1
|
Boët E, Saland E, Skuli S, Griessinger E, Sarry JE. [ Mitohormesis: a key driver of the therapy resistance in cancer cells]. C R Biol 2024; 347:59-75. [PMID: 39171610 DOI: 10.5802/crbiol.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 08/23/2024]
Abstract
A large body of literature highlights the importance of energy metabolism in the response of haematological malignancies to therapy. In this review, we are particularly interested in acute myeloid leukaemia, where mitochondrial metabolism plays a key role in response and resistance to treatment. We describe the new concept of mitohormesis in the response to therapy-induced stress and in the initiation of relapse in this disease.
Collapse
|
2
|
Zhang T, Yao C, Zhou X, Liu S, Qi L, Zhu S, Zhao C, Hu D, Shen W. Glutathione‑degrading enzymes in the complex landscape of tumors (Review). Int J Oncol 2024; 65:72. [PMID: 38847236 PMCID: PMC11173371 DOI: 10.3892/ijo.2024.5660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024] Open
Abstract
Glutathione (GSH)‑degrading enzymes are essential for starting the first stages of GSH degradation. These enzymes include extracellular γ‑glutamyl transpeptidase (GGT) and intracellular GSH‑specific γ‑glutamylcyclotransferase 1 (ChaC1) and 2. These enzymes are essential for cellular activities, such as immune response, differentiation, proliferation, homeostasis regulation and programmed cell death. Tumor tissue frequently exhibits abnormal expression of GSH‑degrading enzymes, which has a key impact on the development and spread of malignancies. The present review summarizes gene and protein structure, catalytic activity and regulation of GSH‑degrading enzymes, their vital roles in tumor development (including regulation of oxidative and endoplasmic reticulum stress, control of programmed cell death, promotion of inflammation and tumorigenesis and modulation of drug resistance in tumor cells) and potential role as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chongjie Yao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xu Zhou
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shimin Liu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, P.R. China
| | - Li Qi
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shiguo Zhu
- School of Basic Medical Sciences, Center for Traditional Chinese Medicine and Immunology Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Chen Zhao
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Dan Hu
- School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Weidong Shen
- Department of Acupuncture, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
3
|
Wang W, Lopez McDonald MC, Hariprasad R, Hamilton T, Frank DA. Oncogenic STAT Transcription Factors as Targets for Cancer Therapy: Innovative Strategies and Clinical Translation. Cancers (Basel) 2024; 16:1387. [PMID: 38611065 PMCID: PMC11011165 DOI: 10.3390/cancers16071387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - Melanie Cristina Lopez McDonald
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | | | - Tiara Hamilton
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - David A. Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| |
Collapse
|
4
|
Shang R, Liao Y, Zheng X. Inhibition of Wnt Signaling by Atovaquone Inhibits Gastric Cancer and Enhances Chemotherapy Effectiveness Through Activation of Casein Kinase 1α. Nutr Cancer 2024; 76:452-462. [PMID: 38494910 DOI: 10.1080/01635581.2024.2328377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Abnormal activation of the Wnt/β-catenin signaling pathway is a driving force behind the progression of gastric cancer. Atovaquone, known as an antimalarial drug, has emerged as a potential candidate for anti-cancer therapy. This study investigated atovaquone's effects on gastric cancer and its underlying mechanisms. Using gastric cancer cell lines, we found that atovaquone, at concentrations relevant to clinical use, significantly reduced their viability. Notably, atovaquone exhibited a lower effectiveness in reducing the viability of normal gastric cells compared to gastric cancer cells. We further demonstrated that atovaquone inhibited gastric cancer growth and colony formation. Mechanism studies revealed that atovaquone inhibited mitochondrial respiration and induced oxidative stress. Experiments using ρ0 cells, deficient in mitochondrial respiration, indicated a slightly weaker effect of atovaquone on inducing apoptosis compared to wildtype cells. Atovaquone increased phosphorylated β-catenin at Ser45 and Ser33/37/Thr41, elevated Axin, and reduced β-catenin. The inhibitory effects of atovaquone on β-catenin were reversed upon depletion of CK1α. Furthermore, the combination of atovaquone with paclitaxel suppressed gastric cancer growth and improved overall survival in mice. Given that atovaquone is already approved for clinical use, these findings suggest its potential as a valuable addition to the drug arsenal available for treating gastric cancer.
Collapse
Affiliation(s)
- Rui Shang
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yingying Liao
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuejiao Zheng
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
5
|
Li B, Wu Z, Xu H, Ye H, Yang X. Downregulation of lncRNA XLOC_032768 in diabetic patients predicts the occurrence of diabetic nephropathy. Open Med (Wars) 2024; 19:20240903. [PMID: 38584844 PMCID: PMC10996977 DOI: 10.1515/med-2024-0903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 04/09/2024] Open
Abstract
LncRNA XLOC_032768 is reported to prevent renal tubular epithelial cells from cisplatin-induced apoptosis, suggesting its involvement in the development of kidney injury. The present study aimed to explore the role of XLOC_032768 in diabetic nephropathy (DN). The present study enrolled a total of 140 healthy controls (Control group) and 140 patients with type 2 diabetes (Diabetes group). Expression of XLOC_032768 in plasma from these participants was analyzed by performing RT-qPCR. The 140 diabetic patients were followed up for 5 years to monitor the occurrence of diabetic complications. The role of XLOC_032768 in predicting the occurrence of diabetic complications, including DN, diabetic cardiomyopathy (DC), diabetic retinopathy (DR), and diabetic foot (DF) were analyzed by plotting receiver operating characteristic curves and complication-free curves. On the day of admission, plasma levels of XLOC_032768 were not significantly different between Control and Diabetes groups. During follow-up, a total of 22, 15, 13, and 15 cases were diagnosed as DN, DC, DR, and DF, respectively. On the day of diagnosis, plasma levels of XLOC_032768 were only decreased in DN group, but not in other groups, compared to plasma levels of XLOC_032768 on the day of admission. Using plasma levels of XLOC_032768 on the day of admission as a biomarker, potential DN patients were effectively separated from patients with other potential complications and diabetic patients without complications. The 140 diabetic patients were grouped into high and low XLOC_032768 level groups. It was observed that low XLOC_032768 level group showed increased occurrence of DN, but not other complications, compared to high XLOC_032768 level group. Therefore, the downregulation of lncRNA XLOC_032768 in diabetic patients may predict the occurrence of DN.
Collapse
Affiliation(s)
- Baohua Li
- Department of Hemodialysis, Guangzhou Guanggang New City Hospital, Guangzhou, Guangdong, 510030, PR China
| | - ZhiLe Wu
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510030, PR China
| | - Haofeng Xu
- Department of Geriatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510030, PR China
| | - HuiLing Ye
- Department of General Practice, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, 510030, PR China
| | - Xin Yang
- Department of General Practice, The First Affiliated Hospital of Guangzhou Medical University, No. 151 Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, 510030, PR China
| |
Collapse
|
6
|
Namkaew J, Zhang J, Yamakawa N, Hamada Y, Tsugawa K, Oyadomari M, Miyake M, Katagiri T, Oyadomari S. Repositioning of mifepristone as an integrated stress response activator to potentiate cisplatin efficacy in non-small cell lung cancer. Cancer Lett 2024; 582:216509. [PMID: 38036042 DOI: 10.1016/j.canlet.2023.216509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Lung cancer, primarily non-small-cell lung cancer (NSCLC), is a significant cause of cancer-related mortality worldwide. Cisplatin-based chemotherapy is a standard treatment for NSCLC; however, its effectiveness is often limited due to the development of resistance, leading to NSCLC recurrence. Thus, the identification of effective chemosensitizers for cisplatin is of paramount importance. The integrated stress response (ISR), activated by various cellular stresses and mediated by eIF2α kinases, has been implicated in drug sensitivity. ISR activation globally suppresses protein synthesis while selectively promoting the translation of ATF4 mRNA, which can induce pro-apoptotic proteins such as CHOP, ATF3, and TRIB3. To expedite and economize the development of chemosensitizers for cisplatin treatment in NSCLC, we employed a strategy to screen an FDA-approved drug library for ISR activators. In this study, we identified mifepristone as a potent ISR activator. Mifepristone activated the HRI/eIF2α/ATF4 axis, leading to the induction of pro-apoptotic factors, independent of its known role as a synthetic steroid. Our in vitro and in vivo models demonstrated mifepristone's potential to inhibit NSCLC re-proliferation following cisplatin treatment and tumor growth, respectively, via the ISR-mediated cell death pathway. These findings suggest that mifepristone, as an ISR activator, could enhance the efficacy of cisplatin-based therapy for NSCLC, highlighting the potential of drug repositioning in the search for effective chemosensitizers.
