1
|
Xu Y, Wang X, Hu Z, Huang R, Yang G, Wang R, Yang S, Guo L, Song Q, Wei J, Zhang X. Advances in hematopoietic stem cell transplantation for autoimmune diseases. Heliyon 2024; 10:e39302. [PMID: 39492896 PMCID: PMC11530805 DOI: 10.1016/j.heliyon.2024.e39302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/14/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Autoimmune diseases (ADs) are a collection of immunological disorders in which the immune system responds to self-antigens by producing autoantibodies or self-sensitized cells. Current treatments are unable to cure ADs, and achieving long-term drug-free remission remains a challenging task. Hematopoietic stem cell transplantation (HSCT) stands out from other therapies by specifically targeting ADs that target various cell subpopulations, demonstrating notable therapeutic benefits and resulting in sustained drug-free remission. Since different ADs have distinct mechanisms of action, the comprehensive understanding of how HSCT works in treating ADs is crucial. This review provides a detailed overview of the latest research and clinical applications of HSCT in treating ADs, offering new insights for clinicians aiming to optimize its use for ADs management.
Collapse
Affiliation(s)
- Yuxi Xu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Ziyi Hu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Guancui Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Rui Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Liyan Guo
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Qingxiao Song
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jin Wei
- Department of Hematology, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
- Jinfeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
2
|
Lindsay JO, Hind D, Swaby L, Berntsson H, Bradburn M, Bannur C U, Byrne J, Clarke C, Desoysa L, Dickins B, Din S, Emsley R, Foulds GA, Gribben J, Hawkey C, Irving PM, Kazmi M, Lee E, Loban A, Lobo A, Mahida Y, Moran GW, Papaioannou D, Parkes M, Peniket A, Pockley AG, Satsangi J, Subramanian S, Travis S, Turton E, Uttenthal B, Rutella S, Snowden JA. Safety and efficacy of autologous haematopoietic stem-cell transplantation with low-dose cyclophosphamide mobilisation and reduced intensity conditioning versus standard of care in refractory Crohn's disease (ASTIClite): an open-label, multicentre, randomised controlled trial. Lancet Gastroenterol Hepatol 2024; 9:333-345. [PMID: 38340759 DOI: 10.1016/s2468-1253(23)00460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND A previous controlled trial of autologous haematopoietic stem-cell transplantation (HSCT) in patients with refractory Crohn's disease did not meet its primary endpoint and reported high toxicity. We aimed to assess the safety and efficacy of HSCT with an immune-ablative regimen of reduced intensity versus standard of care in this patient population. METHODS This open-label, multicentre, randomised controlled trial was conducted in nine National Health Service hospital trusts across the UK. Adults (aged 18-60 years) with active Crohn's disease on endoscopy (Simplified Endoscopic Score for Crohn's Disease [SES-CD] ulcer sub-score of ≥2) refractory to two or more classes of biological therapy, with no perianal or intra-abdominal sepsis or clinically significant comorbidity, were recruited. Participants were centrally randomly assigned (2:1) to either HSCT with a reduced dose of cyclophosphamide (intervention group) or standard care (control group). Randomisation was stratified by trial site by use of random permuted blocks of size 3 and 6. Patients in the intervention group underwent stem-cell mobilisation (cyclophosphamide 1 g/m2 with granulocyte colony-stimulating factor (G-CSF) 5 μg/kg) and stem-cell harvest (minimum 2·0 × 106 CD34+ cells per kg), before conditioning (fludarabine 125 mg/m2, cyclophosphamide 120 mg/kg, and rabbit anti-thymocyte globulin [thymoglobulin] 7·5 mg/kg in total) and subsequent stem-cell reinfusion supported by G-CSF. Patients in the control group continued any available conventional, biological, or nutritional therapy. The primary outcome was absence of endoscopic ulceration (SES-CD ulcer sub-score of 0) without surgery or death at week 48, analysed in the intention-to-treat population by central reading. This trial is registered with the ISRCTN registry, 17160440. FINDINGS Between Oct 18, 2018, and Nov 8, 2019, 49 patients were screened for eligibility, of whom 23 (47%) were randomly assigned: 13 (57%) to the intervention group and ten (43%) to the control group. In the intervention group, ten (77%) participants underwent HSCT and nine (69%) reached 48-week follow-up; in the control group, nine (90%) reached 48-week follow-up. The trial was halted in response to nine reported suspected unexpected serious adverse reactions in six (46%) patients in the intervention group, including renal failure due to proven thrombotic microangiopathy in three participants and one death due to pulmonary veno-occlusive disease. At week 48, absence of endoscopic ulceration without surgery or death was reported in three (43%) of seven participants in the intervention group and in none of six participants in the control group with available data. Serious adverse events were more frequent in the intervention group (38 in 13 [100%] patients) than in the control group (16 in four [40%] patients). A second patient in the intervention group died after week 48 of respiratory and renal failure. INTERPRETATION Although HSCT with an immune-ablative regimen of reduced intensity decreased endoscopic disease activity, significant adverse events deem this regimen unsuitable for future clinical use in patients with refractory Crohn's disease. FUNDING Efficacy and Mechanism Evaluation Programme, a Medical Research Council and National Institute for Health Research partnership.
Collapse
Affiliation(s)
- James O Lindsay
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Daniel Hind
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Lizzie Swaby
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Hannah Berntsson
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Mike Bradburn
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Uday Bannur C
- Department of Radiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jennifer Byrne
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Christopher Clarke
- Department of Radiology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Lauren Desoysa
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Ben Dickins
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Shahida Din
- Department of Gastroenterology, Western General Hospital, Edinburgh, UK
| | - Richard Emsley
- Department of Biostatistics & Health Informatics, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gemma A Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - John Gribben
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christopher Hawkey
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK; Translational Medical Sciences, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Peter M Irving
- Department of Gastroenterology, Guy's and Saint Thomas' Hospitals NHS Trust, London, UK
| | - Majid Kazmi
- King's College Hospital NHS Foundation Trust, London, UK
| | - Ellen Lee
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Amanda Loban
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Alan Lobo
- Department of Gastroenterology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Yashwant Mahida
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK; Translational Medical Sciences, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Gordon W Moran
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK; Translational Medical Sciences, School of Medicine, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Diana Papaioannou
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Miles Parkes
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Peniket
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - A Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Jack Satsangi
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | | | - Simon Travis
- NIHR Biomedical Research Centre, Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
| | - Emily Turton
- Sheffield Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Ben Uttenthal
- Department of Clinical Haematology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sergio Rutella
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - John A Snowden
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
3
|
Anang DC, Walter HAW, Lim J, Niewold ITG, van der Weele L, Aronica E, Eftimov F, Raaphorst J, van Schaik BDC, van Kampen AHC, van der Kooi AJ, de Vries N. TCRβ clones in muscle tissue share structural features in patients with idiopathic inflammatory myopathy and are associated with disease activity. Front Immunol 2024; 14:1279055. [PMID: 38268914 PMCID: PMC10806010 DOI: 10.3389/fimmu.2023.1279055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Objectives To characterize the T cell receptor (TCRβ) repertoire in peripheral blood and muscle tissues of treatment naïve patients with newly diagnosed idiopathic inflammatory myopathies (IIMs). Methods High throughput RNA sequencing of the TCRβ chain was performed in peripheral blood and muscle tissue in twenty newly-diagnosed treatment-naïve IIM patients (9 DM, 5 NM/OM, 5 IMNM and 1 ASyS) and healthy controls. Results thereof were correlated with markers of disease activity. Results Muscle tissue of IIM patients shows more expansion of TCRβ clones and decreased diversity when compared to peripheral blood of IIM as well as healthy controls (both p=0.0001). Several expanded TCRβ clones in muscle are tissue restricted and cannot be retrieved in peripheral blood. These clones have significantly longer CDR3 regions when compared to clones (also) found in circulation (p=0.0002), while their CDR3 region is more hydrophobic (p<0.01). Network analysis shows that clonal TCRβ signatures are shared between patients. Increased clonal expansion in muscle tissue is significantly correlated with increased CK levels (p=0.03), while it tends to correlate with decreased muscle strength (p=0.08). Conclusion Network analysis of clones in muscle of IIM patients shows shared clusters of sequences across patients. Muscle-restricted CDR3 TCRβ clones show specific structural features in their T cell receptor. Our results indicate that clonal TCRβ expansion in muscle tissue might be associated with disease activity. Collectively, these findings support a role for specific clonal T cell responses in muscle tissue in the pathogenesis of the IIM subtypes studied.
Collapse
Affiliation(s)
- Dornatien C. Anang
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Genome Analysis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hannah A. W. Walter
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Johan Lim
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Ilse T. G. Niewold
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Genome Analysis, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Linda van der Weele
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Filip Eftimov
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Joost Raaphorst
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Barbera D. C. van Schaik
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Antoine H. C. van Kampen
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Anneke J. van der Kooi
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Niek de Vries
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
4
|
Sadozai H, Rojas-Luengas V, Farrokhi K, Moshkelgosha S, Guo Q, He W, Li A, Zhang J, Chua C, Ferri D, Mian M, Adeyi O, Seidman M, Gorczynski RM, Juvet S, Atkins H, Levy GA, Chruscinski A. Congenic hematopoietic stem cell transplantation promotes survival of heart allografts in murine models of acute and chronic rejection. Clin Exp Immunol 2023; 213:138-154. [PMID: 37004176 PMCID: PMC10324556 DOI: 10.1093/cei/uxad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/19/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The ability to induce tolerance would be a major advance in the field of solid organ transplantation. Here, we investigated whether autologous (congenic) hematopoietic stem cell transplantation (HSCT) could promote tolerance to heart allografts in mice. In an acute rejection model, fully MHC-mismatched BALB/c hearts were heterotopically transplanted into C57BL/6 (CD45.2) mice. One week later, recipient mice were lethally irradiated and reconstituted with congenic B6 CD45.1 Lin-Sca1+ckit+ cells. Recipient mice received a 14-day course of rapamycin both to prevent rejection and to expand regulatory T cells (Tregs). Heart allografts in both untreated and rapamycin-treated recipients that did not undergo HSCT were rejected within 33 days (median survival time = 8 days for untreated recipients, median survival time = 32 days for rapamycin-treated recipients), whereas allografts in HSCT-treated recipients had a median survival time of 55 days (P < 0.001 vs. both untreated and rapamycin-treated recipients). Enhanced allograft survival following HSCT was associated with increased intragraft Foxp3+ Tregs, reduced intragraft B cells, and reduced serum donor-specific antibodies. In a chronic rejection model, Bm12 hearts were transplanted into C57BL/6 (CD45.2) mice, and congenic HSCT was performed two weeks following heart transplantation. HSCT led to enhanced survival of allografts (median survival time = 70 days vs. median survival time = 28 days in untreated recipients, P < 0.01). Increased allograft survival post-HSCT was associated with prevention of autoantibody development and absence of vasculopathy. These data support the concept that autologous HSCT can promote immune tolerance in the setting of allotransplantation. Further studies to optimize HSCT protocols should be performed before this procedure is adopted clinically.
Collapse
Affiliation(s)
- Hassan Sadozai
- Center for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Vanessa Rojas-Luengas
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Kaveh Farrokhi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Qinli Guo
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Wei He
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Angela Li
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jianhua Zhang
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Conan Chua
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Dario Ferri
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Muhtashim Mian
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Oyedele Adeyi
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Seidman
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Reginald M Gorczynski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen Juvet
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Harold Atkins
- Division of Hematology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Gary A Levy
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrzej Chruscinski
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Khanna D, Krieger N, Sullivan KM. Improving outcomes in scleroderma: recent progress of cell-based therapies. Rheumatology (Oxford) 2023; 62:2060-2069. [PMID: 36355455 PMCID: PMC10234204 DOI: 10.1093/rheumatology/keac628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/23/2022] [Indexed: 08/27/2023] Open
Abstract
Scleroderma is a rare, potentially fatal, clinically heterogeneous, systemic autoimmune connective tissue disorder that is characterized by progressive fibrosis of the skin and visceral organs, vasculopathy and immune dysregulation. The more severe form of the disease, diffuse cutaneous scleroderma (dcSSc), has no cure and limited treatment options. Haematopoietic stem cell transplantation has emerged as a potentially disease-modifying treatment but faces challenges such as toxicity associated with fully myeloablative conditioning and recurrence of autoimmunity. Novel cell therapies-such as mesenchymal stem cells, chimeric antigen receptor-based therapy, tolerogenic dendritic cells and facilitating cells-that may restore self-tolerance with more favourable safety and tolerability profiles are being explored for the treatment of dcSSc and other autoimmune diseases. This narrative review examines these evolving cell therapies.
Collapse
Affiliation(s)
- Dinesh Khanna
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nancy Krieger
- Talaris Therapeutics, Boston, MA and Louisville, KY, USA
| | | |
Collapse
|
6
|
Abstract
Autologous hematopoietic stem cell transplantation is effective, but mechanisms are elusive.
