1
|
Wen S, Dooner M, Pereira M, Del Tatto M, Quesenberry P. Mesenchymal Stem Cell-Derived Extracellular Vesicles Improve Survival and Enhance Hematopoietic Recovery in Mice Exposed to High-Dose Irradiation. Stem Cells Dev 2025. [PMID: 40135580 DOI: 10.1089/scd.2025.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Exposure to high-dose radiation often results in hematopoietic acute radiation syndromes, leading to early mortality, while current therapies for patients exposed to lethal radiation doses are limited. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have shown promise in tissue repair and regeneration but have not been well investigated for mitigating high-dose radiation damage. We previously demonstrated that human or murine MSC-EVs can reverse bone marrow injury caused by mild or moderate radiation. The current study evaluated the therapeutic potential of human MSC-EVs in mice exposed to high-dose total body irradiation (TBI). Mice were exposed to 0, 700, or 950 cGy TBI and subsequently received daily intravenous MSC-EV injections (1 × 109 particles) for 3 days postirradiation. We evaluated survival rates, peripheral blood recovery, bone marrow engraftment, and bone marrow gene expression profiles at various intervals following treatment. MSC-EV administration significantly enhanced survival, with 70% of treated mice surviving 120 days after 950 cGy TBI exposure, compared with 0% survival in untreated controls by day 30. Although early peripheral blood recovery was not observed within 14 days, MSC-EV treatment facilitated substantial recovery at 3 months postirradiation, with significant increases in red blood cell, platelet, white blood cell, and hemoglobin levels, despite white blood cell and hemoglobin levels remaining slightly below normal. Furthermore, the engraftment capacity of bone marrow stem cells was significantly improved. The changes in hematopoietic-related gene expression presented at 14 days postirradiation returned to normal levels by 120 days in MSC-EV-treated mice. These results highlight the potential of MSC-EVs as a therapeutic strategy for high-dose radiation injuries by promoting hematopoietic recovery and improving survival. Our future research will focus on elucidating the radioprotective mechanisms and investigating their integration with existing therapies.
Collapse
Affiliation(s)
- Sicheng Wen
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Mark Dooner
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Mandy Pereira
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Michael Del Tatto
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Peter Quesenberry
- Division of Hematology/Oncology, Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
2
|
Luo Z, Bian Y, Zheng R, Song Y, Shi L, Xu H, Wang H, Li X, Tao Z, Wang A, Liu K, Fu W, Xue J. Combination of chemically modified SDF-1α mRNA and small skin improves wound healing in diabetic rats with full-thickness skin defects. Cell Prolif 2022; 55:e13318. [PMID: 35932176 DOI: 10.1111/cpr.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Diabetes mellitus is associated with refractory wound healing, yet current therapies are insufficient to accelerate the process of healing. Recent studies have indicated chemically modified mRNA (modRNA) as a promising therapeutic intervention. The present study aimed to explore the efficacy of small skin engineered to express modified mRNAs encoding the stromal cell-derived factor-1α (SDF-1α) facilitating wound healing in a full-thickness skin defect rat model. This study, devised therapeutic strategies for diabetic wounds by pre-treating small skin with SDF-1α modRNA. MATERIALS AND METHODS The in vitro transfection efficiency was evaluated using fluorescence microscopy and the content of SDF-1α in the medium was determined using ELISA after the transfection of SDF-1α into the small skin. To evaluate the effect of SDF-1α modRNA and transplantation of the small skin cells on wound healing, an in vivo full-thickness skin defect rat model was assessed. RESULTS The results revealed that a modRNA carrying SDF-1α provided potent wound healing in the small skin lesions reducing reduced scar thickness and greater angiogenesis (CD31) in the subcutaneous layer. The SDF-1α cytokines were significantly secreted by the small skin after transfection in vitro. CONCLUSIONS This study demonstrated the benefits of employing small skin combined with SDF-1α modRNA in enhancing wound healing in diabetic rats having full-thickness skin defects.
Collapse
Affiliation(s)
- Zucheng Luo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yujie Bian
- Department of Orthopaedics, Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Rui Zheng
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yonghuan Song
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Li Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Haiting Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Zhenyu Tao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Anyuan Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Ke Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jixin Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Chen H, Li G, Liu Y, Ji S, Li Y, Xiang J, Zhou L, Gao H, Zhang W, Sun X, Fu X, Li B. Pleiotropic Roles of CXCR4 in Wound Repair and Regeneration. Front Immunol 2021; 12:668758. [PMID: 34122427 PMCID: PMC8194072 DOI: 10.3389/fimmu.2021.668758] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Wound healing is a multi-step process that includes multiple cellular events such as cell proliferation, cell adhesion, and chemotactic response as well as cell apoptosis. Accumulating studies have documented the significance of stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor 4 (CXCR4) signaling in wound repair and regeneration. However, the molecular mechanism of regeneration is not clear. This review describes various types of tissue regeneration that CXCR4 participates in and how the efficiency of regeneration is increased by CXCR4 overexpression. It emphasizes the pleiotropic effects of CXCR4 in regeneration. By delving into the specific molecular mechanisms of CXCR4, we hope to provide a theoretical basis for tissue engineering and future regenerative medicine.
Collapse
Affiliation(s)
- Huating Chen
- Department of Wound Repair Surgery, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | | | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuaifei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.,Department of Southern Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Jiangbing Xiang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China.,Department of School of Biological Engineering, Chongqing University, Chongqing, China
| | - Laixian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Huanhuan Gao
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenwen Zhang
- Department of Wound Repair Surgery, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
| | - Binghui Li
- Department of Wound Repair Surgery, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Quickly attainable and highly engrafting hematopoietic stem cells. BLOOD SCIENCE 2019; 1:113-115. [PMID: 35402793 PMCID: PMC8975002 DOI: 10.1097/bs9.0000000000000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 11/26/2022] Open
|
5
|
Ajami M, Soleimani M, Abroun S, Atashi A. Comparison of cord blood CD34 + stem cell expansion in coculture with mesenchymal stem cells overexpressing SDF‐1 and soluble /membrane isoforms of SCF. J Cell Biochem 2019; 120:15297-15309. [DOI: 10.1002/jcb.28797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Mansoureh Ajami
- Department of Hematology and Blood Banking, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Saeid Abroun
- Department of Hematology and Blood Banking, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Amir Atashi
- Department of Hematology and Blood Banking, Faculty of Medical Sciences Tarbiat Modares University Tehran Iran
- Stem Cell and Tissue Engineering Research Center Shahroud University of Medical Sciences Shahroud Iran
| |
Collapse
|
6
|
Morsink LM, Walter RB. Novel monoclonal antibody-based therapies for acute myeloid leukemia. Best Pract Res Clin Haematol 2019; 32:116-126. [PMID: 31203993 DOI: 10.1016/j.beha.2019.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022]
Abstract
There has been long-standing interest in using monoclonal antibodies to improve outcomes of people with acute myeloid leukemia (AML). While several candidate therapeutics have failed at various stages of clinical testing, improved survival of some patients receiving the CD33 antibody-drug conjugate gemtuzumab ozogamicin has provided first evidence that monoclonal antibodies have a role in the armamentarium against AML. Over the last several years, work to improve the success of monoclonal antibody-based therapies in AML has focused on the identification and exploration of new antigen targets as much as on the development of novel treatment formats such as use of unconjugated engineered monoclonal antibodies and conjugated antibodies, delivering highly potent small molecule drugs or radionuclides to AML cells. Here, we will provide a brief overview of current efforts with such investigational monoclonal antibody-based therapeutics.
Collapse
Affiliation(s)
- Linde M Morsink
- Department of Hematology, University Medical Center Groningen, Groningen, the Netherlands
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, Division of Hematology, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA; Department of Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Jafarzadeh N, Safari Z, Pornour M, Amirizadeh N, Forouzandeh Moghadam M, Sadeghizadeh M. Alteration of cellular and immune-related properties of bone marrow mesenchymal stem cells and macrophages by K562 chronic myeloid leukemia cell derived exosomes. J Cell Physiol 2018; 234:3697-3710. [PMID: 30317554 DOI: 10.1002/jcp.27142] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
Abstract
Leukemic cells can impact the bone marrow niche to create a tumor-favorable microenvironment using their secreted factors. Little knowledge is available about immunosuppressive and tumor-promoting properties of chronic myeloid leukemia derived exosomes in bone marrow stromal components. We report here that K562-derived exosomes can affect the gene expression, cytokine secretion, nitric oxide (NO) production, and redox potential of bone marrow mesenchymal stem cells (BM-MSCs) and macrophages. Human BM-MSCs and mouse macrophages were treated with K562-derived exosomes. Our results demonstrated that the expression of the genes involved in hematopoietic developmental pathways and immune responses, including C-X-C motif chemokine 12 (Cxcl12), Dickkopf-related protein 1 (DKK1), wnt5a, interleukin 6 (IL-6), transforming growth factor-beta, and tumor necrosis factor-alpha (TNF-alpha), changed with respect to time and exosome concentration in BM-MSCs. The TNF-alpha level was higher in exosome-treated BM-MSCs compared with the control. Exosome treatment of BM-MSCs led to an increased production of NO and a decreased production of reactive oxygen species (ROS) in a time- and concentration-dependent manner. We have shown that K562-derived exosomes induce overexpression of IL-10 and TNF-alpha and downregulation of iNOS transcript levels in macrophages. The enzyme-linked immunosorbent assay results showed that TNF-alpha and IL-10 secretions increased in macrophages. Treatment of macrophages with purified exosomes led to reduced NO and ROS levels. These results suggest that K562-derived exosomes may alter the local bone marrow niche toward a leukemia-reinforcing microenvironment. They can modulate the inflammatory molecules (TNF-alpha and NO) and the redox potential of BM-MSCs and macrophages and direct the polarization of macrophages toward tumor-associated macrophages.