Collapse
Affiliation(s)
- Jirapat Namkaew
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan; ER Stress Research Institute Inc., Tokushima, 770-8503, Japan
| | - Jun Zhang
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan; ER Stress Research Institute Inc., Tokushima, 770-8503, Japan
| | - Norio Yamakawa
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan; ER Stress Research Institute Inc., Tokushima, 770-8503, Japan
| | - Yoshimasa Hamada
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Kazue Tsugawa
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Miho Oyadomari
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Masato Miyake
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan; Laboratory of Biofunctional Molecular Medicine, Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Seiichi Oyadomari
- Division of Molecular Biology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan; Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan; ER Stress Research Institute Inc., Tokushima, 770-8503, Japan.
| |
Collapse
|
7
|
Horvath TD, Devaraj S. Liquid Chromatography-Tandem Mass Spectrometry-Based Therapeutic Monitoring of Plasma Atovaquone Concentrations in Pediatric Patients. Methods Mol Biol 2024; 2737:67-77. [PMID: 38036811 DOI: 10.1007/978-1-0716-3541-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Atovaquone is an FDA-approved antiparasitic and antifungal therapeutic that is currently used as a prophylactic agent to prevent Pneumocystis carinii pneumonia (PCP) infections in acute myeloid leukemia (AML) patients after receiving hematopoietic stem cell transplantation (HSCT). Recent studies have shown that atovaquone has shown potential as an anticancer agent. The high variability in atovaquone bioavailability prompts the need for therapeutic drug monitoring, especially in pediatric patients. The goal of our study was to develop and validate the performance of an assay to quantify atovaquone plasma concentrations collected from pediatric cancer patients. Briefly, an organic-based solvent system is used to precipitate protein and extract the atovaquone content from each patient-derived plasma sample. After completing a second stage of sample dilution (5000-fold overall), a 2 μL volume of the plasma extract is analyzed using the liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based bioanalytical method described.
Collapse
Affiliation(s)
- Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
8
|
Tseng S, Lee ME, Lin PC. A Review of Childhood Acute Myeloid Leukemia: Diagnosis and Novel Treatment. Pharmaceuticals (Basel) 2023; 16:1614. [PMID: 38004478 PMCID: PMC10674205 DOI: 10.3390/ph16111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myeloid leukemia (AML) is the second most common hematologic malignancy in children. The incidence of childhood AML is much lower than acute lymphoblastic leukemia (ALL), which makes childhood AML a rare disease in children. The role of genetic abnormalities in AML classification, management, and prognosis prediction is much more important than before. Disease classifications and risk group classifications, such as the WHO classification, the international consensus classification (ICC), and the European LeukemiaNet (ELN) classification, were revised in 2022. The application of the new information in childhood AML will be upcoming in the next few years. The frequency of each genetic abnormality in adult and childhood AML is different; therefore, in this review, we emphasize well-known genetic subtypes in childhood AML, including core-binding factor AML (CBF AML), KMT2Ar (KMT2A/11q23 rearrangement) AML, normal karyotype AML with somatic mutations, unbalanced cytogenetic abnormalities AML, NUP98 11p15/NUP09 rearrangement AML, and acute promyelocytic leukemia (APL). Current risk group classification, the management algorithm in childhood AML, and novel treatment modalities such as targeted therapy, immune therapy, and chimeric antigen receptor (CAR) T-cell therapy are reviewed. Finally, the indications of hematopoietic stem cell transplantation (HSCT) in AML are discussed.
Collapse
Affiliation(s)
- Serena Tseng
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Mu-En Lee
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
| | - Pei-Chin Lin
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
9
|
Qiu X, Li Y, Zhang Z. Crosstalk between oxidative phosphorylation and immune escape in cancer: a new concept of therapeutic targets selection. Cell Oncol (Dordr) 2023; 46:847-865. [PMID: 37040057 DOI: 10.1007/s13402-023-00801-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Cancer is increasingly recognized as a metabolic disease, with evidence suggesting that oxidative phosphorylation (OXPHOS) plays a significant role in the progression of numerous cancer cells. OXPHOS not only provides sufficient energy for tumor tissue survival but also regulates conditions for tumor proliferation, invasion, and metastasis. Alterations in OXPHOS can also impair the immune function of immune cells in the tumor microenvironment, leading to immune evasion. Therefore, investigating the relationship between OXPHOS and immune escape is crucial in cancer-related research. This review aims to summarize the effects of transcriptional, mitochondrial genetic, metabolic regulation, and mitochondrial dynamics on OXPHOS in different cancers. Additionally, it highlights the role of OXPHOS in immune escape by affecting various immune cells. Finally, it concludes with an overview of recent advances in antitumor strategies targeting both immune and metabolic processes and proposes promising therapeutic targets by analyzing the limitations of current targeted drugs. CONCLUSIONS The metabolic shift towards OXPHOS contributes significantly to tumor proliferation, progression, metastasis, immune escape, and poor prognosis. A thorough investigation of concrete mechanisms of OXPHOS regulation in different types of tumors and the combination usage of OXPHOS-targeted drugs with existing immunotherapies could potentially uncover new therapeutic targets for future antitumor therapies.
Collapse
Affiliation(s)
- Xutong Qiu
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Cancer Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yi Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Cancer Surgery, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.
- Department of Head and Neck Cancer Surgery, West China School of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Villa-Ruano N, Anaya-Ruiz M, Villafaña-Diaz L, Barron-Villaverde D, Perez-Santos M. Drug repurposing of mito-atovaquone for cancer treatment. Pharm Pat Anal 2023; 12:143-149. [PMID: 37801038 DOI: 10.4155/ppa-2023-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Repurposing of approved drugs in a new strategy to combat cancer that leads to savings in time and investment. Atovaquone is a US FDA-approved drug for treatment of Pneumocystis carinii pneumonia and malaria. Patent US2023017373 describe the use of mito-atovaquone for the treatment of several types of cancer. Mito-atovaquone demonstrated antiproliferative activity in cell lines of pancreatic cancer, lung cancer and brain cancer and inhibited tumor growth in syngeneic mouse models and in animals genetically prone to breast cancer. Mito-atovaquone has the potential to be used successfully in the treatment of various types of tumors.
