1
|
Vetter M, Saas P. [Strong as death or how efferocytotic macrophages promote the resolution of inflammation]. Med Sci (Paris) 2024; 40:428-436. [PMID: 38819278 DOI: 10.1051/medsci/2024050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
The resolution of inflammation is an active process leading to the restoration of tissue homeostasis. A critical step in the initiation of this process is the elimination of apoptotic immune cells by macrophages. This well-organized process, called efferocytosis, involves four different steps, namely the attraction of macrophages to the site where the cells die, the recognition of apoptotic cells, their internalization and their digestion leading to the activation of different metabolic pathways. All these steps are responsible for the reprogramming of macrophages towards a pro-resolving profile. Efferocytic macrophages produce several factors involved in the resolution of inflammation. These factors include lipids (i.e., specialized pro-resolving mediators such as lipoxins), and proteins (e.g., IL-10 or TGF-β). Here, we describe the different steps of efferocytosis and the mechanisms responsible for both macrophage reprogramming and the release of pro-resolving factors. These factors may represent a new therapeutic approach, called resolution therapy.
Collapse
Affiliation(s)
- Mathieu Vetter
- Université de Franche-Comté, Établissement Français du Sang (EFS), Inserm, UMR 1098 RIGHT Besançon, France - LabEx LipSTIC, Besançon, France
| | - Philippe Saas
- LabEx LipSTIC, Besançon, France - Établissement Français du Sang, Recherche et développement, Grenoble, France - Université Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
2
|
Ma Y, Kemp SS, Yang X, Wu MH, Yuan SY. Cellular mechanisms underlying the impairment of macrophage efferocytosis. Immunol Lett 2023; 254:41-53. [PMID: 36740099 PMCID: PMC9992097 DOI: 10.1016/j.imlet.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
The phagocytosis and clearance of dying cells by macrophages, a process termed efferocytosis, is essential for both maintaining homeostasis and promoting tissue repair after infection or sterile injury. If not removed in a timely manner, uncleared cells can undergo secondary necrosis, and necrotic cells lose membrane integrity, release toxic intracellular components, and potentially induce inflammation or autoimmune diseases. Efferocytosis also initiates the repair process by producing a wide range of pro-reparative factors. Accumulating evidence has revealed that macrophage efferocytosis defects are involved in the development and progression of a variety of inflammatory and autoimmune diseases. The underlying mechanisms of efferocytosis impairment are complex, disease-dependent, and incompletely understood. In this review, we will first summarize the current knowledge about the normal signaling and metabolic processes of macrophage efferocytosis and its importance in maintaining tissue homeostasis and repair. We then will focus on analyzing the molecular and cellular mechanisms underlying efferocytotic abnormality (impairment) in disease or injury conditions. Next, we will discuss the potential molecular targets for enhanced efferocytosis in animal models of disease. To provide a balanced view, we will also discuss some deleterious effects of efferocytosis.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
3
|
Saas P, Vetter M, Maraux M, Bonnefoy F, Perruche S. Resolution therapy: Harnessing efferocytic macrophages to trigger the resolution of inflammation. Front Immunol 2022; 13:1021413. [PMID: 36389733 PMCID: PMC9651061 DOI: 10.3389/fimmu.2022.1021413] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 09/03/2023] Open
Abstract
Several chronic inflammatory diseases are associated with non-resolving inflammation. Conventional anti-inflammatory drugs fail to completely cure these diseases. Resolution pharmacology is a new therapeutic approach based on the use of pro-resolving mediators that accelerate the resolution phase of inflammation by targeting the productive phase of inflammation. Indeed, pro-resolving mediators prevent leukocyte recruitment and induce apoptosis of accumulated leukocytes. This approach is now called resolution therapy with the introduction of complex biological drugs and cell-based therapies. The main objective of resolution therapy is to specifically reduce the duration of the resolution phase to accelerate the return to homeostasis. Under physiological conditions, macrophages play a critical role in the resolution of inflammation. Indeed, after the removal of apoptotic cells (a process called efferocytosis), macrophages display anti-inflammatory reprogramming and subsequently secrete multiple pro-resolving factors. These factors can be used as resolution therapy. Here, we review the different mechanisms leading to anti-inflammatory reprogramming of macrophages after efferocytosis and the pro-resolving factors released by these efferocytic macrophages. We classify these mechanisms in three different categories: macrophage reprogramming induced by apoptotic cell-derived factors, by molecules expressed by apoptotic cells (i.e., "eat-me" signals), and induced by the digestion of apoptotic cell-derived materials. We also evoke that macrophage reprogramming may result from cooperative mechanisms, for instance, implicating the apoptotic cell-induced microenvironment (including cellular metabolites, specific cytokines or immune cells). Then, we describe a new drug candidate belonging to this resolution therapy. This candidate, called SuperMApo, corresponds to the secretome of efferocytic macrophages. We discuss its production, the pro-resolving factors present in this drug, as well as the results obtained in experimental models of chronic (e.g., arthritis, colitis) and acute (e.g., peritonitis or xenogeneic graft-versus-host disease) inflammatory diseases.
Collapse
Affiliation(s)
- Philippe Saas
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Mathieu Vetter
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Melissa Maraux
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Francis Bonnefoy
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| | - Sylvain Perruche
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| |
Collapse
|
4
|
Apoptotic vesicles ameliorate lupus and arthritis via phosphatidylserine-mediated modulation of T cell receptor signaling. Bioact Mater 2022; 25:472-484. [PMID: 37056273 PMCID: PMC10087106 DOI: 10.1016/j.bioactmat.2022.07.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) influence T cells in health, disease and therapy through messengers of intercellular communication including extracellular vesicles (EVs). Apoptosis is a mode of cell death that tends to promote immune tolerance, and a large number of apoptotic vesicles (apoVs) are generated from MSCs during apoptosis. In an effort to characterize these apoVs and explore their immunomodulatory potential, here we show that after replenishing them systemically, the apoV deficiency in Fas mutant mice and pathological lymphoproliferation were rescued, leading to the amelioration of inflammation and lupus activity. ApoVs directly interacted with CD4+ T cells and inhibited CD25 expression and IL-2 production in a dose-dependent manner. A broad range of Th1/2/17 subsets and cytokines including IFNγ, IL17A and IL-10 were suppressed while Foxp3+ cells were maintained. Mechanistically, exposed phosphatidylserine (PtdSer/PS) on apoVs mediated the interaction with T cells to disrupt proximal T cell receptor signaling transduction. Remarkably, administration of apoVs prevented Th17 differentiation and memory formation, and ameliorated inflammation and joint erosion in murine arthritis. Collectively, our findings unveil a previously unrecognized crosstalk between MSC apoVs and CD4+ T cells and suggest a promising therapeutic use of apoVs for autoimmune diseases.
Collapse
|
5
|
Husain I, Luo X. Apoptotic Donor Cells in Transplantation. Front Immunol 2021; 12:626840. [PMID: 33717145 PMCID: PMC7947657 DOI: 10.3389/fimmu.2021.626840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/18/2021] [Indexed: 12/31/2022] Open
Abstract
Despite significant advances in prevention and treatment of transplant rejection with immunosuppressive medications, we continue to face challenges of long-term graft survival, detrimental medication side effects to both the recipient and transplanted organ together with risks for opportunistic infections. Transplantation tolerance has so far only been achieved through hematopoietic chimerism, which carries with it a serious and life-threatening risk of graft versus host disease, along with variability in persistence of chimerism and uncertainty of sustained tolerance. More recently, numerous in vitro and in vivo studies have explored the therapeutic potential of silent clearance of apoptotic cells which have been well known to aid in maintaining peripheral tolerance to self. Apoptotic cells from a donor not only have the ability of down regulating the immune response, but also are a way of providing donor antigens to recipient antigen-presenting-cells that can then promote donor-specific peripheral tolerance. Herein, we review both laboratory and clinical evidence that support the utility of apoptotic cell-based therapies in prevention and treatment of graft versus host disease and transplant rejection along with induction of donor-specific tolerance in solid organ transplantation. We have highlighted the potential limitations and challenges of this apoptotic donor cell-based therapy together with ongoing advancements and attempts made to overcome them.
Collapse
Affiliation(s)
- Irma Husain
- Department of Medicine, Duke University, Durham, NC, United States
| | - Xunrong Luo
- Department of Medicine, Duke University, Durham, NC, United States
| |
Collapse
|
6
|
Pathogen-reduced PRP blocks T-cell activation, induces Treg cells, and promotes TGF-β expression by cDCs and monocytes in mice. Blood Adv 2020; 4:5547-5561. [PMID: 33166410 DOI: 10.1182/bloodadvances.2020002867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Alloimmunization against platelet-rich plasma (PRP) transfusions can lead to complications such as platelet refractoriness or rejection of subsequent transfusions and transplants. In mice, pathogen reduction treatment of PRP with UVB light and riboflavin (UV+R) prevents alloimmunization and appears to induce partial antigen-specific tolerance to subsequent transfusions. Herein, the in vivo responses of antigen-presenting cells and T cells to transfusion with UV+R-treated allogeneic PRP were evaluated to understand the cellular immune responses leading to antigen-specific tolerance. Mice that received UV+R-treated PRP had significantly increased transforming growth factor β (TGF-β) expression by CD11b+ CD4+ CD11cHi conventional dendritic cells (cDCs) and CD11bHi monocytes (P < .05). While robust T-cell responses to transfusions with untreated allogeneic PRP were observed (P < .05), these were blocked by UV+R treatment. Mice given UV+R-treated PRP followed by untreated PRP showed an early significant (P < .01) enrichment in regulatory T (Treg) cells and associated TGF-β production as well as diminished effector T-cell responses. Adoptive transfer of T-cell-enriched splenocytes from mice given UV+R-treated PRP into naive recipients led to a small but significant reduction of CD8+ T-cell responses to subsequent allogeneic transfusion. These data demonstrate that pathogen reduction with UV+R induces a tolerogenic profile by way of CD11b+ CD4+ cDCs, monocytes, and induction of Treg cells, blocking T-cell activation and reducing secondary T-cell responses to untreated platelets in vivo.
