicine, Nanjing, China.,Ministry of Education's Key Laboratory of Acupuncture and Medicine Research, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hartmut Goldschmidt
- Medizinische Klinik V, Universitätsklinikum Heidelberg, Heidelberg, Germany.,Nationales Centrum für Tumorerkrankungen, Heidelberg, Germany
| | - Parameswaran Hari
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
19
|
Aurora kinase and FGFR3 inhibition results in significant apoptosis in molecular subgroups of multiple myeloma. Oncotarget 2018; 9:34582-34594. [PMID: 30349651 PMCID: PMC6195373 DOI: 10.18632/oncotarget.26180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/15/2018] [Indexed: 11/25/2022] Open
Abstract
Aberrant expression of proteins involved in cell division is a constant feature in multiple myeloma (MM), especially in high-risk disease. Increasingly, therapy of myeloma is moving towards individualization based on underlying genetic abnormalities. Aurora kinases are important mediators of cell cycle and are up regulated in MM. Functional loss of Aurora kinases results in genetic instability and dysregulated division leading to cellular aneuploidy and growth arrest. We investigated the role of Aurora kinase inhibition in MM, using a small molecule inhibitor A1014907. Low nanomolar A1014907 concentrations induced aneuploidy in MM cell lines independent of underlying cytogenetic abnormalities by inhibiting Aurora Kinases. However, A1014907 induced more pronounced and dose dependent apoptosis in cell lines with t(4;14) translocation. Translocation t(4;14) is observed in about 15% of patients with MM leading to constitutive activation of FGFR3 in two-thirds of these patients. Further investigation of the mechanism of action of A1014907 revealed potent FGFR3 pathway inhibition only in the sensitive cell lines. Thus, our results show that aurora kinase inhibition causes cell cycle arrest and aneuploidy with minimal apoptosis whereas inhibiting both aurora kinase and FGFR3 activity induced potent apoptosis in MM cells. These results support clinical evaluation of A1014907 in MM patients with t(4;14) translocation and/or FGFR3 expression.
Collapse
|
20
|
Atrash S, Zhang Q, Papanikolaou X, Stein C, Abdallah AO, Barlogie B. Clinical Presentation and Gene Expression Profiling of Immunoglobulin M Multiple Myeloma Compared With Other Myeloma Subtypes and Waldenström Macroglobulinemia. J Glob Oncol 2018; 4:1-8. [PMID: 30241189 PMCID: PMC6180798 DOI: 10.1200/jgo.2016.008003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Multiple myeloma (MM) is a clonal bone marrow disease characterized by the neoplastic transformation of differentiated postgerminal B cells. It is a heterogeneous disease both at the genetic level and in terms of clinical outcome. Immunoglobulin M (IgM) MM is a rare subtype of myeloma. Similar to Waldenström macroglobulinemia (WM), patients with MM experience IgM monoclonal gammopathy; however, both diseases are distinct in terms of treatment and clinical behavior. MATERIALS AND METHODS To shed light on the presentation of IgM MM, its prognosis, and its gene expression profiling, we identified and characterized 21 patients with IgM MM from our database. RESULTS One of these patients presented with a rare IgM monoclonal gammopathy of undetermined significance that progressed to smoldering myeloma. The median survival of the 21 patients was 4.9 years, which was comparable to a matched group of patients with non-IgM MM with similar myeloma prognostic factors (age, gender, albumin, creatinine, anemia, lactate dehydrogenase, β2-microglobulin, cytogenetics abnormalities), but much less than the median survival reported for patients with WM (9 years). We identified a cluster of genes that differ in their expression profile between MM and WM and found that the patients with IgM MM displayed a gene expression profile most similar to patients with non-IgM MM, confirming that IgM MM is a subtype of MM that should be differentiated from WM. CONCLUSION Because the prognosis of IgM MM and WM differ significantly, an accurate diagnosis is essential. Our gene expression model can assist with the differential diagnosis in controversial cases.
Collapse
Affiliation(s)
- Shebli Atrash
- Shebli Atrash, Qing Zhang, Xenofon Papanikolaou, Caleb Stein, Al-Ola Abdallah, and Bart Barlogie, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Qing Zhang, Levine Cancer Institute, Charlotte, NC
| | - Qing Zhang
- Shebli Atrash, Qing Zhang, Xenofon Papanikolaou, Caleb Stein, Al-Ola Abdallah, and Bart Barlogie, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Qing Zhang, Levine Cancer Institute, Charlotte, NC
| | - Xenofon Papanikolaou
- Shebli Atrash, Qing Zhang, Xenofon Papanikolaou, Caleb Stein, Al-Ola Abdallah, and Bart Barlogie, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Qing Zhang, Levine Cancer Institute, Charlotte, NC
| | - Caleb Stein
- Shebli Atrash, Qing Zhang, Xenofon Papanikolaou, Caleb Stein, Al-Ola Abdallah, and Bart Barlogie, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Qing Zhang, Levine Cancer Institute, Charlotte, NC
| | - Al-Ola Abdallah
- Shebli Atrash, Qing Zhang, Xenofon Papanikolaou, Caleb Stein, Al-Ola Abdallah, and Bart Barlogie, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Qing Zhang, Levine Cancer Institute, Charlotte, NC
| | - Bart Barlogie
- Shebli Atrash, Qing Zhang, Xenofon Papanikolaou, Caleb Stein, Al-Ola Abdallah, and Bart Barlogie, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and Qing Zhang, Levine Cancer Institute, Charlotte, NC
| |
Collapse
|
21
|
Abstract
Multiple myeloma (MM) is an incurable hematopoietic cancer that is characterized by malignant plasma cell infiltration of the bone marrow and/or extramedullary sites. Multi-modality approaches including "novel agents," traditional chemotherapy, and/or stem cell transplantation are used in MM therapy. Drug resistance, however, ultimately develops and the disease remains incurable for the vast majority of patients. In this chapter, we review both tumor cell-autonomous and non-autonomous (microenvironment-dependent) mechanisms of drug resistance. MM provides an attractive paradigm highlighting a number of current concepts and challenges in oncology. Firstly, identification of MM cancer stem cells and their unique drug resistance attributes may provide rational avenues towards MM eradication and cure. Secondly, the oligoclonal evolution of MM and alternation of "clonal tides" upon therapy challenge our current understanding of treatment responses. Thirdly, the success of MM "novel agents" provides exemplary evidence for the impact of therapies that target the immune and non-immune microenvironment. Fourthly, the rapid pace of drug approvals for MM creates an impetus for development of precision medicine strategies and biomarkers that promote efficacy and mitigate toxicity and cost. While routine cure of the disease remains the ultimate and yet unattainable prize, MM advances in the last 10-15 years have provided an astounding paradigm for the treatment of blood cancers in the modern era and have radically transformed patient outcomes.