Collapse
Affiliation(s)
- Nazli Jafarzadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zohreh Safari
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Pornour
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education Culture and Research (ACECR), Tehran, Iran
| | - Naser Amirizadeh
- Blood Transfusion Research Center, High Institute for Education and Research in Transfusion Medicine, Tehran, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Quickly Attainable and Highly Engrafting Hematopoietic Stem Cells. BLOOD SCIENCE 2018. [DOI: 10.2478/bls-2018-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Zhan H, Lin CHS, Segal Y, Kaushansky K. The JAK2V617F-bearing vascular niche promotes clonal expansion in myeloproliferative neoplasms. Leukemia 2017; 32:462-469. [PMID: 28744010 PMCID: PMC5783797 DOI: 10.1038/leu.2017.233] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/15/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
The acquired kinase mutation JAK2V617F plays a central role in myeloproliferative neoplasms (MPNs). However, the mechanisms responsible for the malignant hematopoietic stem/progenitor cell (HSPC) expansion seen in patients with MPNs are not fully understood, limiting the effectiveness of current treatment. Endothelial cells (ECs) are an essential component of the hematopoietic niche, and they have been shown to express the JAK2V617F mutation in patients with MPNs. We show that the JAK2V617F-bearing vascular niche promotes the expansion of the JAK2V617F HSPCs in preference to JAK2WT HSPCs, potentially contributing to poor donor cell engraftment and disease relapse following stem cell transplantation. The expression of Chemokine (C-X-C motif) ligand 12 (CXCL12) and stem cell factor (SCF) were upregulated in JAK2V617F-bearing ECs compared to wild-type ECs, potentially accounting for this observation. We further identify that the thrombopoietin (TPO)/MPL signaling pathway is critical for the altered vascular niche function. A better understanding of how the vascular niche contributes to HSPC expansion and MPN development is essential for the design of more effective therapeutic strategies for patients with MPNs.
Collapse
Affiliation(s)
- H Zhan
- Northport VA Medical Center, Northport, NY, USA.,Department of Medicine, Stony Brook Medicine, Stony Brook, NY, USA
| | - C H S Lin
- Department of Medicine, Stony Brook Medicine, Stony Brook, NY, USA
| | - Y Segal
- Northport VA Medical Center, Northport, NY, USA
| | - K Kaushansky
- Department of Medicine, Stony Brook Medicine, Stony Brook, NY, USA.,Office of the Sr. Vice President, Health Sciences, Stony Brook Medicine, Stony Brook, NY, USA
| |
Collapse
|
10
|
SDF-1/CXCL12 modulates mitochondrial respiration of immature blood cells in a bi-phasic manner. Blood Cells Mol Dis 2016; 58:13-8. [PMID: 27067482 DOI: 10.1016/j.bcmd.2016.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 01/08/2023]
Abstract
SDF-1/CXCL12 is a potent chemokine required for the homing and engraftment of hematopoietic stem and progenitor cells. Previous data from our group has shown that in an SDF-1/CXCL12 transgenic mouse model, lineage(-) Sca-1(+) c-Kit(+) (LSK) bone marrow cells have reduced mitochondrial membrane potential versus wild-type. These results suggested that SDF-1/CXCL12 may function to keep mitochondrial respiration low in immature blood cells in the bone marrow. Low mitochondrial metabolism helps to maintain low levels of reactive oxygen species (ROS), which can influence differentiation. To test whether SDF-1/CXCL12 regulates mitochondrial metabolism, we employed the human leukemia cell line HL-60, that expresses high levels of the SDF-1/CXCL12 receptor, CXCR4, as a model of hematopoietic progenitor cells in vitro. We treated HL-60 cells with SDF-1/CXCL12 for 2 and 24h. Oxygen consumption rates (OCR), mitochondrial-associated ATP production, mitochondrial mass, and mitochondrial membrane potential of HL-60 cells were significantly reduced at 2h and increased at 24h as compared to untreated control cells. These biphasic effects of SDF-1/CXCL12 were reproduced with lineage negative primary mouse bone marrow cells, suggesting a novel function of SDF-1/CXCL12 in modulating mitochondrial respiration by regulating mitochondrial oxidative phosphorylation, ATP production and mitochondrial content.
Collapse
|
11
|
Danylesko I, Sareli R, Varda-Bloom N, Yerushalmi R, Shem-Tov N, Shimoni A, Nagler A. Plerixafor (Mozobil): A Stem Cell-Mobilizing Agent for Transplantation in Lymphoma Patients Predicted to Be Poor Mobilizers - A Pilot Study. Acta Haematol 2015; 135:29-36. [PMID: 26303343 DOI: 10.1159/000435769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/03/2015] [Indexed: 11/19/2022]
Abstract
Autologous hematopoietic stem cell transplantation is the standard therapy for refractory/relapsed aggressive lymphoma. The initial step of the procedure involves mobilization and collection of hematopoietic stem cells. G-CSF fails to achieve mobilization in 15-25% of lymphoma patients. Plerixafor is a novel CXCR4 antagonist that can promote mobilization. It has been used successfully in patients after the failure of G-CSF. It is reasonable to test whether plerixafor should become the mobilizing agent of choice in patients expected to exhibit difficulties in mobilization. We initiated a study to assess the use of plerixafor as a first-line stem cell mobilizer in 20 elderly or heavily pretreated patients with non-Hodgkin or Hodgkin lymphoma. The minimum defined CD34+ cell dose of ≥2 × 106 cells/kg was achieved by 90% of the patients, and for 83% of them with one apheresis procedure. The target CD34+ dose of ≥5 × 106 cells/kg was achieved by 70% of the patients. The median number of circulating CD34+ cells before and after plerixafor was 14.4 and 42.8 cells/μl, respectively. The post-plerixafor adverse events were mild. All patients promptly engrafted after high-dose chemotherapy treatment. We conclude that plerixafor administration is safe and efficient for upfront mobilization in lymphoma patients predicted to be poor mobilizers.
Collapse
Affiliation(s)
- Ivetta Danylesko
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
12
|
Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives. Front Immunol 2015; 6:429. [PMID: 26347749 PMCID: PMC4543903 DOI: 10.3389/fimmu.2015.00429] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022] Open
Abstract
CXCR4 and its ligand CXCL12 mediate the homing of progenitor cells in the bone marrow and their recruitment to sites of injury, as well as affect processes such as cell arrest, survival, and angiogenesis. CXCL12 was long thought to be the sole CXCR4 ligand, but more recently the atypical chemokine macrophage migration inhibitory factor (MIF) was identified as an alternative, non-cognate ligand for CXCR4 and shown to mediate chemotaxis and arrest of CXCR4-expressing T-cells. This has complicated the understanding of CXCR4-mediated signaling and associated biological processes. Compared to CXCL12/CXCR4-induced signaling, only few details are known on MIF/CXCR4-mediated signaling and it remains unclear to which extent MIF and CXCL12 reciprocally influence CXCR4 binding and signaling. Furthermore, the atypical chemokine receptor 3 (ACKR3) (previously CXCR7) has added to the complexity of CXCR4 signaling due to its ability to bind CXCL12 and MIF, and to evoke CXCL12- and MIF-triggered signaling independently of CXCR4. Also, extracellular ubiquitin (eUb) and the viral protein gp120 (HIV) have been reported as CXCR4 ligands, whereas viral chemokine vMIP-II (Herpesvirus) and human β3-defensin (HBD-3) have been identified as CXCR4 antagonists. This review will provide insight into the diversity and inter-connections in the CXCR4 receptor/ligand family. We will discuss signaling pathways initiated by binding of CXCL12 vs. MIF to CXCR4, elaborate on how ACKR3 affects CXCR4 signaling, and summarize biological functions of CXCR4 signaling mediated by CXCL12 or MIF. Also, we will discuss eUb and gp120 as alternative ligands for CXCR4, and describe vMIP-II and HBD-3 as antagonists for CXCR4. Detailed insight into biological effects of CXCR4 signaling und underlying mechanisms, including diversity of CXCR4 ligands and inter-connections with other (chemokine) receptors, is clinically important, as the CXCR4 antagonist AMD3100 has been approved as stem cell mobilizer in specific disease settings.