Collapse
|
7
|
Wang P, Jiang Z, Wang C, Liu X, Li H, Xu D, Zhong L. Immune Tolerance Induction Using Cell-Based Strategies in Liver Transplantation: Clinical Perspectives. Front Immunol 2020; 11:1723. [PMID: 33013824 PMCID: PMC7461870 DOI: 10.3389/fimmu.2020.01723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Liver transplantation (LT) has become the best chance and a routine practice for patients with end-stage liver disease and small hepatocellular carcinoma. However, life-long immunosuppressive regimens could lead to many post-LT complications, including cancer recurrence, infections, dysmetabolic syndrome, and renal injury. Impeccable management of immunosuppressive regimens is indispensable to ensure the best long-term prognosis for LT recipients. This is challenging for these patients, who probably have a post-LT graft survival of more than 10 or even 20 years. Approximately 20% of patients after LT could develop spontaneous operational tolerance. They could maintain normal graft function and histology without any immunosuppressive regimens. Operational tolerance after transplantation has been an attractive and ultimate goal in transplant immunology. The liver, as an immunoregulatory organ, generates an immune hyporesponsive microenvironment under physiological conditions. In this regard, LT recipients may be ideal candidates for studies focusing on operative tolerance. Cell-based strategies are one of the most promising methods for immune tolerance induction, including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory T cells, regulatory dendritic cells, regulatory macrophages, regulatory B cells, and mesenchymal stromal cells. The safety and the efficacy of many cell products have been evaluated by prospective clinical trials. In this review, we will summarize the latest perspectives on the clinical application of cell-based strategies in LT and will address a number of concerns and future directions regarding these cell products.
Collapse
Affiliation(s)
- Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyi Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunguang Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingyin Xu
- Department of Hepatobiliary Surgery, Ruian People's Hospital, Ruian, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Dombroski JA, Jyotsana N, Crews DW, Zhang Z, King MR. Fabrication and Characterization of Tumor Nano-Lysate as a Preventative Vaccine for Breast Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6531-6539. [PMID: 32437619 PMCID: PMC7942183 DOI: 10.1021/acs.langmuir.0c00947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Breast cancer is the most common cancer among women in the United States, with late stages associated with the lowest survival rates. The latest stage, defined as metastasis, accounts for 90% of all cancer-related deaths. There is a strong need to develop antimetastatic therapies. TRAIL, or TNF-related apoptosis inducing ligand, has been used as an antimetastatic therapy in the past, and conjugating TRAIL to nanoscale liposomes has been shown to enhance its targeting efficacy. When circulating tumor cells (CTCs) released during metastasis are exposed to TRAIL-conjugated liposomes and physiologically relevant fluid shear stress, this results in rapid cancer cell destruction into cell fragments. We sought to artificially recreate this phenomenon using probe sonication to mechanically disrupt cancer cells and characterized the resulting cell fragments, termed "tumor nano-lysate", with respect to size, charge, morphology, and composition. Furthermore, an in vivo pilot study was performed to investigate the efficacy of tumor nano-lysate as a preventative vaccine for breast cancer in an immunocompetent mouse model.
Collapse
|
9
|
Pilon C, Stehlé T, Beldi-Ferchiou A, Matignon M, Thiolat A, Burlion A, Grondin C, Birebent B, Pirenne F, Rouard H, Lang P, Marodon G, Grimbert P, Cohen JL. Human Apoptotic Cells, Generated by Extracorporeal Photopheresis, Modulate Allogeneic Immune Response. Front Immunol 2019; 10:2908. [PMID: 31921167 PMCID: PMC6930166 DOI: 10.3389/fimmu.2019.02908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/26/2019] [Indexed: 01/05/2023] Open
Abstract
The induction of specific and sustainable tolerance is a challenging issue in organ transplantation. The discovery of the immunosuppressive properties of apoptotic cells in animal models has paved the way for their use in human transplantation. In this work, we aimed to define a stable, reproducible, and clinically compatible production procedure of human apoptotic cells (Apo-cells). Using a clinically approved extracorporeal photopheresis technique, we have produced and characterized phenotypically and functionally human apoptotic cells. These Apo-cells have immunosuppressive properties proved in vitro and in vivo in NOD/SCID/γC mice by their capacity to modulate an allogeneic response following both a direct and an indirect antigen presentation. These results brought the rationale for the use of Apo-cells in tolerance induction protocol for organ transplantation.
Collapse
Affiliation(s)
- Caroline Pilon
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Créteil, France.,Institut Mondor de recherche biomédicale, Université Paris-Est, UMR_S955, UPEC, Créteil, France.,Inserm, U955, Equipe 21, Créteil, France
| | - Thomas Stehlé
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Créteil, France.,Institut Mondor de recherche biomédicale, Université Paris-Est, UMR_S955, UPEC, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service de Néphrologie-Transplantation, Créteil, France
| | - Asma Beldi-Ferchiou
- Institut Mondor de recherche biomédicale, Université Paris-Est, UMR_S955, UPEC, Créteil, France.,Inserm, U955, Equipe 21, Créteil, France
| | - Marie Matignon
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Créteil, France.,Institut Mondor de recherche biomédicale, Université Paris-Est, UMR_S955, UPEC, Créteil, France.,Inserm, U955, Equipe 21, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service de Néphrologie-Transplantation, Créteil, France
| | - Allan Thiolat
- Institut Mondor de recherche biomédicale, Université Paris-Est, UMR_S955, UPEC, Créteil, France.,Inserm, U955, Equipe 21, Créteil, France
| | - Aude Burlion
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Cynthia Grondin
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Créteil, France.,Institut Mondor de recherche biomédicale, Université Paris-Est, UMR_S955, UPEC, Créteil, France.,Inserm, U955, Equipe 21, Créteil, France
| | - Brigitte Birebent
- Etablissement Français du Sang (EFS) - Ile de France, Créteil, France
| | - France Pirenne
- Etablissement Français du Sang (EFS) - Ile de France, Créteil, France.,Inserm, U955, Equipe 2, Créteil, France
| | - Hélène Rouard
- Etablissement Français du Sang (EFS) - Ile de France, Créteil, France
| | - Philippe Lang
- Institut Mondor de recherche biomédicale, Université Paris-Est, UMR_S955, UPEC, Créteil, France.,Inserm, U955, Equipe 21, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service de Néphrologie-Transplantation, Créteil, France
| | - Gilles Marodon
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Philippe Grimbert
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Créteil, France.,Institut Mondor de recherche biomédicale, Université Paris-Est, UMR_S955, UPEC, Créteil, France.,Inserm, U955, Equipe 21, Créteil, France.,AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Service de Néphrologie-Transplantation, Créteil, France
| | - José L Cohen
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Créteil, France.,Institut Mondor de recherche biomédicale, Université Paris-Est, UMR_S955, UPEC, Créteil, France.,Inserm, U955, Equipe 21, Créteil, France
| |
Collapse
|
10
|
Dangi A, Yu S, Luo X. Apoptotic cell-based therapies for promoting transplantation tolerance. Curr Opin Organ Transplant 2019; 23:552-558. [PMID: 30024416 DOI: 10.1097/mot.0000000000000562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW This article is aimed to provide readers with an updated review on the applicability, efficacy, and challenges of employing donor apoptotic cell-based therapies to promote transplantation tolerance in various experimental and clinical settings. RECENT FINDINGS Recently, donor apoptotic cell-based therapies have been employed in various models of cell (including pancreatic islets and bone marrow hematopoietic stem cells) and solid organ (heart and kidney) transplantation to promote donor-specific tolerance. Published data, thus far, have revealed a high potential of this approach in inducing robust transplantation tolerance. Recent clinical trials have also underscored the safety and potential efficacy of this approach in alleviating graft-versus-host disease (GVHD) in bone marrow transplantation (BMT). Host factors including prior allo-sensitization and opportunistic infections pose major obstacles in establishing transplantation tolerance employing this strategy. However, emerging data provide strategies for overcoming such obstacles in these clinically relevant settings. SUMMARY Donor apoptotic cell therapy is an emerging strategy in promoting transplantation tolerance, with recent data emphasizing its efficacy and applicability for transplantation tolerance in the clinic.
Collapse
Affiliation(s)
- Anil Dangi
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute.,Division of Nephrology and Hypertension, Department of Medicine
| | - Shuangjin Yu
- Division of Nephrology and Hypertension, Department of Medicine
| | - Xunrong Luo
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute.,Division of Nephrology and Hypertension, Department of Medicine.,Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, Ilinois, USA
| |
Collapse
|
11
|
Yakoub AM, Schülke S. A Model for Apoptotic-Cell-Mediated Adaptive Immune Evasion via CD80-CTLA-4 Signaling. Front Pharmacol 2019; 10:562. [PMID: 31214024 PMCID: PMC6554677 DOI: 10.3389/fphar.2019.00562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
Apoptotic cells carry a plethora of self-antigens but they suppress eliciting of innate and adaptive immune responses to them. How apoptotic cells evade and subvert adaptive immune responses has been elusive. Here, we propose a novel model to understand how apoptotic cells regulate T cell activation in different contexts, leading mostly to tolerogenic responses, mainly via taking control of the CD80-CTLA-4 coinhibitory signal delivered to T cells. This model may facilitate understanding of the molecular mechanisms of autoimmune diseases associated with dysregulation of apoptosis or apoptotic cell clearance, and it highlights potential therapeutic targets or strategies for treatment of multiple immunological disorders.