Collapse
Affiliation(s)
- Athanasios Papadas
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- UW Carbone Cancer Center, Madison, WI, 53705, USA.
| | - Fotis Asimakopoulos
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- UW Carbone Cancer Center, Madison, WI, 53705, USA
| |
Collapse
|
22
|
Bai J, Li Y, Zhang G. Cell cycle regulation and anticancer drug discovery. Cancer Biol Med 2017; 14:348-362. [PMID: 29372101 PMCID: PMC5785171 DOI: 10.20892/j.issn.2095-3941.2017.0033] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/13/2017] [Indexed: 02/05/2023] Open
Abstract
Cellular growth, development, and differentiation are tightly controlled by a conserved biological mechanism: the cell cycle. This cycle is primarily regulated by cyclin-dependent kinase (CDK)-cyclin complexes, checkpoint kinases, and CDK inhibitors. Deregulation of the cell cycle is a hallmark of the transformation of normal cells into tumor cells. Given its importance in tumorigenesis, several cell cycle inhibitors have emerged as potential therapeutic drugs for the treatment of cancers-both as single-agent therapy and in combination with traditional cytotoxic or molecular targeting agents. In this review, we discuss the mechanisms underlying cell cycle regulation and present small-molecule anticancer drugs that are under development, including both pan-CDK inhibitors and CDK4/6-selective inhibitors. In addition, we provide an outline of some promising CDK inhibitors currently in preclinical and clinical trials that target cell cycle abnormalities in various cancers.
Collapse
Affiliation(s)
- Jingwen Bai
- Department of Oncology, Xiang’an Hospital of Xiamen University, Xiamen 361005, China
- Changjiang Scholar’s Laboratory of Shantou University Medical College (SUMC), Shantou 515041, China
| | - Yaochen Li
- Department of Oncology, Xiang’an Hospital of Xiamen University, Xiamen 361005, China
| | - Guojun Zhang
- Department of Oncology, Xiang’an Hospital of Xiamen University, Xiamen 361005, China
- Changjiang Scholar’s Laboratory of Shantou University Medical College (SUMC), Shantou 515041, China
| |
Collapse
|
23
|
Kadam Amare PS, Jain H, Nikalje S, Sengar M, Menon H, Inamdar N, Subramanian PG, Gujral S, Shet T, Epari S, Nair R. Observation on frequency & clinico-pathological significance of various cytogenetic risk groups in multiple myeloma: an experience from India. Indian J Med Res 2017; 144:536-543. [PMID: 28256461 PMCID: PMC5345299 DOI: 10.4103/0971-5916.200890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background & objectives: Multiple myeloma (MM) is a plasma cell malignancy characterized by cytogenetic heterogeneity. In comparison with conventional karyotyping, fluorescence in situ hybridization (FISH) can efficiently detect various genetic changes in non-cycling plasma cells in 50-90 per cent of MM cases. The present study was undertaken in MM patients to evaluate the frequency and clinico-pathological significance of various cytogenetic abnormalities in the Indian population. Methods: Interphase FISH was applied on purified plasma cells of 475 patients with MM using specific probes. Interphase FISH for 1q gain/1q amplification was performed on a separate group of 250 newly diagnosed MM patients. Results: Low frequency of Δ13 [-13/del(13q)] (32%) and t(11;14) (5%) was observed in our 475 patients probably due to ethnic diversity. Clustering of Δ13, del(17) (p13.1) and IgH translocations in non-hyperdiploidy confirmed prognostic significance of ploidy in MM. t(4;14) and del(17) (p13.1) were high-risk groups due to correlation with high serum β2-microglobulin, increased plasma cells and advanced disease. Hyperdiploidy and t(14;16) were associated with higher age group. In a separate group of 250 patients, 1q amplification [amp(1q)] in combination with Δ13 and/or del(17p) with t(4;14) revealed association with adverse clinico-laboratory features, which confirmed progressive role of amp(1q) with adverse prognostic impact. Amp(1q) was clustered at 1q21 and 1q25 loci. Interpretation & conclusions: Based on our findings, it appears that comprehensive analysis of various cytogenetic aberrations by interphase FISH is a powerful strategy being adapted for risk stratification of MM.
Collapse
Affiliation(s)
| | - Hemani Jain
- Department of Cancer Cytogenetics, Tata Memorial Hospital, Mumbai, India
| | - Shraddha Nikalje
- Department of Cancer Cytogenetics, Tata Memorial Hospital, Mumbai, India
| | - Manju Sengar
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Hari Menon
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Nitin Inamdar
- Department of Biochemistry, Tata Memorial Hospital, Mumbai, India
| | - P G Subramanian
- Department of Hematopathology, Tata Memorial Hospital, Mumbai, India
| | - Sumeet Gujral
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Tanuja Shet
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Hospital, Mumbai, India
| | - Reena Nair
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| |
Collapse
|
24
|
Zatula A, Dikic A, Mulder C, Sharma A, Vågbø CB, Sousa MML, Waage A, Slupphaug G. Proteome alterations associated with transformation of multiple myeloma to secondary plasma cell leukemia. Oncotarget 2017; 8:19427-19442. [PMID: 28038447 PMCID: PMC5386695 DOI: 10.18632/oncotarget.14294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/30/2016] [Indexed: 01/22/2023] Open
Abstract
Plasma cell leukemia is a rare and aggressive plasma cell neoplasm that may either originate de novo (primary PCL) or by leukemic transformation of multiple myeloma (MM) to secondary PCL (sPCL). The prognosis of sPCL is very poor, and currently no standard treatment is available due to lack of prospective clinical studies. In an attempt to elucidate factors contributing to transformation, we have performed super-SILAC quantitative proteome profiling of malignant plasma cells collected from the same patient at both the MM and sPCL stages of the disease. 795 proteins were found to be differentially expressed in the MM and sPCL samples. Gene ontology analysis indicated a metabolic shift towards aerobic glycolysis in sPCL as well as marked down-regulation of enzymes involved in glycan synthesis, potentially mediating altered glycosylation of surface receptors. There was no significant change in overall genomic 5-methylcytosine or 5-hydroxymethylcytosine at the two stages, indicating that epigenetic dysregulation was not a major driver of transformation to sPCL. The present study constitutes the first attempt to provide a comprehensive map of the altered protein expression profile accompanying transformation of MM to sPCL in a single patient, identifying several candidate proteins that can be targeted by currently available small molecule drugs. Our dataset furthermore constitutes a reference dataset for further proteomic analysis of sPCL transformation.