Collapse
Affiliation(s)
- Nemesio Villa-Ruano
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla CP 72570, México
- Consejo Nacional de Ciencia y Tecnología, Cátedras CONACYT, México
| | - Maricruz Anaya-Ruiz
- Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla CP 74360, México
| | - Luis Villafaña-Diaz
- Posgrado en Planeación Estratégica y Dirección Tecnológica, Universidad Popular Autónoma del Estado de Puebla, Puebla CP 72410, México
| | - Diana Barron-Villaverde
- Posgrado en Planeación Estratégica y Dirección Tecnológica, Universidad Popular Autónoma del Estado de Puebla, Puebla CP 72410, México
| | - Martin Perez-Santos
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla CP 72570, México
| |
Collapse
|
11
|
Cadassou O, Petter Jordheim L. OXPHOS inhibitors, metabolism and targeted therapies in cancer. Biochem Pharmacol 2023; 211:115531. [PMID: 37019188 DOI: 10.1016/j.bcp.2023.115531] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
More and more studies highlight the complex metabolic characteristics and plasticity of cancer cells. To address these specificities and explore the associated vulnerabilities, new metabolism-targeting therapeutic strategies are being developed. It is more and more accepted that cancer cells do not produce their energy only from aerobic glycolysis, as some subtypes strongly rely on mitochondrial respiration (OXPHOS). This review focuses on classical and promising OXPHOS inhibitors (OXPHOSi), unravelling their interest and modes of actions in cancer, particularly in combination with other strategies. Indeed, in monotherapy, OXPHOSi display limited efficiency as they mostly trigger cell death in cancer cell subtypes that strongly depend on mitochondrial respiration and are not able to shift to other metabolic pathways to produce energy. Nevertheless, they remain very interesting in combination with conventional therapeutic strategies such as chemotherapy and radiotherapy, increasing their anti-tumoral actions. In addition, OXPHOSi can be included in even more innovative strategies such as combinations with other metabolic drugs or immunotherapies.
Collapse
|
12
|
Stevens AM, Schafer ES, Li M, Terrell M, Rashid R, Paek H, Bernhardt MB, Weisnicht A, Smith WT, Keogh NJ, Alozie MC, Oviedo HH, Gonzalez AK, Ilangovan T, Mangubat-Medina A, Wang H, Jo E, Rabik CA, Bocchini C, Hilsenbeck S, Ball ZT, Cooper TM, Redell MS. Repurposing Atovaquone as a Therapeutic against Acute Myeloid Leukemia (AML): Combination with Conventional Chemotherapy Is Feasible and Well Tolerated. Cancers (Basel) 2023; 15:cancers15041344. [PMID: 36831684 PMCID: PMC9954468 DOI: 10.3390/cancers15041344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Survival of pediatric AML remains poor despite maximized myelosuppressive therapy. The pneumocystis jiroveci pneumonia (PJP)-treating medication atovaquone (AQ) suppresses oxidative phosphorylation (OXPHOS) and reduces AML burden in patient-derived xenograft (PDX) mouse models, making it an ideal concomitant AML therapy. Poor palatability and limited product formulations have historically limited routine use of AQ in pediatric AML patients. Patients with de novo AML were enrolled at two hospitals. Daily AQ at established PJP dosing was combined with standard AML therapy, based on the Medical Research Council backbone. AQ compliance, adverse events (AEs), ease of administration score (scale: 1 (very difficult)-5 (very easy)) and blood/marrow pharmacokinetics (PK) were collected during Induction 1. Correlative studies assessed AQ-induced apoptosis and effects on OXPHOS. PDX models were treated with AQ. A total of 26 patients enrolled (ages 7.2 months-19.7 years, median 12 years); 24 were evaluable. A total of 14 (58%) and 19 (79%) evaluable patients achieved plasma concentrations above the known anti-leukemia concentration (>10 µM) by day 11 and at the end of Induction, respectively. Seven (29%) patients achieved adequate concentrations for PJP prophylaxis (>40 µM). Mean ease of administration score was 3.8. Correlative studies with AQ in patient samples demonstrated robust apoptosis, OXPHOS suppression, and prolonged survival in PDX models. Combining AQ with chemotherapy for AML appears feasible and safe in pediatric patients during Induction 1 and shows single-agent anti-leukemic effects in PDX models. AQ appears to be an ideal concomitant AML therapeutic but may require intra-patient dose adjustment to achieve concentrations sufficient for PJP prophylaxis.
Collapse
Affiliation(s)
- Alexandra McLean Stevens
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-(832)-824-4824; Fax: +1-(832)-825-1206
| | - Eric S. Schafer
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Minhua Li
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maci Terrell
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raushan Rashid
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hana Paek
- Department of Pharmacy, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Melanie B. Bernhardt
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allison Weisnicht
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wesley T. Smith
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Noah J. Keogh
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle C. Alozie
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hailey H. Oviedo
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alan K. Gonzalez
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tamilini Ilangovan
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Haopei Wang
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Eunji Jo
- Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cara A. Rabik
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Claire Bocchini
- Department of Pediatric Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan Hilsenbeck
- Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zachary T. Ball
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Todd M. Cooper
- Cancer and Blood Disorders Center, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Michele S. Redell
- Department of Pediatric Hematology/Oncology, Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Luo S, Zhang C, Gao Z, Jiang L, Li Q, Shi X, Kong Y, Cao J. ER stress-enhanced HMGA2 plays an important role in Cr (VI)-induced glycolysis and inhibited oxidative phosphorylation by targeting the transcription of ATF4. Chem Biol Interact 2023; 369:110293. [PMID: 36473502 DOI: 10.1016/j.cbi.2022.110293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022]
Abstract
Hexavalent chromium [Cr (VI)] is a proven human carcinogen which is widely used in steel manufacturing and painting. Here, the involvement of high mobility group A2 (HMGA2) in Cr (VI)-mediated glycolysis and oxidative phosphorylation (OXPHOS) was investigated. First, Cr (VI) treatment induced aerobic glycolysis by increasing the expression of GLUT1, HK II, PKM2 and LDHA enzymes, and reduced OXPHOS by decreasing mitochondrial mass, the expression of COX IV and ND1, and increasing Ca2+ content in mitochondria in A549 and HELF cells. And overexpression of HMGA2 induced aerobic glycolysis and decreased OXPHOS. Secondly, using endoplasmic reticulum (ER) stress inhibitor, 4-phenylbutyric acid (4-PBA) and knockdown of activating transcription factor 4 (ATF4) gene by siRNA, we demonstrated that ER stress and ATF4 elevation mediated Cr (VI)-induced glycolysis and inhibited OXPHOS. Furthermore, using tunicamycin (Tm), siHMGA2, transfection of HMGA2 and siATF4, we demonstrated that ER stress-enhanced interaction of HMGA2 and ATF4 resulted in Cr (VI)-induced glycolysis and inhibited OXPHOS. Additionally, ChIP assay revealed that HMGA2 protein could directly bind to the promoter sequence of ATF4 gene, which modulated Cr (VI)-induced ATF4 elevation. Finally, in lung tissues of BALB/c mice injected with HMGA2 plasmids, it is verified that HMGA2 involved in regulation of ATF4, glycolysis and OXPHOS in vivo. Combining, our data discovered that ER stress-enhanced the interaction of HMGA2 and ATF4 played an important role in Cr (VI)-mediated glycolysis and OXPHOS. These results imply a root cause for the carcinogenicity of Cr (VI), and could guide development of novel therapeutics for cancers.
Collapse
Affiliation(s)
- Shengxiang Luo
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian, 116044, China
| | - Zeyun Gao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China.