Collapse
Affiliation(s)
- Abraam M Yakoub
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Stefan Schülke
- Vice President's Research Group: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
12
|
Bonnefoy F, Gauthier T, Vallion R, Martin-Rodriguez O, Missey A, Daoui A, Valmary-Degano S, Saas P, Couturier M, Perruche S. Factors Produced by Macrophages Eliminating Apoptotic Cells Demonstrate Pro-Resolutive Properties and Terminate Ongoing Inflammation. Front Immunol 2018; 9:2586. [PMID: 30542342 PMCID: PMC6277856 DOI: 10.3389/fimmu.2018.02586] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022] Open
Abstract
Unresolved inflammation is a common feature in the pathogenesis of chronic inflammatory/autoimmune diseases. The factors produced by macrophages eliminating apoptotic cells during resolution are crucial to terminate inflammation, and for subsequent tissue healing. We demonstrated here that the factors produced by macrophages eliminating apoptotic cells were sufficient to reboot the resolution of inflammation in vivo, and thus definitively terminated ongoing chronic inflammation. These factors were called SuperMApo and revealed pro-resolutive properties and accelerated acute inflammation resolution, as attested by both increased phagocytic capacities of macrophages and enhanced thioglycollate-induced peritonitis resolution. Activated antigen-presenting cells exposed to SuperMApo accelerated their return to homeostasis and demonstrated pro-regulatory T cell properties. In mice with ongoing collagen-induced arthritis, SuperMApo injection resolved and definitively terminated chronic inflammation. The same pro-resolving properties were observed in human settings in addition to xenogeneic colitis and graft-vs.-host disease modulation, highlighting SuperMApo as a new therapeutic opportunity to circumvent inflammatory diseases.
Collapse
Affiliation(s)
- Francis Bonnefoy
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Thierry Gauthier
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Romain Vallion
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Omayra Martin-Rodriguez
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Anais Missey
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Anna Daoui
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | | | - Philippe Saas
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France
| | - Mélanie Couturier
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France.,MED'INN'Pharma, Besançon, France
| | - Sylvain Perruche
- INSERM, EFS Bourgogne Franche-Comté, UMR1098, Interactions Hôte-Greffon-Tumeur, LabEX LipSTIC, FHU INCREASE, Université Bourgogne Franche-Comté, Besançon, France.,MED'INN'Pharma, Besançon, France
| |
Collapse
|
13
|
Dangi A, Luo X. Harnessing Apoptotic Cells for Transplantation Tolerance: Current Status and Future Perspectives. CURRENT TRANSPLANTATION REPORTS 2017; 4:270-279. [PMID: 29177124 PMCID: PMC5697727 DOI: 10.1007/s40472-017-0167-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The use of donor apoptotic cells is an emerging therapy for inducing transplantation tolerance. In this review, we will discuss current understanding of mechanisms of this approach, as well as crucial aspects necessary for successful translation of this approach to clinical transplantation. RECENT FINDINGS Transplantation tolerance by donor apoptotic cells is mediated by their homeostatic interaction with recipient phagocytes, and subsequent expansion of suppressor cell populations as well as inhibition of effector T cells via deletion and anergy. To ensure their tolerogenicity, it is critical to procure non-stressed donor cells, and to induce and arrest their apoptosis at the appropriate stage prior to their administration. Equally important is the monitoring of dynamics of recipient immunological status, and its influences on tolerance efficacy and longevity. Emerging concepts and technologies may significantly streamline tolerogen manufacture and delivery of this approach, and smooth its transition to clinical application. SUMMARY Hijacking homeostatic clearance of donor apoptotic cells is a promising strategy for transplantation tolerance. Timing is now mature for concerted efforts for transitioning this strategy to clinical transplantation.
Collapse
Affiliation(s)
- Anil Dangi
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xunrong Luo
- Center for Kidney Research and Therapeutics, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Division of Nephrology and Hypertension, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
14
|
Radu CA, Fischer S, Diehm Y, Hetzel O, Neubrech F, Dittmar L, Kleist C, Gebhard MM, Terness P, Kneser U, Kiefer J. The combination of mitomycin-induced blood cells with a temporary treatment of ciclosporin A prolongs allograft survival in vascularized composite allotransplantation. Langenbecks Arch Surg 2017; 403:83-92. [PMID: 28823033 DOI: 10.1007/s00423-017-1616-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 08/10/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Vascularized composite allotransplantation (VCA) is a rapidly expanding field of transplantation and provides a potential treatment for complex tissue defects. Peripheral blood mononuclear cells (PBMCs) shortly incubated with the antibiotic and chemotherapeutic agent mitomycin C (MMC) can suppress allogeneic T cell response and control allograft rejection in various organ transplantation models. MMC-incubated PBMCs (MICs) are currently being tested in a phase I clinical trial in kidney transplant patients. Previous studies with MICs in a complex VCA model showed the immunomodulatory potential of these cells. The aim of this study is to optimize and evaluate the use of MICs in combination with a standard immunosuppressive drug in VCA. METHODS Fully mismatched rats were used as hind limb donors [Lewis (RT11)] and recipients [Brown-Norway (RT1n)]. Sixty allogeneic hind limb transplantations were performed in six groups. Group A received donor-derived MICs combined with a temporary ciclosporin A (CsA) treatment. Group B received MICs in combination with a temporarily administered reduced dose of CsA. Group C served as a control and received a standard CsA dose temporarily without an additional administration of MICs, whereas Group D was solely medicated with a reduced CsA dose. Group E received no immunosuppressive therapy, neither CsA nor MICs. Group F was given a continuous standard immunosuppressive regimen consisting of CsA and prednisolone. The endpoint of the study was the onset of allograft rejection which was assessed clinically and histologically. RESULTS In group A and B, the rejection-free interval of the allograft was significantly prolonged to an average of 23.1 ± 1.7 and 24.7 ± 1.8 days compared to the corresponding control groups (p < 0.01). Rejection in groups C, D, and E was noted after 14.3 ± 1.1, 7.8 ± 0.7, and 6.9 ± 0.6 days. No rejection occurred in control group F during the follow-up period of 100 days. No adverse events have been noted. CONCLUSION The findings of this study show that the combination of MICs with a temporary CsA treatment significantly prolongs the rejection-free interval in a complex VCA model. The combination of MICs with CsA showed no adverse events such as graft-versus-host disease. MICs, which are generated by a simple and reliable in vitro technique, represent a potential therapeutic tool for prolonging allograft survival through immunomodulation.
Collapse
Affiliation(s)
- Christian Andreas Radu
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Sebastian Fischer
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Yannick Diehm
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Otto Hetzel
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Florian Neubrech
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Laura Dittmar
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Christian Kleist
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany.,Department of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
| | - Martha Maria Gebhard
- Department of Experimental Surgery, University of Heidelberg, Heidelberg, Germany
| | - Peter Terness
- Transplantation Immunology, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany
| | - Jurij Kiefer
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, Plastic- and Hand Surgery, University of Heidelberg, Ludwig-Guttmann-Str. 13, D-67071, Ludwigshafen, Germany.
| |
Collapse
|
15
|
Tolerogenic interactions between CD8 + dendritic cells and NKT cells prevent rejection of bone marrow and organ grafts. Blood 2017; 129:1718-1728. [PMID: 28096089 DOI: 10.1182/blood-2016-07-723015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022] Open
Abstract
The combination of total lymphoid irradiation and anti-T-cell antibodies safely induces immune tolerance to combined hematopoietic cell and organ allografts in humans. Our mouse model required host natural killer T (NKT) cells to induce tolerance. Because NKT cells normally depend on signals from CD8+ dendritic cells (DCs) for their activation, we used the mouse model to test the hypothesis that, after lymphoid irradiation, host CD8+ DCs play a requisite role in tolerance induction through interactions with NKT cells. Selective deficiency of either CD8+ DCs or NKT cells abrogated chimerism and organ graft acceptance. After radiation, the CD8+ DCs increased expression of surface molecules required for NKT and apoptotic cell interactions and developed suppressive immune functions, including production of indoleamine 2,3-deoxygenase. Injection of naive mice with apoptotic spleen cells generated by irradiation led to DC changes similar to those induced by lymphoid radiation, suggesting that apoptotic body ingestion by CD8+ DCs initiates tolerance induction. Tolerogenic CD8+ DCs induced the development of tolerogenic NKT cells with a marked T helper 2 cell bias that, in turn, regulated the differentiation of the DCs and suppressed rejection of the transplants. Thus, reciprocal interactions between CD8+ DCs and invariant NKT cells are required for tolerance induction in this system that was translated into a successful clinical protocol.
Collapse
|
16
|
Abstract
For almost two decades, cell-based therapies have been tested in modern regenerative medicine to either replace or regenerate human cells, tissues, or organs and restore normal function. Secreted paracrine factors are increasingly accepted to exert beneficial biological effects that promote tissue regeneration. These factors are called the cell secretome and include a variety of proteins, lipids, microRNAs, and extracellular vesicles, such as exosomes and microparticles. The stem cell secretome has most commonly been investigated in pre-clinical settings. However, a growing body of evidence indicates that other cell types, such as peripheral blood mononuclear cells (PBMCs), are capable of releasing significant amounts of biologically active paracrine factors that exert beneficial regenerative effects. The apoptotic PBMC secretome has been successfully used pre-clinically for the treatment of acute myocardial infarction, chronic heart failure, spinal cord injury, stroke, and wound healing. In this review we describe the benefits of choosing PBMCs instead of stem cells in regenerative medicine and characterize the factors released from apoptotic PBMCs. We also discuss pre-clinical studies with apoptotic cell-based therapies and regulatory issues that have to be considered when conducting clinical trials using cell secretome-based products. This should allow the reader to envision PBMC secretome-based therapies as alternatives to all other forms of cell-based therapies.
Collapse
Affiliation(s)
- Lucian Beer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University of Vienna, Vienna, Austria.
- Head FFG Project 852748 "APOSEC", FOLAB Surgery, Medical University of Vienna, Vienna, Austria.