Collapse
Affiliation(s)
- Alexey Zatula
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Aida Dikic
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Celine Mulder
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Present address: University of Utrecht, Utrecht, Holland
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, Trondheim, and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Cathrine B Vågbø
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, Trondheim, and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Mirta M L Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Anders Waage
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Hematology, Department of Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, Trondheim, and the Central Norway Regional Health Authority, Stjørdal, Norway
| |
Collapse
|
25
|
Robiou du Pont S, Cleynen A, Fontan C, Attal M, Munshi N, Corre J, Avet-Loiseau H. Genomics of Multiple Myeloma. J Clin Oncol 2017; 35:963-967. [DOI: 10.1200/jco.2016.70.6705] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is characterized by wide variability in the chromosomal/genetic changes present in tumor plasma cells. Genetically, MM can be divided into two groups according to ploidy and hyperdiploidy versus nonhyperdiploidy. Several studies in gene expression profiling attempted to identify subentities in MM without convincing results. These studies mostly confirmed the cytogenetic data and subclassified patients according to 14q32 translocations and ploidy. More-recent data that are based on whole-exome sequencing have confirmed this heterogeneity and show many gene mutations but without a unifying mutation. These newer studies have shown the frequent alteration of the mitogen-activated protein kinase pathway. The most interesting data have demonstrated subclonality in all patients with MM, including subclonal mutations of supposed driver genes KRAS, NRAS, and BRAF.
Collapse
Affiliation(s)
- Sebastien Robiou du Pont
- Sebastien Robiou du Pont, Charlotte Fontan, Michel Attal, Jill Corre, and Hervé Avet-Loiseau, L’Institut Universitaire du Cancer Oncopole, Toulouse; Alice Cleynen, Centre National de la Recherche Scientifique, and Montpellier University, Montpellier, France; and Nikhil Munshi, Dana-Farber Cancer Institute, Boston, MA
| | - Alice Cleynen
- Sebastien Robiou du Pont, Charlotte Fontan, Michel Attal, Jill Corre, and Hervé Avet-Loiseau, L’Institut Universitaire du Cancer Oncopole, Toulouse; Alice Cleynen, Centre National de la Recherche Scientifique, and Montpellier University, Montpellier, France; and Nikhil Munshi, Dana-Farber Cancer Institute, Boston, MA
| | - Charlotte Fontan
- Sebastien Robiou du Pont, Charlotte Fontan, Michel Attal, Jill Corre, and Hervé Avet-Loiseau, L’Institut Universitaire du Cancer Oncopole, Toulouse; Alice Cleynen, Centre National de la Recherche Scientifique, and Montpellier University, Montpellier, France; and Nikhil Munshi, Dana-Farber Cancer Institute, Boston, MA
| | - Michel Attal
- Sebastien Robiou du Pont, Charlotte Fontan, Michel Attal, Jill Corre, and Hervé Avet-Loiseau, L’Institut Universitaire du Cancer Oncopole, Toulouse; Alice Cleynen, Centre National de la Recherche Scientifique, and Montpellier University, Montpellier, France; and Nikhil Munshi, Dana-Farber Cancer Institute, Boston, MA
| | - Nikhil Munshi
- Sebastien Robiou du Pont, Charlotte Fontan, Michel Attal, Jill Corre, and Hervé Avet-Loiseau, L’Institut Universitaire du Cancer Oncopole, Toulouse; Alice Cleynen, Centre National de la Recherche Scientifique, and Montpellier University, Montpellier, France; and Nikhil Munshi, Dana-Farber Cancer Institute, Boston, MA
| | - Jill Corre
- Sebastien Robiou du Pont, Charlotte Fontan, Michel Attal, Jill Corre, and Hervé Avet-Loiseau, L’Institut Universitaire du Cancer Oncopole, Toulouse; Alice Cleynen, Centre National de la Recherche Scientifique, and Montpellier University, Montpellier, France; and Nikhil Munshi, Dana-Farber Cancer Institute, Boston, MA
| | - Hervé Avet-Loiseau
- Sebastien Robiou du Pont, Charlotte Fontan, Michel Attal, Jill Corre, and Hervé Avet-Loiseau, L’Institut Universitaire du Cancer Oncopole, Toulouse; Alice Cleynen, Centre National de la Recherche Scientifique, and Montpellier University, Montpellier, France; and Nikhil Munshi, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
26
|
DeMicco A, Reich T, Arya R, Rivera-Reyes A, Fisher MR, Bassing CH. Lymphocyte lineage-specific and developmental stage specific mechanisms suppress cyclin D3 expression in response to DNA double strand breaks. Cell Cycle 2016; 15:2882-2894. [PMID: 27327568 PMCID: PMC5105912 DOI: 10.1080/15384101.2016.1198861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022] Open
Abstract
Mammalian cells are thought to protect themselves and their host organisms from DNA double strand breaks (DSBs) through universal mechanisms that restrain cellular proliferation until DNA is repaired. The Cyclin D3 protein drives G1-to-S cell cycle progression and is required for proliferation of immature T and B cells and of mature B cells during a T cell-dependent immune response. We demonstrate that mouse thymocytes and pre-B cells, but not mature B cells, repress Cyclin D3 protein levels in response to DSBs. This response requires the ATM protein kinase that is activated by DSBs. Cyclin D3 protein loss in thymocytes coincides with decreased association of Cyclin D3 mRNA with the HuR RNA binding protein that ATM regulates. HuR inactivation reduces basal Cyclin D3 protein levels without affecting Cyclin D3 mRNA levels, indicating that thymocytes repress Cyclin D3 expression via ATM-dependent inhibition of Cyclin D3 mRNA translation. In contrast, ATM-dependent transcriptional repression of the Cyclin D3 gene represses Cyclin D3 protein levels in pre-B cells. Retrovirus-driven Cyclin D3 expression is resistant to transcriptional repression by DSBs; this prevents pre-B cells from suppressing Cyclin D3 protein levels and from inhibiting DNA synthesis to the normal extent following DSBs. Our data indicate that immature B and T cells use lymphocyte lineage- and developmental stage-specific mechanisms to inhibit Cyclin D3 protein levels and thereby help prevent cellular proliferation in response to DSBs. We discuss the relevance of these cellular context-dependent DSB response mechanisms in restraining proliferation, maintaining genomic integrity, and suppressing malignant transformation of lymphocytes.