Collapse
Affiliation(s)
- Paolo A Muraro
- Department of Brain Sciences, Imperial College London, London, UK
- Neurology, Imperial College London NHS Trust, London, UK
| |
Collapse
|
7
|
Loisel S, Lansiaux P, Rossille D, Ménard C, Dulong J, Monvoisin C, Bescher N, Bézier I, Latour M, Cras A, Farge D, Tarte K. Regulatory B Cells Contribute to the Clinical Response After Bone Marrow-Derived Mesenchymal Stromal Cell Infusion in Patients With Systemic Sclerosis. Stem Cells Transl Med 2023; 12:194-206. [PMID: 36928395 PMCID: PMC10108721 DOI: 10.1093/stcltm/szad010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/09/2023] [Indexed: 03/18/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have recently emerged as an interesting therapeutic approach for patients with progressive systemic sclerosis (SSc), a rare and life-threatening orphan autoimmune disease. Whereas MSC immunomodulatory potential is considered as a central mechanism for their clinical benefit, very few data are available on the impact of MSCs on immune cell subsets in vivo. In the current extended study of a phase I/II clinical trial exploring the injection of a single dose of allogeneic bone marrow-MSCs (alloBM-MSCs) in patients with severe SSc (NCT02213705), we performed a longitudinal in-depth characterization of circulating immune cells in 19 MSC-treated patients, including 14 responders and 5 non-responders. By a combination of flow cytometry and transcriptomic analyses, we highlighted an increase in circulating CD24hiCD27posCD38lo/neg memory B cells, the main IL-10-producing regulatory B cell (Breg) subset, and an upregulation of IL10 expression in ex-vivo purified B cells, specifically in responder patients, early after the alloBM-MSC infusion. In addition, a deeper alteration of the B-cell compartment before alloBM-MSC treatment, including a higher expression of profibrotic cytokines IL6 and TGFβ by sorted B cells was associated with a non-responder clinical status. Finally, BM-MSCs were able to directly upregulate IL-10 production in activated B cells in vitro. These data suggest that cytokine-producing B cells, in particular Breg, are pivotal effectors of BM-MSC therapeutic activity in SSc. Their quantification as activity biomarkers in MSC potency assays and patient selection criteria may be considered to reach optimal clinical benefit when designing MSC-based clinical trials.
Collapse
Affiliation(s)
- Séverine Loisel
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Pauline Lansiaux
- Unité de Médecine Interne (UF 04), CRMR Maladies auto-immunes et thérapie cellulaire (MATHEC), Centre de Référence des Maladies auto-immunes systémiques Rares d’Ile-de-France, AP-HP, Hôpital St-Louis, Paris, France
- Université de Paris Cité, IRSL, Recherche clinique appliquée à l’hématologie, URP 3518, Paris, France
| | - Delphine Rossille
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Cédric Ménard
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Joëlle Dulong
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Céline Monvoisin
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Nadège Bescher
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Isabelle Bézier
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Maëlle Latour
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Audrey Cras
- Cell Therapy Unit, Saint Louis Hospital, Assistance-Publique Hôpitaux de Paris, Paris, France
- UMR1140, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France
| | - Dominique Farge
- Unité de Médecine Interne (UF 04), CRMR Maladies auto-immunes et thérapie cellulaire (MATHEC), Centre de Référence des Maladies auto-immunes systémiques Rares d’Ile-de-France, AP-HP, Hôpital St-Louis, Paris, France
- Université de Paris Cité, IRSL, Recherche clinique appliquée à l’hématologie, URP 3518, Paris, France
- Department of Medicine, McGill University, Montreal, Canada
| | - Karin Tarte
- SITI, CHU Rennes, Etablissement Français du Sang Bretagne, Rennes, France
- INSERM UMR 1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| |
Collapse
|
8
|
Higashitani K, Takase-Minegishi K, Yoshimi R, Kirino Y, Hamada N, Nagai H, Hagihara M, Matsumoto K, Namkoong H, Horita N, Nakajima H. Benefits and risks of haematopoietic stem cell transplantation for systemic sclerosis: A systematic review and meta-analysis. Mod Rheumatol 2023; 33:330-337. [PMID: 35285885 DOI: 10.1093/mr/roac026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES We aimed to evaluate the efficacy and safety of haematopoietic stem cell transplantation (HSCT) in patients with systemic sclerosis. METHODS A systematic literature review and meta-analysis were carried out. We compared survival outcomes using the Kaplan-Meier method with patient-level data between HSCT and intravenous pulse cyclophosphamide. Additionally, the incidence rate of treatment-related deaths with HSCT was pooled using a random-effect model. RESULTS Of the 2091 articles screened, 22 were included: 3 randomized controlled trials and 19 observational studies. HSCT studies showed significant improvement in the skin thickness score and lung function. Despite treatment-related deaths being higher in HSCT than in intravenous pulse cyclophosphamide, the Kaplan-Meier analysis showed a high survival rate of 2 years post-transplant (log-rank, P = 0.004). The pooled frequency of transplant-related death from 700 systemic sclerosis patients was 6.30% (95% confidence interval 4.21-8.38). However, the estimated frequency of treatment-related deaths has been reducing over the last decade. CONCLUSIONS HSCT is an effective treatment for systemic sclerosis, but the optimal indications must be carefully determined by balancing the risks.
Collapse
Affiliation(s)
- Kana Higashitani
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kaoru Takase-Minegishi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryusuke Yoshimi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naoki Hamada
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideto Nagai
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Maki Hagihara
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenji Matsumoto
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, Yokohama, Japan
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
9
|
Adamska JZ, Zia A, Bloom MS, Crofford LJ, Furst DE, Goldmuntz E, Keyes-Elstein L, Mayes MD, McSweeney P, Nash RA, Pinckney A, Welch B, Love ZZ, Sullivan KM, Robinson W. Myeloablative autologous haematopoietic stem cell transplantation resets the B cell repertoire to a more naïve state in patients with systemic sclerosis. Ann Rheum Dis 2023; 82:357-364. [PMID: 36241361 PMCID: PMC9918657 DOI: 10.1136/ard-2021-221925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/16/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Myeloablative autologous haematopoietic stem cell transplant (HSCT) was recently demonstrated to provide significant benefit over cyclophosphamide (CYC) in the treatment of diffuse cutaneous systemic sclerosis (dcSSc) in the Scleroderma: Cyclophosphamide or Transplantation (SCOT) trial. As dysregulation of the B cell compartment has previously been described in dcSSc, we sought to gain insight into the effects of myeloablative autologous HSCT as compared with CYC. METHODS We sequenced the peripheral blood immunoglobulin heavy chain (IGH) repertoires in patients with dcSSc enrolled in the SCOT trial. RESULTS Myeloablative autologous HSCT was associated with a sustained increase in IgM isotype antibodies bearing a low mutation rate. Clonal expression was reduced in IGH repertoires following myeloablative autologous HSCT. Additionally, we identified a underusage of immunoglobulin heavy chain V gene 5-51 in patients with dcSSc, and usage normalised following myeloablative autologous HSCT but not CYC treatment. CONCLUSIONS Together, these findings suggest that myeloablative autologous HSCT resets the IGH repertoire to a more naïve state characterised by IgM-expressing B cells, providing a possible mechanism for the elimination of pathogenic B cells that may contribute to the benefit of HSCT over CYC in the treatment of dcSSc.
Collapse
Affiliation(s)
- Julia Z Adamska
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Amin Zia
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Michelle S Bloom
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Leslie J Crofford
- Division of Rheumatology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Daniel E Furst
- Rheumatology, Univ of Cal at Los Angeles, Los Angeles, California, USA
| | - Ellen Goldmuntz
- Division of Allergy, Immunology, and Transplantation, NIH/NIAID, Bethesda, Maryland, USA
| | | | - Maureen D Mayes
- Rheumatology and Clinical Immunogenetics, The University of Texas Health Science Center Houston Medical School, Houston, Texas, USA
| | - Peter McSweeney
- Rocky Mountain Blood and Marrow Transplant Program, Colorado Blood Cancer Institute, Denver, Colorado, USA
| | - Richard A Nash
- Rocky Mountain Blood and Marrow Transplant Program, Colorado Blood Cancer Institute, Denver, Colorado, USA
| | | | - Beverly Welch
- Division of Allergy, Immunology, and Transplantation, NIH/NIAID, Bethesda, Maryland, USA
| | - Zelda Z Love
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Keith M Sullivan
- Department of Medicine, Duke University Health System, Durham, North Carolina, USA
| | - William Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, California, USA .,VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
10
|
Rosichini M, Bordoni V, Silvestris DA, Mariotti D, Matusali G, Cardinale A, Zambruno G, Condorelli AG, Flamini S, Genah S, Catanoso M, Del Nonno F, Trezzi M, Galletti L, De Stefanis C, Cicolani N, Petrini S, Quintarelli C, Agrati C, Locatelli F, Velardi E. SARS-CoV-2 infection of thymus induces loss of function that correlates with disease severity. J Allergy Clin Immunol 2023; 151:911-921. [PMID: 36758836 PMCID: PMC9907790 DOI: 10.1016/j.jaci.2023.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND Lymphopenia, particularly when restricted to the T-cell compartment, has been described as one of the major clinical hallmarks in patients with coronavirus disease 2019 (COVID-19) and proposed as an indicator of disease severity. Although several mechanisms fostering COVID-19-related lymphopenia have been described, including cell apoptosis and tissue homing, the underlying causes of the decline in T-cell count and function are still not completely understood. OBJECTIVE Given that viral infections can directly target thymic microenvironment and impair the process of T-cell generation, we sought to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on thymic function. METHODS We performed molecular quantification of T-cell receptor excision circles and κ-deleting recombination excision circles to assess, respectively, T- and B-cell neogenesis in SARS-CoV-2-infected patients. We developed a system for in vitro culture of primary human thymic epithelial cells (TECs) to mechanistically investigate the impact of SARS-CoV-2 on TEC function. RESULTS We showed that patients with COVID-19 had reduced thymic function that was inversely associated with the severity of the disease. We found that angiotensin-converting enzyme 2, through which SARS-CoV-2 enters the host cells, was expressed by thymic epithelium, and in particular by medullary TECs. We also demonstrated that SARS-CoV-2 can target TECs and downregulate critical genes and pathways associated with epithelial cell adhesion and survival. CONCLUSIONS Our data demonstrate that the human thymus is a target of SARS-CoV-2 and thymic function is altered following infection. These findings expand our current knowledge of the effects of SARS-CoV-2 infection on T-cell homeostasis and suggest that monitoring thymic activity may be a useful marker to predict disease severity and progression.
Collapse
Affiliation(s)
- Marco Rosichini
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Veronica Bordoni
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Cellular Immunology Laboratory, INMI L Spallanzani – IRCCS, Rome, Italy
| | - Domenico Alessandro Silvestris
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Davide Mariotti
- Cellular Immunology Laboratory, INMI L Spallanzani – IRCCS, Rome, Italy
| | - Giulia Matusali
- Virology Laboratory, INMI L Spallanzani – IRCCS, Rome, Italy
| | - Antonella Cardinale
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Sara Flamini
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Shirley Genah
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marialuigia Catanoso
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Matteo Trezzi
- Cardiac Surgery Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Lorenzo Galletti
- Cardiac Surgery Unit, Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristiano De Stefanis
- Pathology Unit, Core Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicolò Cicolani
- Confocal Microscopy Core Facility, Research Center, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Research Center, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Department of Clinical Medicine and Surgery, University of Naples Federico II, Rome, Italy
| | - Chiara Agrati
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Cellular Immunology Laboratory, INMI L Spallanzani – IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy,Catholic University of the Sacred Heart, Rome, Italy
| | - Enrico Velardi
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
11
|
Maria ATJ, Campidelli A, Castilla-Llorente C, Lansiaux P, Marjanovic Z, Pugnet G, Torregrosa-Diaz JM, Terriou L, Algayres JP, Urbain F, Yakoub-Agha I, Farge D. [Vaccination before and after autologous hematopoietic cell transplantation for autoimmune diseases: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (MATHEC-SFGM-TC)]. Bull Cancer 2023; 110:S97-S107. [PMID: 36658011 DOI: 10.1016/j.bulcan.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2023]
Abstract
The Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) organized the 12th workshop on hematopoietic stem cell transplantation clinical practices harmonization procedures on September 2021 in Lille, France. In the absence of specific national or international recommendation, the French working group for autologous stem Cell transplantation in Auto-immune Diseases (MATHEC) proposed guidances for vaccinations of patients undergoing autologous hematopoietic stem cell transplantation for autoimmune disease, including in the context of SARS-Cov-2 pandemic.
Collapse
Affiliation(s)
- Alexandre Thibault Jacques Maria
- Médecine Interne & Immuno-Oncologie (MedI2O), Institute for Regenerative Medicine & Biotherapy (IRMB), Hôpital Saint Eloi, CHU de Montpellier, 80 avenue Augustin Fliche, Montpellier, France; IRMB, Inserm U1183, Hôpital Saint-Eloi, CHU de Montpellier, 34295, Montpellier, France
| | - Arnaud Campidelli
- CHRU Nancy, Service Hématologie Adulte, 54500 Vandoeuvre-lès-Nancy, France
| | - Cristina Castilla-Llorente
- Gustave Roussy Cancer Campus, Département d́Hématologie, 114 rue Edouard Vaillant, 94800 Villejuif, France
| | - Pauline Lansiaux
- Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), AP-HP, Hôpital St-Louis, Unité de Médecine Interne: Maladies Auto-immunes et Pathologie Vasculaire (UF 04), 75010 Paris, France; Université de Paris Cité, Institut de recherche Saint Louis, Recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France
| | - Zora Marjanovic
- Hôpital Saint Antoine (APHP), Service d'Hématologie et Thérapie cellulaire, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Grégory Pugnet
- CHU Rangueil, Service de Médecine Interne et Immunologie Clinique, 1 avenue du Pr Jean Poulhès, 31059 Toulouse Cedex 9, France
| | | | - Louis Terriou
- Hôpital Claude Huriez, CHRU Lille, Service de médecine interne et immunologie clinique, rue Michel Polonovski, 59000 Lille, France
| | - Jean-Pierre Algayres
- Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), AP-HP, Hôpital St-Louis, Unité de Médecine Interne: Maladies Auto-immunes et Pathologie Vasculaire (UF 04), 75010 Paris, France
| | - Fanny Urbain
- Hôpital Bicêtre, Groupe Hospitalier Universitaire Paris Sud, Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, 94275 Le Kremlin-Bicêtre cedex, France; Université Paris Saclay, Faculté de Médecine, Le Kremlin Bicêtre, France
| | | | - Dominique Farge
- Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), AP-HP, Hôpital St-Louis, Unité de Médecine Interne: Maladies Auto-immunes et Pathologie Vasculaire (UF 04), 75010 Paris, France; Université de Paris Cité, Institut de recherche Saint Louis, Recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France; McGill University, Department of Medicine, H3A 1A1, Montreal, Canada.
| |
Collapse
|
12
|
Levin D, Osman MS, Durand C, Kim H, Hemmati I, Jamani K, Howlett JG, Johannson KA, Weatherald J, Woo M, Lee J, Storek J. Hematopoietic Cell Transplantation for Systemic Sclerosis-A Review. Cells 2022; 11:3912. [PMID: 36497169 PMCID: PMC9739132 DOI: 10.3390/cells11233912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune, multi-organ, connective tissue disease associated with significant morbidity and mortality. Conventional immunosuppressive therapies demonstrate limited efficacy. Autologous hematopoietic stem cell transplantation (HCT) is more efficacious but carries associated risks, including treatment-related mortality. Here, we review HCT as a treatment for SSc, its efficacy and toxicity in comparison to conventional therapies, and the proposed mechanisms of action. Furthermore, we discuss the importance of and recent developments in patient selection. Finally, we highlight the knowledge gaps and future work required to further improve patient outcomes.