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Bonnefoy F, Daoui A, Valmary-Degano S, Toussirot E, Saas P, Perruche S. Apoptotic cell infusion treats ongoing collagen-induced arthritis, even in the presence of methotrexate, and is synergic with anti-TNF therapy. Arthritis Res Ther 2016; 18:184. [PMID: 27516061 PMCID: PMC4982016 DOI: 10.1186/s13075-016-1084-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/29/2016] [Indexed: 12/20/2022] Open
Abstract
Background Apoptotic cell-based therapies have been proposed to treat chronic inflammatory diseases. The aim of this study was to investigate the effect of intravenous (i.v.) apoptotic cell infusion in ongoing collagen-induced arthritis (CIA) and the interaction of this therapy with other treatments used in rheumatoid arthritis (RA), including methotrexate (MTX) or anti-TNF therapy. Methods The effects of i.v. apoptotic cell infusion were evaluated in a CIA mouse model in DBA/1 mice immunized with bovine type II collagen. The number and functions of antigen-presenting cells (APC), regulatory CD4+ T cells (Treg), and circulating anti-collagen auto-antibodies were analyzed in CIA mice. Results Treatment of arthritic mice with i.v. apoptotic cell infusion significantly reduced the arthritis clinical score. This therapeutic approach modified T cell responses against the collagen auto-antigen with selective induction of collagen-specific Treg. In addition, we observed that APC from apoptotic-cell-treated animals were resistant to toll-like receptor ligand activation and favored ex vivo Treg induction, indicating APC reprogramming. Apoptotic cell injection-induced arthritis modulation was dependent on transforming growth factor (TGF)-β, as neutralizing anti-TGF-β antibody prevented the effects of apoptotic cells. Methotrexate did not interfere, while anti-TNF therapy was synergic with apoptotic-cell-based therapy. Conclusion Overall, our data demonstrate that apoptotic-cell-based therapy is efficient in treating ongoing CIA, compatible with current RA treatments, and needs to be evaluated in humans in the treatment of RA.
Collapse
Affiliation(s)
- Francis Bonnefoy
- INSERM UMR1098, F-25000, Besançon, France.,Université de Bourgogne Franche-Comté, SFR FED4234, F-25000, Besançon, France.,EFS Bourgogne Franche-Comté, F-25000, Besançon, France.,LabEX LipSTIC, ANR-11-LABX-0021, F-25000, Besançon, France.,FHU INCREASE, Besançon University Hospital, F-25000, Besançon, France
| | - Anna Daoui
- INSERM UMR1098, F-25000, Besançon, France.,Université de Bourgogne Franche-Comté, SFR FED4234, F-25000, Besançon, France.,EFS Bourgogne Franche-Comté, F-25000, Besançon, France.,LabEX LipSTIC, ANR-11-LABX-0021, F-25000, Besançon, France.,FHU INCREASE, Besançon University Hospital, F-25000, Besançon, France
| | | | - Eric Toussirot
- LabEX LipSTIC, ANR-11-LABX-0021, F-25000, Besançon, France.,FHU INCREASE, Besançon University Hospital, F-25000, Besançon, France.,INSERM CIC1431, Clinical Investigation Center Biotherapy, Besançon University Hospital, F-25000, Besançon, France.,Rheumatology Department, Besançon University Hospital, F-25000, Besançon, France
| | - Philippe Saas
- INSERM UMR1098, F-25000, Besançon, France.,Université de Bourgogne Franche-Comté, SFR FED4234, F-25000, Besançon, France.,EFS Bourgogne Franche-Comté, F-25000, Besançon, France.,LabEX LipSTIC, ANR-11-LABX-0021, F-25000, Besançon, France.,FHU INCREASE, Besançon University Hospital, F-25000, Besançon, France.,INSERM CIC1431, Clinical Investigation Center Biotherapy, Besançon University Hospital, F-25000, Besançon, France
| | - Sylvain Perruche
- INSERM UMR1098, F-25000, Besançon, France. .,Université de Bourgogne Franche-Comté, SFR FED4234, F-25000, Besançon, France. .,EFS Bourgogne Franche-Comté, F-25000, Besançon, France. .,LabEX LipSTIC, ANR-11-LABX-0021, F-25000, Besançon, France. .,FHU INCREASE, Besançon University Hospital, F-25000, Besançon, France. .,UMR1098 INSERM, Etablissement Français du Sang de BFC, 8 Rue du Dr JFX Girod, F-25000, Besançon, France.
| |
Collapse
|
18
|
|
19
|
Saas P, Daguindau E, Perruche S. Concise Review: Apoptotic Cell-Based Therapies-Rationale, Preclinical Results and Future Clinical Developments. Stem Cells 2016; 34:1464-73. [PMID: 27018198 DOI: 10.1002/stem.2361] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/02/2016] [Indexed: 12/25/2022]
Abstract
The objectives of this review are to summarize the experimental data obtained using apoptotic cell-based therapies, and then to discuss future clinical developments. Indeed, apoptotic cells exhibit immunomodulatory properties that are reviewed here by focusing on more recent mechanisms. These immunomodulatory mechanisms are in particular linked to the clearance of apoptotic cells (called also efferocytosis) by phagocytes, such as macrophages, and the induction of regulatory T cells. Thus, apoptotic cell-based therapies have been used to prevent or treat experimental inflammatory diseases. Based on these studies, we have identified critical steps to design future clinical trials. This includes: the administration route, the number and schedule of administration, the appropriate apoptotic cell type to be used, as well as the apoptotic signal. We also have analyzed the clinical relevancy of apoptotic-cell-based therapies in experimental models. Additional experimental data are required concerning the treatment of inflammatory diseases (excepted for sepsis) before considering future clinical trials. In contrast, apoptotic cells have been shown to favor engraftment and to reduce acute graft-versus-host disease (GvHD) in different relevant models of transplantation. This has led to the conduct of a phase 1/2a clinical trial to alleviate GvHD. The absence of toxic effects obtained in this trial may support the development of other clinical studies based on this new cell therapy. Stem Cells 2016;34:1464-1473.
Collapse
Affiliation(s)
- Philippe Saas
- INSERM, UMR1098, Besançon, F-25000, France.,Université de Bourgogne Franche-Comté, UMR1098, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Besançon, Besançon, France.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| | - Etienne Daguindau
- INSERM, UMR1098, Besançon, F-25000, France.,Université de Bourgogne Franche-Comté, UMR1098, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Besançon, Besançon, France.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France.,CHRU Besançon, Hématologie, Besançon, France
| | - Sylvain Perruche
- INSERM, UMR1098, Besançon, F-25000, France.,Université de Bourgogne Franche-Comté, UMR1098, Besançon, France.,EFS Bourgogne Franche-Comté, UMR1098, Besançon, Besançon, France.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| |
Collapse
|
20
|
Morelli AE, Larregina AT. Concise Review: Mechanisms Behind Apoptotic Cell-Based Therapies Against Transplant Rejection and Graft versus Host Disease. Stem Cells 2016; 34:1142-50. [PMID: 26865545 DOI: 10.1002/stem.2326] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/10/2016] [Accepted: 01/19/2016] [Indexed: 12/14/2022]
Abstract
The main limitations to the success of transplantation are the antigraft response developed by the recipient immune system, and the adverse side effects of chronic immunosuppression. Graft-versus-host disease (GVHD) triggered by donor-derived T lymphocytes against the recipient tissues is another serious obstacle in the field of hematopoietic stem cell transplantation. Several laboratories have tested the possibility of promoting antigen (Ag)-specific tolerance for therapy of graft rejection, GVHD, and autoimmune disorders, by developing methodologies that mimic the mechanisms by which the immune system maintains peripheral tolerance in the steady state. It has been long recognized that the silent clearance of cells undergoing apoptosis exerts potent immune-regulatory effects and provides apoptotic cell-derived Ags to those Ag-presenting cells (APCs) that internalize them, in particular macrophages and dendritic cells. Therefore, in situ-targeting of recipient APCs by systemic administration of leukocytes in early apoptosis and bearing donor Ags represents a relatively simple approach to control the antidonor response against allografts. Here, we review the mechanisms by which apoptotic cells are silently cleared by phagocytes, and how such phenomenon leads to down-regulation of the innate and adaptive immunity. We discuss the evolution of apoptotic cell-based therapies from murine models of organ/tissue transplantation and GVHD, to clinical trials. We make emphasis on potential limitations and areas of concern of apoptotic cell-based therapies, and on how other immune-suppressive therapies used in the clinics or tested experimentally likely also function through the silent clearance of apoptotic cells by the immune system. Stem Cells 2016;34:1142-1150.
Collapse
Affiliation(s)
- Adrian E Morelli
- T.E. Starzl Transplantation Institute, Department of Surgery.,Departments of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Adriana T Larregina
- Departments of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.,Departments of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
21
|
Dittmar L, Mohr E, Kleist C, Ehser S, Demirdizen H, Sandra-Petrescu F, Hundemer M, Opelz G, Terness P. Immunosuppressive properties of mitomycin C-incubated human myeloid blood cells (MIC) in vitro. Hum Immunol 2015; 76:480-7. [PMID: 26074415 DOI: 10.1016/j.humimm.2015.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 04/01/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
Abstract
Previous animal studies showed that donor-derived blood cells treated with mitomycin C (MMC) prolong allograft survival when injected into recipients. This model was effective with whole blood, peripheral blood mononuclear cells (PBMC) (monocytes being the active cell subpopulation) or dendritic cells. In view of a potential clinical application, we study now the immunosuppressive properties of human myeloid cells in vitro. Mature dendritic cells (generated from naïve monocytes) or monocytes treated with mitomycin C do not or only weakly inhibit allogeneic T cells in vitro, whereas cells in an early differentiation state between monocytes and DC exert suppressive activity when treated with MMC. In contrast, DC generated from MMC-treated monocytes show the morphology and phenotype of early immature DC (iDC) and suppress T-cell responses. It is known that untreated monocytes injected into a recipient encounter a cytokine milieu which differentiates them to stimulatory DC. In our in vitro experiment MMC-treated monocytes cultured in a DC-maturing milieu transform themselves into suppressive early iDC. This reproduces a process which takes place when administering MMC-monocytes to a recipient. In conclusion, human MMC-DC or MMC-monocytes are not or only weakly suppressive in vitro. When MMC-monocytes are differentiated to DC the resulting cells become suppressive.