Collapse
Affiliation(s)
- Amy DeMicco
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tyler Reich
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rahul Arya
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Adrian Rivera-Reyes
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Megan R. Fisher
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Craig H. Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
27
|
Franqui-Machin R, Wendlandt EB, Janz S, Zhan F, Tricot G. Cancer stem cells are the cause of drug resistance in multiple myeloma: fact or fiction? Oncotarget 2016; 6:40496-506. [PMID: 26415231 PMCID: PMC4747348 DOI: 10.18632/oncotarget.5800] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/12/2015] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) remains a largely incurable, genetically heterogeneous plasma-cell malignancy that contains – just like many other cancers – a small fraction of clonogenic stem cell-like cells that exhibit pronounced self-renewal and differentiation capacities, but also pronounced drug resistance. These MM stem cells (MMSCs) are a controversial but highly significant issue in myeloma research because, in our opinion, they are at the root of the failure of anti-neoplastic chemotherapies to transform myeloma to a manageable chronic disease. Several markers including CD138−, ALDH1+ and SP have been used to identify MMSCs; however, no single marker is reliable for the isolation of MMSC. Nonetheless, it is now known that MMSCs depend on self-renewal and pro-survival pathways, such as AKT, Wnt/β-catenin, Notch and Hedgehog, which can be targeted with novel drugs that have shown promise in pre-clinical and clinical trials. Here, we review the pathways of myeloma “stemness”, the interactions with the bone marrow microenvironment that promote drug resistance, and the obstacles that must be overcome to eradicate MMSCs and make myeloma a curable disease.
Collapse
Affiliation(s)
- Reinaldo Franqui-Machin
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Erik B Wendlandt
- Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Siegfried Janz
- Department of Pathology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Fenghuang Zhan
- Interdisciplinary Graduate Program in Molecular and Cellular Biology, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Guido Tricot
- Department of Internal Medicine, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
28
|
Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol 2016; 14:100-113. [DOI: 10.1038/nrclinonc.2016.122] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
DE BRAEKELEER MARC, TOUS CORINE, GUÉGANIC NADIA, LE BRIS MARIEJOSÉE, BASINKO AUDREY, MOREL FRÉDÉRIC, DOUET-GUILBERT NATHALIE. Immunoglobulin gene translocations in chronic lymphocytic leukemia: A report of 35 patients and review of the literature. Mol Clin Oncol 2016; 4:682-694. [PMID: 27123263 PMCID: PMC4840758 DOI: 10.3892/mco.2016.793] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) represents the most common hematological malignancy in Western countries, with a highly heterogeneous clinical course and prognosis. Translocations involving the immunoglobulin (IG) genes are regularly identified. From 2000 to 2014, we identified an IG gene translocation in 18 of the 396 patients investigated at diagnosis (4.6%) and in 17 of the 275 analyzed during follow-up (6.2%). A total of 4 patients in whom the IG translocation was identified at follow-up did not carry the translocation at diagnosis. The IG heavy locus (IGH) was involved in 27 translocations (77.1%), the IG κ locus (IGK) in 1 (2.9%) and the IG λ locus (IGL) in 7 (20.0%). The chromosome band partners of the IG translocations were 18q21 in 16 cases (45.7%), 11q13 and 19q13 in 4 cases each (11.4% each), 8q24 in 3 cases (8.6%), 7q21 in 2 cases (5.7%), whereas 6 other bands were involved once (2.9% each). At present, 35 partner chromosomal bands have been described, but the partner gene has solely been identified in 10 translocations. CLL associated with IG gene translocations is characterized by atypical cell morphology, including plasmacytoid characteristics, and the propensity of being enriched in prolymphocytes. The IG heavy chain variable region (IGHV) mutational status varies between translocations, those with unmutated IGHV presumably involving cells at an earlier stage of B-cell lineage. All the partner genes thus far identified are involved in the control of cell proliferation and/or apoptosis. The translocated partner gene becomes transcriptionally deregulated as a consequence of its transposition into the IG locus. With the exception of t(14;18)(q32;q21) and its variants, prognosis appears to be poor for the other translocations. Therefore, searching for translocations involving not only IGH, but also IGL and IGK, by banding and molecular cytogenetics is required. Furthermore, it is important to identify the partner gene to ensure the patients receive the optimal treatment.
Collapse
Affiliation(s)
- MARC DE BRAEKELEER
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - CORINE TOUS
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - NADIA GUÉGANIC
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
| | - MARIE-JOSÉE LE BRIS
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - AUDREY BASINKO
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - FRÉDÉRIC MOREL
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| | - NATHALIE DOUET-GUILBERT
- Faculty of Medicine and Health Sciences, University of Brest, Brest, France
- National Institute of Health and Medical Research (INSERM U1078), Brest, France
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Regional University Hospital Center of Brest (CHRU), Brest, France
| |
Collapse
|
30
|
Abstract
Multiple myeloma (MM) is a genetically complex disease. The past few years have seen an evolution in cancer research with the emergence of next-generation sequencing (NGS), enabling high throughput sequencing of tumors-including whole exome, whole genome, RNA, and single-cell sequencing as well as genome-wide association study (GWAS). A few inherited variants have been described, counting for some cases of familial disease. Hierarchically, primary events in MM can be divided into hyperdiploid (HDR) and nonhyperdiploid subtypes. HRD tumors are characterized by trisomy of chromosomes 3, 5, 7, 9, 11, 15, 19, and/or 21. Non-HRD tumors harbor IGH translocations, mainly t(4;14), t(6;14), t(11;14), t(14;16), and t(14;20). Secondary events participate to the tumor progression and consist in secondary translocation involving MYC, copy number variations (CNV) and somatic mutations (such as mutations in KRAS, NRAS, BRAF, P53). Moreover, the dissection of clonal heterogeneity helps to understand the evolution of the disease. The following review provides a comprehensive review of the genomic landscape in MM.