Collapse
Affiliation(s)
- Daniel Levin
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammed S. Osman
- Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Caylib Durand
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Hyein Kim
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Iman Hemmati
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kareem Jamani
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jonathan G. Howlett
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kerri A. Johannson
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jason Weatherald
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2R7, Canada
| | - Matthew Woo
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jason Lee
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jan Storek
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
13
|
Xue E, Minniti A, Alexander T, Del Papa N, Greco R. Cellular-Based Therapies in Systemic Sclerosis: From Hematopoietic Stem Cell Transplant to Innovative Approaches. Cells 2022; 11:3346. [PMID: 36359742 PMCID: PMC9658618 DOI: 10.3390/cells11213346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 08/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a systemic disease characterized by autoimmune responses, vasculopathy and tissue fibrosis. The pathogenic mechanisms involve a wide range of cells and soluble factors. The complexity of interactions leads to heterogeneous clinical features in terms of the extent, severity, and rate of progression of skin fibrosis and internal organ involvement. Available disease-modifying drugs have only modest effects on halting disease progression and may be associated with significant side effects. Therefore, cellular therapies have been developed aiming at the restoration of immunologic self-tolerance in order to provide durable remissions or to foster tissue regeneration. Currently, SSc is recommended as the 'standard indication' for autologous hematopoietic stem cell transplantation by the European Society for Blood and Marrow Transplantation. This review provides an overview on cellular therapies in SSc, from pre-clinical models to clinical applications, opening towards more advanced cellular therapies, such as mesenchymal stem cells, regulatory T cells and potentially CAR-T-cell therapies.
Collapse
Affiliation(s)
- Elisabetta Xue
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | - Antonina Minniti
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
| | - Tobias Alexander
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | | | - Raffaella Greco
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | | |
Collapse
|
14
|
Malmegrim KCR, Toubert A, Farge D, Oliveira MC. Editorial: Immune profile after autologous hematopoietic stem cell transplantation for autoimmune diseases: Where do we stand? Volume II. Front Immunol 2022; 13:1038338. [PMID: 36311751 PMCID: PMC9615914 DOI: 10.3389/fimmu.2022.1038338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- K. C. R. Malmegrim
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - A. Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique (UMRS) 1160, Microenvironment, Lymphocyte Development and Homing, Paris, France
- Laboratoire d’Immunologie et d’Histocompatibilité, Assistance Publique-Hôpitaux de Paris (AP-HP), Hopital Saint-Louis, Paris, France
| | - D. Farge
- Unité de Médecine Interne (UF 04): CRMR MATHEC, Maladies Auto-immunes et Thérapie Cellulaire. Centre de Référence des Maladies auto-immunes systémiques Rares d’Ile-de-France, Hopital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Université de Paris, Institut de Recherche Saint-Louis (IRSL), Recherche Clinique Appliquée à l'Hématologie, Paris, France
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - M. C. Oliveira
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Division of Rheumatology, Allergy, Immunology and Immunotherapy, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Oliveira MC,
| |
Collapse
|
15
|
von Niederhäusern V, Ruder J, Ghraichy M, Jelcic I, Müller AM, Schanz U, Martin R, Trück J. B-Cell Reconstitution After Autologous Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/6/e200027. [PMID: 36229189 PMCID: PMC9562041 DOI: 10.1212/nxi.0000000000200027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Autologous hematopoietic stem cell transplantation (aHSCT) is increasingly used to treat aggressive forms of multiple sclerosis (MS). This procedure is believed to result in an immune reset and restoration of a self-tolerant immune system. Immune reconstitution has been extensively studied for T cells, but only to a limited extent for B cells. As increasing evidence suggests an important role of B cells in MS pathogenesis, we sought here to better understand reconstitution and the extent of renewal of the B-cell system after aHSCT in MS. METHODS Using longitudinal multidimensional flow cytometry and immunoglobulin heavy chain (IgH) repertoire sequencing following aHSCT with BCNU + Etoposide + Ara-C + Melphalan anti-thymocyte globulin, we analyzed the B-cell compartment in a cohort of 20 patients with MS in defined intervals before and up to 1 year after aHSCT and compared these findings with data from healthy controls. RESULTS Total B-cell numbers recovered within 3 months and increased above normal levels 1 year after transplantation, successively shifting from a predominantly transitional to a naive immune phenotype. Memory subpopulations recovered slowly and remained below normal levels with reduced repertoire diversity 1 year after transplantation. Isotype subclass analysis revealed a proportional shift toward IgG1-expressing cells and a reduction in IgG2 cells. Mutation analysis of IgH sequences showed that highly mutated memory B cells and plasma cells may transiently survive conditioning while the analysis of sequence cluster overlap, variable (IGHV) and joining (IGHJ) gene usage and repertoire diversity suggested a renewal of the late posttransplant repertoire. In patients with early cytomegalovirus reactivation, reconstitution of naive and memory B cells was delayed. DISCUSSION Our detailed characterization of B-cell reconstitution after aHSCT in MS indicates a reduced reactivation potential of memory B cells up to 1 year after transplantation, which may leave patients susceptible to infection, but may also be an important aspect of its mechanism of action.
Collapse
Affiliation(s)
- Valentin von Niederhäusern
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Josefine Ruder
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Marie Ghraichy
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Ilijas Jelcic
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Antonia Maria Müller
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Urs Schanz
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Roland Martin
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich
| | - Johannes Trück
- From the Division of Immunology and Children's Research Center (V.N., M.G., J.T.), University Children's Hospital Zurich, University of Zurich; Neuroimmunology and MS Research Section (J.R., I.J., R.M.), Department of Neurology, University Hospital Zurich, University of Zurich; and Department of Medical Oncology and Hematology (A.M.M., U.S.), University Hospital Zurich.
| |
Collapse
|
16
|
Hajam EY, Panikulam P, Chu CC, Jayaprakash H, Majumdar A, Jamora C. The expanding impact of T-regs in the skin. Front Immunol 2022; 13:983700. [PMID: 36189219 PMCID: PMC9521603 DOI: 10.3389/fimmu.2022.983700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
As the interface between the body and the environment, the skin functions as the physical barrier against external pathogens and toxic agents. In addition, the skin is an immunologically active organ with a plethora of resident adaptive and innate immune cells, as well as effector molecules that provide another layer of protection in the form of an immune barrier. A major subpopulation of these immune cells are the Foxp3 expressing CD4 T cells or regulatory T cells (T-regs). The canonical function of T-regs is to keep other immune cells in check during homeostasis or to dissipate a robust inflammatory response following pathogen clearance or wound healing. Interestingly, recent data has uncovered unconventional roles that vary between different tissues and we will highlight the emerging non-lymphoid functions of cutaneous T-regs. In light of the novel functions of other immune cells that are routinely being discovered in the skin, their regulation by T-regs implies that T-regs have executive control over a broad swath of biological activities in both homeostasis and disease. The blossoming list of non-inflammatory functions, whether direct or indirect, suggests that the role of T-regs in a regenerative organ such as the skin will be a field ripe for discovery for decades to come.
Collapse
Affiliation(s)
- Edries Yousaf Hajam
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA) University, Thanjavur, Tamil Nadu, India
| | - Patricia Panikulam
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | | | - Haarshadri Jayaprakash
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | | | - Colin Jamora
- IFOM ETS- The AIRC Institute of Molecular Oncology Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| |
Collapse
|
17
|
The Role of T Cells in Systemic Sclerosis: An Update. IMMUNO 2022. [DOI: 10.3390/immuno2030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic disease characterized by microvasculopathy, autoantibodies (autoAbs), and fibrosis. The pathogenesis of the disease is incompletely understood. Microvasculopathy and autoAbs appear very early in the disease process. AutoAbs, such as those directed against DNA topoisomerase I (Topo I), are disease specific and associated with disease manifestations, and indicate activation of the adaptive immune system. B cells are involved in fibrosis in SSc. T cells are also involved in disease pathogenesis. T cells show signs of antigen-induced activation; T cells of TH2 type are increased and produce profibrotic cytokines interleukin (IL)-4, IL-13, and IL-31; CD4+ cytotoxic T lymphocytes are increased in skin lesions, and cause fibrosis and endothelial cell apoptosis; circulating T follicular helper (TFH) cells are increased in SSc produce IL-21 and promote plasmablast antibody production. On the other hand, regulatory T cells are impaired in SSc. These findings provide strong circumstantial evidence for T cell implication in SSc pathogenesis and encourage new T cell-directed therapeutic strategies for the disease.
Collapse
|
18
|
Gaballa A, Arruda LCM, Uhlin M. Gamma delta T-cell reconstitution after allogeneic HCT: A platform for cell therapy. Front Immunol 2022; 13:971709. [PMID: 36105821 PMCID: PMC9465162 DOI: 10.3389/fimmu.2022.971709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic Hematopoietic stem cell transplantation (allo-HCT) is a curative platform for several hematological diseases. Despite its therapeutic benefits, the profound immunodeficiency associated with the transplant procedure remains a major challenge that renders patients vulnerable to several complications. Today, It is well established that a rapid and efficient immune reconstitution, particularly of the T cell compartment is pivotal to both a short-term and a long-term favorable outcome. T cells expressing a TCR heterodimer comprised of gamma (γ) and delta (δ) chains have received particular attention in allo-HCT setting, as a large body of evidence has indicated that γδ T cells can exert favorable potent anti-tumor effects without inducing severe graft versus host disease (GVHD). However, despite their potential role in allo-HCT, studies investigating their detailed reconstitution in patients after allo-HCT are scarce. In this review we aim to shed lights on the current literature and understanding of γδ T cell reconstitution kinetics as well as the different transplant-related factors that may influence γδ reconstitution in allo-HCT. Furthermore, we will present data from available reports supporting a role of γδ cells and their subsets in patient outcome. Finally, we discuss the current and future strategies to develop γδ cell-based therapies to exploit the full immunotherapeutic potential of γδ cells in HCT setting.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Chemistry, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Lucas C. M. Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
19
|
Kawashima-Vasconcelos MY, Santana-Gonçalves M, Zanin-Silva DC, Malmegrim KCR, Oliveira MC. Reconstitution of the immune system and clinical correlates after stem cell transplantation for systemic sclerosis. Front Immunol 2022; 13:941011. [PMID: 36032076 PMCID: PMC9403547 DOI: 10.3389/fimmu.2022.941011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease that includes fibrosis, diffuse vasculopathy, inflammation, and autoimmunity. Autologous hematopoietic stem cell transplantation (auto-HSCT) is considered for patients with severe and progressive SSc. In recent decades, knowledge about patient management and clinical outcomes after auto-HSCT has significantly improved. Mechanistic studies have contributed to increasing the comprehension of how profound and long-lasting are the modifications to the immune system induced by transplantation. This review revisits the immune monitoring studies after auto-HSCT for SSc patients and how they relate to clinical outcomes. This understanding is essential to further improve clinical applications of auto-HSCT and enhance patient outcomes.
Collapse
Affiliation(s)
- Marianna Y. Kawashima-Vasconcelos
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Internal Medicine Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maynara Santana-Gonçalves
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Oncology, Stem Cell and Cell-Therapy Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Djúlio C. Zanin-Silva
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Basic and Applied Immunology Graduate Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C. R. Malmegrim
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
20
|
Thoreau B, Chaigne B, Mouthon L. Role of B-Cell in the Pathogenesis of Systemic Sclerosis. Front Immunol 2022; 13:933468. [PMID: 35903091 PMCID: PMC9315392 DOI: 10.3389/fimmu.2022.933468] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare multisystem autoimmune disease, characterized by fibrosis, vasculopathy, and autoimmunity. Recent advances have highlighted the significant implications of B-cells in SSc. B-cells are present in affected organs, their subpopulations are disrupted, and they display an activated phenotype, and the regulatory capacities of B-cells are impaired, as illustrated by the decrease in the IL-10+ producing B-cell subpopulation or the inhibitory membrane co-receptor density. Recent multi-omics evidence highlights the role of B-cells mainly in the early stage of SSc and preferentially during severe organ involvement. This dysregulated homeostasis partly explains the synthesis of anti-endothelial cell autoantibodies (AECAs) or anti-fibroblast autoantibodies (AFAs), proinflammatory or profibrotic cytokines (interleukin-6 and transforming growth factor-β) produced by B and plasma cells. That is associated with cell-to-cell interactions with endothelial cells, fibroblasts, vascular smooth muscle cells, and other immune cells, altogether leading to cell activation and proliferation, cell resistance to apoptosis, the impairment of regulatory mechanisms, and causing fibrosis of several organs encountered in the SSc. Finally, alongside these exploratory data, treatments targeting B-cells, through their depletion by cytotoxicity (anti-CD20 monoclonal antibody), or the cytokines produced by the B-cell, or their costimulation molecules, seem interesting, probably in certain profiles of early patients with severe organic damage.