Collapse
Affiliation(s)
- Laura Dittmar
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| | - Elisabeth Mohr
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| | - Christian Kleist
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| | - Sandra Ehser
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| | - Haydar Demirdizen
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| | - Flavius Sandra-Petrescu
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| | - Michael Hundemer
- Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Gerhard Opelz
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| | - Peter Terness
- Department of Transplantation Immunology, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| |
Collapse
|
22
|
Hosseini H, Li Y, Kanellakis P, Tay C, Cao A, Tipping P, Bobik A, Toh BH, Kyaw T. Phosphatidylserine liposomes mimic apoptotic cells to attenuate atherosclerosis by expanding polyreactive IgM producing B1a lymphocytes. Cardiovasc Res 2015; 106:443-452. [DOI: 10.1093/cvr/cvv037] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
23
|
Abstract
Our previous studies in rats showed that incubation of monocytic dendritic cells (DCs) with the chemotherapeutic drug mitomycin C (MMC) renders the cells immunosuppressive. Donor-derived MMC-DCs injected into the recipient prior to transplantation prolonged heart allograft survival. Although the generation of DCs is labour-intensive and time-consuming, peripheral blood mononuclear cells (PBMCs) can be easily harvested. In the present study, we analyse under which conditions DCs can be replaced by PBMCs and examine their mode of action. When injected into rats, MMC-incubated donor PBMCs (MICs) strongly prolonged heart allograft survival. Removal of monocytes from PBMCs completely abrogated their suppressive effect, indicating that monocytes are the active cell population. Suppression of rejection was donor-specific. The injected MICs migrated into peripheral lymphoid organs and led to an increased number of regulatory T-cells (Tregs) expressing cluster of differentiation (CD) markers CD4 and CD25 and forkhead box protein 3 (FoxP3). Tolerance could be transferred to syngeneic recipients with blood or spleen cells. Depletion of Tregs from tolerogenic cells abrogated their suppressive effect, arguing for mediation of immunosuppression by CD4⁺CD25⁺FoxP3⁺ Tregs. Donor-derived MICs also prolonged kidney allograft survival in pigs. MICs generated from donor monocytes were applied for the first time in humans in a patient suffering from therapy-resistant rejection of a haploidentical stem cell transplant. We describe, in the present paper, a simple method for in vitro generation of suppressor blood cells for potential use in clinical organ transplantation. Although the case report does not allow us to draw any conclusion about their therapeutic effectiveness, it shows that MICs can be easily generated and applied in humans.
Collapse
|
24
|
Lacoske M, Theodorakis EA. Spirotetronate polyketides as leads in drug discovery. JOURNAL OF NATURAL PRODUCTS 2015; 78:562-75. [PMID: 25434976 PMCID: PMC4380204 DOI: 10.1021/np500757w] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Indexed: 05/05/2023]
Abstract
The discovery of chlorothricin (1) defined a new family of microbial metabolites with potent antitumor antibiotic properties collectively referred to as spirotetronate polyketides. These microbial metabolites are structurally distinguished by the presence of a spirotetronate motif embedded within a macrocyclic core. Glycosylation at the periphery of this core contributes to the structural complexity and bioactivity of this motif. The spirotetronate family displays impressive chemical structures, potent bioactivities, and significant pharmacological potential. This review groups the family members based on structural and biosynthetic considerations and summarizes synthetic and biological studies that aim to elucidate their mode of action and explore their pharmacological potential.
Collapse
Affiliation(s)
- Michelle
H. Lacoske
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0358, United States
| | - Emmanuel A. Theodorakis
- Department of Chemistry and
Biochemistry, University of California,
San Diego, 9500 Gilman
Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
25
|
Vallion R, Bonnefoy F, Daoui A, Vieille L, Tiberghien P, Saas P, Perruche S. Transforming growth factor-β released by apoptotic white blood cells during red blood cell storage promotes transfusion-induced alloimmunomodulation. Transfusion 2015; 55:1721-35. [PMID: 25807899 DOI: 10.1111/trf.13031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/24/2014] [Accepted: 12/23/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Red blood cell (RBC) alloimmunization is a major immunologic risk of transfusion. However, RBC storage facilitates white blood cell (WBC) apoptosis and apoptotic cells have immunomodulatory properties. We investigated the behavior of WBCs, and apoptosis in particular, in RBC units during storage and then studied the impact of WBC apoptosis on the modulation of posttransfusion alloimmunization in RBC products stored short term. STUDY DESIGN AND METHODS We used a mouse model of alloimmunization to transfused HEL-ovalbumin-Duffy (HOD) surface antigen expressed specifically on RBCs. The presence of circulating anti-HOD immunoglobulin G detected by flow cytometry confirmed immunization to HOD+ RBCs. WBC apoptosis and factors released by apoptotic WBCs during storage were determined and in particular the role of transforming growth factor (TGF)-β was assessed on RBC alloimmunization. RESULTS In blood stored 72 hours, 30% of WBCs were apoptotic, and transfusion of short-term-stored blood resulted in lesser immunization than did fresh blood or stored leukoreduced (LR) RBCs. WBCs undergoing apoptosis released during short-term storage factors modulating RBC alloimmunization. Indeed apoptotic cell-released factors modulate alloimmunization whereas exogenous apoptotic cells directly transfused with LR RBCs did not. While microparticles released during RBC storage had no immunomodulatory role, TGF-β found in the supernatant of stored blood demonstrated the capacity to favor Treg polarization of naïve CD4+CD25- T cells in vitro and limited RBC alloimmunization in vivo. Indeed, addition of recombinant TGF-β to stored LR RBC transfusion strongly limited posttransfusion RBC alloimmunization. CONCLUSION Our findings show that short-term storage of non-LR blood facilitates WBC apoptosis therefore releasing TGF-β that modulates posttransfusion RBC alloimmunization.
Collapse
Affiliation(s)
- Romain Vallion
- INSERM, UMR1098.,Université de Bourgogne Franche-Comté, UMR1098.,EFS Bourgogne Franche-Comté, UMR1098.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| | - Francis Bonnefoy
- INSERM, UMR1098.,Université de Bourgogne Franche-Comté, UMR1098.,EFS Bourgogne Franche-Comté, UMR1098.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| | - Anna Daoui
- INSERM, UMR1098.,Université de Bourgogne Franche-Comté, UMR1098.,EFS Bourgogne Franche-Comté, UMR1098.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| | - Loredane Vieille
- INSERM, UMR1098.,Université de Bourgogne Franche-Comté, UMR1098.,EFS Bourgogne Franche-Comté, UMR1098.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| | - Pierre Tiberghien
- INSERM, UMR1098.,Université de Bourgogne Franche-Comté, UMR1098.,EFS Bourgogne Franche-Comté, UMR1098.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| | - Philippe Saas
- INSERM, UMR1098.,Université de Bourgogne Franche-Comté, UMR1098.,EFS Bourgogne Franche-Comté, UMR1098.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| | - Sylvain Perruche
- INSERM, UMR1098.,Université de Bourgogne Franche-Comté, UMR1098.,EFS Bourgogne Franche-Comté, UMR1098.,LabEx LipSTIC, ANR-11-LABX-0021, FHU INCREASE, Besançon, France
| |
Collapse
|
26
|
Brennan TV, Rendell VR, Yang Y. Innate immune activation by tissue injury and cell death in the setting of hematopoietic stem cell transplantation. Front Immunol 2015; 6:101. [PMID: 25852683 PMCID: PMC4360715 DOI: 10.3389/fimmu.2015.00101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/23/2015] [Indexed: 11/22/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) with donor lymphocyte infusion is the mainstay of treatment for many types of hematological malignancies, but the therapeutic effect and prevention of relapse is complicated by donor T-cell recognition and attack of host tissue in a process known as graft-versus-host disease (GvHD). Cytotoxic myeloablative conditioning regimens used prior to Allo-HSCT result in the release of endogenous innate immune activators that are increasingly recognized for their role in creating a pro-inflammatory milieu. This increased inflammatory state promotes allogeneic T-cell activation and the induction and perpetuation of GvHD. Here, we review the processes of cellular response to injury and cell death that are relevant following Allo-HSCT and present the current evidence for a causative role of a variety of endogenous innate immune activators in the mediation of sterile inflammation following Allo-HSCT. Finally, we discuss the potential therapeutic strategies that target the endogenous pathways of innate immune activation to decrease the incidence and severity of GvHD following Allo-HSCT.
Collapse
Affiliation(s)
- Todd V Brennan
- Department of Surgery, Duke University , Durham, NC , USA
| | | | - Yiping Yang
- Department of Medicine, Duke University , Durham, NC , USA ; Department of Immunology, Duke University , Durham, NC , USA
| |
Collapse
|
27
|
Immunosuppressive therapy in allograft transplantation: from novel insights and strategies to tolerance and challenges. Cent Eur J Immunol 2014; 39:400-9. [PMID: 26155155 PMCID: PMC4440012 DOI: 10.5114/ceji.2014.45955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 07/03/2014] [Indexed: 01/07/2023] Open
Abstract
Immunosuppression therapy is the key to successful post-transplantation outcomes. The need for ideal immunosuppression became durable maintenance of long-term graft survival. In spite of current immunosuppressive therapy regimens advances, surgical procedures, and preservation methods, organ transplantation is associated with a long-term poor survival and significant mortality. This has led to an increased interest to optimize outcomes while minimizing associated toxicity by using alternative methods for maintenance immunosuppression, organ rejection treatment, and monitoring of immunosuppression. T regulatory (Treg) cells, which have immunosuppressive functions and cytokine profiles, have been studied during the last decades. Treg cells are able to inhibit the development of allergen-specific cell responses and consequently play a key role in a healthy immune response to allergens. Mature dendritic cells (DCs) play a crucial role in the differentiation of Tregs, which are known to regulate allergic inflammatory responses. Advance in long-standing allograft outcomes may depend on new drugs with novel mechanisms of action with minimal toxicity. Newer treatment techniques have been developed, including using novel stem cell-based therapies such as mesenchymal stem cells, phagosomes and exosomes. Immunoisolation techniques and salvage therapies, including photopheresis and total lymphoid irradiation have emerged as alternative therapeutic choices. The present review evaluates the recent clinical advances in immunosuppressive therapies for organ transplantation.