Collapse
Affiliation(s)
- Salomon Manier
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
- Department of Hematology, Lille Hospital University, Lille, France
| | - Karma Salem
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Siobhan V Glavey
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Aldo M Roccaro
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
- Department of Hematology, CREA Laboratory, ASST-Spedali Civili di Brescia, Brescia, BS, Italy
| | - Irene M Ghobrial
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|
31
|
Boyle EM, Davies FE, Leleu X, Morgan GJ. Understanding the multiple biological aspects leading to myeloma. Haematologica 2015; 99:605-12. [PMID: 24688108 DOI: 10.3324/haematol.2013.097907] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Pessach I, Papoudou-Bai A, Goussia A, Kamina S, Kyrtsonis MC, Bourantas KL, Kanavaros P. Immunohistochemical expression of cell cycle proteins in multiple myeloma. Leuk Lymphoma 2015; 56:2720-3. [PMID: 25573203 DOI: 10.3109/10428194.2015.1004171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ilias Pessach
- a Hematology Clinic, University Hospital of Ioannina , Ioannina , Greece
| | | | - Anna Goussia
- b Department of Pathology , University of Ioannina , Ioannina , Greece
| | - Sevasti Kamina
- b Department of Pathology , University of Ioannina , Ioannina , Greece
| | - Marie-Christine Kyrtsonis
- c Hematology Section, First Department of Propedeutic Internal Medicine , Laikon University Hospital , Athens , Greece
| | | | - Panagiotis Kanavaros
- d Department of Anatomy-Histology-Embryology , School of Medicine, University of Ioannina , Ioannina , Greece
| |
Collapse
|
33
|
Altenburg JD, Farag SS. The potential role of PD0332991 (Palbociclib) in the treatment of multiple myeloma. Expert Opin Investig Drugs 2014; 24:261-71. [DOI: 10.1517/13543784.2015.993753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jeffrey D Altenburg
- 1Indiana University School of Medicine, Department of Microbiology and Immunology, Indianapolis, IN, USA
| | - Sherif S Farag
- 2Indiana University School of Medicine, Division of Hematology and Oncology, Department of Medicine, Walther Hall R3-C414, 980 West Walnut Street, Indianapolis, IN 46202, USA,
- 3Indiana University School of Medicine, Indiana University Simon Cancer Center, Indianapolis, IN, USA
| |
Collapse
|
34
|
Jorda R, Navrátilová J, Hušková Z, Schütznerová E, Cankař P, Strnad M, Kryštof V. Arylazopyrazole AAP1742 Inhibits CDKs and Induces Apoptosis in Multiple Myeloma Cells via Mcl-1 Downregulation. Chem Biol Drug Des 2014; 84:402-8. [DOI: 10.1111/cbdd.12330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/04/2014] [Accepted: 03/20/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Radek Jorda
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Žlutý kopec 7 656 53 Brno Czech Republic
| | - Jana Navrátilová
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
| | - Zlata Hušková
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
| | - Eva Schütznerová
- Department of Organic Chemistry; Faculty of Science; Palacký University; 17. listopadu 1192/12 77146 Olomouc Czech Republic
| | - Petr Cankař
- Department of Organic Chemistry; Faculty of Science; Palacký University; 17. listopadu 1192/12 77146 Olomouc Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators; Centre of the Region Haná for Biotechnological and Agricultural Research; Institute of Experimental Botany ASCR and Palacký University; Šlechtitelů 11 783 71 Olomouc Czech Republic
| |
Collapse
|
35
|
The genetic architecture of multiple myeloma. Adv Hematol 2014; 2014:864058. [PMID: 24803933 PMCID: PMC3996928 DOI: 10.1155/2014/864058] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Multiple myeloma is a malignant proliferation of monoclonal plasma cells leading to clinical features that include hypercalcaemia, renal dysfunction, anaemia, and bone disease (frequently referred to by the acronym CRAB) which represent evidence of end organ failure. Recent evidence has revealed myeloma to be a highly heterogeneous disease composed of multiple molecularly-defined subtypes each with varying clinicopathological features and disease outcomes. The major division within myeloma is between hyperdiploid and nonhyperdiploid subtypes. In this division, hyperdiploid myeloma is characterised by trisomies of certain odd numbered chromosomes, namely, 3, 5, 7, 9, 11, 15, 19, and 21 whereas nonhyperdiploid myeloma is characterised by translocations of the immunoglobulin heavy chain alleles at chromosome 14q32 with various partner chromosomes, the most important of which being 4, 6, 11, 16, and 20. Hyperdiploid and nonhyperdiploid changes appear to represent early or even initiating mutagenic events that are subsequently followed by secondary aberrations including copy number abnormalities, additional translocations, mutations, and epigenetic modifications which lead to plasma cell immortalisation and disease progression. The following review provides a comprehensive coverage of the genetic and epigenetic events contributing to the initiation and progression of multiple myeloma and where possible these abnormalities have been linked to disease prognosis.
Collapse
|
36
|
Fawole A, Abonour R, Stender M, Shatavi S, Gaikazian S, Anderson J, Jaiyesimi I. Is it time for preemptive drug treatment of asymptomatic (smoldering) multiple myeloma? Leuk Lymphoma 2014; 56:34-41. [PMID: 24564573 DOI: 10.3109/10428194.2014.897702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Asymptomatic (smoldering) multiple myeloma is a heterogeneous plasma cell proliferative disorder with a variable rate of progression to active multiple myeloma or related disorders. Hypercalcemia, renal insufficiency, anemia, bone lesions or recurrent bacterial infections characterize active multiple myeloma. Some patients with asymptomatic myeloma develop active disease rapidly, and others can stay asymptomatic for many years. Those who are likely to progress within the first 2 years of diagnosis have been categorized as having high-risk disease. The availability of novel agents in the treatment of active multiple myeloma and our better understanding of the heterogeneity of asymptomatic multiple myeloma have spurred interest in the early treatment of these patients. We have reviewed the current proposed definitions of high-risk asymptomatic multiple myeloma, the concerns about future therapy in view of the transient nature, remissions and toxicities of the therapies, and the eventual relapses that characterize this incurable disease.