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China.
| |
Collapse
|
14
|
Strachan DC, Gu CJ, Kita R, Anderson EK, Richardson MA, Yam G, Pimm G, Roselli J, Schweickert A, Terrell M, Rashid R, Gonzalez AK, Oviedo HH, Alozie MC, Ilangovan T, Marcogliese AN, Tada H, Santaguida MT, Stevens AM. Ex Vivo Drug Sensitivity Correlates with Clinical Response and Supports Personalized Therapy in Pediatric AML. Cancers (Basel) 2022; 14:cancers14246240. [PMID: 36551725 PMCID: PMC9777060 DOI: 10.3390/cancers14246240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease that accounts for ~20% of all childhood leukemias, and more than 40% of children with AML relapse within three years of diagnosis. Although recent efforts have focused on developing a precise medicine-based approach towards treating AML in adults, there remains a critical gap in therapies designed specifically for children. Here, we present ex vivo drug sensitivity profiles for children with de novo AML using an automated flow cytometry platform. Fresh diagnostic blood or bone marrow aspirate samples were screened for sensitivity in response to 78 dose conditions by measuring the reduction in leukemic blasts relative to the control. In pediatric patients treated with conventional chemotherapy, comprising cytarabine, daunorubicin and etoposide (ADE), ex vivo drug sensitivity results correlated with minimal residual disease (r = 0.63) and one year relapse-free survival (r = 0.70; AUROC = 0.94). In the de novo ADE analysis cohort of 13 patients, AML cells showed greater sensitivity to bortezomib/panobinostat compared with ADE, and comparable sensitivity between venetoclax/azacitidine and ADE ex vivo. Two patients showed a differential response between ADE and bortezomib/panobinostat, thus supporting the incorporation of ex vivo drug sensitivity testing in clinical trials to further evaluate the predictive utility of this platform in children with AML.
Collapse
Affiliation(s)
| | | | | | | | | | - George Yam
- Notable Labs, Foster City, CA 94404, USA
| | | | | | | | - Maci Terrell
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raushan Rashid
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alan K. Gonzalez
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hailey H. Oviedo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michelle C. Alozie
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tamilini Ilangovan
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | - Alexandra M. Stevens
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
15
|
Nwosu GO, Powell JA, Pitson SM. Targeting the integrated stress response in hematologic malignancies. Exp Hematol Oncol 2022; 11:94. [DOI: 10.1186/s40164-022-00348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWhile numerous targeted therapies have been recently adopted to improve the treatment of hematologic malignancies, acquired or intrinsic resistance poses a significant obstacle to their efficacy. Thus, there is increasing need to identify novel, targetable pathways to further improve therapy for these diseases. The integrated stress response is a signaling pathway activated in cancer cells in response to both dysregulated growth and metabolism, and also following exposure to many therapies that appears one such targetable pathway for improved treatment of these diseases. In this review, we discuss the role of the integrated stress response in the biology of hematologic malignancies, its critical involvement in the mechanism of action of targeted therapies, and as a target for pharmacologic modulation as a novel strategy for the treatment of hematologic malignancies.
Collapse
|
16
|
Horvath TD, Poventud-Fuentes I, Olayinka L, James A, Haidacher SJ, Hoch KM, Stevens AM, Haag AM, Devaraj S. Validation of atovaquone plasma levels by liquid chromatography-tandem mass spectrometry for therapeutic drug monitoring in pediatric patients. J Mass Spectrom Adv Clin Lab 2022; 26:23-27. [PMID: 36388060 PMCID: PMC9641598 DOI: 10.1016/j.jmsacl.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Atovaquone, an antiparasitic and antifungal, has potential as an anticancer agent. Our LC-MS/MS-based method can accurately quantify atovaquone in plasma. Low LOQ and small sample volume requirements add versatility to our method. Measuring atovaquone in plasma helps to determine the effective dose in children.
Background Atovaquone has traditionally been used as an antiparasitic and antifungal agent, but recent studies have shown its potential as an anticancer agent. The high variability in atovaquone bioavailability highlights the need for therapeutic drug monitoring, especially in pediatric patients. The goal of our study was to develop and validate the performance of an assay to quantify atovaquone plasma concentrations collected from pediatric cancer patients using LC-MS/MS. Methods Atovaquone was extracted from a 10 µL volume of K2-EDTA human plasma using a solution consisting of ACN: EtOH: DMF (8:1:1 v:v:v), separated using reverse-phase chromatography, and detected using a SCIEX 5500 QTrap MS system. LC-MS/MS assay performance was evaluated for precision, accuracy, carryover, sensitivity, specificity, linearity, and interferences. Results Atovaquone and its deuterated internal standard were analyzed using a gradient chromatographic method that had an overall cycle-time of 7.4 min per injection, and retention times of 4.3 min. Atovaquone was measured over a dynamic concentration range of 0.63 – 80 µM with a deviation within ≤ ± 5.1 % of the target value. Intra- and inter-assay precision were ≤ 2.7 % and ≤ 8.4 %, respectively. Dilutional, carryover, and interference studies were also within acceptable limits. Conclusions Our studies have shown that our LC-MS/MS-based method is both reliable and robust for the quantification of plasma atovaquone concentrations and can be used to determine the effective dose of atovaquone for pediatric patients treated for AML.
Collapse
Affiliation(s)
- Thomas D. Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Izmarie Poventud-Fuentes
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Lily Olayinka
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Asha James
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Sigmund J. Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Kathleen M. Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Alexandra M. Stevens
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, Houston, TX, USA
| | - Anthony M. Haag
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
| | - Sridevi Devaraj
- Department of Pathology and Immunology, Baylor College of Medicine, and Department of Pathology, Texas Children’s Hospital, Houston, TX, USA
- Corresponding author.
| |
Collapse
|
17
|
Zhu K, Lang Z, Zhan Y, Tao Q, Yu Z, Chen L, Fan C, Jin Y, Yu K, Zhu B, Gao Y, Wang C, Jiang S, Shi Y. A novel 10-gene ferroptosis-related prognostic signature in acute myeloid leukemia. Front Oncol 2022; 12:1023040. [PMID: 36338716 PMCID: PMC9630338 DOI: 10.3389/fonc.2022.1023040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies and exhibits a high rate of relapse and unfavorable outcomes. Ferroptosis, a relatively recently described type of cell death, has been reported to be involved in cancer development. However, the prognostic value of ferroptosis-related genes (FRGs) in AML remains unclear. In this study, we found 54 differentially expressed ferroptosis-related genes (DEFRGs) between AML and normal marrow tissues. 18 of 54 DEFRGs were correlated with overall survival (OS) (P<0.05). Using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, we selected 10 DEFRGs that were associated with OS to build a prognostic signature. Data from AML patients from the International Cancer Genome Consortium (ICGC) cohort as well as the First Affiliated Hospital of Wenzhou Medical University (FAHWMU) cohort were used for validation. Notably, the prognostic survival analyses of this signature passed with a significant margin, and the riskscore was identified as an independent prognostic marker using Cox regression analyses. Then we used a machine learning method (SHAP) to judge the importance of each feature in this 10-gene signature. Riskscore was shown to have the highest correlation with this 10-gene signature compared with each gene in this signature. Further studies showed that AML was significantly associated with immune cell infiltration. In addition, drug-sensitive analysis showed that 8 drugs may be beneficial for treatment of AML. Finally, the expressions of 10 genes in this signature were verified by real-time quantitative polymerase chain reaction. In conclusion, our study establishes a novel 10-gene prognostic risk signature based on ferroptosis-related genes for AML patients and FRGs may be novel therapeutic targets for AML.