Collapse
Affiliation(s)
- Lukas Pawig
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| | - Christina Klasen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich , Munich , Germany ; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance , Munich , Germany ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , Netherlands
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany ; August-Lenz-Stiftung, Institute for Cardiovascular Research, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Heidi Noels
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| |
Collapse
|
13
|
Joseph M, Das M, Kanji S, Lu J, Aggarwal R, Chakroborty D, Sarkar C, Yu H, Mao HQ, Basu S, Pompili VJ, Das H. Retention of stemness and vasculogenic potential of human umbilical cord blood stem cells after repeated expansions on PES-nanofiber matrices. Biomaterials 2014; 35:8566-75. [PMID: 25002260 PMCID: PMC4131920 DOI: 10.1016/j.biomaterials.2014.06.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/19/2014] [Indexed: 12/26/2022]
Abstract
Despite recent advances in cardiovascular medicine, ischemic diseases remain a major cause of morbidity and mortality. Although stem cell-based therapies for the treatment of ischemic diseases show great promise, limited availability of biologically functional stem cells mired the application of stem cell-based therapies. Previously, we reported a PES-nanofiber based ex vivo stem cell expansion technology, which supports expansion of human umbilical cord blood (UCB)-derived CD133(+)/CD34(+) progenitor cells ∼225 fold. Herein, we show that using similar technology and subsequent re-expansion methods, we can achieve ∼5 million-fold yields within 24 days of the initial seeding. Interestingly, stem cell phenotype was preserved during the course of the multiple expansions. The high level of the stem cell homing receptor, CXCR4 was expressed in the primary expansion cells, and was maintained throughout the course of re-expansions. In addition, re-expanded cells preserved their multi-potential differential capabilities in vitro, such as, endothelial and smooth muscle lineages. Moreover, biological functionality of the re-expanded cells was preserved and was confirmed by a murine hind limb ischemia model for revascularization. These cells could also be genetically modified for enhanced vasculogenesis. Immunohistochemical evidences support enhanced expression of angiogenic factors responsible for this enhanced neovascularization. These data further confirms that nanofiber-based ex-vivo expansion technology can generate sufficient numbers of biologically functional stem cells for potential clinical applications.
Collapse
Affiliation(s)
- Matthew Joseph
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Manjusri Das
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Suman Kanji
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Jingwei Lu
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Reeva Aggarwal
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Debanjan Chakroborty
- Department of Pathology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Chandrani Sarkar
- Department of Pathology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Hongmei Yu
- Department of Pathology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Hai-Quan Mao
- Department of Materials Science and Engineering & Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Sujit Basu
- Department of Pathology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Vincent J Pompili
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Hiranmoy Das
- Stem Cell Research Laboratory, Davis Heart and Lung Research Institute, Wexner Medical Center at The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Domanska UM, Boer JC, Timmer-Bosscha H, van Vugt MATM, Hoving HD, Kliphuis NM, Rosati S, van der Poel HG, de Jong IJ, de Vries EGE, Walenkamp AME. CXCR4 inhibition enhances radiosensitivity, while inducing cancer cell mobilization in a prostate cancer mouse model. Clin Exp Metastasis 2014; 31:829-39. [PMID: 25154297 DOI: 10.1007/s10585-014-9673-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/12/2014] [Indexed: 02/06/2023]
Abstract
Preclinical studies show that stroma affects sensitivity of prostate cancer cells via activation of the CXCR4/CXCL12 pathway. Here we studied the effect of CXCR4 inhibition combined with irradiation in prostate cancer cells. In an in vitro co-culture with stromal cells, the CXCR4 inhibitor AMD3100 sensitized prostate cancer cell lines PC3-Luc and LNCaP to irradiation (P = 0.04). Tumor growth and metastasis were evaluated in mice xenografted with luciferase-expressing PC3 cells that received 5 Gy irradiation weekly ± 3.5 mg/kg AMD3100 daily intraperitoneally. The irradiated xenografts showed higher CXCR4 (P = 0.006) and CXCL12 (P = 0.01) expression, compared to controls. AMD3100 sensitized the xenografts to irradiation at the fourth week of treatment (P = 0.02). However AMD3100 also mobilized tumor cells at days 14 and 21 (P < 0.0001), as shown by bioluminescent imaging. In conclusion, AMD3100 transiently enhances prostate cancer radiosensitivity, but induces cancer cell mobilization.
Collapse
Affiliation(s)
- Urszula M Domanska
- Departments of Medical Oncology, University Medical Center Groningen, University of Groningen, P.O. Box 30.00, 19700 RB, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Döring Y, Pawig L, Weber C, Noels H. The CXCL12/CXCR4 chemokine ligand/receptor axis in cardiovascular disease. Front Physiol 2014; 5:212. [PMID: 24966838 PMCID: PMC4052746 DOI: 10.3389/fphys.2014.00212] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/15/2014] [Indexed: 12/18/2022] Open
Abstract
The chemokine receptor CXCR4 and its ligand CXCL12 play an important homeostatic function by mediating the homing of progenitor cells in the bone marrow and regulating their mobilization into peripheral tissues upon injury or stress. Although the CXCL12/CXCR4 interaction has long been regarded as a monogamous relation, the identification of the pro-inflammatory chemokine macrophage migration inhibitory factor (MIF) as an important second ligand for CXCR4, and of CXCR7 as an alternative receptor for CXCL12, has undermined this interpretation and has considerably complicated the understanding of CXCL12/CXCR4 signaling and associated biological functions. This review aims to provide insight into the current concept of the CXCL12/CXCR4 axis in myocardial infarction (MI) and its underlying pathologies such as atherosclerosis and injury-induced vascular restenosis. It will discuss main findings from in vitro studies, animal experiments and large-scale genome-wide association studies. The importance of the CXCL12/CXCR4 axis in progenitor cell homing and mobilization will be addressed, as will be the function of CXCR4 in different cell types involved in atherosclerosis. Finally, a potential translation of current knowledge on CXCR4 into future therapeutical application will be discussed.
Collapse
Affiliation(s)
- Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Germany
| | - Lukas Pawig
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Aachen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Germany ; German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance Munich, Germany ; Cardiovascular Research Institute Maastricht, University of Maastricht Maastricht, Netherlands
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Aachen, Germany
| |
Collapse
|
16
|
Anders HJ, Romagnani P, Mantovani A. Pathomechanisms: homeostatic chemokines in health, tissue regeneration, and progressive diseases. Trends Mol Med 2014; 20:154-65. [PMID: 24440002 DOI: 10.1016/j.molmed.2013.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/06/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022]
Abstract
Homeostatic chemokines control stem and progenitor cell migration and activation during vasculogenesis and organ development. They orchestrate hematopoietic stem cell (HSC) homing to their bone marrow niches and direct immature lymphocytes to a series of maturation sites within lymphoid organs. Along these lines, homeostatic chemokines regulate the niches of peripheral committed progenitor cell populations for tissue renewal. These biological functions support neovascularization and wound healing, including the recruitment of endothelial and other progenitor cells from the bone marrow. Here, we summarize the roles of homeostatic chemokines, their signaling receptors, and atypical decoy receptors during homeostasis and tissue regeneration in order to better understand their pathogenic roles in disease, for example, in diabetes complications, cancer, autoimmunity, epithelial hyperplasia, or hypertrophic scarring and fibrosis.
Collapse
Affiliation(s)
- Hans-Joachim Anders
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität, München, Germany.
| | - Paola Romagnani
- Excellence Centre for Research, Transfer, and High Education for the Development of De Novo Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), via Manzoni 113, 20089, Rozzano, Italy; University of Milan, Department of Translational Medicine, 20089 Rozzano, Italy
| |
Collapse
|
17
|
Broxmeyer HE, Mor-Vaknin N, Kappes F, Legendre M, Saha AK, Ou X, O'Leary H, Capitano M, Cooper S, Markovitz DM. Concise review: role of DEK in stem/progenitor cell biology. Stem Cells 2013; 31:1447-53. [PMID: 23733396 PMCID: PMC3814160 DOI: 10.1002/stem.1443] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/19/2022]
Abstract
Understanding the factors that regulate hematopoiesis opens up the possibility of modifying these factors and their actions for clinical benefit. DEK, a non-histone nuclear phosphoprotein initially identified as a putative proto-oncogene, has recently been linked to regulate hematopoiesis. DEK has myelosuppressive activity in vitro on proliferation of human and mouse hematopoietic progenitor cells and enhancing activity on engraftment of long-term marrow repopulating mouse stem cells, has been linked in coordinate regulation with the transcription factor C/EBPα, for differentiation of myeloid cells, and apparently targets a long-term repopulating hematopoietic stem cell for leukemic transformation. This review covers the uniqueness of DEK, what is known about how it now functions as a nuclear protein and also as a secreted molecule that can act in paracrine fashion, and how it may be regulated in part by dipeptidylpeptidase 4, an enzyme known to truncate and modify a number of proteins involved in activities on hematopoietic cells. Examples are provided of possible future areas of investigation needed to better understand how DEK may be regulated and function as a regulator of hematopoiesis, information possibly translatable to other normal and diseased immature cell systems.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang DF, Lou N, Qiu MZ, Lin YB, Liang Y. Effects of CXCR4 gene silencing by lentivirus shRNA on proliferation of the EC9706 human esophageal carcinoma cell line. Tumour Biol 2013; 34:2951-9. [PMID: 23744460 DOI: 10.1007/s13277-013-0858-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/10/2013] [Indexed: 02/06/2023] Open
Abstract
CXCL12/CXCR4 has been studied as an important biomarker for many human malignancies, but studies are limited for esophageal squamous cell carcinoma (ESCC). In this study, an effective RNAi sequence targeting the CXCR4 gene was selected, a lentiviral shRNA vector was constructed to specifically silence CXCR4 expression in the EC9706 ESCC cell line, and the effects of CXCR4 silencing on cell growth in vitro and tumour growth in nude mice were then evaluated. The expression of CXCR4 in EC9706 was significantly downregulated after transfection with a lentiviral shRNA vector. The expression of the apoptosis-related gene Bcl-2 was decreased. In addition, after CXCR4 inhibition, cell growth was considerably inhibited, increased apoptosis in the EC9706 cells was found, the G0/G1 percentage was significantly increased, and the number of cells in S phase was reduced. Moreover, tumour growth in nude mice was inhibited. In conclusion, the downregulation of CXCR4 expression by transfection with a lentiviral shRNA vector in ESCC cells could inhibit tumour proliferation. Our data may provide an avenue for finding new ESCC treatments.