Collapse
Affiliation(s)
- Benjamin Thoreau
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Cochin Hospital, AP‐HP, CEDEX 14, Paris, France
- Université Paris Cité, Paris, France
- INSERM U1016, Cochin Institute, CNRS UMR 8104, Université Paris Cité, Paris, France
| | - Benjamin Chaigne
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Cochin Hospital, AP‐HP, CEDEX 14, Paris, France
- Université Paris Cité, Paris, France
- INSERM U1016, Cochin Institute, CNRS UMR 8104, Université Paris Cité, Paris, France
| | - Luc Mouthon
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Cochin Hospital, AP‐HP, CEDEX 14, Paris, France
- Université Paris Cité, Paris, France
- INSERM U1016, Cochin Institute, CNRS UMR 8104, Université Paris Cité, Paris, France
- *Correspondence: Luc Mouthon,
| |
Collapse
|
21
|
Boukouaci W, Lansiaux P, Lambert NC, Picard C, Clave E, Cras A, Marjanovic Z, Farge D, Tamouza R. Non-Classical HLA Determinants of the Clinical Response after Autologous Stem Cell Transplantation for Systemic Sclerosis. Int J Mol Sci 2022; 23:ijms23137223. [PMID: 35806227 PMCID: PMC9266677 DOI: 10.3390/ijms23137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Systemic Sclerosis (SSc) is a chronic autoimmune disease with high morbidity and mortality. Autologous Hematopoietic Stem Cell Transplantation (AHSCT) is the best therapeutic option for rapidly progressive SSc, allowing increased survival with regression of skin and lung fibrosis. The immune determinants of the clinical response after AHSCT have yet to be well characterized. In particular, the pivotal role of the Human Leukocyte Antigen (HLA) system is not well understood, including the role of non-classical immuno-modulatory HLA-E and HLA-G molecules in developing tolerance and the role of Natural Killer cells (NK) in the immunomodulation processes. We retrospectively tested whether the genetic and/or circulating expression of the non-classical HLA-E and HLA-G loci, as well as the imputed classical HLA determinants of HLA-E expression, influence the observed clinical response to AHSCT at 12- and 24-month follow-up. In a phenotypically well-defined sample of 46 SSc patients classified as clinical responders or non-responders, we performed HLA genotyping using next-generation sequencing and circulating levels of HLA-G and quantified HLA-E soluble isoforms by ELISA. The -21HLA-B leader peptide dimorphism and the differential expression level of HLA-A and HLA-C alleles were imputed. We observed a strong trend towards better clinical response in HLA-E*01:03 or HLA-G 14bp Del allele carriers, which are known to be associated with high expression of the corresponding molecules. At 12-month post-AHSCT follow-up, higher circulating levels of soluble HLA-E were associated with higher values of modified Rodnan Skin Score (mRSS) (p = 0.0275), a proxy of disease severity. In the non-responder group, the majority of patients carried a double dose of the HLA-B Threonine leader peptide, suggesting a non-efficient inhibitory effect of the HLA-E molecules. We did not find any correlation between the soluble HLA-G levels and the observed clinical response after AHSCT. High imputed expression levels of HLA-C alleles, reflecting more efficient NK cell inhibition, correlated with low values of the mRSS 3 months after AHSCT (p = 0.0087). This first pilot analysis of HLA-E and HLA-G immuno-modulatory molecules suggests that efficient inhibition of NK cells contributes to clinical response after AHSCT for SSc. Further studies are warranted in larger patient cohorts to confirm our results.
Collapse
Affiliation(s)
- Wahid Boukouaci
- Translational Neuropsychiatry Laboratory, Institut National de la Santé et de la Recherche Médicale (IN-SERM, U955), Institut Mondor de Recherche Biomédicale, Université Paris Est Creteil, F-94010 Creteil, France;
| | - Pauline Lansiaux
- Unité de Médecine Interne (UF 04): CRMR MATHEC, Maladies Auto-Immunes et Thérapie Cellulaire, Centre de Référence des Maladies Auto-Immunes Systémiques Rares D’ILE-de-France, Hôpital St-Louis, Assistance-Publique Hôpitaux de Paris, F-75010 Paris, France;
- URP-3518: Recherche Clinique en Hématologie, Immunologie et Transplantation, Institut de Recherche Saint-Louis, Université Paris Cité, F-75010 Paris, France
| | - Nathalie C. Lambert
- UMRs 1097 Arthrites Autoimmunes, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix Marseille University, F-13288 Marseille, France;
| | - Christophe Picard
- UMR7268 ADES (Anthropologie Bio-Culturelle, Droit, Ethique et Santé), Université Aix-Marseille, Etablissement Français du Sang, Centre National de la Recherche Scientifique (CNRS), F-13005 Marseille, France;
| | - Emmanuel Clave
- EMiLy (Ecotaxie, Microenvironnement et Developpement Lymphocytaire), Inserm U1160, Institut de Recherche Saint Louis, Université de Paris, F-75010 Paris, France;
| | - Audrey Cras
- Cell Therapy Unit, Saint Louis Hospital, Assistance-Publique Hôpitaux de Paris, F-75010 Paris, France;
- UMR1140, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, F-75006 Paris, France
| | - Zora Marjanovic
- Department of Hematology, Hopital Saint Antoine, F-75012 Paris, France;
| | - Dominique Farge
- URP-3518: Recherche Clinique en Hématologie, Immunologie et Transplantation, Institut de Recherche Saint-Louis, Université Paris Cité, F-75010 Paris, France
- UMRs 1097 Arthrites Autoimmunes, Institut National de la Santé et de la Recherche Médicale (INSERM), Aix Marseille University, F-13288 Marseille, France;
- Department of Medicine, McGill University, Montreal, QC H3A 1A1, Canada
- Correspondence: (D.F.); (R.T.)
| | - Ryad Tamouza
- Translational Neuropsychiatry Laboratory, Institut National de la Santé et de la Recherche Médicale (IN-SERM, U955), Institut Mondor de Recherche Biomédicale, Université Paris Est Creteil, F-94010 Creteil, France;
- Fondation FondaMental, Département Médico-Universitaire de Psychiatrie et d’Addictologie (DMU IMPACT), Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie (FHU ADAPT), Assistance-Publique Hôpitaux de Paris, F-94010 Creteil, France
- Correspondence: (D.F.); (R.T.)
| |
Collapse
|
22
|
Alexander T, Greco R. Hematopoietic stem cell transplantation and cellular therapies for autoimmune diseases: overview and future considerations from the Autoimmune Diseases Working Party (ADWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2022; 57:1055-1062. [PMID: 35578014 PMCID: PMC9109750 DOI: 10.1038/s41409-022-01702-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Autoimmune diseases (ADs) represent a heterogenous group of complex diseases with increasing incidence in Western countries and are a major cause of morbidity. Hematopoietic stem cell transplantation (HSCT) has evolved over the last 25 years as a specific treatment for patients with severe ADs, through eradication of the pathogenic immunologic memory and profound immune renewal. HSCT for ADs is recently facing a unique developmental phase across transplant centers. This review provides a comprehensive overview of the recent evidence and developments in the area, including fundamentals of preclinical research, clinical studies in neurologic, rheumatologic and gastroenterologic diseases, which represent major indications at present, along with evidence of HSCT for rarer indications. Moreover, we describe the interwoven challenges of delivering more advanced cellular therapies, exploiting mesenchymal stem cells, regulatory T cells and potentially CAR-T cell therapies, in patients affected by ADs. Overall, we discuss past and current indications, efficacy, associated risks and benefits, and future directions of HSCT and advanced cellular therapies in the treatment of severe/refractory ADs, integrating the available literature with European Society for Blood and Marrow Transplantation (EBMT) registry data.
Collapse
Affiliation(s)
- Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
23
|
Jarduli-Maciel LR, de Azevedo JTC, Clave E, Costa TCDM, Arruda LCM, Fournier I, Palma PVB, Lima KC, Elias JB, Stracieri ABP, Pieroni F, Cunha R, Darrigo-Júnior LG, Grecco CES, Covas DT, Silva-Pinto AC, De Santis GC, Simões BP, Oliveira MC, Toubert A, Malmegrim KCR. Allogeneic haematopoietic stem cell transplantation resets T- and B-cell compartments in sickle cell disease patients. Clin Transl Immunology 2022; 11:e1389. [PMID: 35474905 PMCID: PMC9035210 DOI: 10.1002/cti2.1389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
Objectives Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is the only currently available curative treatment for sickle cell disease (SCD). Here, we comprehensively evaluated the reconstitution of T- and B-cell compartments in 29 SCD patients treated with allo-HSCT and how it correlated with the development of acute graft-versus-host disease (aGvHD). Methods T-cell neogenesis was assessed by quantification of signal-joint and β-chain TCR excision circles. B-cell neogenesis was evaluated by quantification of signal-joint and coding-joint K-chain recombination excision circles. T- and B-cell peripheral subset numbers were assessed by flow cytometry. Results Before allo-HSCT (baseline), T-cell neogenesis was normal in SCD patients compared with age-, gender- and ethnicity-matched healthy controls. Following allo-HSCT, T-cell neogenesis declined but was fully restored to healthy control levels at one year post-transplantation. Peripheral T-cell subset counts were fully restored only at 24 months post-transplantation. Occurrence of acute graft-versus-host disease (aGvHD) transiently affected T- and B-cell neogenesis and overall reconstitution of T- and B-cell peripheral subsets. B-cell neogenesis was significantly higher in SCD patients at baseline than in healthy controls, remaining high throughout the follow-up after allo-HSCT. Notably, after transplantation SCD patients showed increased frequencies of IL-10-producing B-regulatory cells and IgM+ memory B-cell subsets compared with baseline levels and with healthy controls. Conclusion Our findings revealed that the T- and B-cell compartments were normally reconstituted in SCD patients after allo-HSCT. In addition, the increase of IL-10-producing B-regulatory cells may contribute to improve immune regulation and homeostasis after transplantation.
Collapse
Affiliation(s)
- Luciana Ribeiro Jarduli-Maciel
- Graduate Program in Biosciences Applied to Pharmacy School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - Júlia Teixeira Cottas de Azevedo
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Graduate Program in Basic and Applied Immunology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | | | - Thalita Cristina de Mello Costa
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,University Hospital of Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | | | - Isabelle Fournier
- Laboratoire d'Immunologie et d'Histocompatibilité Hôpital Saint-Louis AP-HP Paris France
| | - Patrícia Vianna Bonini Palma
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | - Keli Cristina Lima
- Graduate Program in Biosciences Applied to Pharmacy School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| | | | | | - Fabiano Pieroni
- Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Renato Cunha
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | | | | | - Dimas Tadeu Covas
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Ana Cristina Silva-Pinto
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,University Hospital of Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Gil Cunha De Santis
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,University Hospital of Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Belinda Pinto Simões
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Ribeirão Preto Medical School University of São Paulo São Paulo SP Brazil
| | - Antoine Toubert
- Université de Paris INSERM UMR 1160 IRSL Paris France.,Laboratoire d'Immunologie et d'Histocompatibilité Hôpital Saint-Louis AP-HP Paris France
| | - Kelen Cristina Ribeiro Malmegrim
- Center for Cell-Based Therapy Regional Blood Center of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil.,Department of Clinical Analysis, Toxicology and Food Sciences School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo Ribeirão Preto SP Brazil
| |
Collapse
|
24
|
Santana-Gonçalves M, Zanin-Silva D, Henrique-Neto Á, Moraes DA, Kawashima- Vasconcelos MY, Lima-Júnior JR, Dias JBE, Bragagnollo V, de Azevedo JTC, Covas DT, Malmegrim KCR, Ramalho L, Oliveira MC. Autologous hematopoietic stem cell transplantation modifies specific aspects of systemic sclerosis-related microvasculopathy. Ther Adv Musculoskelet Dis 2022; 14:1759720X221084845. [PMID: 35368373 PMCID: PMC8966069 DOI: 10.1177/1759720x221084845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/14/2022] [Indexed: 11/15/2022] Open
Abstract
Objective: Autologous hematopoietic stem cell transplantation (AHSCT) is a therapeutic option for patients with severe and progressive systemic sclerosis (SSc). Here, we aimed to investigate how AHSCT affects the vasculopathy of SSc patients. Methods: Twenty-seven SSc patients were retrospectively assessed, before and after AHSCT, for vessel morphology (nailfold capillaroscopy), skin expression of endothelial markers and serum levels of markers of inflammation, angiogenesis and endothelial activation. Skin biopsies were analyzed by immunohistochemistry (IHC) for expression of CD31, VE-cadherin, E-selectin, angiopoietin-1 (Ang1), angiopoietin-2 (Ang2), Tie-2, vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 2 (VEGFR2), and endothelin-1 before and 12 months post-AHSCT. Serum samples from SSc patients were assessed before and up to 36 months after AHSCT for IL-6, von Willebrand factor (vWF), CXC Motif Chemokine Ligand 8 (CXCL8), Endothelin-1, epidermal growth factor (EGF), VEGFA, Pentraxin-3, Intercellular Adhesion Molecule 1 (ICAM-1), E-selectin, P-selectin, Thrombomodulin and IL-18 levels, and compared to healthy control samples. Results: On nailfold capillaroscopy, the number of capillaries increased at 1 year, while giant capillaries decreased at 6 months and 1 year after AHSCT. In the skin biopsies, expression of E-selectin notably decreased and Ang1 increased after AHSCT. At baseline, all vascular markers evaluated in the serum were significantly higher in SSc patients when compared to healthy controls, except for ICAM-1. When compared at different time points after AHSCT, Thrombomodulin, Pentraxin-3, vWF, and IL-18 levels remained generally stable at high levels until 36 months after AHSCT. Conclusion: Our results suggest that AHSCT contributes to improvements of the vessel morphology and dermal microvasculopathy, but does not normalize elevated levels of serum vascular markers in SSc patients. Additional vascular therapeutic approaches might contribute to more effectively treat the endothelial injury.