Collapse
Affiliation(s)
- Kai Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichao Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Tao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lili Chen
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congcong Fan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Jin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bihan Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxiang Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengchi Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center For Hematological disorders, Wenzhou, China
- *Correspondence: Yifen Shi, ; Songfu Jiang,
| | - Yifen Shi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Zhejiang Provincial Clinical Research Center For Hematological disorders, Wenzhou, China
- *Correspondence: Yifen Shi, ; Songfu Jiang,
| |
Collapse
|
18
|
Azad A, Kong A. The Therapeutic Potential of Imidazole or Quinone-Based Compounds as Radiosensitisers in Combination with Radiotherapy for the Treatment of Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14194694. [PMID: 36230623 PMCID: PMC9563564 DOI: 10.3390/cancers14194694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Patients with curable head and neck cancers are usually treated with a combination of chemotherapy and radiotherapy, but they experience significant, severe side effects, which greatly affect their quality of life. Some of these patients still experience disease relapse after an intensive course of treatment due to tumours that are resistant to radiotherapy and chemotherapy because of hypoxia (lack of oxygen). In addition, some patients are not suitable for and/or are not able to have combined chemotherapy with radiotherapy due to their age or other physical conditions. Certain small-molecule drugs, which are used to treat various infections including malaria, have been shown to reduce hypoxia and thus make radiotherapy more effective. Therefore, their combination with radiotherapy could have less toxicities compared with the combination of chemotherapy with radiotherapy. Here, we discuss the promising results from preclinical work and clinical trials of these agents, and their potential use in the clinic, to reduce hypoxia and to sensitise radiotherapy. These agents could potentially be used for patients who are not suitable for combined chemotherapy and radiotherapy; they may also be used to reduce the dose of radiotherapy if able to enhance radiotherapy effect at lower dose in order to reduce toxicities while maintaining the treatment efficacy in a more personalised manner. Abstract The addition of platinum chemotherapy to primary radiotherapy (chemoradiation) improves survival outcomes for patients with head and neck squamous cell carcinoma (HNSCC), but it carries a high incidence of acute and long-term treatment-related complications, resulting in a poor quality of life. In addition, patients with significant co-morbidities, or older patients, cannot tolerate or do not benefit from concurrent chemoradiation. These patients are often treated with radiotherapy alone resulting in poor locoregional control and worse survival outcomes. Thus, there is an urgent need to assess other less toxic treatment modalities, which could become an alternative to chemoradiation in HNSCC. Currently, there are several promising anti-cancer drugs available, but there has been very limited success so far in replacing concurrent chemoradiation due to their low efficacy or increased toxicities. However, there is new hope that a treatment strategy that incorporates agents that act as radiosensitisers to improve the efficacy of conventional radiotherapy could be an alternative to more toxic chemotherapeutic agents. Recently, imidazole-based or quinone-based anti-malarial compounds have drawn considerable attention as potential radiosensitisers in several cancers. Here, we will discuss the possibility of using these compounds as radiosensitisers, which could be assessed as safe and effective alternatives to chemotherapy, particularly for patients with HNSCC that are not suitable for concurrent chemotherapy due to their age or co-morbidities or in metastatic settings. In addition, these agents could also be tested to assess their efficacy in combination with immunotherapy in recurrent and metastatic settings or in combination with radiotherapy and immunotherapy in curative settings.
Collapse
|
19
|
Śniegocka M, Liccardo F, Fazi F, Masciarelli S. Understanding ER homeostasis and the UPR to enhance treatment efficacy of acute myeloid leukemia. Drug Resist Updat 2022; 64:100853. [PMID: 35870226 DOI: 10.1016/j.drup.2022.100853] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Protein biogenesis, maturation and degradation are tightly regulated processes that are governed by a complex network of signaling pathways. The endoplasmic reticulum (ER) is responsible for biosynthesis and maturation of secretory proteins. Circumstances that alter cellular protein homeostasis, determine accumulation of misfolded and unfolded proteins in the ER, a condition defined as ER stress. In case of stress, the ER activates an adaptive response called unfolded protein response (UPR), a series of pathways of major relevance for cancer biology. The UPR plays a preeminent role in adaptation of tumor cells to the harsh conditions that they experience, due to high rates of proliferation, metabolic abnormalities and hostile environment scarce in oxygen and nutrients. Furthermore, the UPR is among the main adaptive cell stress responses contributing to the development of resistance to drugs and chemotherapy. Clinical management of Acute Myeloid Leukemia (AML) has improved significantly in the last decade, thanks to development of molecular targeted therapies. However, the emergence of treatment-resistant clones renders the rate of AML cure dismal. Moreover, different cell populations that constitute the bone marrow niche recently emerged as a main determinant leading to drug resistance. Herein we summarize the most relevant literature regarding the role played by the UPR in expansion of AML and ability to develop drug resistance and we discuss different possible modalities to overturn this adaptive response against leukemia. To this aim, we also describe the interconnection of the UPR with other cellular stress responses regulating protein homeostasis. Finally, we review the newest findings about the crosstalk between AML cells and cells of the bone marrow niche, under physiological conditions and in response to therapies, discussing in particular the importance of the niche in supporting survival of AML cells by favoring protein homeostasis.
Collapse
Affiliation(s)
- Martyna Śniegocka
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesca Liccardo
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
20
|
Han C, Zheng J, Li F, Guo W, Cai C. Novel Prognostic Signature for Acute Myeloid Leukemia: Bioinformatics Analysis of Combined CNV-Driven and Ferroptosis-Related Genes. Front Genet 2022; 13:849437. [PMID: 35559049 PMCID: PMC9086455 DOI: 10.3389/fgene.2022.849437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
Background: Acute myeloid leukemia (AML), which has a difficult prognosis, is the most common hematologic malignancy. The role of copy number variations (CNVs) and ferroptosis in the tumor process is becoming increasingly prominent. We aimed to identify specific CNV-driven ferroptosis-related genes (FRGs) and establish a prognostic model for AML. Methods: The combined analysis of CNV differential data and differentially expressed genes (DEGs) data from The Cancer Genome Atlas (TCGA) database was performed to identify key CNV-driven FRGs for AML. A risk model was constructed based on univariate and multivariate Cox regression analysis. The Gene Expression Omnibus (GEO) dataset was used to validate the model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to clarify the functional roles of DEGs and CNV-driven FRGs. Results: We identified a total of 6828 AML-related DEGs, which were shown to be significantly associated with cell cycle and immune response processes. After a comprehensive analysis of CNVs and corresponding DEGs and FRGs, six CNV-driven FRGs were identified, and functional enrichment analysis indicated that they were involved in oxidative stress, cell death, and inflammatory response processes. Finally, we screened 2 CNV-driven FRGs (DNAJB6 and HSPB1) to develop a prognostic risk model. The overall survival (OS) of patients in the high-risk group was significantly shorter in both the TCGA and GEO (all p < 0.05) datasets compared to the low-risk group. Conclusion: A novel signature based on CNV-driven FRGs was established to predict the survival of AML patients and displayed good performance. Our results may provide potential targets and new research ideas for the treatment and early detection of AML.
Collapse
Affiliation(s)
- Chunjiao Han
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
| | - Jiafeng Zheng
- Department of Pulmonology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, China
| | - Fangfang Li
- Department of Rheumatology and Immunology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, China
| | - Wei Guo
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China.,Department of Pulmonology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, China
| | - Chunquan Cai
- Department of Institute of Pediatrics, Tianjin Children's Hospital/Tianjin University Children's Hospital, Tianjin, China
| |
Collapse
|
21
|
Deciphering the Role of Pyrvinium Pamoate in the Generation of Integrated Stress Response and Modulation of Mitochondrial Function in Myeloid Leukemia Cells through Transcriptome Analysis. Biomedicines 2021; 9:biomedicines9121869. [PMID: 34944685 PMCID: PMC8698814 DOI: 10.3390/biomedicines9121869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 01/15/2023] Open
Abstract
Pyrvinium pamoate, a widely-used anthelmintic agent, reportedly exhibits significant anti-tumor effects in several cancers. However, the efficacy and mechanisms of pyrvinium against myeloid leukemia remain unclear. The growth inhibitory effects of pyrvinium were tested in human AML cell lines. Transcriptome analysis of Molm13 myeloid leukemia cells suggested that pyrvinium pamoate could trigger an unfolded protein response (UPR)-like pathway, including responses to extracellular stimulus [p-value = 2.78 × 10-6] and to endoplasmic reticulum stress [p-value = 8.67 × 10-7], as well as elicit metabolic reprogramming, including sulfur compound catabolic processes [p-value = 2.58 × 10-8], and responses to a redox state [p-value = 5.80 × 10-5]; on the other hand, it could elicit a pyrvinium blunted protein folding function, including protein folding [p-value = 2.10 × 10-8] and an ATP metabolic process [p-value = 3.95 × 10-4]. Subsequently, pyrvinium was verified to induce an integrated stress response (ISR), demonstrated by activation of the eIF2α-ATF4 pathway and inhibition of mTORC1 signaling, in a dose- and time-dependent manner. Additionally, pyrvinium could co-localize with mitochondria and then decrease the mitochondrial basal oxidative consumption rate, ultimately dysregulating the mitochondrial function. Similar effects were observed in cabozantinib-resistant Molm13-XR cell lines. Furthermore, pyrvinium treatment retarded Molm13 and Molm13-XR xenograft tumor growth. Thus, we concluded that pyrvinium exerts anti-tumor activity, at least, via the modulation of the mitochondrial function and by triggering ISR.