Collapse
Affiliation(s)
- Dao-feng Wang
- State Key Laboratory of Oncology in South China, Guangzhou, People's Republic of China,
| | | | | | | | | |
Collapse
|
19
|
Wang DF, Lou N, Li XD. Effect of coriolus versicolor polysaccharide-B on the biological characteristics of human esophageal carcinoma cell line eca109. Cancer Biol Med 2013; 9:164-7. [PMID: 23691473 PMCID: PMC3643661 DOI: 10.7497/j.issn.2095-3941.2012.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 08/10/2012] [Indexed: 11/30/2022] Open
Abstract
Objective To investigate the effect of Coriolus versicolor polysaccharide-B (CVPs-B) on the biological characteristics of human esophageal carcinoma cell line Eca109 in vitro. Methods The cells of experimental group (EG) were cultured in DMEM with 10% FCS and 150µg/mL CVPs-B, the cells of control group (CG) were cultured in DMEM with 10% FCS without CVPs-B. MTT reduction assay was performed to detect the effect of CVPs-B on the proliferation of Eca109 cells after the compound was administrated in varying concentrations. The living conditions of the Eca109 cells were determined using trypan blue exclusion. Then, cell growth curves were drawn. Flow cytometry was performed to detect the effect of CVPs-B on the apoptosis and cell cycle of Eca109. Results In comparison with the CG, a marked decrease in the proliferation of Eca09 cells was observed in the EG, after incubation with CVPs-B. The survival rate of Eca09 cells decreased as the time of CVPs-B incubation prolonged. Comparing the cell cycles and apoptotic rates between the two groups, the proportions of cells in the G0/G1, S, and G2/M phases in the EG were found to be (68.4±3.7)%, (13.9±2.1)%, and (17.7±1.4)%, respectively, after 24 h incubation with CVPs-B. The cells had an apoptotic rate of (9.7±0.7)%. On the other hand, the proportions of the G0/G1, S, and G2/M cells of the CG were found to be (53.9±3.6)%, (26.6±2.8)%, and (19.5±2.3)%, respectively, with an apoptotic rate of (5.7±1.4)%. In comparison with the CG cells, significant cell growth in the G0/G1 phase was observed in the EG (P<0.05). Furthermore, a significant decrease in the number of cells in the S phase was observed (P<0.05) in the EG. Conclusions CVPs-B can inhibit proliferation and enhance apoptosis of Eca109 cells and may be useful in the treatment of esophageal carcinoma.
Collapse
Affiliation(s)
- Dao-Feng Wang
- State Key Laboratory of Oncology in South China, ; Department of ICU
| | | | | |
Collapse
|
20
|
Kim HY, Oh YS, Song IC, Kim SW, Lee HJ, Yun HJ, Kim S, Jo DY. Endogenous stromal cell-derived factor-1 (CXCL12) supports autonomous growth of acute myeloid leukemia cells. Leuk Res 2013; 37:566-72. [PMID: 23473997 DOI: 10.1016/j.leukres.2013.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 12/22/2012] [Accepted: 01/21/2013] [Indexed: 10/27/2022]
|
21
|
de Morais Pereira LH, Pacheco Olegário JG, Rocha LP, de Oliveira Guimarães CS, Ramalho FS, dos Reis MA, Miranda Corrêa RR. Association between the markers of FIRS and the morphologic alterations in the liver of neonates autopsied in the perinatal period. Fetal Pediatr Pathol 2013; 31:48-54. [PMID: 22515549 DOI: 10.3109/15513815.2012.659536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Markers of fetal inflammatory response syndrome (FIRS) can influence the morphologic alterations in liver of autopsied neonates. The IL-6, TNF-α, and C-reactive protein (CRP) expression in liver fragments were marked by immunohistochemistry and the intensity of steatosis, percentage of fibrosis, and the number of foci of extramedullary erythropoiesis were evaluated. The degree of steatosis correlated positively with IL-6 (p = 0.06), positively with CRP (p ≤ 0.001), and negatively with TNF-α (p = 0.06). The collagen percentage correlated positively with IL-6 (p = 0.055) and positively with TNF-α (p ≤ 0.001). Erythropoiesis correlated positively with IL-6 (p ≤ 0.001) and negatively with CRP (p = 0.00754). The analyzed markers of FIRS have an important role in triggering hepatic morphologic alterations.
Collapse
|
22
|
Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med 2012; 18:1786-96. [PMID: 23160239 DOI: 10.1038/nm.2991] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
Enhancement of hematopoietic recovery after radiation, chemotherapy, or hematopoietic stem cell (HSC) transplantation is clinically relevant. Dipeptidylpeptidase (DPP4) cleaves a wide variety of substrates, including the chemokine stromal cell-derived factor-1 (SDF-1). In the course of experiments showing that inhibition of DPP4 enhances SDF-1-mediated progenitor cell survival, ex vivo cytokine expansion and replating frequency, we unexpectedly found that DPP4 has a more general role in regulating colony-stimulating factor (CSF) activity. DPP4 cleaved within the N-termini of the CSFs granulocyte-macrophage (GM)-CSF, G-CSF, interleukin-3 (IL-3) and erythropoietin and decreased their activity. Dpp4 knockout or DPP4 inhibition enhanced CSF activities both in vitro and in vivo. The reduced activity of DPP4-truncated versus full-length human GM-CSF was mechanistically linked to effects on receptor-binding affinity, induction of GM-CSF receptor oligomerization and signaling capacity. Hematopoiesis in mice after radiation or chemotherapy was enhanced in Dpp4(-/-) mice or mice receiving an orally active DPP4 inhibitor. DPP4 inhibition enhanced engraftment in mice without compromising HSC function, suggesting the potential clinical utility of this approach.
Collapse
|
23
|
Rankin SM. Chemokines and adult bone marrow stem cells. Immunol Lett 2012; 145:47-54. [PMID: 22698183 DOI: 10.1016/j.imlet.2012.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/13/2012] [Indexed: 12/15/2022]
Abstract
The adult bone contains a number of distinct populations of stem cells, including haematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells and fibrocytes. While haematopoietic stem cells are required to provide a lifelong supply of blood cells it is thought that the other populations of stem cells play a role in tissue regeneration and potentially disease. The chemokine CXCL12 is produced constitutively in the bone marrow and, acting via CXCR4, is critical in maintaining HSPCs in a quiescent state and retaining all subsets of stem and progenitor cells in the bone marrow environment. The cytokine G-CSF, used clinically to mobilize haematopoietic stem cells for bone marrow transplants, activates the sympathetic nervous system and bone marrow macrophages to reduce the expression of CXCL12 by bone marrow stromal cells, thereby promoting the exit of haematopoietic stem cells from the bone marrow. Understanding the molecular mechanisms underlying G-CSF stimulated mobilization has led to development of CXCR4 antagonists as fast acting mobilizing agents for haematopoietic stem cells. Evidence now suggests that CXCR4 antagonists can similarly mobilize distinct subsets of progenitor cells, namely the endothelial progenitor cells and mesenchymal stem cells, but this requires conditioning of the bone marrow with VEGF rather than G-CSF.
Collapse
Affiliation(s)
- Sara M Rankin
- Leukocyte Biology Section, NHLI Division, Faculty of Medicine, Imperial College London, UK.
| |
Collapse
|
24
|
CXCR4 inhibitors selectively eliminate CXCR4-expressing human acute myeloid leukemia cells in NOG mouse model. Cell Death Dis 2012; 3:e396. [PMID: 23034331 PMCID: PMC3481125 DOI: 10.1038/cddis.2012.137] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The chemokine receptor CXCR4 favors the interaction of acute myeloid leukemia (AML) cells with their niche but the extent to which it participates in pathogenesis is unclear. Here, we show that CXCR4 expression at the surface of leukemic cells allowed distinguishing CXCR4high from CXCR4neg/low AML patients. When high levels of CXCR4 are expressed at the surface of AML cells, blocking the receptor function with small molecule inhibitors could promote leukemic cell death and reduce NOD/Shi-scid/IL-2Rγnull (NOG) leukemia-initiating cells (LICs). Conversely, these drugs had no efficacy when AML cells do not express CXCR4 or when they do not respond to chemokine CXC motif ligand 12 (CXCL12). Functional analysis showed a greater mobilization of leukemic cells and LICs in response to drugs, suggesting that they target the interaction between leukemic cells and their supportive bone marrow microenvironment. In addition, increased apoptosis of leukemic cells in vitro and in vivo was observed. CXCR4 expression level on AML blast cells and their migratory response to CXCL12 are therefore predictive of the response to the inhibitors and could be used as biomarkers to select patients that could potentially benefit from the drugs.