Collapse
Affiliation(s)
- Maynara Santana-Gonçalves
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Graduate Program in Oncology, Stem Cell and Cell-Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Djúlio Zanin-Silva
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Graduate Program in Basic and Applied Immunology Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Álvaro Henrique-Neto
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Graduate Program in Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela A. Moraes
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marianna Y. Kawashima- Vasconcelos
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Graduate Program in Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João R. Lima-Júnior
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Images, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana B. E. Dias
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Vinícius Bragagnollo
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Júlia T. C. de Azevedo
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Images, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas T. Covas
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Medical Images, Hematology and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C. R. Malmegrim
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Leandra Ramalho
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Brazil
| | | |
Collapse
|
25
|
Autologous Hematopoietic Stem Cell Transplantation for Liver Transplant Recipients With Recurrent Primary Sclerosing Cholangitis: A Pilot Study. Transplantation 2022; 106:562-574. [PMID: 34049362 DOI: 10.1097/tp.0000000000003829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Primary sclerosing cholangitis (PSC) is an indication for liver transplantation, but recurrence after liver transplantation is associated with poor outcomes often requiring repeat transplantation. We investigated whether autologous hematopoietic stem cell transplantation (aHSCT) could be used to stop progression of recurrent PSC and promote operational tolerance. METHODS Twelve patients with recurrent PSC were fully evaluated and 5 were selected for aHSCT. Autologous hematopoietic stem cells were collected, purified by CD34 immunomagnetic selection, and cryopreserved. Immunoablation using busulfan, cyclophosphamide, and rabbit antithymocyte globulin was followed by aHSCT. The primary endpoint of the study was the establishment of operational tolerance defined as lack of biochemical, histologic, and clinical evidence of rejection while off immunosuppression at 2 y post-aHSCT. RESULTS Two of the 5 patients achieved operational tolerance with no clinical or histologic evidence of PSC progression or allorejection. A third patient developed sinusoidal obstruction syndrome following aHSCT requiring repeat liver transplantation but has no evidence of PSC recurrence while on sirolimus monotherapy now >3 y after aHSCT. A fourth patient was weaned off immunosuppression but died 212 d after aHSCT from pericardial constriction. A fifth patient died from multiorgan failure. Immunosuppression-free allograft acceptance was associated with deletion of T-cell clones, loss of autoantibodies, and increases in regulatory T cells, transitional B cells, and programmed cell death protein-1 expressing CD8+ T cells in the 2 long-term survivors. CONCLUSIONS Although operational tolerance occurred following aHSCT, the high morbidity and mortality observed render this specific protocol unsuitable for clinical adoption.
Collapse
|
26
|
Bagnato G, Versace AG, La Rosa D, De Gaetano A, Imbalzano E, Chiappalone M, Ioppolo C, Roberts WN, Bitto A, Irrera N, Allegra A, Pioggia G, Gangemi S. Autologous Haematopoietic Stem Cell Transplantation and Systemic Sclerosis: Focus on Interstitial Lung Disease. Cells 2022; 11:843. [PMID: 35269465 PMCID: PMC8909673 DOI: 10.3390/cells11050843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Autologous hematopoietic stem cells transplantation (AHSCT) has been employed as treatment for severe systemic sclerosis (SSc) with high risk of organ failure. In the last 25 years overall survival and treatment-related mortality have improved, in accordance with a better patient selection and mobilization and conditioning protocols. This review analyzes the evidence from the last 5 years for AHSCT-treated SSc patients, considering in particular the outcomes related to interstitial lung disease. There are increasing data supporting the use of AHSCT in selected patients with rapidly progressive SSc. However, some unmet needs remain, such as an accurate patient selection, pre-transplantation analysis to identify subclinical conditions precluding the transplantation, and the alternatives for post-transplant ILD recurrence.
Collapse
Affiliation(s)
- Gianluca Bagnato
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.B.); (A.G.V.); (A.D.G.); (E.I.); (M.C.); (C.I.); (A.B.); (N.I.); (A.A.); (S.G.)
| | - Antonio Giovanni Versace
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.B.); (A.G.V.); (A.D.G.); (E.I.); (M.C.); (C.I.); (A.B.); (N.I.); (A.A.); (S.G.)
| | - Daniela La Rosa
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.B.); (A.G.V.); (A.D.G.); (E.I.); (M.C.); (C.I.); (A.B.); (N.I.); (A.A.); (S.G.)
| | - Alberta De Gaetano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.B.); (A.G.V.); (A.D.G.); (E.I.); (M.C.); (C.I.); (A.B.); (N.I.); (A.A.); (S.G.)
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.B.); (A.G.V.); (A.D.G.); (E.I.); (M.C.); (C.I.); (A.B.); (N.I.); (A.A.); (S.G.)
| | - Marianna Chiappalone
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.B.); (A.G.V.); (A.D.G.); (E.I.); (M.C.); (C.I.); (A.B.); (N.I.); (A.A.); (S.G.)
| | - Carmelo Ioppolo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.B.); (A.G.V.); (A.D.G.); (E.I.); (M.C.); (C.I.); (A.B.); (N.I.); (A.A.); (S.G.)
| | | | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.B.); (A.G.V.); (A.D.G.); (E.I.); (M.C.); (C.I.); (A.B.); (N.I.); (A.A.); (S.G.)
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.B.); (A.G.V.); (A.D.G.); (E.I.); (M.C.); (C.I.); (A.B.); (N.I.); (A.A.); (S.G.)
| | - Alessandro Allegra
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.B.); (A.G.V.); (A.D.G.); (E.I.); (M.C.); (C.I.); (A.B.); (N.I.); (A.A.); (S.G.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation, National Research Council of Italy, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.B.); (A.G.V.); (A.D.G.); (E.I.); (M.C.); (C.I.); (A.B.); (N.I.); (A.A.); (S.G.)
| |
Collapse
|
27
|
Long-term safety and efficacy of lentiviral hematopoietic stem/progenitor cell gene therapy for Wiskott-Aldrich syndrome. Nat Med 2022; 28:71-80. [PMID: 35075289 PMCID: PMC8799465 DOI: 10.1038/s41591-021-01641-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Patients with Wiskott–Aldrich syndrome (WAS) lacking a human leukocyte antigen-matched donor may benefit from gene therapy through the provision of gene-corrected, autologous hematopoietic stem/progenitor cells. Here, we present comprehensive, long-term follow-up results (median follow-up, 7.6 years) (phase I/II trial no. NCT02333760) for eight patients with WAS having undergone phase I/II lentiviral vector-based gene therapy trials (nos. NCT01347346 and NCT01347242), with a focus on thrombocytopenia and autoimmunity. Primary outcomes of the long-term study were to establish clinical and biological safety, efficacy and tolerability by evaluating the incidence and type of serious adverse events and clinical status and biological parameters including lentiviral genomic integration sites in different cell subpopulations from 3 years to 15 years after gene therapy. Secondary outcomes included monitoring the need for additional treatment and T cell repertoire diversity. An interim analysis shows that the study meets the primary outcome criteria tested given that the gene-corrected cells engrafted stably, and no serious treatment-associated adverse events occurred. Overall, severe infections and eczema resolved. Autoimmune disorders and bleeding episodes were significantly less frequent, despite only partial correction of the platelet compartment. The results suggest that lentiviral gene therapy provides sustained clinical benefits for patients with WAS. Long-term monitoring of patients with Wiskott–Aldrich syndrome following lentiviral gene therapy shows a safe profile and a reduction in the frequency of autoimmune manifestations and bleeding events, despite incomplete platelet reconstitution.
Collapse
|
28
|
Hendrawan K, Khoo MLM, Visweswaran M, Massey JC, Withers B, Sutton I, Ma DDF, Moore JJ. Long-Term Suppression of Circulating Proinflammatory Cytokines in Multiple Sclerosis Patients Following Autologous Haematopoietic Stem Cell Transplantation. Front Immunol 2022; 12:782935. [PMID: 35126353 PMCID: PMC8807525 DOI: 10.3389/fimmu.2021.782935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Autologous haematopoietic stem cell transplantation (AHSCT) is a therapeutic option for haematological malignancies, such as non-Hodgkin’s lymphoma (NHL), and more recently, for autoimmune diseases, such as treatment-refractory multiple sclerosis (MS). The immunological mechanisms underlying remission in MS patients following AHSCT likely involve an anti-inflammatory shift in the milieu of circulating cytokines. We hypothesised that immunological tolerance in MS patients post-AHSCT is reflected by an increase in anti-inflammatory cytokines and a suppression of proinflammatory cytokines in the patient blood. We investigated this hypothesis using a multiplex-ELISA assay to compare the concentrations of secreted cytokine in the peripheral blood of MS patients and NHL patients undergoing AHSCT. In MS patients, we detected significant reductions in proinflammatory T helper (Th)17 cytokines interleukin (IL)-17, IL-23, IL-1β, and IL-21, and Th1 cytokines interferon (IFN)γ and IL-12p70 in MS patients from day 8 to 24 months post-AHSCT. These changes were not observed in the NHL patients despite similar pre-conditioning treatment for AHSCT. Some proinflammatory cytokines show similar trends in both cohorts, such as IL-8 and tumour necrosis factor (TNF)-α, indicating a probable treatment-related AHSCT response. Anti-inflammatory cytokines (IL-10, IL-4, and IL-2) were only transiently reduced post-AHSCT, with only IL-10 exhibiting a significant surge at day 14 post-AHSCT. MS patients that relapsed post-AHSCT exhibited significantly elevated levels of IL-17 at 12 months post-AHSCT, unlike non-relapse patients which displayed sustained suppression of Th17 cytokines at all post-AHSCT timepoints up to 24 months. These findings suggest that suppression of Th17 cytokines is essential for the induction of long-term remission in MS patients following AHSCT.
Collapse
Affiliation(s)
- Kevin Hendrawan
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Melissa L. M. Khoo
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Malini Visweswaran
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jennifer C. Massey
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Barbara Withers
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - Ian Sutton
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - David D. F. Ma
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
| | - John J. Moore
- Blood, Stem Cells and Cancer Research Programme, St Vincent’s Centre for Applied Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Haematology, St Vincent’s Hospital, Darlinghurst, NSW, Australia
- *Correspondence: John J. Moore,
| |
Collapse
|
29
|
Amoriello R, Mariottini A, Ballerini C. Immunosenescence and Autoimmunity: Exploiting the T-Cell Receptor Repertoire to Investigate the Impact of Aging on Multiple Sclerosis. Front Immunol 2021; 12:799380. [PMID: 34925384 PMCID: PMC8673061 DOI: 10.3389/fimmu.2021.799380] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023] Open
Abstract
T-cell receptor (TCR) repertoire diversity is a determining factor for the immune system capability in fighting infections and preventing autoimmunity. During life, the TCR repertoire diversity progressively declines as a physiological aging progress. The investigation of TCR repertoire dynamics over life represents a powerful tool unraveling the impact of immunosenescence in health and disease. Multiple Sclerosis (MS) is a demyelinating, inflammatory, T-cell mediated autoimmune disease of the Central Nervous System in which age is crucial: it is the most widespread neurological disease among young adults and, furthermore, patients age may impact on MS progression and treatments outcome. Crossing knowledge on the TCR repertoire dynamics over MS patients' life is fundamental to investigate disease mechanisms, and the advent of high- throughput sequencing (HTS) has significantly increased our knowledge on the topic. Here we report an overview of current literature about the impact of immunosenescence and age-related TCR dynamics variation in autoimmunity, including MS.
Collapse
Affiliation(s)
- Roberta Amoriello
- Dipartimento di Medicina Sperimentale e Clinica (DMSC), Laboratory of Neuroimmunology, University of Florence, Florence, Italy
| | - Alice Mariottini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), University of Florence, Florence, Italy
| | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica (DMSC), Laboratory of Neuroimmunology, University of Florence, Florence, Italy
| |
Collapse
|
30
|
Lansiaux P, Loisel S, Castilla-Llorente C, Fontenille C, Kabdani S, Marjanovic Z, Pugnet G, Puyade M, Robert E, Terriou L, Ait Abdallah N, Maria ATJ, Michel L, Tréton X, Yakoub-Agha I, Farge D. [Autologous hematopoietic cells for severe autoimmune diseases: Guidelines of the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) for immune monitoring and biobanking]. Bull Cancer 2021; 108:S72-S81. [PMID: 34272057 DOI: 10.1016/j.bulcan.2021.03.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/29/2022]
Abstract
Autologous hematopoietic cell transplantation (AHCT) is a new treatment option for patients with severe autoimmune diseases (AD), based on the use of intensive or myeloablative chemotherapy to eradicate the pathogenic autoreactive immune cells and to allow the installation of a new and tolerant immune system during immune reconstitution process. Immune reconstitution analysis after AHCT is required for patients clinical follow-up and to further identify biological and immunological markers of the clinical response to develop individualized AHCT protocols. These MATHEC-SFGM-TC good clinical practice guidelines were developed by a multidisciplinary group of experts including members of the french reference center for stem Cell Therapy in Auto-immune Diseases (MATHEC), hematologists from the French speaking Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) and experts in immune monitoring and biobanking. The objectives are to provide practical recommandations for immune monitoring and biobanking of samples in patients with AD undergoing AHCT, for routine care purposes and investigational studies.