Collapse
|
22
|
Fleischmann M, Schnetzke U, Hochhaus A, Scholl S. Management of Acute Myeloid Leukemia: Current Treatment Options and Future Perspectives. Cancers (Basel) 2021; 13:5722. [PMID: 34830877 PMCID: PMC8616498 DOI: 10.3390/cancers13225722] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/07/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Treatment of acute myeloid leukemia (AML) has improved in recent years and several new therapeutic options have been approved. Most of them include mutation-specific approaches (e.g., gilteritinib for AML patients with activating FLT3 mutations), or are restricted to such defined AML subgroups, such as AML-MRC (AML with myeloid-related changes) or therapy-related AML (CPX-351). With this review, we aim to present a comprehensive overview of current AML therapy according to the evolved spectrum of recently approved treatment strategies. We address several aspects of combined epigenetic therapy with the BCL-2 inhibitor venetoclax and provide insight into mechanisms of resistance towards venetoclax-based regimens, and how primary or secondary resistance might be circumvented. Furthermore, a detailed overview on the current status of AML immunotherapy, describing promising concepts, is provided. This review focuses on clinically important aspects of current and future concepts of AML treatment, but will also present the molecular background of distinct targeted therapies, to understand the development and challenges of clinical trials ongoing in AML patients.
Collapse
Affiliation(s)
| | | | | | - Sebastian Scholl
- Klinik für Innere Medizin II, Abteilung Hämatologie und Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07740 Jena, Germany; (M.F.); (U.S.); (A.H.)
| |
Collapse
|
23
|
Wu Y, Gao B, Qi X, Bai L, Li B, Bao H, Wu X, Wu X, Zhao Y. Circular RNA ATAD1 is upregulated in acute myeloid leukemia and promotes cancer cell proliferation by downregulating miR-34b via promoter methylation. Oncol Lett 2021; 22:799. [PMID: 34630706 PMCID: PMC8477150 DOI: 10.3892/ol.2021.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 07/16/2021] [Indexed: 11/06/2022] Open
Abstract
A previous study has reported the oncogenic role of circular RNA (circ)-ATAD1 in gastric cancer. The aim of the present study was to investigate the role of circ-ATAD1 in acute myeloid leukemia (AML). Bone marrow mononuclear cells were collected from 60 patients with AML and 60 healthy controls, followed by RNA isolation and reverse transcription-quantitative PCR to assess the expression of circ-ATAD1 and microRNA (miR)-34b. A subcellular fractionation assay was used to determine the subcellular location of circ-ATAD1 in AML cells. Furthermore, circ-ATAD1 and miR-34b were overexpressed in AML cells to study crosstalk between the two molecules. The effect of circ-ATAD1 overexpression on miR-34b gene methylation was also analyzed by methylation-specific PCR, and the roles of circ-ATAD1 and miR-34b in the regulation of AML cell proliferation were analyzed by BrdU assay. circ-ATAD1 expression was found to be elevated, and inversely correlated with that of miR-34b, in patients with AML. Subcellular fractionation assays showed that circ-ATAD1 was specifically expressed in the nucleus. In addition, circ-ATAD1 overexpression in AML cells decreased miR-34b expression and increased miR-34b gene methylation. Moreover, AML cell proliferation was increased by circ-ATAD1 overexpression, but decreased by miR-34b overexpression, and the effect of circ-ATAD1 overexpression on AML cell proliferation was reduced by miR-34b overexpression. Together, these results indicate circ-ATAD1 as a nucleus-specific circRNA in AML, which promotes AML cell proliferation by downregulating miR-34b via methylation.
Collapse
Affiliation(s)
- Yarong Wu
- Department of Hematology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Bingjun Gao
- Department of Osteology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu 212300, P.R. China
| | - Xiaolei Qi
- Department of Hematology, The People's Hospital of Xing'an League, Ulanhot, Inner Mongolia Autonomous Region 137499, P.R. China
| | - Liyun Bai
- Department of Hematology, The People's Hospital of Xing'an League, Ulanhot, Inner Mongolia Autonomous Region 137499, P.R. China
| | - Bixin Li
- Department of Hematology, The People's Hospital of Xing'an League, Ulanhot, Inner Mongolia Autonomous Region 137499, P.R. China
| | - Hongjing Bao
- Department of Ultrasound, The People's Hospital of Xing'an League, Ulanhot, Inner Mongolia Autonomous Region 137499, P.R. China
| | - Xi Wu
- Department of Neurosurgery, The People's Hospital of Xing'an League, Ulanhot, Inner Mongolia Autonomous Region 137499, P.R. China
| | - Xiaoyun Wu
- Department of Technology, Research Center for Hua-Da Precision Medicine of Inner Mongolia Autonomous Region, Hohhot, Inner Mongolia Autonomous Region 010000, P.R. China
| | - Yuxia Zhao
- Department of Hematology, The People's Hospital of Xing'an League, Ulanhot, Inner Mongolia Autonomous Region 137499, P.R. China
| |
Collapse
|
24
|
Chen BR, Deshpande A, Barbosa K, Kleppe M, Lei X, Yeddula N, Vela PS, Campos AR, Wechsler-Reya RJ, Bagchi A, Meshinchi S, Eaves C, Jeremias I, Haferlach T, Frank DA, Ronai Z, Chanda S, Armstrong SA, Adams PD, Levine RL, Deshpande AJ. A JAK/STAT-mediated inflammatory signaling cascade drives oncogenesis in AF10-rearranged AML. Blood 2021; 137:3403-3415. [PMID: 33690798 PMCID: PMC8212510 DOI: 10.1182/blood.2020009023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
Leukemias bearing fusions of the AF10/MLLT10 gene are associated with poor prognosis, and therapies targeting these fusion proteins (FPs) are lacking. To understand mechanisms underlying AF10 fusion-mediated leukemogenesis, we generated inducible mouse models of acute myeloid leukemia (AML) driven by the most common AF10 FPs, PICALM/CALM-AF10 and KMT2A/MLL-AF10, and performed comprehensive characterization of the disease using transcriptomic, epigenomic, proteomic, and functional genomic approaches. Our studies provide a detailed map of gene networks and protein interactors associated with key AF10 fusions involved in leukemia. Specifically, we report that AF10 fusions activate a cascade of JAK/STAT-mediated inflammatory signaling through direct recruitment of JAK1 kinase. Inhibition of the JAK/STAT signaling by genetic Jak1 deletion or through pharmacological JAK/STAT inhibition elicited potent antioncogenic effects in mouse and human models of AF10 fusion AML. Collectively, our study identifies JAK1 as a tractable therapeutic target in AF10-rearranged leukemias.