Collapse
|
28
|
|
29
|
Monguió-Tortajada M, Lauzurica-Valdemoros R, Borràs FE. Tolerance in organ transplantation: from conventional immunosuppression to extracellular vesicles. Front Immunol 2014; 5:416. [PMID: 25278936 PMCID: PMC4166341 DOI: 10.3389/fimmu.2014.00416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/18/2014] [Indexed: 12/26/2022] Open
Abstract
Organ transplantation is often the unique solution for organ failure. However, rejection is still an unsolved problem. Although acute rejection is well controlled, the chronic use of immunosuppressive drugs for allograft acceptance causes numerous side effects in the recipient and do not prevent chronic allograft dysfunction. Different alternative therapies have been proposed to replace the classical treatment for allograft rejection. The alternative therapies are mainly based in pre-infusions of different types of regulatory cells, including DCs, MSCs, and Tregs. Nevertheless, these approaches lack full efficiency and have many problems related to availability and applicability. In this context, the use of extracellular vesicles, and in particular exosomes, may represent a cell-free alternative approach in inducing transplant tolerance and survival. Preliminary approaches in vitro and in vivo have demonstrated the efficient alloantigen presentation and immunomodulation abilities of exosomes, leading to alloantigen-specific tolerance and allograft acceptance in rodent models. Donor exosomes have been used alone, processed by recipient antigen-presenting cells, or administered together with suboptimal doses of immunosuppressive drugs, achieving specific allograft tolerance and infinite transplant survival. In this review, we gathered the latest exosome-based strategies for graft acceptance and discuss the tolerance mechanisms involved in organ tolerance mediated by the administration of exosomes. We will also deal with the feasibility and difficulties that arise from the application of this strategy into the clinic.
Collapse
Affiliation(s)
- Marta Monguió-Tortajada
- Innovation in Vesicles and Cells for Application Therapy Group (IVECAT), Institut d’Investigació Germans Trias i Pujol, Badalona, Spain
| | | | - Francesc E. Borràs
- Innovation in Vesicles and Cells for Application Therapy Group (IVECAT), Institut d’Investigació Germans Trias i Pujol, Badalona, Spain
- Nephrology Service, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
30
|
Saas P, Kaminski S, Perruche S. Prospects of apoptotic cell-based therapies for transplantation and inflammatory diseases. Immunotherapy 2014; 5:1055-73. [PMID: 24088076 DOI: 10.2217/imt.13.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cell removal or interactions of early-stage apoptotic cells with immune cells are associated with an immunomodulatory microenvironment that can be harnessed to exert therapeutic effects. While the involved immune mechanisms are still being deciphered, apoptotic cell infusion has been tested in different experimental models where inflammation is deregulated. This includes chronic and acute inflammatory disorders such as arthritis, contact hypersensitivity and acute myocardial infarction. Apoptotic cell infusion has also been used in transplantation settings to prevent or treat acute and chronic rejection, as well as to limit acute graft-versus-host disease associated with allogeneic hematopoietic cell transplantation. Here, we review the mechanisms involved in apoptotic cell-induced immunomodulation and data obtained in preclinical models of transplantation and inflammatory diseases.
Collapse
|
31
|
Campisi L, Cummings RJ, Blander JM. Death-defining immune responses after apoptosis. Am J Transplant 2014; 14:1488-98. [PMID: 24903539 PMCID: PMC4115279 DOI: 10.1111/ajt.12736] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 01/25/2023]
Abstract
Apoptosis is a programmed form of cell death whereby characteristic internal cellular dismantling is accompanied by the preservation of plasma membrane integrity. Maintaining this order during apoptosis prevents the release of cellular contents and ensures a noninflammatory death. Here, we consider examples of apoptosis in different contexts and discuss how the same form of cell death could have different immunological consequences. Multiple parameters such as cell death as a result of microbial infection, the nature of the inflammatory microenvironment, the type of responding phagocytic cells and the genetic background of the host organism all differentially influence the immunological consequences of apoptosis.
Collapse
|
32
|
Abstract
Extracorporeal Photochemotherapy (ECP) consists in illumination of the patient's leukocytes in the presence of 8-Methoxy Psoralen (8-MOP) and its reinjection to the same patient. ECP is responsible for many cellular events, the most important being the induction of cell apoptosis. Apoptosis appears first in lymphocytes and activated lymphocytes (allo or auto) which are more sensitive and undergo faster apoptosis rather than other cells. Monocytes develop apoptosis later. The injection of apoptotic cells induces tolerance in patients with graft versus host disease (GvHD) and acute heart or lung graft rejection. In these patients, phagocytosis of apoptotic cells by antigen-presenting cells (APCs) and in particular dendritic cells is responsible for a shift from Th1 to Th2 immune response, an increase in anti-inflammatory cytokines such as interleukine 10 (IL-10) and Tumor Growth Factor Beta (TGF-β), a decrease in pro-inflammatory cytokines and finally, for the proliferation of regulatory cells. Among CD4/CD25 positive cells, only CD4(+)CD25(hi) are T-regulatory cells (T-regs). One subpopulation of T-regs produces IL-10 and inhibits Th1 CD4 cells, whereas other populations act as suppressors and inhibit the cytotoxic T-cells responsible for organ rejection and GvHD in an antigen specific fashion. It is not clear why the injection of early apoptotic cells induces tolerance in GvHD and organ graft rejection, but in Sézary syndrome, it induces up-regulation of anti-tumor immune response. Immune response modulation (up- or down-regulation) after ECP depends on many factors: early apoptotic cell injection; anti-inflammatory environment; impaired function of dendritic cells; dendritic type 2 cell dominance, lead to immune tolerance, whereas late apoptotic or necrotic cell injection and pro-inflammatory cytokines enhance immune response. Therefore, immune response to ECP depends on various factors responsible for the diversity of its mode of action in different diseases and further investigations are required.
Collapse
|
33
|
Review: Where is the maternofetal interface? Placenta 2014; 35 Suppl:S74-80. [DOI: 10.1016/j.placenta.2013.10.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 11/22/2022]
|
34
|
Abstract
The prompt removal of apoptotic cells by phagocytes is important for maintaining tissue homeostasis. The molecular and cellular events that underpin apoptotic cell recognition and uptake, and the subsequent biological responses, are increasingly better defined. The detection and disposal of apoptotic cells generally promote an anti-inflammatory response at the tissue level, as well as immunological tolerance. Consequently, defects in apoptotic cell clearance have been linked with various inflammatory diseases and autoimmunity. Conversely, under certain conditions, such as the killing of tumour cells by specific cell-death inducers, the recognition of apoptotic tumour cells can promote an immunogenic response and antitumour immunity. Here, we review the current understanding of the complex process of apoptotic cell clearance in physiology and pathology, and discuss how this knowledge could be harnessed for new therapeutic strategies.
Collapse
|
35
|
Locatelli F, Lucarelli B, Merli P. Current and future approaches to treat graft failure after allogeneic hematopoietic stem cell transplantation. Expert Opin Pharmacother 2013; 15:23-36. [DOI: 10.1517/14656566.2014.852537] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Wu C, Zhang Y, Jiang Y, Wang Q, Long Y, Wang C, Cao X, Chen G. Apoptotic cell administration enhances pancreatic islet engraftment by induction of regulatory T cells and tolerogenic dendritic cells. Cell Mol Immunol 2013; 10:393-402. [PMID: 23872920 PMCID: PMC4003193 DOI: 10.1038/cmi.2013.16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 03/24/2013] [Accepted: 03/25/2013] [Indexed: 02/02/2023] Open
Abstract
Apoptotic cell transfer has been found to be able to facilitate engraftment of allograft. However, the underlying mechanisms remain to be fully understood. Here we demonstrate that intravenous administration of donor apoptotic splenocytes can promote pancreatic islet engraftment by inducing generation of tolerogenic dendritic cells (Tol-DCs) and expansion of CD4(+)Foxp3(+) regulatory T cells (Tregs). In vivo clearance of either dendritic cells (DCs) or Tregs prevented the induction of immune tolerance by apoptotic cell administration. Transient elimination of Tregs using anti-CD25, monoclonal antibody (mAb) abrogated the generation of Tol-DCs after administration of apoptotic splenocytes. Reciprocally, depletion of DCs within CD11c-DTR mice using diphtheria toxin (DT) prevented the generation of Tregs in the recipients with administration of apoptotic splenocytes. Induction of Tregs by Tol-DCs required direct cell contact between the two cell types, and programmed death 1 ligand (PD-L1) played important role in the Tregs expansion. Apoptotic cell administration failed to induce Tol-DCs in IL-10-deficient and Smad3-deficient mice, suggesting that IL-10 and transforming growth factor-β (TGF-β) are needed to maintain DCs in the tolerogenic state. Therefore, we demonstrate that Tol-DCs promote the expansion of Tregs via PD-L1 on their surface and reciprocally Tregs facilitate Tol-DCs to maintain transplantation tolerance induced by apoptotic cells via secreting IL-10 and TGF-β.