Collapse
Affiliation(s)
- Pauline Lansiaux
- AP-HP, hôpital Saint-Louis, unité de médecine interne (UF 04): CRMR MATHEC, Maladies auto-immunes et thérapie cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), 75010 Paris, France; Université de Paris, Institut de recherche Saint-Louis, recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France
| | - Séverine Loisel
- CHU de Rennes, établissement français du sang Bretagne, SITI, 35000 Rennes, France
| | - Cristina Castilla-Llorente
- Gustave-Roussy Cancer Center, département d'hématologie, 114, rue Edouard-Vaillant, 94800 Villejuif, France
| | - Claire Fontenille
- Institut Paoli-Calmettes, Association CRYOSTEM, 13009 Marseille, France
| | - Sarah Kabdani
- EFS HFNO site de Lille, unité de thérapie cellulaire, parc Eurasanté, 20, avenue Pierre-Mauroy, 59373 Loos, France
| | - Zora Marjanovic
- AP-HP, hôpital Saint-Antoine, service d'hématologie, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Grégory Pugnet
- CHU de Rangueil, service de médecine interne et immunologie clinique, 1, avenue du Professeur Jean-Poulhès, 31059 Toulouse cedex 9, France
| | - Mathieu Puyade
- CHU de Poitiers, service de médecine interne, 2, rue de la Miletrie, 86021 Poitiers, France; CHU de Poitiers, CIC-1402, 2, rue de la Miletrie, 86021 Poitiers, France
| | - Emilie Robert
- Institut Paoli-Calmettes, Association CRYOSTEM, 13009 Marseille, France
| | - Louis Terriou
- Hôpital Claude-Huriez, CHRU Lille, service de médecine interne et immunologie clinique, rue Michel-Polonovski, 59000 Lille, France
| | - Nassim Ait Abdallah
- AP-HP, hôpital Saint-Louis, unité de médecine interne (UF 04): CRMR MATHEC, Maladies auto-immunes et thérapie cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), 75010 Paris, France; Université de Paris, Institut de recherche Saint-Louis, recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France
| | - Alexandre Thibault Jacques Maria
- CHRU de Montpellier, hôpital Saint-Éloi, médecine interne : maladies multi-organiques de l'adulte, Inserm U1183 IRMB, 34295 Montpellier cedex 5, France
| | - Laure Michel
- CHU de Rennes, seervice de neurologie, Rennes, France
| | - Xavier Tréton
- Hôpital Beaujon, université de Paris, service de gastro-entérologie, MICI et Assistance Nutritive, DMU DIGEST, 100, boulevard Leclerc, 92110 Clichy, France
| | | | - Dominique Farge
- AP-HP, hôpital Saint-Louis, unité de médecine interne (UF 04): CRMR MATHEC, Maladies auto-immunes et thérapie cellulaire, Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France MATHEC (FAI2R), 75010 Paris, France; Université de Paris, Institut de recherche Saint-Louis, recherche clinique appliquée à l'hématologie, EA3518, 75010 Paris, France; McGill University, Department of Medicine, H3A 1A1, Montreal, Canada.
| |
Collapse
|
31
|
Cencioni MT, Mattoscio M, Magliozzi R, Bar-Or A, Muraro PA. B cells in multiple sclerosis - from targeted depletion to immune reconstitution therapies. Nat Rev Neurol 2021; 17:399-414. [PMID: 34075251 DOI: 10.1038/s41582-021-00498-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/04/2023]
Abstract
Increasing evidence indicates the involvement of B cells in the pathogenesis of multiple sclerosis (MS), but their precise roles are unclear. In this Review, we provide an overview of the development and physiological functions of B cells and the main mechanisms through which B cells are thought to contribute to CNS autoimmunity. In MS, abnormalities of B cell function include pro-inflammatory cytokine production, defective B cell regulatory function and the formation of tertiary lymphoid-like structures in the CNS, which are the likely source of abnormal immunoglobulin production detectable in the cerebrospinal fluid. We also consider the hypothesis that Epstein-Barr virus (EBV) is involved in the B cell overactivation that leads to inflammatory injury to the CNS in MS. We also review the immunological effects - with a focus on the effects on B cell subsets - of several successful therapeutic approaches in MS, including agents that selectively deplete B cells (rituximab, ocrelizumab and ofatumumab), agents that less specifically deplete lymphocytes (alemtuzumab and cladribine) and autologous haematopoietic stem cell transplantation, in which the immune system is unselectively ablated and reconstituted. We consider the insights that these effects on B cell populations provide and their potential to further our understanding and targeting of B cells in MS.
Collapse
Affiliation(s)
- Maria T Cencioni
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Miriam Mattoscio
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Roberta Magliozzi
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.,Department of Neurology, University of Verona, Verona, Italy
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paolo A Muraro
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
32
|
Burt RK, Muraro PA, Farge D, Oliveira MC, Snowden JA, Saccardi R, Han X, Quigley K, Bueno V, Frasca D, Fedorenko D, Burman J. New autoimmune diseases after autologous hematopoietic stem cell transplantation for multiple sclerosis. Bone Marrow Transplant 2021; 56:1509-1517. [PMID: 33911200 DOI: 10.1038/s41409-021-01277-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 02/02/2023]
Abstract
Secondary autoimmune diseases (2ndADs), most frequently autoimmune cytopenias (AICs), were first described after allogeneic hematopoietic stem cell transplantation (HSCT) undertaken for malignant and hematological indications, occurred at a prevalence of ~5-6.5%, and were attributed to allogeneic immune imbalances in the context of graft versus host disease, viral infections, and chronic immunosuppression. Subsequently, 2ndADs were reported to complicate roughly 2-14% of autologous HSCTs performed for an autoimmune disease. Alemtuzumab in the conditioning regimen has been identified as a risk for development of 2ndADs after either allogeneic or autologous HSCT and is consistent with the high rates of 2ndADs when using alemtuzumab as monotherapy. Due to the significant consequences but variable incidence, depending on conditioning regimen, of 2ndADs and similarity in known immune reconstitution kinetics after autologous HSCT for autoimmune diseases and after alemtuzumab monotherapy, we propose that an imbalance between B and T lineage regeneration early after HSCT may underlie the pathogenesis of 2ndADs.
Collapse
Affiliation(s)
- Richard K Burt
- Division of Immunotherapy, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Paolo A Muraro
- Neuroimmunology and Immunotherapy, Department of Brain Sciences, Imperial College London, London, UK
| | - Dominique Farge
- Unité de Médecine Interne: Maladies Auto-immunes et Pathologie Vasculaire (UF 04), IRSL, EA-3518, Université de Paris, MATHEC, Centre de Référence des Maladies auto-immunes systémiques Rares d'Ile-de-France, Filière FAI2R, Hôpital St-Louis, AP-HP, Paris, France
| | - Maria Carolina Oliveira
- Divisão de Imunologia Clínica, Departamento de Clínica Médica, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals, NHS Foundation Trust and the University of Sheffield, Sheffield, UK
| | - Riccardo Saccardi
- Department of Hematology, Careggi University Hospital, Florence, Italy
| | - Xiaoqiang Han
- Division of Immunotherapy, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathleen Quigley
- Division of Immunotherapy, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Valquiria Bueno
- Department of Microbiology, Immunology and Parasitology DMIP Federal University of São Paulo UNIFESP, São Paulo, Brasil
| | - Daniela Frasca
- Department of Microbiology and Immunology, and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denis Fedorenko
- The A.A. Maximov Department of Hematology and Cellular Therapy, National Pirogov Medical Surgical Center, Moscow, Russian Federation
| | - Joachim Burman
- Department of Neurology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Gressenberger P, Jud P, Kovacs G, Kreuzer S, Brezinsek HP, Guetl K, Muster V, Kolesnik E, Schmidt A, Odler B, Adelsmayr G, Neumeister P, Brcic L, Zenz S, Weber K, Gary T, Brodmann M, Graninger WB, Moazedi-Fürst FC. Rituximab as a Treatment Option after Autologous Hematopoietic Stem Cell Transplantation in a Patient with Systemic Sclerosis. J Pers Med 2021; 11:600. [PMID: 34201939 PMCID: PMC8305780 DOI: 10.3390/jpm11070600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Systemic sclerosis (SSc) is an intractable autoimmune disease characterized by vasculopathy and organ fibrosis. Autologous hematopoietic stem cell transplantation (AHSCT) should be considered for the treatment of selected patients with rapid progressive SSc at high risk of organ failure. It, however, remains elusive whether immunosuppressive therapies such as rituximab (RTX) are still necessary for such patients after AHSCT, especially in those with bad outcomes. In the present report, a 43-year-old man with diffuse cutaneous SSc received AHSCT. Despite AHSCT, SSc further progressed with progressive symptomatic heart failure with newly developed concomitant mitral and tricuspid valve insufficiency, thus the patient started on RTX 8 months after AHSCT. Shortly after initiation of RTX, clinical symptoms and organ functions ameliorated subsequently. Heart valve regurgitations were reversible after initiation of RTX treatment. Currently, the patient remains in a stable condition with significant improvement of clinical symptoms and organ functions. Reporting about therapies after AHSCT in SSc is a very important issue, as randomized controlled trials are lacking, and therefore this report adds to evidence that RTX can be considered as a treatment option in patients with SSc that do not respond to AHSCT.
Collapse
Affiliation(s)
- Paul Gressenberger
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (P.J.); (K.G.); (V.M.); (T.G.); (M.B.)
| | - Philipp Jud
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (P.J.); (K.G.); (V.M.); (T.G.); (M.B.)
| | - Gabor Kovacs
- Division of Pneumology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria
| | - Sonja Kreuzer
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (S.K.); (H.-P.B.); (S.Z.); (K.W.); (W.B.G.); (F.C.M.-F.)
| | - Hans-Peter Brezinsek
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (S.K.); (H.-P.B.); (S.Z.); (K.W.); (W.B.G.); (F.C.M.-F.)
| | - Katharina Guetl
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (P.J.); (K.G.); (V.M.); (T.G.); (M.B.)
| | - Viktoria Muster
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (P.J.); (K.G.); (V.M.); (T.G.); (M.B.)
| | - Ewald Kolesnik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (E.K.); (A.S.)
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (E.K.); (A.S.)
| | - Balazs Odler
- Division of Nephrology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Gabriel Adelsmayr
- Division of General Radiology, Department of Radiology, Medical University of Graz, 8036 Graz, Austria;
| | - Peter Neumeister
- Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8036 Graz, Austria;
| | - Sabine Zenz
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (S.K.); (H.-P.B.); (S.Z.); (K.W.); (W.B.G.); (F.C.M.-F.)
| | - Kurt Weber
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (S.K.); (H.-P.B.); (S.Z.); (K.W.); (W.B.G.); (F.C.M.-F.)
| | - Thomas Gary
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (P.J.); (K.G.); (V.M.); (T.G.); (M.B.)
| | - Marianne Brodmann
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (P.J.); (K.G.); (V.M.); (T.G.); (M.B.)
| | - Winfried B. Graninger
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (S.K.); (H.-P.B.); (S.Z.); (K.W.); (W.B.G.); (F.C.M.-F.)
| | - Florentine C. Moazedi-Fürst
- Division of Rheumatology and Immunology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (S.K.); (H.-P.B.); (S.Z.); (K.W.); (W.B.G.); (F.C.M.-F.)
| |
Collapse
|
34
|
Holloman JP, Axtell RC, Monson NL, Wu GF. The Role of B Cells in Primary Progressive Multiple Sclerosis. Front Neurol 2021; 12:680581. [PMID: 34163430 PMCID: PMC8215437 DOI: 10.3389/fneur.2021.680581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
The success of ocrelizumab in reducing confirmed disability accumulation in primary progressive multiple sclerosis (PPMS) via CD20-targeted depletion implicates B cells as causal agents in the pathogenesis of PPMS. This review explores the possible mechanisms by which B cells contribute to disease progression in PPMS, specifically exploring cytokine production, antigen presentation, and antibody synthesis. B cells may contribute to disease progression in PPMS through cytokine production, specifically GM-CSF and IL-6, which can drive naïve T-cell differentiation into pro-inflammatory Th1/Th17 cells. B cell production of the cytokine LT-α may induce follicular dendritic cell production of CXCL13 and lead indirectly to T and B cell infiltration into the CNS. In contrast, production of IL-10 by B cells likely induces an anti-inflammatory effect that may play a role in reducing neuroinflammation in PPMS. Therefore, reduced production of IL-10 may contribute to disease worsening. B cells are also capable of potent antigen presentation and may induce pro-inflammatory T-cell differentiation via cognate interactions. B cells may also contribute to disease activity via antibody synthesis, although it's unlikely the benefit of ocrelizumab in PPMS occurs via antibody decrement. Finally, various B cell subsets likely promulgate pro- or anti-inflammatory effects in MS.