Collapse
Affiliation(s)
- Bo-Rui Chen
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anagha Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Karina Barbosa
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xue Lei
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Narayana Yeddula
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center and
| | - Pablo Sánchez Vela
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alexandre Rosa Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Anindya Bagchi
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Connie Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Irmela Jeremias
- Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Center Munich, German Center for Environmental Health, Munich, Germany
| | | | | | - Ze'ev Ronai
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Sumit Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center and
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Peter D Adams
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aniruddha J Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| |
Collapse
|
25
|
Ferraris D, Lapidus R, Truong P, Bollino D, Carter-Cooper B, Lee M, Chang E, LaRossa-Garcia M, Dash S, Gartenhaus R, Choi EY, Kipe O, Lam V, Mason K, Palmer R, Williams E, Ambulos N, Kamangar F, Zhang Y, Kapadia B, Jing Y, Emadi A. Pre-Clinical Activity of Amino-Alcohol Dimeric Naphthoquinones as Potential Therapeutics for Acute Myeloid Leukemia. Anticancer Agents Med Chem 2021; 22:239-253. [PMID: 34080968 DOI: 10.2174/1871520621666210602131558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The clinical outcomes of patients with acute myeloid leukemia (AML) remain unsatisfactory, therefore the development of more efficacious and better-tolerated therapy for AML is critical. We have previously reported the anti-leukemic activity of synthetic halohydroxyl dimeric naphthoquinones (BiQ) and aziridinyl BiQ. OBJECTIVE This study aimed to improve the potency and bioavailability of BiQ compounds and investigate the anti-leukemic activity of the lead compound in vitro and in a human AML xenograft mouse model. METHODS We designed, synthesized, and performed structure-activity relationship of several rationally designed BiQ analogues that possess amino alcohol functional groups on the naphthoquinone core rings. The compounds were screened for anti-leukemic activity and the mechanism as well as in vivo tolerability and efficacy of our lead compound was investigated. RESULTS We report that a dimeric naphthoquinone (designated BaltBiQ) demonstrated potent nanomolar anti-leukemic activity in AML cell lines. BaltBiQ treatment resulted in the generation of reactive oxygen species, induction of DNA damage, and inhibition of indoleamine dioxygenase 1. Although BaltBiQ was tolerated well in vivo, it did not significantly improve survival as a single agent, but in combination with the specific Bcl-2 inhibitor, Venetoclax, tumor growth was significantly inhibited compared to untreated mice. CONCLUSION We synthesized a novel amino alcohol dimeric naphthoquinone, investigated its main mechanisms of action, reported its in vitro anti-AML cytotoxic activity, and showed its in vivo promising activity combined with a clinically available Bcl-2 inhibitor in a patient-derived xenograft model of AML.
Collapse
Affiliation(s)
- Dana Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Rena Lapidus
- University of Maryland School of Medicine, Morgan State University, Baltimore, MD, United States
| | - Phuc Truong
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Dominique Bollino
- University of Maryland School of Medicine, Morgan State University, Baltimore, MD, United States
| | - Brandon Carter-Cooper
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Michelle Lee
- University of Maryland School of Medicine, Morgan State University, Baltimore, MD, United States
| | - Elizabeth Chang
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Maria LaRossa-Garcia
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Smaraki Dash
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Ronald Gartenhaus
- Hunter Holmes McGuire Veterans Affairs Medical Center and Virginia Commonwealth University School of Medicine Department of Internal Medicine, Richmond, VA, United States
| | - Eun Yong Choi
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Olivia Kipe
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Vi Lam
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Kristopher Mason
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Riley Palmer
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Elijah Williams
- McDaniel College Department of Chemistry, 2 College Hill, Westminster, United States
| | - Nicholas Ambulos
- University of Maryland School of Medicine, Morgan State University, Baltimore, MD, United States
| | - Farin Kamangar
- Hunter Holmes McGuire Veterans Affairs Medical Center and Virginia Commonwealth University School of Medicine Department of Internal Medicine, Richmond, VA, United States
| | - Yuji Zhang
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Bandish Kapadia
- Hunter Holmes McGuire Veterans Affairs Medical Center and Virginia Commonwealth University School of Medicine Department of Internal Medicine, Richmond, VA, United States
| | - Yin Jing
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Ashkan Emadi
- University of Maryland School of Medicine, Morgan State University, Baltimore, MDun, United States
| |
Collapse
|
26
|
Narayanan P, Man TK, Gerbing RB, Ries R, Stevens AM, Wang YC, Long X, Gamis AS, Cooper T, Meshinchi S, Alonzo TA, Redell MS. Aberrantly low STAT3 and STAT5 responses are associated with poor outcome and an inflammatory gene expression signature in pediatric acute myeloid leukemia. Clin Transl Oncol 2021; 23:2141-2154. [PMID: 33948920 PMCID: PMC8390401 DOI: 10.1007/s12094-021-02621-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022]
Abstract
The relapse rate for children with acute myeloid leukemia is nearly 40% despite aggressive chemotherapy and often stem cell transplant. We sought to understand how environment-induced signaling responses are associated with clinical response to treatment. We previously reported that patients whose AML cells showed low G-CSF-induced STAT3 activation had inferior event-free survival compared to patients with stronger STAT3 responses. Here, we expanded the paradigm to evaluate multiple signaling parameters induced by a more physiological stimulus. We measured STAT3, STAT5 and ERK1/2 responses to G-CSF and to stromal cell-conditioned medium for 113 patients enrolled on COG trials AAML03P1 and AAML0531. Low inducible STAT3 activity was independently associated with inferior event-free survival in multivariate analyses. For inducible STAT5 activity, those with the lowest and highest responses had inferior event-free survival, compared to patients with intermediate STAT5 responses. Using existing RNA-sequencing data, we compared gene expression profiles for patients with low inducible STAT3/5 activation with those for patients with higher inducible STAT3/5 signaling. Genes encoding hematopoietic factors and mitochondrial respiratory chain subunits were overexpressed in the low STAT3/5 response groups, implicating inflammatory and metabolic pathways as potential mechanisms of chemotherapy resistance. We validated the prognostic relevance of individual genes from the low STAT3/5 response signature in a large independent cohort of pediatric AML patients. These findings provide novel insights into interactions between AML cells and the microenvironment that are associated with treatment failure and could be targeted for therapeutic interventions.
Collapse
Affiliation(s)
- P Narayanan
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - T-K Man
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - R B Gerbing
- Children's Oncology Group, Monrovia, CA, USA
| | - R Ries
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - A M Stevens
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Y-C Wang
- Children's Oncology Group, Monrovia, CA, USA
| | - X Long
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - A S Gamis
- Children's Mercy Hospital and Clinics, Kansas, MO, USA
| | - T Cooper
- Seattle Children's Hospital, Seattle, WA, USA
| | - S Meshinchi
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - T A Alonzo
- Children's Oncology Group, Monrovia, CA, USA.,Division of Biostatistics, University of Southern California, Los Angeles, CA, USA
| | - M S Redell
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
27
|
van Gils N, Denkers F, Smit L. Escape From Treatment; the Different Faces of Leukemic Stem Cells and Therapy Resistance in Acute Myeloid Leukemia. Front Oncol 2021; 11:659253. [PMID: 34012921 PMCID: PMC8126717 DOI: 10.3389/fonc.2021.659253] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/08/2021] [Indexed: 12/26/2022] Open
Abstract
Standard induction chemotherapy, consisting of an anthracycline and cytarabine, has been the first-line therapy for many years to treat acute myeloid leukemia (AML). Although this treatment induces complete remissions in the majority of patients, many face a relapse (adaptive resistance) or have refractory disease (primary resistance). Moreover, older patients are often unfit for cytotoxic-based treatment. AML relapse is due to the survival of therapy-resistant leukemia cells (minimal residual disease, MRD). Leukemia cells with stem cell features, named leukemic stem cells (LSCs), residing within MRD are thought to be at the origin of relapse initiation. It is increasingly recognized that leukemia "persisters" are caused by intra-leukemic heterogeneity and non-genetic factors leading to plasticity in therapy response. The BCL2 inhibitor venetoclax, combined with hypomethylating agents or low dose cytarabine, represents an important new therapy especially for older AML patients. However, often there is also a small population of AML cells refractory to venetoclax treatment. As AML MRD reflects the sum of therapy resistance mechanisms, the different faces of treatment "persisters" and LSCs might be exploited to reach an optimal therapy response and prevent the initiation of relapse. Here, we describe the different epigenetic, transcriptional, and metabolic states of therapy sensitive and resistant AML (stem) cell populations and LSCs, how these cell states are influenced by the microenvironment and affect treatment outcome of AML. Moreover, we discuss potential strategies to target dynamic treatment resistance and LSCs.