Collapse
|
25
|
Oliveira LF, da Silva Monteiro APF, Espindula AP, Morais Pereira LH, Rocha LP, de Oliveira Guimarães CS, Cavellani CL, Castro ECDC, Miranda Correa RR. Liver morphologic analysis in perinatal autopsies with intrauterine stress liver morphology in perinatal autopsies. Fetal Pediatr Pathol 2012; 31:240-7. [PMID: 22417002 DOI: 10.3109/15513815.2011.650505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Quantify steatosis, fibrosis, and focuses of extramedullary erythropoiesis (ER) in the liver and report it to the causes of death in the perinatal. Morphologic analysis of steatosis', percentage of fibrosis, and ER of 467 perinatal autopsies. Cases with hypoxia/perinatal anoxia and ascending infection showed higher percentage of fibrosis. The number of ER was significantly higher among premature infants and in cases with infection. Our results contribute to a better quality of perinatal care through clinical demonstration of which injuries are associated with them, what may help in early diagnosis of these alterations in children who survive.
Collapse
|
26
|
Kato I, Niwa A, Heike T, Fujino H, Saito MK, Umeda K, Hiramatsu H, Ito M, Morita M, Nishinaka Y, Adachi S, Ishikawa F, Nakahata T. Identification of hepatic niche harboring human acute lymphoblastic leukemic cells via the SDF-1/CXCR4 axis. PLoS One 2011; 6:e27042. [PMID: 22069486 PMCID: PMC3206061 DOI: 10.1371/journal.pone.0027042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 10/09/2011] [Indexed: 12/20/2022] Open
Abstract
In acute lymphoblastic leukemia (ALL) patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. The mechanism underlying this pathology is also poorly understood. Here, to answer these questions, we reconstituted the histopathology of leukemic liver by using patients-derived primary ALL cells into NOD/SCID/Yc (null) mice. The liver pathology in this model was similar to that observed in the patients. By using this model, we clearly demonstrated that bile duct epithelial cells form a hepatic niche that supports infiltration and proliferation of ALL cells in the liver. Furthermore, we showed that functions of the niche are maintained by the SDF-1/CXCR4 axis, proposing a novel therapeutic approach targeting the extramedullary niche by inhibition of the SDF-1/CXCR4 axis. In conclusion, we demonstrated that the liver dissemination of leukemia is not due to nonselective infiltration, but rather systematic invasion and proliferation of leukemic cells in hepatic niche. Although the contribution of SDF-1/CXCR4 axis is reported in some cancer cells or leukemic niches such as bone marrow, we demonstrated that this axis works even in the extramedullary niche of leukemic cells. Our findings form the basis for therapeutic approaches that target the extramedullary niche by inhibiting the SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Itaru Kato
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Heike
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hisanori Fujino
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Megumu K. Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Katsutsugu Umeda
- Centre for Stem Cell Research, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kanagawa, Japan
| | - Makiko Morita
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Nishinaka
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Souichi Adachi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Ishikawa
- Research Unit for Human Disease Models, RIKEN Research Center for Allergy and Immunology, Kanagawa, Japan
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
27
|
Saini V, Staren DM, Ziarek JJ, Nashaat ZN, Campbell EM, Volkman BF, Marchese A, Majetschak M. The CXC chemokine receptor 4 ligands ubiquitin and stromal cell-derived factor-1α function through distinct receptor interactions. J Biol Chem 2011; 286:33466-77. [PMID: 21757744 PMCID: PMC3190899 DOI: 10.1074/jbc.m111.233742] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/11/2011] [Indexed: 01/21/2023] Open
Abstract
Recently, we identified extracellular ubiquitin as an endogenous CXC chemokine receptor (CXCR) 4 agonist. However, the receptor selectivity and molecular basis of the CXCR4 agonist activity of ubiquitin are unknown, and functional consequences of CXCR4 activation with ubiquitin are poorly defined. Here, we provide evidence that ubiquitin and the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α do not share CXCR7 as a receptor. We further demonstrate that ubiquitin does not utilize the typical two-site binding mechanism of chemokine-receptor interactions, in which the receptor N terminus is important for ligand binding. CXCR4 activation with ubiquitin and SDF-1α lead to similar Gα(i)-responses and to a comparable magnitude of phosphorylation of ERK-1/2, p90 ribosomal S6 kinase-l and Akt, although phosphorylations occur more transiently after activation with ubiquitin. Despite the similarity of signal transduction events after activation of CXCR4 with both ligands, ubiquitin possesses weaker chemotactic activity than SDF-lα in cell migration assays and does not interfere with productive entry of HIV-1 into P4.R5 multinuclear activation of galactosidase indicator cells. Unlike SDF-1α, ubiquitin lacks interactions with an N-terminal CXCR4 peptide in NMR spectroscopy experiments. Binding and signaling studies in the presence of antibodies against the N terminus and extracellular loops 2/3 of CXCR4 confirm that the ubiquitin CXCR4 interaction is independent of the N-terminal receptor domain, whereas blockade of extracellular loops 2/3 prevents receptor binding and activation. Our findings define ubiquitin as a CXCR4 agonist, which does not interfere with productive cellular entry of HIV-1, and provide new mechanistic insights into interactions between CXCR4 and its natural ligands.
Collapse
Affiliation(s)
- Vikas Saini
- From the Department of Surgery, Burn and Shock Trauma Institute, and
| | - Daniel M. Staren
- From the Department of Surgery, Burn and Shock Trauma Institute, and
| | - Joshua J. Ziarek
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | | | - Brian F. Volkman
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adriano Marchese
- Molecular Pharmacology & Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153 and
| | - Matthias Majetschak
- From the Department of Surgery, Burn and Shock Trauma Institute, and
- Molecular Pharmacology & Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153 and
| |
Collapse
|
28
|
Hübel K, Fresen MM, Salwender H, Basara N, Beier R, Theurich S, Christopeit M, Bogner C, Galm O, Hartwig R, Heits F, Lordick F, Rösler W, Wehler D, Zander AR, Albert MH, Dressler S, Ebinger M, Frickhofen N, Hertenstein B, Kiehl M, Liebler S, von Lilienfeld-Toal M, Weidmann E, Weigelt C, Lange F, Kröger N. Plerixafor with and without chemotherapy in poor mobilizers: results from the German compassionate use program. Bone Marrow Transplant 2011; 46:1045-52. [PMID: 20972470 DOI: 10.1038/bmt.2010.249] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/28/2010] [Accepted: 08/23/2010] [Indexed: 11/09/2022]
Abstract
The CXCR4-inhibitor plerixafor mobilizes hematopoietic stem cells amplifying the effects of granulocyte-CSF (G-CSF). Before approval plerixafor was used in a compassionate use program (CUP) for patients who failed a previous mobilization. In the German CUP 60 patients from 23 centers (median age 56.5 years (2-75)) were given 240 μg/kg plerixafor SC 9-11 h before apheresis. A total of 78.3% (47/60) received G-CSF for 4 days before plerixafor administration; 76.6% of those (36/47) yielded at least 2.0 × 10(6) CD34(+) cells/μL. The median cell yield was 3.35 × 10(6) CD34+ cells/kg (0-29.53). Nine patients received plerixafor alone or with G-CSF for less than 4 days mobilizing a median of 3.30 × 10(6) CD34+ cells/kg (1.6-5.6). There was no significant difference between G-CSF application for 4 days and for a shorter period of time (P=0.157). A total of 47 patients received plerixafor plus G-CSF combined with chemotherapy yielding a median of 3.28 × 10(6) CD34+ cells/kg (0-24.79). In all, 40 of 60 patients (66.7%) proceeded to transplantation, and achieved a timely and stable engraftment. Side effects were rare and manageable. In conclusion, mobilization with plerixafor in poor mobilizers is safe and results in a sufficient stem cell harvest in the majority of patients.
Collapse
Affiliation(s)
- K Hübel
- University Hospital of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sharma M, Afrin F, Satija N, Tripathi RP, Gangenahalli GU. Stromal-derived factor-1/CXCR4 signaling: indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cells Dev 2011; 20:933-46. [PMID: 21186999 DOI: 10.1089/scd.2010.0263] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Homing and engraftment of hematopoietic stem/progenitor cells (HSPCs) in bone marrow is the major determining factor in success of hematopoietic stem cell transplantation. This is a complex, multistep process orchestrated by the coordinated interplay between adhesion molecules, cytokines, growth factors, and regulatory cofactors, many of which remain to be defined. Recent studies have highlighted the pivotal role of unique stromal-derived factor-1 (SDF-1)/CXCR4 signaling in the regulation of HSPC homing and subsequent engraftment. In addition, studies suggest that SDF-1/CXCR4 signaling acts as an essential survival-promoting factor of transplanted HSPCs as well as maintenance of quiescent HSCs in bone marrow niche. These pleiotropic effects exerted by SDF-1/CXCR4 axis make this unique signaling initiator very promising, not only for optimal hematopoietic reconstitution but also for the development of innovative approaches to achieve restoration, regeneration, or repair of other damaged tissues potentially amendable to reversal by stem cell transplantation. This goal can only be achieved when the role of SDF-1/CXCR4 axis in hematopoietic transplantation is clearly defined. Hence, this review presents current knowledge of the mechanisms through which SDF-1/CXCR4 signaling promotes restoration of hematopoiesis by regulating the homing and engraftment of HSPCs.