Collapse
Affiliation(s)
- Adewale Fawole
- Hematology and Oncology, Beaumont Health System , Royal Oak, MI , USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Landgren O, Morgan GJ. Biologic frontiers in multiple myeloma: from biomarker identification to clinical practice. Clin Cancer Res 2013; 20:804-13. [PMID: 24270684 DOI: 10.1158/1078-0432.ccr-13-2159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Since the mid-1990s, the multiple myeloma treatment landscape has evolved considerably, which has led to improved patient outcomes and prolonged survival. In addition to discovering new, targeted agents or treatment regimens, the identification and validation of biomarkers has the potential to further improve patient outcomes. The International Staging System relies on a number of biochemical parameters to stratify patients into risk categories. Other biologically relevant markers that are indicative of inherited genetic variation (e.g., single-nucleotide polymorphisms) or tumor-acquired genetic events (e.g., chromosomal translocations or mutations) have been studied for their prognostic potential. In patients with high-risk cytogenetics, plasma cells (PC) undergo genetic shifts over time, which may partially explain why high-risk patients relapse and are so difficult to treat. Although novel agents have improved treatment outcomes, identification of markers that will enable clinicians to determine which treatment is most appropriate for high-risk patients following initial diagnosis represents an exciting frontier in the clinical management of multiple myeloma. Biomarkers based on quantitating PCs or factors that are secreted from them (e.g., serum free light chain) may also help to risk-stratify patients with asymptomatic multiple myeloma. Eventually, identification of novel biomarkers may lead to the creation of personalized treatment regimens that are optimized to target clonal PCs that express a specific oncogenomic profile. Although the future is exciting, validation will be necessary before these biologic and molecular beacons can inform decision-making processes in a routine clinical setting.
Collapse
Affiliation(s)
- Ola Landgren
- Authors' Affiliations: National Cancer Institute, NIH, Center for Cancer Research, Medical Oncology Branch, Bethesda, Maryland; and The Institute of Cancer Research, Royal Cancer Hospital, London, United Kingdom
| | | |
Collapse
|
38
|
Kryukov F, Dementyeva E, Kubiczkova L, Jarkovsky J, Brozova L, Petrik J, Nemec P, Sevcikova S, Minarik J, Stefanikova Z, Kuglik P, Hajek R. Cell cycle genes co-expression in multiple myeloma and plasma cell leukemia. Genomics 2013; 102:243-9. [PMID: 23831116 DOI: 10.1016/j.ygeno.2013.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/06/2013] [Accepted: 06/25/2013] [Indexed: 02/01/2023]
Abstract
The objective of this study was to describe co-expression correlations of cell cycle regulatory genes in multiple myeloma (MM) and plasma cell leukemia (PCL). Our results highlight the presence of dynamic equilibrium between co-expression of activator and inhibitor gene sets. Moreover inhibitor set is more sensitive to the activator changes, not vice versa. We have shown that CDKN2A expression is associated with short-term survival in newly diagnosed MM patients (survival was 30.3 ± 3.9 months for 'low' expressed and 7.5 ± 5.6 months for 'high' expressed group, p<0.0001). Moreover low-expression CDKN2A group showed time-to-progression benefit in newly diagnosed patients (remission was 20.8 ± 3.6 months for 'low' and 8.4 ± 2.7 months for 'high' expressed group, p<0.0001) as well as in whole studied cohort of MM patients (remission was 20.8 ± 2.8 months for 'low' and 9.8 ± 1.1 months for 'high' expressed group, p<0.0001). The overexpression of inhibitors can be explained as a compensatory reaction to growing "oncogenic stress".
Collapse
Affiliation(s)
- Fedor Kryukov
- Babak Myeloma Group, Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lu G, Muddasani R, Orlowski RZ, Abruzzo LV, Qazilbash MH, You MJ, Wang Y, Zhao M, Chen S, Glitza IC, Medeiros LJ. Plasma cell enrichment enhances detection of high-risk cytogenomic abnormalities by fluorescence in situ hybridization and improves risk stratification of patients with plasma cell neoplasms. Arch Pathol Lab Med 2013; 137:625-31. [PMID: 23627452 DOI: 10.5858/arpa.2012-0209-oa] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Methods for plasma cell enrichment of bone marrow (BM) specimens can increase the sensitivity of fluorescence in situ hybridization (FISH) for detecting cytogenomic abnormalities. There are no published reports using these methods to evaluate high-risk cytogenomic abnormalities in patients with plasma cell neoplasms (PCNs) after therapy. OBJECTIVE To evaluate the utility of plasma cell enrichment combined with FISH for detection of high-risk cytogenomic abnormalities in patients with PCNs after therapy. DESIGN Twenty-eight patients with PCNs, of whom 22 received treatment, were included in this study. Plasma cells were enriched in BM aspirates by using a magnetic cell-sorting procedure to select CD138(+) cells. Probes were chosen to assess for del(17p13/TP53), del(13q14/RB1), 1q21/CKS1B gain, IgH/FGFR3, and IgH/MAF. Clinicopathologic data were collected during clinical follow-up after plasma cell enrichment. RESULTS Plasma cells in nonenriched BM specimens ranged from 1% to 28% (median, 8%) compared with 28% to 96% (median, 73%) in enriched BM specimens (P < .001). In a subset of treated patients in clinical remission, FISH detected high-risk cytogenomic abnormalities only in plasma cell-enriched samples. This approach also detected abnormalities in cases of solitary plasmacytoma and monoclonal gammopathy of undetermined significance. CONCLUSIONS Plasma cell enrichment of BM specimens increases FISH sensitivity for detecting high-risk cytogenomic abnormalities, particularly in treated patients, and these results, in combination with clinical follow-up data, can be of value to improve risk stratification and patient management.