Collapse
Affiliation(s)
- Cong Wu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Delalat B, Pourfathollah AA, Soleimani M, Mozdarani H, Ghaemi SR, Movassaghpour AA, Kaviani S. Isolation andex vivoexpansion of human umbilical cord blood-derived CD34+stem cells and their cotransplantation with or without mesenchymal stem cells. Hematology 2013; 14:125-32. [DOI: 10.1179/102453309x402250] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Bahman Delalat
- Department of HematologySchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Department of HematologySchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Masoud Soleimani
- Department of HematologySchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical GeneticSchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Soraya Rasi Ghaemi
- Department of Anatomical SciencesSchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Ali Akbar Movassaghpour
- Department of HematologySchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| | - Saeed Kaviani
- Department of HematologySchool of Medical Sciences Faculty, Tarbiat Modares University, PO Box 14115-111, Tehran, Iran
| |
Collapse
|
38
|
Pessach I, Shimoni A, Nagler A. Apoptotic cells in allogeneic hematopoietic stem cell transplantations: "turning trash into gold". Leuk Lymphoma 2013; 53:2130-5. [PMID: 22553946 DOI: 10.3109/10428194.2012.690099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HST) is an important therapeutic option for various malignant and non-malignant conditions. HST during first remission offers the best cure for patients for whom conventional chemotherapy alone is not sufficient. Yet, in spite of the high curative potential and recent advances in this treatment modality, it remains limited by transplant related toxicity and grant-versus-host disease (GVHD). Apoptotic cells, which used to be regarded as immunologically "bland," are now recognized as important modulators of immune responses. Taking into account the immunological properties of apoptotic cells and the nature of the side effects of HST, they have been administered simultaneously with hematopoietic stem cells in experimental transplantation models, in anticipation of improved outcome. Under these conditions, engraftment and full-donor chimerism are facilitated without significant generation of anti-apoptotic cell auto-antibodies. In addition they prevent alloimmunization, up-regulate T regulatory cells and reduce both the frequency and the severity of GVHD. These favorable effects require host macrophages and donor bone marrow plasmatoid dendritic cells, and are associated with tumor growth factor-β (TGF-β) production. To summarize, apoptotic cells can play a crucial role in the setting of transplantations, and may be viewed as "turning trash into gold." Clinical studies are underway.
Collapse
|
39
|
Ruiz P, Maldonado P, Hidalgo Y, Gleisner A, Sauma D, Silva C, Saez JJ, Nuñez S, Rosemblatt M, Bono MR. Transplant tolerance: new insights and strategies for long-term allograft acceptance. Clin Dev Immunol 2013; 2013:210506. [PMID: 23762087 PMCID: PMC3665173 DOI: 10.1155/2013/210506] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 02/08/2023]
Abstract
One of the greatest advances in medicine during the past century is the introduction of organ transplantation. This therapeutic strategy designed to treat organ failure and organ dysfunction allows to prolong the survival of many patients that are faced with no other treatment option. Today, organ transplantation between genetically dissimilar individuals (allogeneic grafting) is a procedure widely used as a therapeutic alternative in cases of organ failure, hematological disease treatment, and some malignancies. Despite the potential of organ transplantation, the administration of immunosuppressive drugs required for allograft acceptance induces severe immunosuppression in transplanted patients, which leads to serious side effects such as infection with opportunistic pathogens and the occurrence of neoplasias, in addition to the known intrinsic toxicity of these drugs. To solve this setback in allotransplantation, researchers have focused on manipulating the immune response in order to create a state of tolerance rather than unspecific immunosuppression. Here, we describe the different treatments and some of the novel immunotherapeutic strategies undertaken to induce transplantation tolerance.
Collapse
Affiliation(s)
- Paulina Ruiz
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800024 Santiago, Chile
- Programa de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile
| | - Paula Maldonado
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800024 Santiago, Chile
| | - Yessia Hidalgo
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800024 Santiago, Chile
| | - Alejandra Gleisner
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800024 Santiago, Chile
| | - Daniela Sauma
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800024 Santiago, Chile
- Fundacion Ciencia y Vida, 7780272 Santiago, Chile
| | - Cinthia Silva
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800024 Santiago, Chile
| | - Juan Jose Saez
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800024 Santiago, Chile
| | - Sarah Nuñez
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800024 Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800024 Santiago, Chile
- Fundacion Ciencia y Vida, 7780272 Santiago, Chile
- Facultad de Ciencias Biologicas, Universidad Andres Bello, 8370146 Santiago, Chile
| | - Maria Rosa Bono
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, 7800024 Santiago, Chile
| |
Collapse
|
40
|
|
41
|
Mougel F, Bonnefoy F, Kury-Paulin S, Borot S, Perruche S, Kantelip B, Penfornis A, Saas P, Kleinclauss F. Intravenous infusion of donor apoptotic leukocytes before transplantation delays allogeneic islet graft rejection through regulatory T cells. DIABETES & METABOLISM 2012. [PMID: 23182461 DOI: 10.1016/j.diabet.2012.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AIM This study describes the ability of intravenous donor apoptotic leukocyte infusion before islet transplantation to delay allogeneic graft rejection and implicates regulatory T cells (T(reg)) in the effect. METHODS Allogeneic FVB (Friend virus B-type) islet transplants were placed under the kidney capsule of BALB/c recipient mice rendered diabetic by streptozotocin. Apoptotic donor leukocytes were infused intravenously 7 days before transplantation. Foxp3/DTR/GFP transgenic C57BL/6 mice were used as recipients to show depletion of T(reg) after apoptotic cell infusion. Control mice received islet transplants without apoptotic cells. RESULTS The graft median survival time (MST) in recipient mice was 15±1.5 days when apoptotic cells were infused 7 days prior to transplantation of a 1000-islet-containing allograft and 6±0.5 days in the control mice (P<0.01). The same effect was observed using a 500-islet allograft, with an MST of 9±1.1 days vs. 3±0.8 days with and without (controls) apoptotic cells, respectively (P<0.01). This immunomodulatory effect was not observed when apoptotic cell administration was performed on the day of transplantation. Specific T(reg) depletion in Foxp3/DTR/GFP recipient mice inhibited the beneficial effect of apoptotic cell infusion with an MST of 8±1.5 days after apoptotic cell infusion vs. 2±0.2 days when T(reg) were depleted (P<0.01). Furthermore, T(reg) were specifically detected in the islet grafts of mice infused with apoptotic cells prior to islet transplantation. CONCLUSION Infusion of donor apoptotic cells 7 days before allogeneic transplantation delays islet allograft rejection through a process involving T(reg).
Collapse
Affiliation(s)
- F Mougel
- Inserm, UMR1098, 25020 Besançon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Louis I, Wagner E, Dieng MM, Morin H, Champagne MA, Haddad E. Impact of storage temperature and processing delays on cord blood quality: discrepancy between functional in vitro and in vivo assays. Transfusion 2012; 52:2401-5. [PMID: 22500587 DOI: 10.1111/j.1537-2995.2012.03650.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Optimal conditions of cord blood (CB) storage, processing, cryopreservation, and thawing are critical for banking and transplantation. Nevertheless, standardized procedures are still awaited. STUDY DESIGN AND METHODS We evaluated the impact of preprocessing storage and temperature on recovery, viability, and functional differentiation capacities of hematopoietic progenitor cells. We compared units stored at room temperature (RT) or at 4 °C for 72 hours before cryopreservation to units processed shortly after collection (<12 hr). RESULTS Postthaw results showed similar in vitro characteristics between immediate processing and 4 °C storage for cell recovery and viability, both significantly higher than RT storage. Surprisingly, we demonstrated that storage of CB units at RT before processing and cryopreservation profoundly altered in vivo hematopoietic reconstitution in mice, although in vitro hematopoietic colony-forming unit potential was unaltered. CONCLUSION Our findings challenge current CB storage practices and suggest standard in vitro quality assessments may not always be indicative of CB engraftment potential.
Collapse
Affiliation(s)
- Isabelle Louis
- Department of Pediatrics, CHU Sainte-Justine Research Center, CHU Sainte-Justine, University of Montréal, Montréal, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
43
|
Rieger AM, Konowalchuk JD, Grayfer L, Katzenback BA, Havixbeck JJ, Kiemele MD, Belosevic M, Barreda DR. Fish and mammalian phagocytes differentially regulate pro-inflammatory and homeostatic responses in vivo. PLoS One 2012; 7:e47070. [PMID: 23110059 PMCID: PMC3479104 DOI: 10.1371/journal.pone.0047070] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/07/2012] [Indexed: 01/07/2023] Open
Abstract
Phagocytosis is a cellular mechanism that is important to the early induction of antimicrobial responses and the regulation of adaptive immunity. At an inflammatory site, phagocytes serve as central regulators for both pro-inflammatory and homeostatic anti-inflammatory processes. However, it remains unclear if this is a recent evolutionary development or whether the capacity to balance between these two seemingly contradictory processes is a feature already displayed in lower vertebrates. In this study, we used murine (C57BL/6) and teleost fish (C. auratus) in vitro and in vivo models to assess the evolutionary conservation of this dichotomy at a site of inflammation. At the level of the macrophage, we found that teleost fish already displayed divergent pro-inflammatory and homeostatic responses following internalization of zymosan or apoptotic bodies, respectively, and that these were consistent with those of mice. However, fish and mice displayed significant differences in vivo with regards to the level of responsiveness to zymosan and apoptotic bodies, the identity of infiltrating leukocytes, their rate of infiltration, and the kinetics and strength of resulting antimicrobial responses. Unlike macrophages, significant differences were identified between teleost and murine neutrophilic responses. We report for the first time that activated murine, but not teleost neutrophils, possess the capacity to internalize apoptotic bodies. This internalization translates into reduction of neutrophil ROS production. This may play an important part in the recently identified anti-inflammatory activity that mammalian neutrophils display during the resolution phase of inflammation. Our observations are consistent with continued honing of inflammatory control mechanisms from fish to mammals, and provide added insights into the evolutionary path that has resulted in the integrated, multilayered responses that are characteristic of higher vertebrates.