Collapse
Affiliation(s)
- Menka Sharma
- Stem Cell and Gene Therapy Research Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defense Research and Development Organization, New Delhi, India
| | | | | | | | | |
Collapse
|
30
|
Abstract
Although most hematopoietic lineages develop in the bone marrow (BM), T cells uniquely complete their development in the specialized environment of the thymus. Hematopoietic stem cells with long-term self-renewal capacity are not present in the thymus. As a result, continuous T cell development requires that BM-derived progenitors be imported into the thymus throughout adult life. The process of thymic homing begins with the mobilization of progenitors out of the BM, continues with their circulation in the bloodstream, and concludes with their settling in the thymus. This review will discuss each of these steps as they occur in the unirradiated and postirradiation scenarios, focusing on the molecular mechanisms of regulation. Improved knowledge about these early steps in T cell generation may accelerate the development of new therapeutic options in patients with impaired T cell number or function.
Collapse
Affiliation(s)
- Daniel A Zlotoff
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
31
|
Abstract
The regulated migration of stem cells is critical for organogenesis during development and for tissue -homeostasis and repair during adulthood. Human bone marrow (BM) represents an accessible reservoir containing regenerative cell types from hematopoietic, endothelial, and mesenchymal-stromal lineages that together coordinate hematopoiesis and promote the repair of damaged vasculature and tissues throughout the body. Thus, a detailed understanding of lineage-specific stem cell mobilization, homing, and subsequent engraftment in areas of injury or disease is of critical importance to the rational development of novel cell-mediated regenerative therapies. Stem cell trafficking via the circulation from site of origin to peripheral tissues requires fundamental molecular pathways governing (1) niche-specific deadhesion of progenitor cells; (2) chemoattraction to guide progenitor cell homing; and (3) interstitial navigation and adhesion/retention of recruited progenitor cells. This overview chapter summarizes the diversity of migratory strategies employed by hematopoietic, endothelial, and mesenchymal-stromal progenitor cells during repair and regeneration after tissue damage. Further elucidation of stem cell homing and migration pathways will allow greater application of stem cells for targeted cell therapy and/or drug delivery for tissue repair. Strikingly similar migratory mechanisms appear to govern the in vivo migration of recently characterized cancer stem cells (CSC) in leukemias and solid tumors, indicating that conserved principles of stem cell migration and niche specificity will provide new information to target CSC in anticancer therapy.
Collapse
|
32
|
Catusse J, Wollner S, Leick M, Schröttner P, Schraufstätter I, Burger M. Attenuation of CXCR4 responses by CCL18 in acute lymphocytic leukemia B cells. J Cell Physiol 2010; 225:792-800. [PMID: 20568229 DOI: 10.1002/jcp.22284] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CCL18 and CXCL12 are homeostatic chemokines with high constitutive concentrations in serum. Elevated levels of CCL18 have been described in various diseases including childhood acute lymphocytic leukemia (ALL) but its functions remain poorly characterized. Its receptor has not been identified, but functional cellular responses like lymphocyte chemotaxis have been described. CXCL12 is a pivotal chemokine for hematopoiesis and B cell homing processes. We demonstrate that CCL18 interferes with CXCL12-mediated pre-B ALL cell activation. CXCL12-induced calcium mobilization, chemotaxis, pseudo-emperipolesis and cellular proliferation could be significantly reduced by CCL18 in pre-B ALL cell lines. The results could be observed in primary cells from patients suffering from pre-B ALL, but not in cells from patients suffering from common ALL. Direct effects of CCL18 on the receptor for CXCL12, CXCR4, could be excluded. Moreover, we found that CCL18 modulations of CXCL12-induced responses are mediated through the chemokine-like receptor GPR30. CCL18 bound to GPR30 expressing cells, and antibodies against GPR30 abolished this binding as well as CCL18-mediated functional effects. We also observed that, CCL18 interferes with the activation of GPR30 by previously identified ligands (17β-estradiol and chemical agonists). We therefore suggest that CCL18 is an important modulator of CXCR4-dependent responses in pre-B ALL cells via interactions with GPR30.
Collapse
Affiliation(s)
- J Catusse
- Department of Hematology and Oncology, University Clinic of Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Lu J, Pompili VJ, Das H. Hematopoietic stem cells: ex-vivo expansion and therapeutic potential for myocardial ischemia. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2010; 3:57-68. [PMID: 24198511 PMCID: PMC3781726 DOI: 10.2147/sccaa.s6908] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite recent advances in cardiovascular medicine, ischemic heart disease remains the major cause of death in the United States and abroad. Cell-based therapy for degenerative diseases like myocardial ischemia using stem cells is currently under serious investigation. Various types of stem cells are being considered to be candidates for cell transplantation in cell-based therapy. Hematopoietic stem cells are one of the most promising cell types as several studies demonstrated their ability to improve ischemic cardiac functions by enhancing neovascularization and by reducing the total size of scar tissue. However, in order to procure sufficient numbers of functional stem cells, ex-vivo expansion technology became critically important. In this review, we focus on the state-of-the-art ex-vivo technology for the expansion of hematopoietic stem cells, and the underlying mechanisms regulating stem cell self-renewal as well as differentiation.
Collapse
Affiliation(s)
- Jingwei Lu
- Cardiovascular Stem Cell Research Laboratory, The Dorothy M Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | | | | |
Collapse
|
34
|
Dillmann F, Veldwijk MR, Laufs S, Sperandio M, Calandra G, Wenz F, Zeller J, Fruehauf S. Plerixafor inhibits chemotaxis toward SDF-1 and CXCR4-mediated stroma contact in a dose-dependent manner resulting in increased susceptibility of BCR-ABL+ cell to Imatinib and Nilotinib. Leuk Lymphoma 2010; 50:1676-86. [PMID: 19657955 DOI: 10.1080/10428190903150847] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Despite Imatinib's remarkable success in chronic myelogenous leukemia treatment, monotherapy frequently causes resistance, underlining the rationale for combination chemotherapy. A potential approach would be interrupting the SDF-1/CXCR4 axis using the selective CXCR4 antagonist Plerixafor (previously AMD3100), as this axis has been reported to provide survival-enhancing effects to myeloid progenitor cells. By efficient CXCR4 blocking in the CXCR4(+)/BCR-ABL(+) cell line BV-173, plerixafor (1-100 muM) significantly inhibits SDF-1alpha-mediated chemotaxis and cell migration toward the murine stroma cell line FBMD-1. Furthermore, plerixafor also significantly (10-100 muM) increased the detachment rate of SDF-1-mediated/VCAM-1-associated cell adherence under shear stress. Using a stroma-dependent coculture assay, plerixafor sensitized BCR-ABL(+) cells toward tyrosine kinase inhibitor therapy. Because the level of cell killing nearly reached that of samples cultured without stroma, a cell-cell interaction disruption seems to improve the efficacy of BCR-ABL-targeting drugs. In addition, we could show that exposure of BCR-ABL(+) cells to Imatinib or Nilotinib induced an increase in surface CXCR4 expression. Our data suggest that for BCR-ABL(+) leukemia, the selective blocking of the SDF-1/CXCR4 axis by plerixafor is a potential mechanism to overcome the protective effect of the bone marrow environment, thereby increasing the therapeutic potency of anti-BCR-ABL drugs and the therapeutic window.
Collapse
Affiliation(s)
- Falk Dillmann
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
G-CSF enhanced SDF-1 gradient between bone marrow and liver associated with mobilization of peripheral blood CD34+ cells in rats with acute liver failure. Dig Dis Sci 2010; 55:285-91. [PMID: 19294511 DOI: 10.1007/s10620-009-0757-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 02/03/2009] [Indexed: 12/24/2022]
Abstract
The role of stromal cell-derived factor-1 (SDF-1) in modulating massive liver damage is not well known. In this study, expression of SDF-1 in bone marrow and liver was investigated in rats with acute liver failure (ALF) when mobilized using granulocyte colony-stimulating factor (G-CSF). ALF was induced in rats by D-galactosamine (D-GalN). Starting after 2 hours following D-GalN induction, the animals were injected with G-CSF 50 microg/kg daily or saline as placebo for 5 days. The percentages of CD34+ cells in peripheral blood and the expression of SDF-1 in bone marrow and liver were then determined. The percentages of peripheral CD34+ cells demonstrated a transient increase in placebo rats following D-GalN induction and a significant increase in rats after G-CSF administration. SDF-1 expression showed a transient decrease in bone marrow and a transient increase in liver tissue from placebo rats. However, a significant decrease of SDF-1 expression in bone marrow and a remarkable increase in liver tissue were observed in animals from the G-CSF group. It was concluded that G-CSF can enhance the reduced expression of SDF-1 in bone marrow and increased expression in liver in ALF rats, forming a greater SDF-1 gradient, and chemoattracting CD34+ cells' migration from bone marrow to an injured liver.