Collapse
Affiliation(s)
- Gary Lu
- Departments of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Genomic profiling of mantle cell lymphoma (MCL) cells has enabled a better understanding of the complex mechanisms underlying the pathogenesis of disease. Besides the t(11;14)(q13;q32) leading to cyclin D1 overexpression, MCL exhibits a characteristic pattern of DNA copy number aberrations that differs from those detected in other B-cell lymphomas. These genomic changes disrupt selected oncogenes and suppressor genes that are required for lymphoma development and progression, many of which are components of cell cycle, DNA damage response and repair, apoptosis, and cell-signaling pathways. Additionally, some of them may represent effective therapeutic targets. A number of genomic and molecular abnormalities have been correlated with the clinical outcome of patients with MCL and are considered prognostic factors. However, only a few genomic markers have been shown to predict the response to current or novel targeted therapies. One representative example is the high-level amplification of the BCL2 gene, which predicts a good response to pro-apoptotic BH3 mimetic drugs. In summary, genomic analyses have contributed to the substantial advances made in the comprehension of the pathogenesis of MCL, providing a solid basis for the identification of optimal therapeutic targets and for the design of new molecular therapies aiming to cure this fatal disease.
Collapse
Affiliation(s)
- Melissa Rieger Menanteau
- Division of Oncology, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
41
|
The t(4;14) translocation and FGFR3 overexpression in multiple myeloma: prognostic implications and current clinical strategies. Blood Cancer J 2012; 2:e89. [PMID: 22961061 PMCID: PMC3461707 DOI: 10.1038/bcj.2012.37] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a heterogeneous plasma cell disorder characterized by genetic abnormalities, including chromosomal translocations, deletions, duplications and genetic mutations. Translocations involving the immunoglobulin heavy chain region at chromosome 14q32 are observed in approximately 40% of patients with MM. Translocation of oncogenes into this region may lead to their increased expression, contributing to disease initiation, disease progression and therapeutic resistance. The t(4;14) translocation is associated with upregulation of the fibroblast growth factor receptor 3 (FGFR3) and the myeloma SET domain protein. Patients with t(4;14) demonstrate an overall poor prognosis that is only partially mitigated by the use of the novel agents bortezomib and lenalidomide; as such, an unmet medical need remains for patients with this aberration. Preclinical studies of inhibitors of FGFR3 have shown promise in t(4;14) MM, and these studies have led to the initiation of clinical trials. Data from these trials will help to determine the clinical utility of FGFR3 inhibitors for patients with t(4;14) MM and may pave the way for personalized medicine in patients with this incurable disease.
Collapse
|
42
|
Weng HY, Huang HL, Zhao PP, Zhou H, Qu LH. Translational repression of cyclin D3 by a stable G-quadruplex in its 5' UTR: implications for cell cycle regulation. RNA Biol 2012; 9:1099-109. [PMID: 22858673 DOI: 10.4161/rna.21210] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
cyclin D3 (CCND3) is one of the three D-type cyclins that regulate the G1/S phase transition of the cell cycle. Expression of CCND3 is observed in nearly all proliferating cells; however, the presence of high levels of CCND3 has been linked to a poor prognosis for several types of cancer. Therefore, further mechanistic studies on the regulation of CCND3 expression are urgently needed to provide therapeutic implications. In this study, we report that a conserved RNA G-quadruplex-forming sequence (hereafter CRQ), located in the 5' UTR of mammalian CCND3 mRNA, is able to fold into an extremely stable, intramolecular, parallel G-quadruplex in vitro. The CRQ G-quadruplex dramatically reduces the activity of a reporter gene in human cell lines, but it has little impact on its mRNA level, indicating a translational repression. Moreover, the CRQ sequence in its natural context inhibits translation of CCND3. Disruption of the G-quadruplex structure by G/U-mutation or deletion results in an elevated expression of CCND3 and an increased phosphorylation of Rb, a downstream target of CCND3, which promotes progression of cells through the G1 phase. Our results add to the growing understanding of the regulation of CCND3 expression and provide a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Heng-You Weng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | |
Collapse
|
43
|
Prolonged early G(1) arrest by selective CDK4/CDK6 inhibition sensitizes myeloma cells to cytotoxic killing through cell cycle-coupled loss of IRF4. Blood 2012; 120:1095-106. [PMID: 22718837 DOI: 10.1182/blood-2012-03-415984] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dysregulation of cyclin-dependent kinase 4 (CDK4) and CDK6 by gain of function or loss of inhibition is common in human cancer, including multiple myeloma, but success in targeting CDK with broad-spectrum inhibitors has been modest. By selective and reversible inhibition of CDK4/CDK6, we have developed a strategy to both inhibit proliferation and enhance cytotoxic killing of cancer cells. We show that induction of prolonged early-G(1) arrest (pG1) by CDK4/CDK6 inhibition halts gene expression in early-G(1) and prevents expression of genes programmed for other cell-cycle phases. Removal of the early-G(1) block leads to S-phase synchronization (pG1-S) but fails to completely restore scheduled gene expression. Consequently, the IRF4 protein required to protect myeloma cells from apoptosis is markedly reduced in pG1 and further in pG1-S in response to cytotoxic agents, such as the proteasome inhibitor bortezomib. The coordinated loss of IRF4 and gain of Bim sensitize myeloma tumor cells to bortezomib-induced apoptosis in pG1 in the absence of Noxa and more profoundly in pG1-S in cooperation with Noxa in vitro. Induction of pG1 and pG1-S by reversible CDK4/CDK6 inhibition further augments tumor-specific bortezomib killing in myeloma xenografts. Reversible inhibition of CDK4/CDK6 in sequential combination therapy thus represents a novel mechanism-based cancer therapy.
Collapse
|
44
|
Wong KY, Huang X, Chim CS. DNA methylation of microRNA genes in multiple myeloma. Carcinogenesis 2012; 33:1629-38. [DOI: 10.1093/carcin/bgs212] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
45
|
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells characterized by complex genetic aberrations and heterogeneous outcomes. Over the past 25 years, cytogenetic analysis has played a key role in the diagnosis and management of MM. This article reviews the conventional cytogenetics, molecular cytogenetics, and genomic diagnostics of MM and highlights a few recent clinical trials that demonstrate the impact of genetic risk stratification on the treatment of this plasma cell malignancy.