Collapse
Affiliation(s)
- Jameson P Holloman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, United States
| | - Robert C Axtell
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, United States
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, TX, United States.,Department of Immunology, University of Texas Southwestern, Dallas, TX, United States
| | - Gregory F Wu
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, United States.,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
35
|
Puyade M, Patel A, Lim YJ, Blank N, Badoglio M, Gualandi F, Ma DD, Maximova N, Greco R, Alexander T, Snowden JA. Autologous Hematopoietic Stem Cell Transplantation for Behçet's Disease: A Retrospective Survey of Patients Treated in Europe, on Behalf of the Autoimmune Diseases Working Party of the European Society for Blood and Marrow Transplantation. Front Immunol 2021; 12:638709. [PMID: 34025648 PMCID: PMC8136432 DOI: 10.3389/fimmu.2021.638709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/26/2021] [Indexed: 12/29/2022] Open
Abstract
Background Behçet’s Disease (BD) is an autoimmune disease mostly presenting with recurrent oral and genital aphthosis, and uveitis. Patients are rarely refractory to immunosuppressive treatments. Autologous hematopoietic stem cell transplantation (aHSCT) is a standard of care in other autoimmune diseases. Some patients with BD have been treated with aHSCT based on compassionate use. Objectives Evaluate the outcome of aHSCT in adult patients with BD treated in member centers of the European Society for Blood and Marrow Transplantation (EBMT). Methods Adults who received aHSCT primarily for BD were identified retrospectively in the EBMT registry and/or in published literature. Data were extracted from either medical records of the patient or from publications. Results Eight out of 9 cases reported to the registry and extracted data of 2 further patients from literature were analyzed. Four were female, median age at onset of BD was 24y (range 9-50). Median age at aHSCT was 32y (27-51). Patients had received median 4 (2-11) previous lines of therapy (89% corticosteroids, 50% methotrexate, anti-TNFα therapy or cyclophosphamide). All patients had active disease before mobilization. Conditioning regimen was heterogeneous. Median follow-up was 48 months (range 6-240). No treatment-related mortality was reported. This procedure induced complete remission (CR) in 80%, partial remission in 10% and lack of response in 10% of the patients. Relapse rate was 30% (2 relapses in patients in CR and 1 relapse in the patient in PR) with panuveitis (n=1), aphthosis (n=2) and arthralgia (n=1). Six patients were in CR. No late complications were reported. Conclusion aHSCT has an acceptable safety profile and represents a feasible and relatively effective procedure in severe and conventional treatment-resistant cases of BD and has the potential to stabilize BD in patients with life-threatening involvements.
Collapse
Affiliation(s)
- Mathieu Puyade
- CHU de Poitiers, Service de Médecine Interne et Maladies Infectieuses, Poitiers, France.,CHU de Poitiers, CIC-1402 Poitiers, France
| | - Amit Patel
- Haematology and Transplant Unit, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Yeong Jer Lim
- Haemato-Oncology Department, Clatterbridge Cancer Centre, University of Liverpool, Liverpool, United Kingdom
| | - Norbert Blank
- Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | | | - Francesca Gualandi
- U.O. Ematologia Centro Trapianti Midollo - Ospedale Policlinico San Martino, Genova, Italy
| | - David D Ma
- Department of Haematology and BM Transplantation, St Vincent's Hospital Sydney and St Vincent's Clinical School, Faculty of Medicine, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Natalia Maximova
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Raffaella Greco
- Haematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - John A Snowden
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| |
Collapse
|
36
|
Lima-Júnior JR, Arruda LCM, Gonçalves MS, Dias JBE, Moraes DA, Covas DT, Simões BP, Oliveira MC, Malmegrim KCR. Autologous hematopoietic stem cell transplantation restores the suppressive capacity of regulatory B cells in systemic sclerosis patients. Rheumatology (Oxford) 2021; 60:5538-5548. [PMID: 33724344 DOI: 10.1093/rheumatology/keab257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/07/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES The rationale of autologous hematopoietic stem cell transplantation (AHSCT) for autoimmune diseases is that high-dose immunosuppression eradicates autoreactive T and B cells, and the infused autologous hematopoietic stem cells promote reconstitution of a naive and self-tolerant immune system. The aim of this study was to evaluate the reconstitution of different B cell subsets, both quantitatively and functionally, in systemic sclerosis (SSc) patients treated with AHSCT. METHODS Peripheral blood was harvested from twenty-two SSc patients before transplantation and at 30, 60, 120, 180 and 360 days post-AHSCT. Immunophenotyping of B cell subsets, B cell cytokine production, signaling pathways, and suppressive capacity of regulatory B cells (Bregs) were assessed by flow cytometry. RESULTS Naïve B cell frequencies increased from 60 to 360 days post-AHSCT, compared to pre-transplantation. Conversely, memory B cell frequencies decreased during the same period. Plasma cell frequencies transiently decreased at 60 days post-AHSCT. IL-10-producing Bregs CD19+CD24hiCD38hi and CD19+CD24hiCD27+ frequencies increased at 180 days. Moreover, the phosphorylation of ERK1/2 and p38MAPK proteins increased in B cells reconstituted post-AHSCT. Notably, CD19+CD24hiCD38hi Bregs recovered their ability to suppress production of Th1 cytokines by CD4+ T cells at 360 days post-AHSCT. Finally, IL-6 and TGF-β1-producing B cells decreased following AHSCT. CONCLUSION Taken together, these results suggest improvements in immunoregulatory and anti-fibrotic mechanisms after AHSCT for SSc, which may contribute to reestablishment of self-tolerance and clinical remission.
Collapse
Affiliation(s)
- João R Lima-Júnior
- Graduate Program on Biosciences and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lucas C M Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Maynara S Gonçalves
- Basic and Applied Immunology Program, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana B E Dias
- Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela A Moraes
- Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas T Covas
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Belinda P Simões
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
37
|
Henrique-Neto Á, Vasconcelos MYK, Dias JBE, de Moraes DA, Gonçalves MS, Zanin-Silva DC, Zucoloto TG, de Oliveira MDFC, Dotoli GM, Weffort LF, Leopoldo VC, Oliveira MC. Hematopoietic stem cell transplantation for systemic sclerosis: Brazilian experience. Adv Rheumatol 2021; 61:9. [PMID: 33549135 DOI: 10.1186/s42358-021-00166-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In the past 20 years, hematopoietic stem cell transplantation (HSCT) has been investigated as treatment for systemic sclerosis (SSc). The goal of HSCT is to eradicate the autoreactive immune system, which is replaced by a new immune repertoire with long-lasting regulation and tolerance to autoantigens. Here, we describe the clinical outcomes of severe and refractory SSc patients that underwent HSCT at a single Brazilian center. PATIENTS AND METHODS This is a longitudinal and retrospective study, including 70 adult SSc patients, with an established diagnosis of SSc, and who underwent autologous HSCT from 2009 to 2016. The procedure included harvesting and cryopreservation of autologous hematopoietic progenitor cells, followed by administration of an immunoablative regimen and subsequent infusion of the previously collected cells. Patients were evaluated immediately before transplantation, at 6 months and then yearly until at least 5-years of post-transplantation follow-up. At each evaluation time point, patients underwent clinical examination, including modified Rodnan's skin score (mRSS) assessment, echocardiography, high-resolution computed tomography of the lungs and pulmonary function. RESULTS Median (range) age was 35.9 (19-59), with 57 (81.4%) female and median (range) non-Raynaud's disease duration of 2 (1-7) years. Before transplantation, 96% of the patients had diffuse skin involvement, 84.2%, interstitial lung disease and 67%, positive anti-topoisomerase I antibodies. Skin involvement significantly improved, with a decline in mRSS at all post-transplantation time points until at least 5-years of follow-up. When patients with pre-HSCT interstitial lung disease were analyzed, there was an improvement in pulmonary function (forced vital capacity and diffusing capacity of lung for carbon monoxide) over the 5-year follow-up. Overall survival was 81% and progression-free survival was 70.5% at 8-years after HSCT. Three patients died due to transplant-related toxicity, 9 patients died over follow-up due to disease reactivation and one patient died due to thrombotic thrombocytopenic purpura. CONCLUSIONS Autologous hematopoietic progenitor cell transplantation improves skin and interstitial lung involvement. These results are in line with the international experience and support HSCT as a viable therapeutic alternative for patients with severe and progressive systemic sclerosis.
Collapse
Affiliation(s)
- Álvaro Henrique-Neto
- Graduate Program in Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marianna Yumi Kawashima Vasconcelos
- Graduate Program in Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana Bernardes Elias Dias
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Aparecida de Moraes
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maynara Santana Gonçalves
- Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program in Oncology, Stem Cells and Cell Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Djúlio César Zanin-Silva
- Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Talita Graminha Zucoloto
- Graduate Program in Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marília de Fátima Cirioli de Oliveira
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Ribeirão Preto School of Nursing, University of São Paulo, Ribeirão Preto, Brazil
| | - Giuliana Martinelli Dotoli
- Graduate Program in Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Fernando Weffort
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Cristina Leopoldo
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Ribeirão Preto School of Nursing, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Avenida dos Bandeirantes 3900, Ribeirão Preto, SP, 14048-900, Brazil.
| |
Collapse
|
38
|
Farge D, Ait Abdallah N, Marjanovic Z, Del Papa N. Autologous stem cell transplantation in scleroderma. Presse Med 2021; 50:104065. [PMID: 33548374 DOI: 10.1016/j.lpm.2021.104065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/29/2021] [Indexed: 12/29/2022] Open
Abstract
Patients with severe rapidly progressive systemic sclerosis (SSc) have a poor prognosis. Standard immunosuppressive therapies may have modest effects on stabilizing disease, but they fail to improve overall survival. Hematopoietic stem cell transplant (HSCT) is the first treatment to induce disease-modifying therapeutic benefits in rapidly progressive SSc patients. HSCT in rapidly progressive SSc can induce regression of fibrosis in skin and lung, and increase survival. Initially, HSCT was associated with high treatment-related mortality rates. Improvements in patient screening, a better understanding of the risks associated with different treatment regimens, and centre experience have improved the AHSCT safety profile for patients with scleroderma.
Collapse
Affiliation(s)
- Dominique Farge
- Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Internal Medicine (UF04), MATHEC, Centre of reference for rare systemic autoimmune diseases (FAI2R); Université de Paris, EA 3518, Paris, France; McGill university, department of medicine, Montreal, QC, Canada.
| | - Nassim Ait Abdallah
- Assistance Publique-Hôpitaux de Paris, Saint-Louis Hospital, Internal Medicine (UF04), MATHEC, Centre of reference for rare systemic autoimmune diseases (FAI2R); Université de Paris, EA 3518, Paris, France
| | - Zora Marjanovic
- Saint-Antoine hospital, department of haematology, Paris, France
| | - Nicoletta Del Papa
- Scleroderma clinic, Ospedale G. Pini, University of Milan, department of rheumatology, Milano, Italy
| |
Collapse
|
39
|
Mukhatayev Z, Ostapchuk YO, Fang D, Le Poole IC. Engineered antigen-specific regulatory T cells for autoimmune skin conditions. Autoimmun Rev 2021; 20:102761. [PMID: 33476816 DOI: 10.1016/j.autrev.2021.102761] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/28/2020] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) are a subset of T cells responsible for the regulation of immune responses, thereby maintaining immune homeostasis and providing immune tolerance to both self and non-self-antigens. An increasing number of studies revealed Treg numbers and functions in a variety of autoimmune diseases. Treg deficiency can cause the development of several autoimmune skin diseases including vitiligo, alopecia areata, pemphigoid and pemphigus, psoriasis, and systemic sclerosis. Many clinical trials have been performed for autoimmune conditions using polyclonal Tregs, but efficiency can be significantly improved using antigen-specific Tregs engineered using T cell receptor (TCR) or chimeric antigen receptor (CAR) constructs. In this review, we systematically reviewed altered frequencies, impaired functions, and phenotypic features of Tregs in autoimmune skin conditions. We also summarized new advances in TCR and CAR based antigen-specific Tregs tested both in animal models and in clinics. The advantages and limitations of each approach were carefully discussed emphasizing possible clinical relevance to patients with autoimmune skin diseases. Moreover, we have reviewed potential approaches for engineering antigen-specific Tregs, and strategies for overcoming possible hurdles in clinical applications. Thereby, antigen-specific Tregs can be infused using autologous adoptive cell transfer to restore Treg numbers and to provide local immune tolerance for autoimmune skin disorders.