Collapse
|
36
|
Broxmeyer HE, Cooper S, Hass DM, Hathaway JK, Stehman FB, Hangoc G. Experimental basis of cord blood transplantation. Bone Marrow Transplant 2009; 44:627-33. [PMID: 19802026 DOI: 10.1038/bmt.2009.285] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Efforts are needed to enhance the efficacy of cord blood (CB) transplantation. Laboratory information set the stage for the first and subsequent CB transplants, and will be instrumental in continuing to advance the field. This paper offers a brief understanding of the current state of hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC) biology, a look back at laboratory studies leading to the first CB transplants, and a discussion of the possible means to enhance CB transplantation. Results show that physical recovery of greater numbers of HPCs is possible after CB is collected by perfusing the placenta, but how realistic this procedure is for collection of CB to be banked is open to question. We also show that the chemokine stromal cell-derived factor-1/CXCL12 can enhance the ex vivo expansion of CB HPCs beyond that of the combination of SCF, Flt3-ligand and TPO. Advances in cytokine and stromal cell biology, and in intracellular signals mediating the effects of cytokines/stromal cells should be considered in the context of future efforts to enhance functional activities of donor CB HSCs and HPCs and the microenvironmental niche of the recipient, which is required for acceptance and nurturing these HSCs/HPCs.
Collapse
Affiliation(s)
- H E Broxmeyer
- Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202-5181, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Transplantation with bone marrow (BM) hematopoietic stem cells (HSC) has been used for curative therapy of hematologic diseases and inborn errors of metabolism for decades. More recently, alternative sources of HSC, particularly those induced to exit marrow and traffic to peripheral blood in response to external stimuli, have become the most widely used hematopoietic graft and show significant superiority to marrow HSC. Although a variety of agents can mobilize stem cells with different kinetics and efficiencies and these agents can be additive or synergistic when used in combination, currently G-CSF is the predominant stem cell mobilizer used clinically based upon potency, predictability and safety. Recent studies have demonstrated that the interaction between the chemokine stromal-derived factor 1 (SDF-1/CXCL12) and its receptor CXCR4 serves as a key regulator of HSC trafficking. AMD3100, a novel bicyclam CXCR4 antagonist, induces the rapid mobilization of HSC with both short- and long-term repopulation capacity. Mobilization with G-CSF and AMD3100 in clinical trials resulted in more patients achieving sufficient PBSC for transplantation than with G-CSF alone. Thus, chemokine axis-mobilization could allow rapid PBSC harvests with increased cell yields in difficult-to mobilize patients. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts demonstrated prompt and stable engraftment. Enhanced homing properties of chemokine axis-mobilized PBSC suggest that these cells may have greater therapeutic utility in other areas including tissue repair and regeneration.
Collapse
|
38
|
Boehmler AM, Drost A, Jaggy L, Seitz G, Wiesner T, Denzlinger C, Kanz L, Möhle R. The CysLT1 ligand leukotriene D4 supports alpha4beta1- and alpha5beta1-mediated adhesion and proliferation of CD34+ hematopoietic progenitor cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:6789-98. [PMID: 19454674 DOI: 10.4049/jimmunol.0801525] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytokines and chemokines control hematopoietic stem and progenitor cell (HPC) proliferation and trafficking. However, the role of nonpeptide mediators in the bone marrow microenvironment has remained elusive. Particularly CysLT(1), a G protein-coupled receptor recognizing inflammatory mediators of the cysteinyl leukotriene family, is highly expressed in HPCs. We therefore analyzed the effects of its ligands on human CD34(+) HPCs. The most potent CysLT(1) ligand, LTD(4), rapidly and significantly up-regulated alpha(4)beta(1) and alpha(5)beta(1) integrin-dependent adhesion of both primitive and committed HPC. LTD(4)-triggered adhesion was inhibited by specific CysLT(1) antagonists. The effects of other CysLT(1) ligands were weak (LTC(4)) or absent (LTE(4)). In serum-free liquid cultures supplemented with various hematopoietic cytokines including IL-3, only LTD(4) significantly augmented the expansion of HPCs in a dose-dependent manner comparable to that of peptide growth factors. LTC(4) and LTE(4) were less effective. In CD34(+) cell lines and primary HPCs, LTD(4) induced phosphorylation of p44/42 ERK/MAPK and focal adhesion kinase-related tyrosine kinase Pyk2, which is linked to integrin activation. Bone marrow stromal cells produced biologically significant amounts of cysteinyl leukotrienes only when hematopoietic cells were absent, suggesting a regulatory feedback mechanism in the hematopoietic microenvironment. In contrast to antagonists of the homing-related G protein-coupled receptor CXCR4, administration of a CysLT(1) antagonist failed to induce human CD34(+) HPC mobilization in vivo. Our results suggest that cysteinyl leukotriene may contribute to HPC retention and proliferation only when cysteinyl leukotriene levels are increased either systemically during inflammation or locally during marrow aplasia.
Collapse
|
39
|
Xu J, Gonzalez ET, Iyer SS, Mac V, Mora AL, Sutliff RL, Reed A, Brigham KL, Kelly P, Rojas M. Use of senescence-accelerated mouse model in bleomycin-induced lung injury suggests that bone marrow-derived cells can alter the outcome of lung injury in aged mice. J Gerontol A Biol Sci Med Sci 2009; 64:731-9. [PMID: 19359440 DOI: 10.1093/gerona/glp040] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The incidence of pulmonary fibrosis increases with age. Studies from our group have implicated circulating progenitor cells, termed fibrocytes, in lung fibrosis. In this study, we investigate whether the preceding determinants of inflammation and fibrosis were augmented with aging. We compared responses to intratracheal bleomycin in senescence-accelerated prone mice (SAMP), with responses in age-matched control senescence-accelerated resistant mice (SAMR). SAMP mice demonstrated an exaggerated inflammatory response as evidenced by lung histology. Bleomycin-induced fibrosis was significantly higher in SAMP mice compared with SAMR controls. Consistent with fibrotic changes in the lung, SAMP mice expressed higher levels of transforming growth factor-beta1 in the lung. Furthermore, SAMP mice showed higher numbers of fibrocytes and higher levels of stromal cell-derived factor-1 in the peripheral blood. This study provides the novel observation that apart from increases in inflammatory and fibrotic factors in response to injury, the increased mobilization of fibrocytes may be involved in age-related susceptibility to lung fibrosis.
Collapse
Affiliation(s)
- Jianguo Xu
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kim YE, Kang HB, Park JA, Nam KH, Kwon HJ, Lee Y. Upregulation of NF-kappaB upon differentiation of mouse embryonic stem cells. BMB Rep 2009; 41:705-9. [PMID: 18959816 DOI: 10.5483/bmbrep.2008.41.10.705] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NF-kappaB is a transcriptional regulator involved in many biological processes including proliferation, survival, and differentiation. Recently, we reported that expression and activity of NF-kappaB is comparatively low in undifferentiated human embryonic stem (ES) cells, but increases during differentiation. Here, we found a lower expression of NF-kappaB p65 protein in mouse ES cells when compared with mouse embryonic fibroblast cells. Protein levels of NF-kappaB p65 and relB were clearly enhanced during retinoic acid-induced differentiation. Furthermore, increased DNA binding activity of NF-kappaB in response to TNF-alpha, an agonist of NF-kappaB signaling, was seen in differentiated but not undifferentiated mouse ES cells. Taken together with our previous data in human ES cells, it is likely that NF-kappaB expression and activity of the NF-kappaB signaling pathway is comparatively low in undifferentiated ES cells, but increases during differentiation of ES cells in general.
Collapse
Affiliation(s)
- Young-Eun Kim
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Leclerc C, Brose C, Nouzé C, Leonard F, Majlessi L, Becker S, von Briesen H, Lo-Man R. Immobilized cytokines as biomaterials for manufacturing immune cell based vaccines. J Biomed Mater Res A 2008; 86:1033-40. [PMID: 18067172 DOI: 10.1002/jbm.a.31751] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Manufacturing of bioactive cell culture substrates represents a major challenge for the development of cell therapy for tissue repair and immune treatment of cancers, infectious diseases, or immunodeficiencies. In this context, we evaluated the capacity of several differentiation factors, including Granulocyte Macrophage Colony Stimulating Factor (GM-CSF) and Macrophage Colony Stimulating Factor (M-CSF), to drive differentiation of primary cell cultures, once immobilized on surfaces. We show that covalently immobilized signal factors fully retain their biological properties and efficiently promote differentiation of mouse and/or human precursor cells leading to the production of dendritic cells and macrophages. For GM-CSF, we also show that the efficiency of receptor signaling is comparable using either soluble or tethered molecules. Such artificial bioactive interfaces are suitable for the development and automated production of cell-based vaccines and therapies.