Collapse
Affiliation(s)
- Marilyn L Slovak
- Quest Diagnostics Nichols Institute, 14225 Newbrook Drive, Chantilly, VA 20151, USA.
| |
Collapse
|
46
|
Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood 2012; 120:1060-6. [PMID: 22529291 DOI: 10.1182/blood-2012-01-405977] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The longitudinal evolution of a myeloma genome from diagnosis to plasma cell leukemia has not previously been reported. We used whole-genome sequencing (WGS) on 4 purified tumor samples and patient germline DNA drawn over a 5-year period in a t(4;14) multiple myeloma patient. Tumor samples were acquired at diagnosis, first relapse, second relapse, and end-stage secondary plasma cell leukemia (sPCL). In addition to the t(4;14), all tumor time points also shared 10 common single-nucleotide variants (SNVs) on WGS comprising shared initiating events. Interestingly, we observed genomic sequence variants that waxed and waned with time in progressive tumors, suggesting the presence of multiple independent, yet related, clones at diagnosis that rose and fell in dominance. Five newly acquired SNVs, including truncating mutations of RB1 and ZKSCAN3, were observed only in the final sPCL sample suggesting leukemic transformation events. This longitudinal WGS characterization of the natural history of a high-risk myeloma patient demonstrated tumor heterogeneity at diagnosis with shifting dominance of tumor clones over time and has also identified potential mutations contributing to myelomagenesis as well as transformation from myeloma to overt extramedullary disease such as sPCL.
Collapse
|
47
|
Abstract
Based on the clinical features of myeloma and related malignancies of plasma cells, it has been possible to generate a model system of myeloma progression from a normal plasma cell through smouldering myeloma to myeloma and then plasma cell leukaemia. Using this model system we can study at which points the genetic alterations identified through whole-tumour molecular analyses function in the initiation and progression of myeloma. Further genetic complexity, such as intraclonal heterogeneity, and insights into the molecular evolution and intraclonal dynamics in this model system are crucial to our understandings of tumour progression, treatment resistance and the use of currently available and future treatments.
Collapse
Affiliation(s)
- Gareth J Morgan
- Haemato-oncology Research Unit, Division of Molecular Pathology, The Institute of Cancer Research and Royal Marsden Hospital, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK.
| | | | | |
Collapse
|
48
|
Johnson SK, Heuck CJ, Albino AP, Qu P, Zhang Q, Barlogie B, Shaughnessy JD. The use of molecular-based risk stratification and pharmacogenomics for outcome prediction and personalized therapeutic management of multiple myeloma. Int J Hematol 2011; 94:321-333. [PMID: 22002477 DOI: 10.1007/s12185-011-0948-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/24/2011] [Indexed: 12/21/2022]
Abstract
Despite improvement in therapeutic efficacy, multiple myeloma (MM) remains incurable with a median survival of approximately 10 years. Gene-expression profiling (GEP) can be used to elucidate the molecular basis for resistance to chemotherapy through global assessment of molecular alterations that exist at diagnosis, after therapeutic treatment and that evolve during tumor progression. Unique GEP signatures associated with recurrent chromosomal translocations and ploidy changes have defined molecular classes with differing clinical features and outcomes. When compared to other stratification systems the GEP70 test remained a significant predictor of outcome, reduced the number of patients classified with a poor prognosis, and identified patients at increased risk of relapse despite their standard clinico-pathologic and genetic findings. GEP studies of serial samples showed that risk increases over time, with relapsed disease showing GEP shifts toward a signature of poor outcomes. GEP signatures of myeloma cells after therapy were prognostic for event-free and overall survival and thus may be used to identify novel strategies for overcoming drug resistance. This brief review will focus on the use of GEP of MM to define high-risk myeloma, and elucidate underlying mechanisms that are beginning to change clinical decision-making and inform drug design.
Collapse
Affiliation(s)
- Sarah K Johnson
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christoph J Heuck
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA
| | | | - Pingping Qu
- Cancer Research and Biostatistics, Seattle, WA, USA
| | - Qing Zhang
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA
| | - Bart Barlogie
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA
| | - John D Shaughnessy
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 West Markham, Slot 776, Little Rock, AR, 72205, USA. .,Donna D and Donald M Lambert Laboratory for Myeloma Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA. .,Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
49
|
Novel therapies in MM: from the aspect of preclinical studies. Int J Hematol 2011; 94:344-354. [PMID: 21881879 DOI: 10.1007/s12185-011-0917-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 01/07/2023]
Abstract
During the last decade, thalidomide, lenalidomide, and bortezomib have been approved by the US Food and Drug Administration for the treatment of MM; however, MM remains incurable. The development and progression of multiple myeloma (MM) is a complex multi-step process involving genetic abnormalities in tumor cells at both early and late stages. Moreover, soluble factors and cell-cell contact within the tumor bone marrow (BM) microenvironment promotes MM cell growth, survival, and drug resistance. A number of novel agents targeting both tumor cells and growth factors in the BM milieu have been developed. Currently they are under evaluation in preclinical studies, as single agents and/or in combination, to improve outcome of MM patients.
Collapse
|
50
|
Anderson KC, Carrasco RD. Pathogenesis of myeloma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 6:249-74. [PMID: 21261519 DOI: 10.1146/annurev-pathol-011110-130249] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiple myeloma (MM) is a neoplasm of post-germinal center, terminally differentiated B cells. It is characterized by a multifocal proliferation of clonal, long-lived plasma cells within the bone marrow (BM) and associated skeletal destruction, serum monoclonal gammopathy, immune suppression, and end-organ sequelae. MM is preceded by an age-progressive premalignant condition termed monoclonal gammopathy of undetermined significance. Unlike the genomes of most hematological malignancies, and similar to those of solid-tissue neoplasms, MM genomes are typified by numerous structural and numerical chromosomal aberrations as well as mutations in a number of oncogenes and tumor-suppressor genes, some of which have been linked to disease pathogenesis and clinical behavior. Recent studies have also defined the importance of interactions between the MM cells and their BM microenvironment, dysregulation in signaling pathways and in a specialized subpopulation of cells within the tumor (termed myeloma cancer stem cells) for tumor cell growth and survival, and the development of resistance to therapy.
Collapse
Affiliation(s)
- Kenneth C Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|