Collapse
Affiliation(s)
- Zhussipbek Mukhatayev
- Department of Dermatology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA; Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan; M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | - Deyu Fang
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - I Caroline Le Poole
- Department of Dermatology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
40
|
Arruda LCM, Clave E, Douay C, Lima-Júnior JR, Slavov SN, Malmegrim KCR, Alberdi AJ, Oliveira MC, Toubert A. CMV-specific clones may lead to reduced TCR diversity and relapse in systemic sclerosis patients treated with AHSCT. Rheumatology (Oxford) 2021; 59:e38-e40. [PMID: 31998954 DOI: 10.1093/rheumatology/keaa001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/01/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Lucas C M Arruda
- Basic and Applied Immunology Program, Ribeirão Preto Medical School, University of São Paulo.,Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Emmanuel Clave
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis - APHP.,Université de Paris, Paris, France
| | - Corinne Douay
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis - APHP
| | - João R Lima-Júnior
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Biosciences and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Svetoslav N Slavov
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Antônio José Alberdi
- Université de Paris, Paris, France.,Plateforme Technologique, Institut Universitaire d'Hématologie, Paris, France
| | - Maria Carolina Oliveira
- Basic and Applied Immunology Program, Ribeirão Preto Medical School, University of São Paulo.,Center for Cell-Based Therapy, Regional Hemotherapy Center of the Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Division of Clinical Immunology, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Antoine Toubert
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis - APHP.,Université de Paris, Paris, France
| |
Collapse
|
41
|
Servaas NH, Zaaraoui-Boutahar F, Wichers CGK, Ottria A, Chouri E, Affandi AJ, Silva-Cardoso S, van der Kroef M, Carvalheiro T, van Wijk F, Radstake TRDJ, Andeweg AC, Pandit A. Longitudinal analysis of T-cell receptor repertoires reveals persistence of antigen-driven CD4 + and CD8 + T-cell clusters in systemic sclerosis. J Autoimmun 2020; 117:102574. [PMID: 33307312 DOI: 10.1016/j.jaut.2020.102574] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
The T-cell receptor (TCR) is a highly polymorphic surface receptor that allows T-cells to recognize antigenic peptides presented on the major histocompatibility complex (MHC). Changes in the TCR repertoire have been observed in several autoimmune conditions, and these changes are suggested to predispose autoimmunity. Multiple lines of evidence have implied an important role for T-cells in the pathogenesis of Systemic Sclerosis (SSc), a complex autoimmune disease. One of the major questions regarding the roles of T-cells is whether expansion and activation of T-cells observed in the diseases pathogenesis is antigen driven. To investigate the temporal TCR repertoire dynamics in SSc, we performed high-throughput sequencing of CD4+ and CD8+ TCRβ chains on longitudinal samples obtained from four SSc patients collected over a minimum of two years. Repertoire overlap analysis revealed that samples taken from the same individual over time shared a high number of TCRβ sequences, indicating a clear temporal persistence of the TCRβ repertoire in CD4+ as well as CD8+ T-cells. Moreover, the TCRβs that were found with a high frequency at one time point were also found with a high frequency at the other time points (even after almost four years), showing that frequencies of dominant TCRβs are largely consistent over time. We also show that TCRβ generation probability and observed TCR frequency are not related in SSc samples, showing that clonal expansion and persistence of TCRβs is caused by antigenic selection rather than convergent recombination. Moreover, we demonstrate that TCRβ diversity is lower in CD4+ and CD8+ T-cells from SSc patients compared with memory T-cells from healthy individuals, as SSc TCRβ repertoires are largely dominated by clonally expanded persistent TCRβ sequences. Lastly, using "Grouping of Lymphocyte Interactions by Paratope Hotspots" (GLIPH2), we identify clusters of TCRβ sequences with homologous sequences that potentially recognize the same antigens and contain TCRβs that are persist in SSc patients. In conclusion, our results show that CD4+ and CD8+ T-cells are highly persistent in SSc patients over time, and this persistence is likely a result from antigenic selection. Moreover, persistent TCRs form high similarity clusters with other (non-)persistent sequences that potentially recognize the same epitopes. These data provide evidence for an antigen driven expansion of CD4+/CD8+ T-cells in SSc.
Collapse
Affiliation(s)
- N H Servaas
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - F Zaaraoui-Boutahar
- Department of Viroscience, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - C G K Wichers
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A Ottria
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - E Chouri
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A J Affandi
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - S Silva-Cardoso
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - M van der Kroef
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - T Carvalheiro
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - F van Wijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - T R D J Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - A C Andeweg
- Department of Viroscience, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands
| | - A Pandit
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
42
|
Abstract
The introduction of targeted biologic therapies has changed the treatment landscape for autoimmune diseases (ADs) substantially, but although these therapies provide more specificity, they require continuous administration, rarely restore organ function or reverse disability, and are not curative. Over the last 25 years, hematopoietic stem cell transplantation (HSCT) has been increasingly used to treat patients in whom the risk:benefit ratio of HSCT is acceptable. In contrast to chronic suppression of immune function, this intensive one-off procedure aims to provide treatment-free remissions by the reinduction of self-tolerance. The European Society for Blood and Marrow Transplantation (EBMT) Autoimmune Diseases Working Party (ADWP) has been central to development of this approach, with over 3,300 HSCT registrations for ADs. Recent data have improved the evidence base to support autologous HSCT in multiple sclerosis, systemic sclerosis, and Crohn's disease, along with a wide range of rarer disease indications, and autologous HSCT has become an integral part of treatment algorithms in various ADs.
Collapse
Affiliation(s)
- Tobias Alexander
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany; .,Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan 20132, Italy
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, United Kingdom
| |
Collapse
|
43
|
Haematopoietic stem cell transplantation in systemic sclerosis: Challenges and perspectives. Autoimmun Rev 2020; 19:102662. [PMID: 32942028 DOI: 10.1016/j.autrev.2020.102662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Systemic Sclerosis is chronic progressive autoimmune disease, characterised by microangiopathy and fibrosis. Due to disease heterogeneity, in terms of extent, severity, and rate of progression, optimal therapeutic interventions are still lacking. Haematopoietic stem cells may be a new therapeutic option in this disease and, although the results of the first trials are encouraging, several issues remain to be addressed. On these bases, the stem cells transplantation is an area of active investigation, and an overview of the current available literature may help to define the role of this therapeutic strategy. Although the promising results, some unmet needs remain, including the transplantation protocols and their effects on immune system, the selection of the ideal patient and the pre-transplant cardiopulmonary evaluations. An improvement in these fields will allow us to optimize the haematopoietic stem cell therapies in SSc.
Collapse
|
44
|
Gaballa A, Clave E, Uhlin M, Toubert A, Arruda LCM. Evaluating Thymic Function After Human Hematopoietic Stem Cell Transplantation in the Personalized Medicine Era. Front Immunol 2020; 11:1341. [PMID: 32849495 PMCID: PMC7412601 DOI: 10.3389/fimmu.2020.01341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an effective treatment option for several malignant and non-malignant hematological diseases. The clinical outcome of this procedure relies to a large extent on optimal recovery of adaptive immunity. In this regard, the thymus plays a central role as the primary site for de novo generation of functional, diverse, and immunocompetent T-lymphocytes. The thymus is exquisitely sensitive to several insults during HSCT, including conditioning drugs, corticosteroids, infections, and graft-vs.-host disease. Impaired thymic recovery has been clearly associated with increased risk of opportunistic infections and poor clinical outcomes in HSCT recipients. Therefore, better understanding of thymic function can provide valuable information for improving HSCT outcomes. Recent data have shown that, besides gender and age, a specific single-nucleotide polymorphism affects thymopoiesis and may also influence thymic output post-HSCT, suggesting that the time of precision medicine of thymic function has arrived. Here, we review the current knowledge about thymic role in HSCT and the recent work of genetic control of human thymopoiesis. We also discuss different transplant-related factors that have been associated with impaired thymic recovery and the use of T-cell receptor excision circles (TREC) to assess thymic output, including its clinical significance. Finally, we present therapeutic strategies that could boost thymic recovery post-HSCT.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Emmanuel Clave
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis APHP, Paris, France.,Université de Paris, Paris, France
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.,Department of Applied Physics, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Antoine Toubert
- INSERM UMR-1160, Institut de Recherche Saint-Louis, Hôpital Saint-Louis APHP, Paris, France.,Université de Paris, Paris, France
| | - Lucas C M Arruda
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
[Autologous hematopoietic stem cell transplantation for autoimmune diseases : Current indications and mode of action, a review on behalf of the EBMT Autoimmune Diseases Working Party (ADWP)]. Z Rheumatol 2020; 79:419-428. [PMID: 32356079 DOI: 10.1007/s00393-020-00795-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recent introduction of biologic and targeted synthetic disease-modifying drugs has led to more specificity in the treatment of autoimmune diseases; however, they require continuous or intermittent administration, are associated with cumulative risks for side effects, result in high costs and provide no cure. In contrast, high-dose chemotherapy followed by transplantation of autologous hematopoietic stem cells (AHSCT) has been demonstrated to induce clinical remission in various autoimmune diseases that can persist over many years without continued maintenance therapy. The principle behind AHSCT is an elimination of important components of the autoreactive immunological memory with subsequent regeneration of the complete immune system. Several studies have indicated that such an immune reset is associated with fundamental changes in the immune repertoire leading to an induction of tolerance against self-antigens. This article presents the current indications of AHSCT for autoimmune diseases based on the registry data of the European Society of Blood and Marrow Transplantation (EBMT) and discusses the results from mechanistic studies, which provide detailed insights into the mode of action of this treatment.
Collapse
|
46
|
Zaimoku Y, Patel BA, Kajigaya S, Feng X, Alemu L, Quinones Raffo D, Groarke EM, Young NS. Deficit of circulating CD19 + CD24 hi CD38 hi regulatory B cells in severe aplastic anaemia. Br J Haematol 2020; 190:610-617. [PMID: 32311088 PMCID: PMC7496711 DOI: 10.1111/bjh.16651] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Immune aplastic anaemia (AA) is caused by cytotoxic T lymphocytes (CTLs) that destroy haematopoietic stem and progenitor cells. Enhanced type 1 T helper (Th1) responses and reduced regulatory T cells (Tregs) are involved in the immune pathophysiology. CD24hiCD38hi regulatory B cells (Bregs) suppress CTLs and Th1 responses, and induce Tregs via interleukin 10 (IL‐10). We investigated circulating B‐cell subpopulations, including CD24hiCD38hi Bregs, as well as total B cells, CD4+ T cells, CD8+ T cells and natural killer cells in 104 untreated patients with severe and very severe AA, aged ≥18 years. All patients were treated with standard immunosuppressive therapy (IST) plus eltrombopag. CD24hiCD38hi Bregs were markedly reduced in patients with AA compared to healthy individuals, especially in very severe AA, but residual Bregs remained functional, capable of producing IL‐10; total B‐cell counts and the other B‐cell subpopulations were similar to those of healthy individuals. CD24hiCD38hi Bregs did not correlate with responses to IST, and they recovered to levels present in healthy individuals after therapy. Mature naïve B‐cell counts were unexpectedly associated with IST response. Markedly reduced CD24hiCD38hi Bregs, especially in very severe AA, with recovery after IST suggest Breg deficits may contribute to the pathophysiology of immune AA.
Collapse
Affiliation(s)
- Yoshitaka Zaimoku
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Bhavisha A Patel
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Lemlem Alemu
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Diego Quinones Raffo
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
47
|
Kalekar LA, Rosenblum MD. Regulatory T cells in inflammatory skin disease: from mice to humans. Int Immunol 2020; 31:457-463. [PMID: 30865268 DOI: 10.1093/intimm/dxz020] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
The skin is the largest organ in the body and one of the primary barriers to the environment. In order to optimally protect the host, the skin is home to numerous immune cell subsets that interact with each other and other non-immune cells to maintain organ integrity and function. Regulatory T cells (Tregs) are one of the largest immune cell subsets in skin. They play a critical role in regulating inflammation and facilitating organ repair. In doing so, they adopt unique and specialized tissue-specific functions. In this review, we compare and contrast the role of Tregs in cutaneous immune disorders from mice and humans, with a specific focus on scleroderma, alopecia areata, atopic dermatitis, cutaneous lupus erythematosus and psoriasis.
Collapse
Affiliation(s)
- Lokesh A Kalekar
- Department of Dermatology, Medical Sciences Building, University of California, San Francisco, CA, USA
| | - Michael D Rosenblum
- Department of Dermatology, Medical Sciences Building, University of California, San Francisco, CA, USA
| |
Collapse
|
48
|
Successful in utero stem cell transplantation in X-linked severe combined immunodeficiency. Blood Adv 2020; 3:237-241. [PMID: 30683657 DOI: 10.1182/bloodadvances.2018023176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
Key Points
IUT enables rapid immune reconstitution and avoids many clinical and economic problems; however, the indication is still limited. IUT may be a treatment option in select cases, eg, fetuses exposed to a significant infectious risk, where a matched sibling donor exists.
Collapse
|
49
|
Abstract
Systemic sclerosis (SSc) has the highest cause-specific mortality of all the connective tissue diseases, and the aetiology of this complex and heterogeneous condition remains an enigma. Current disease-modifying therapies for SSc predominantly target inflammatory and vascular pathways but have variable and unpredictable clinical efficacy, and none is curative. Moreover, many of these therapies possess undesirable safety profiles and have no appreciable effect on long-term mortality. This Review describes the most promising of the existing therapeutic targets for SSc and places them in the context of our evolving understanding of the pathophysiology of this disease. As well as taking an in-depth look at the immune, inflammatory, vascular and fibrotic pathways implicated in the pathogenesis of SSc, this Review discusses emerging treatment targets and therapeutic strategies. The article concludes with an overview of important unanswered questions in SSc research that might inform the design of future studies of treatments aimed at modifying the course of this disease.
Collapse
|
50
|
Servaas NH, Spierings J, Pandit A, van Laar JM. The role of innate immune cells in systemic sclerosis in the context of autologous hematopoietic stem cell transplantation. Clin Exp Immunol 2020; 201:34-39. [PMID: 31990046 PMCID: PMC7290088 DOI: 10.1111/cei.13419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2020] [Indexed: 12/30/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex, heterogeneous autoimmune connective tissue disease. Autologous hematopoietic stem‐cell transplantation (AHSCT) has emerged as a valuable treatment option for rapidly progressive diffuse cutaneous SSc (dcSSc) patients, and thus far is the only treatment that has been shown to have a long‐term clinical benefit. AHSCT is thought to reintroduce immune homeostasis through elimination of pathogenic self‐reactive immune cells and reconstitution of a new, tolerant immune system. However, the mechanism of action underlying this reset to tolerance remains largely unknown. In this study we review the immune mechanisms underlying AHSCT for SSc, with a focus on the role of the innate immune cells, including monocytes and natural killer (NK) cells, in restoring immune balance after AHSCT.
Collapse
Affiliation(s)
- N H Servaas
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J Spierings
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - A Pandit
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J M van Laar
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|