Collapse
Affiliation(s)
- Claude Leclerc
- Institut Pasteur, Unité de Régulation Immunitaire et Vaccinologie, F-75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Shivtiel S, Kollet O, Lapid K, Schajnovitz A, Goichberg P, Kalinkovich A, Shezen E, Tesio M, Netzer N, Petit I, Sharir A, Lapidot T. CD45 regulates retention, motility, and numbers of hematopoietic progenitors, and affects osteoclast remodeling of metaphyseal trabecules. ACTA ACUST UNITED AC 2008; 205:2381-95. [PMID: 18779349 PMCID: PMC2556782 DOI: 10.1084/jem.20080072] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The CD45 phosphatase is uniquely expressed by all leukocytes, but its role in regulating hematopoietic progenitors is poorly understood. We show that enhanced CD45 expression on bone marrow (BM) leukocytes correlates with increased cell motility in response to stress signals. Moreover, immature CD45 knockout (KO) cells showed defective motility, including reduced homing (both steady state and in response to stromal-derived factor 1) and reduced granulocyte colony-stimulating factor mobilization. These defects were associated with increased cell adhesion mediated by reduced matrix metalloproteinase 9 secretion and imbalanced Src kinase activity. Poor mobilization of CD45KO progenitors by the receptor activator of nuclear factor kappaB ligand, and impaired modulation of the endosteal components osteopontin and stem cell factor, suggested defective osteoclast function. Indeed, CD45KO osteoclasts exhibited impaired bone remodeling and abnormal morphology, which we attributed to defective cell fusion and Src function. This led to irregular distribution of metaphyseal bone trabecules, a region enriched with stem cell niches. Consequently, CD45KO mice had less primitive cells in the BM and increased numbers of these cells in the spleen, yet with reduced homing and repopulation potential. Uncoupling environmental and intrinsic defects in chimeric mice, we demonstrated that CD45 regulates progenitor movement and retention by influencing both the hematopoietic and nonhematopoietic compartments.
Collapse
Affiliation(s)
- Shoham Shivtiel
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Leukemia 2008; 22:2151-5158. [PMID: 18769446 DOI: 10.1038/leu.2008.238] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The chemokine stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4, participate in the retention of acute myeloblastic leukemia (AML) cells within the bone marrow microenvironment and their release into the circulation. AML cells also constitutively express SDF-1-dependent elastase, which regulates their migration and proliferation. To study the molecular events and genes regulated by the SDF-1/CXCR4 axis and elastase in AML cells, we examined gene expression profiles of the AML cell line, U937, under treatment with a neutralizing anti-CXCR4 antibody or elastase inhibitor, as compared with non-treated cells, using DNA microarray technology. Unsupervised hierarchical clustering analysis demonstrated similar gene expression profiles of anti-CXCR4 antibody or elastase inhibitor-treated cells, as compared with control. Pathway and functional analysis showed a greater tendency toward differentiation in cells under either one of both treatment modalities. Thus given, we further analyzed the effects of CXCR4 inhibition on AML cell growth and differentiation using the antagonist AMD3100. AMD3100 arrested proliferation in AML cell lines and triggered changes that mimicked differentiation, including morphological changes and the expression of myeloid differentiation antigens. Inhibition of elastase also triggered the differentiation of AML cells. Our study defines a new role for the SDF-1/CXCR4 axis in the regulation of leukemic cell survival and differentiation.
Collapse
|
44
|
A Cross-Talk Between Stromal Cell-Derived Factor-1 and Transforming Growth Factor-β Controls the Quiescence/Cycling Switch of CD34+Progenitors Through FoxO3 and Mammalian Target of Rapamycin. Stem Cells 2008; 26:3150-61. [DOI: 10.1634/stemcells.2008-0219] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Abstract
Cell-based therapies for the prevention and treatment of cardiac dysfunction offer the potential to significantly modulate cardiac function and improve outcomes in patients with cardiovascular disease. To date several clinical studies have suggested the potential efficacy of several different stem cell types; however, the benefits seen in clinical trials have been inconsistent and modest. In parallel, preclinical studies have identified key events in the process of cell-based myocardial repair, including stem cell homing, engraftment, survival, paracrine factor release, and differentiation that need to be optimized to maximize cardiac repair and function. The inconsistent and modest benefits seen in clinical trials combined with the preclinical identification of mediators responsible for key events in cell-based cardiac repair offers the potential for cell-based therapy to advance to cell-based gene therapy in an attempt to optimize these key events in the hope of maximizing clinical benefit. Below we discuss potential key events in cardiac repair and the mediators of these events that could be of potential interest for genetic enhancement of stem cell-based cardiac repair.
Collapse
Affiliation(s)
- Marc S Penn
- Skirball Laboratory for Cardiovascular Cellular Therapeutics, Center for Cardiovascular Cellular Therapeutics, NE3, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | |
Collapse
|
46
|
Gao C, Huan J. SDF-1 Plays a Key Role in Chronic Allograft Nephropathy in Rats. Transplant Proc 2008; 40:1674-8. [DOI: 10.1016/j.transproceed.2008.03.129] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 03/06/2008] [Indexed: 11/17/2022]
|
47
|
Rehman AO, Wang CY. SDF-1alpha promotes invasion of head and neck squamous cell carcinoma by activating NF-kappaB. J Biol Chem 2008; 283:19888-94. [PMID: 18448428 DOI: 10.1074/jbc.m710432200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CXCL12/stromal cell-derived factor-1alpha (SDF-1alpha), a chemokine ligand for the G protein-coupled receptor CXCR4, plays an important role in the directed movement of cells. Many studies have documented the importance of CXCR4 in tumor progression and organ-specific metastasis. Recently, several studies have implicated a role for SDF-1alpha in head and neck squamous cell carcinoma (HNSCC) metastasis, but currently there is little information about how SDF-1alpha promotes HNSCC metastasis. In this report we show that the NF-kappaB signaling pathway is activated in response to SDF-1alpha in HNSCC while primary and immortalized keratinocytes show no SDF-1alpha-mediated NF-kappaB activity. We found that SDF-1alpha-mediated NF-kappaB signaling is independent of phosphoinositide 3-kinase/Akt and ERK/MAPK pathways. We observed that SDF-1alpha induces IkappaBalpha phosphorylation and degradation and the nuclear translocation of NF-kappaB in HNSCC cell lines, suggesting that SDF-1alpha activates the classical NF-kappaB signaling pathway. Contrary to previous reports, SDF-1alpha-induced NF-kappaB activation is not mediated by tumor necrosis factor alpha. Furthermore, blocking the NF-kappaB signaling pathway with an IKKbeta inhibitor significantly reduces SDF-1alpha-mediated HNSCC invasion. Taken together, our data suggest SDF-1alpha/CXCR4 may promote HNSCC invasion and metastasis by activating NF-kappaB and that targeting NF-kappaB may provide therapeutic opportunities in preventing HNSCC metastasis mediated by SDF-1alpha.
Collapse
Affiliation(s)
- Aasia O Rehman
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | | |
Collapse
|
48
|
CCL5-mediated T-cell chemotaxis involves the initiation of mRNA translation through mTOR/4E-BP1. Blood 2008; 111:4892-901. [PMID: 18337562 DOI: 10.1182/blood-2007-11-125039] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The multistep, coordinated process of T-cell chemotaxis requires chemokines, and their chemokine receptors, to invoke signaling events to direct cell migration. Here, we examined the role for CCL5-mediated initiation of mRNA translation in CD4(+) T-cell chemotaxis. Using rapamycin, an inhibitor of mTOR, our data show the importance of mTOR in CCL5-mediated T-cell migration. Cycloheximide, but not actinomycin D, significantly reduced chemotaxis, suggesting a possible role for mRNA translation in T-cell migration. CCL5 induced phosphorylation/activation of mTOR, p70 S6K1, and ribosomal protein S6. In addition, CCL5 induced PI-3'K-, phospholipase D (PLD)-, and mTOR-dependent phosphorylation and deactivation of the transcriptional repressor 4E-BP1, which resulted in its dissociation from the eukaryotic initiation factor-4E (eIF4E). Subsequently, eIF4E associated with scaffold protein eIF4G, forming the eIF4F translation initiation complex. Indeed, CCL5 initiated active translation of mRNA, shown by the increased presence of high-molecular-weight polysomes that were significantly reduced by rapamycin treatment. Notably, CCL5 induced protein translation of cyclin D1 and MMP-9, known mediators of migration. Taken together, we describe a novel mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs and "primes" CD4(+) T cells for efficient chemotaxis.
Collapse
|
49
|
Kim SW, Kim HY, Lee HJ, Yun HJ, Kim S, Jo DY. Stromal Cell-Derived Factor-1 Promotes Myeloma Cell Growth in Both Autocrine and Paracrine Manners. THE KOREAN JOURNAL OF HEMATOLOGY 2008. [DOI: 10.5045/kjh.2008.43.3.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Seong-Woo Kim
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Ha-Yon Kim
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hyo-Jin Lee
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hwan-Jung Yun
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Samyong Kim
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Deog-Yeon Jo
- Division of Hematology/Oncology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
50
|
|