Collapse
Affiliation(s)
- Aja M. Rieger
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Leon Grayfer
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jeffrey J. Havixbeck
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Moira D. Kiemele
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel R. Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Agriculture, Forestry and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
44
|
Saas P, Angelot F, Bardiaux L, Seilles E, Garnache-Ottou F, Perruche S. Phosphatidylserine-expressing cell by-products in transfusion: A pro-inflammatory or an anti-inflammatory effect? Transfus Clin Biol 2012; 19:90-7. [PMID: 22677430 DOI: 10.1016/j.tracli.2012.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 02/29/2012] [Indexed: 01/06/2023]
Abstract
Labile blood products contain phosphatidylserine-expressing cell dusts, including apoptotic cells and microparticles. These cell by-products are produced during blood product process or storage and derived from the cells of interest that exert a therapeutic effect (red blood cells or platelets). Alternatively, phosphatidylserine-expressing cell dusts may also derived from contaminating cells, such as leukocytes, or may be already present in plasma, such as platelet-derived microparticles. These cell by-products present in labile blood products can be responsible for transfusion-induced immunomodulation leading to either transfusion-related acute lung injury (TRALI) or increased occurrence of post-transfusion infections or cancer relapse. In this review, we report data from the literature and our laboratory dealing with interactions between antigen-presenting cells and phosphatidylserine-expressing cell dusts, including apoptotic leukocytes and blood cell-derived microparticles. Then, we discuss how these phosphatidylserine-expressing cell by-products may influence transfusion.
Collapse
Affiliation(s)
- P Saas
- Inserm, UMR1098, BP 1937, 25020 Besançon cedex, France.
| | | | | | | | | | | |
Collapse
|
45
|
Koopman G, Beenhakker N, Hofman S, Walther-Jallow L, Mäkitalo B, Mooij P, Anderson J, Verschoor E, Bogers WM, Heeney JL, Spetz AL. Immunization with apoptotic pseudovirus transduced cells induces both cellular and humoral responses: A proof of concept study in macaques. Vaccine 2012; 30:2523-34. [DOI: 10.1016/j.vaccine.2012.01.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/11/2012] [Accepted: 01/29/2012] [Indexed: 11/29/2022]
|
46
|
Muñoz-Fontela C, Pazos M, Delgado I, Murk W, Mungamuri SK, Lee SW, García-Sastre A, Moran TM, Aaronson SA. p53 serves as a host antiviral factor that enhances innate and adaptive immune responses to influenza A virus. THE JOURNAL OF IMMUNOLOGY 2011; 187:6428-36. [PMID: 22105999 DOI: 10.4049/jimmunol.1101459] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several direct target genes of the p53 tumor suppressor have been identified within pathways involved in viral sensing, cytokine production, and inflammation, suggesting a potential role of p53 in antiviral immunity. The increasing need to identify immune factors to devise host-targeted therapies against pandemic influenza A virus (IAV) led us to investigate the role of endogenous wild-type p53 on the immune response to IAV. We observed that the absence of p53 resulted in delayed cytokine and antiviral gene responses in lung and bone marrow, decreased dendritic cell activation, and reduced IAV-specific CD8(+) T cell immunity. Consequently, p53(-/-) mice showed a more severe IAV-induced disease compared with their wild-type counterparts. These findings establish that p53 influences the antiviral response to IAV, affecting both innate and adaptive immunity. Thus, in addition to its established functions as a tumor suppressor gene, p53 serves as an IAV host antiviral factor that might be modulated to improve anti-IAV therapy and vaccines.
Collapse
Affiliation(s)
- César Muñoz-Fontela
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lichtenauer M, Mildner M, Hoetzenecker K, Zimmermann M, Podesser BK, Sipos W, Berényi E, Dworschak M, Tschachler E, Gyöngyösi M, Ankersmit HJ. Secretome of apoptotic peripheral blood cells (APOSEC) confers cytoprotection to cardiomyocytes and inhibits tissue remodelling after acute myocardial infarction: a preclinical study. Basic Res Cardiol 2011; 106:1283-97. [PMID: 21952733 PMCID: PMC3228946 DOI: 10.1007/s00395-011-0224-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 08/08/2011] [Accepted: 09/05/2011] [Indexed: 12/29/2022]
Abstract
Heart failure following acute myocardial infarction (AMI) is a major cause of morbidity and mortality. Our previous observation that injection of apoptotic peripheral blood mononuclear cell (PBMC) suspensions was able to restore long-term cardiac function in a rat AMI model prompted us to study the effect of soluble factors derived from apoptotic PBMC on ventricular remodelling after AMI. Cell culture supernatants derived from irradiated apoptotic peripheral blood mononuclear cells (APOSEC) were collected and injected as a single dose intravenously after myocardial infarction in an experimental AMI rat model and in a porcine closed chest reperfused AMI model. Magnetic resonance imaging (MRI) and echocardiography were used to quantitate cardiac function. Analysis of soluble factors present in APOSEC was performed by enzyme-linked immunosorbent assay (ELISA) and activation of signalling cascades in human cardiomyocytes by APOSEC in vitro was studied by immunoblot analysis. Intravenous administration of a single dose of APOSEC resulted in a reduction of scar tissue formation in both AMI models. In the porcine reperfused AMI model, APOSEC led to higher values of ejection fraction (57.0 vs. 40.5%, p < 0.01), a better cardiac output (4.0 vs. 2.4 l/min, p < 0.001) and a reduced extent of infarction size (12.6 vs. 6.9%, p < 0.02) as determined by MRI. Exposure of primary human cardiac myocytes with APOSEC in vitro triggered the activation of pro-survival signalling-cascades (AKT, Erk1/2, CREB, c-Jun), increased anti-apoptotic gene products (Bcl-2, BAG1) and protected them from starvation-induced cell death. Intravenous infusion of culture supernatant of apoptotic PBMC attenuates myocardial remodelling in experimental AMI models. This effect is probably due to the activation of pro-survival signalling cascades in the affected cardiomyocytes.
Collapse
Affiliation(s)
- Michael Lichtenauer
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Matthias Zimmermann
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | | | - Wolfgang Sipos
- Clinical Department for Farm Animals and Herd Management, University of Veterinary Medicine, Vienna, Austria
| | - Ervin Berényi
- Department of Biomedical Laboratory and Imaging Science, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Martin Dworschak
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Department of Thoracic Surgery, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
48
|
Bonnefoy F, Perruche S, Couturier M, Sedrati A, Sun Y, Tiberghien P, Gaugler B, Saas P. Plasmacytoid dendritic cells play a major role in apoptotic leukocyte-induced immune modulation. THE JOURNAL OF IMMUNOLOGY 2011; 186:5696-705. [PMID: 21460208 DOI: 10.4049/jimmunol.1001523] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Several APCs participate in apoptotic cell-induced immune modulation. Whether plasmacytoid dendritic cells (PDCs) are involved in this process has not yet been characterized. Using a mouse model of allogeneic bone marrow engraftment, we demonstrated that donor bone marrow PDCs are required for both donor apoptotic cell-induced engraftment and regulatory T cell (Treg) increase. We confirmed in naive mice receiving i.v. syngeneic apoptotic cell infusion that PDCs from the spleen induce ex vivo Treg commitment. We showed that PDCs did not interact directly with apoptotic cells. In contrast, in vivo macrophage depletion experiments using clodronate-loaded liposome infusion and coculture experiments with supernatant from macrophages incubated with apoptotic cells showed that PDCs required macrophage-derived soluble factors--including TGF-β--to exert their immunomodulatory functions. Overall, PDCs may be considered as the major APC involved in Treg stimulation/generation in the setting of an immunosuppressive environment obtained by apoptotic cell infusion. These findings show that like other APCs, PDC functions are influenced, at least indirectly, by exposure to blood-borne apoptotic cells. This might correspond with an additional mechanism preventing unwanted immune responses against self-antigens clustered at the cell surface of apoptotic cells occurring during normal cell turnover.
Collapse
Affiliation(s)
- Francis Bonnefoy
- INSERM Unité Mixte de Recherche 645, F-25020 Besançon Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Matignon M, Bonnefoy F, Lang P, Grimbert P. Transfusion sanguine et transplantation. Transfus Clin Biol 2011; 18:70-8. [DOI: 10.1016/j.tracli.2011.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 11/25/2022]
|
50
|
Lichtenauer M, Mildner M, Baumgartner A, Hasun M, Werba G, Beer L, Altmann P, Roth G, Gyöngyösi M, Podesser BK, Ankersmit HJ. Intravenous and intramyocardial injection of apoptotic white blood cell suspensions prevents ventricular remodelling by increasing elastin expression in cardiac scar tissue after myocardial infarction. Basic Res Cardiol 2011; 106:645-55. [PMID: 21416207 PMCID: PMC3105227 DOI: 10.1007/s00395-011-0173-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/17/2011] [Accepted: 03/09/2011] [Indexed: 11/09/2022]
Abstract
Congestive heart failure developing after acute myocardial infarction (AMI) is a major cause of morbidity and mortality. Clinical trials of cell-based therapy after AMI evidenced only a moderate benefit. We could show previously that suspensions of apoptotic peripheral blood mononuclear cells (PBMC) are able to reduce myocardial damage in a rat model of AMI. Here we experimentally examined the biochemical mechanisms involved in preventing ventricular remodelling and preserving cardiac function after AMI. Cell suspensions of apoptotic cells were injected intravenously or intramyocardially after experimental AMI induced by coronary artery ligation in rats. Administration of cell culture medium or viable PBMC served as controls. Immunohistological analysis was performed to analyse the cellular infiltrate in the ischaemic myocardium. Cardiac function was quantified by echocardiography. Planimetry of the infarcted hearts showed a significant reduction of infarction size and an improvement of post AMI remodelling in rats treated with suspensions of apoptotic PBMC (injected either intravenously or intramoycardially). Moreover, these hearts evidenced enhanced homing of macrophages and cells staining positive for c-kit, FLK-1, IGF-I and FGF-2 as compared to controls. A major finding in this study further was that the ratio of elastic and collagenous fibres within the scar tissue was altered in a favourable fashion in rats injected with apoptotic cells. Intravenous or intramyocardial injection of apoptotic cell suspensions results in attenuation of myocardial remodelling after experimental AMI, preserves left ventricular function, increases homing of regenerative cells and alters the composition of cardiac scar tissue. The higher expression of elastic fibres provides passive energy to the cardiac scar tissue and results in prevention of ventricular remodelling.
Collapse
Affiliation(s)
- Michael Lichtenauer
- Department of Thoracic Surgery, Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Medical University Vienna, Währinger Gürtel 18-20, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|