Collapse
Affiliation(s)
- Noortje van Gils
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Fedor Denkers
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Linda Smit
- Department of Hematology, Amsterdam UMC, location VUmc, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
28
|
Skwarski M, McGowan DR, Belcher E, Di Chiara F, Stavroulias D, McCole M, Derham JL, Chu KY, Teoh E, Chauhan J, O'Reilly D, Harris BHL, Macklin PS, Bull JA, Green M, Rodriguez-Berriguete G, Prevo R, Folkes LK, Campo L, Ferencz P, Croal PL, Flight H, Qi C, Holmes J, O'Connor JPB, Gleeson FV, McKenna WG, Harris AL, Bulte D, Buffa FM, Macpherson RE, Higgins GS. Mitochondrial Inhibitor Atovaquone Increases Tumor Oxygenation and Inhibits Hypoxic Gene Expression in Patients with Non-Small Cell Lung Cancer. Clin Cancer Res 2021; 27:2459-2469. [PMID: 33597271 PMCID: PMC7611473 DOI: 10.1158/1078-0432.ccr-20-4128] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/17/2021] [Accepted: 02/11/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE Tumor hypoxia fuels an aggressive tumor phenotype and confers resistance to anticancer treatments. We conducted a clinical trial to determine whether the antimalarial drug atovaquone, a known mitochondrial inhibitor, reduces hypoxia in non-small cell lung cancer (NSCLC). PATIENTS AND METHODS Patients with NSCLC scheduled for surgery were recruited sequentially into two cohorts: cohort 1 received oral atovaquone at the standard clinical dose of 750 mg twice daily, while cohort 2 did not. Primary imaging endpoint was change in tumor hypoxic volume (HV) measured by hypoxia PET-CT. Intercohort comparison of hypoxia gene expression signatures using RNA sequencing from resected tumors was performed. RESULTS Thirty patients were evaluable for hypoxia PET-CT analysis, 15 per cohort. Median treatment duration was 12 days. Eleven (73.3%) atovaquone-treated patients had meaningful HV reduction, with median change -28% [95% confidence interval (CI), -58.2 to -4.4]. In contrast, median change in untreated patients was +15.5% (95% CI, -6.5 to 35.5). Linear regression estimated the expected mean HV was 55% (95% CI, 24%-74%) lower in cohort 1 compared with cohort 2 (P = 0.004), adjusting for cohort, tumor volume, and baseline HV. A key pharmacodynamics endpoint was reduction in hypoxia-regulated genes, which were significantly downregulated in atovaquone-treated tumors. Data from multiple additional measures of tumor hypoxia and perfusion are presented. No atovaquone-related adverse events were reported. CONCLUSIONS This is the first clinical evidence that targeting tumor mitochondrial metabolism can reduce hypoxia and produce relevant antitumor effects at the mRNA level. Repurposing atovaquone for this purpose may improve treatment outcomes for NSCLC.
Collapse
Affiliation(s)
- Michael Skwarski
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
- Department of Oncology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Daniel R McGowan
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
- Radiation Physics and Protection, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Elizabeth Belcher
- Department of Cardiothoracic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Francesco Di Chiara
- Department of Cardiothoracic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Dionisios Stavroulias
- Department of Cardiothoracic Surgery, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Mark McCole
- Department of Cellular Pathology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Jennifer L Derham
- Department of Oncology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Kwun-Ye Chu
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
- Department of Oncology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Eugene Teoh
- Department of Oncology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Jagat Chauhan
- Ludwig Institute for Cancer Research Oxford, University of Oxford, Oxford, England, United Kingdom
| | - Dawn O'Reilly
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Philip S Macklin
- Nuffield Department of Medicine, University of Oxford, Oxford, England, United Kingdom
| | - Joshua A Bull
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, England, United Kingdom
| | - Marcus Green
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | | | - Remko Prevo
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Lisa K Folkes
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Leticia Campo
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Petra Ferencz
- Institute of Biomedical Engineering, University of Oxford, Oxford, England, United Kingdom
| | - Paula L Croal
- Institute of Biomedical Engineering, University of Oxford, Oxford, England, United Kingdom
| | - Helen Flight
- Oncology Clinical Trials Office, Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Cathy Qi
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, England, United Kingdom
| | - Jane Holmes
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, England, United Kingdom
| | - James P B O'Connor
- Division of Cancer Sciences, University of Manchester, Manchester, England, United Kingdom
| | - Fergus V Gleeson
- Department of Radiology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - W Gillies McKenna
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Daniel Bulte
- Institute of Biomedical Engineering, University of Oxford, Oxford, England, United Kingdom
| | - Francesca M Buffa
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom
| | - Ruth E Macpherson
- Department of Radiology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Oxford, England, United Kingdom.
- Department of Oncology, Oxford University Hospitals National Health Service Foundation Trust, Oxford, England, United Kingdom
| |
Collapse
|
29
|
An Immune Checkpoint-Related Gene Signature for Predicting Survival of Pediatric Acute Myeloid Leukemia. JOURNAL OF ONCOLOGY 2021; 2021:5550116. [PMID: 33986802 PMCID: PMC8079183 DOI: 10.1155/2021/5550116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 01/04/2023]
Abstract
Objective The aim of this research was to create a new genetic signature of immune checkpoint-associated genes as a prognostic method for pediatric acute myeloid leukemia (AML). Methods Transcriptome profiles and clinical follow-up details were obtained in Therapeutically Applicable Research to Generate Effective Treatments (TARGET), a database of pediatric tumors. Secondary data was collected from the Gene Expression Omnibus (GEO) to test the observations. In univariate Cox regression and multivariate Cox regression studies, the expression of immune checkpoint-related genes was studied. A three-mRNA signature was developed for predicting pediatric AML patient survival. Furthermore, the GEO cohort was used to confirm the reliability. A bioinformatics method was utilized to identify the diagnostic and prognostic value. Results A three-gene (STAT1, BATF, EML4) signature was developed to identify patients into two danger categories depending on their OS. A multivariate regression study showed that the immune checkpoint-related signature (STAT1, BATF, EML4) was an independent indicator of pediatric AML. By immune cell subtypes analyses, the signature was correlated with multiple subtypes of immune cells. Conclusion In summary, our three-gene signature can be a useful tool to predict the OS in AML patients.
Collapse
|
30
|
Conneely SE, Stevens AM. Acute Myeloid Leukemia in Children: Emerging Paradigms in Genetics and New Approaches to Therapy. Curr Oncol Rep 2021; 23:16. [PMID: 33439382 PMCID: PMC7806552 DOI: 10.1007/s11912-020-01009-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) in children remains a challenging disease to cure with suboptimal outcomes particularly when compared to the more common lymphoid leukemias. Recent advances in the genetic characterization of AML have enhanced understanding of individualized patient risk, which has also led to the development of new therapeutic strategies. Here, we review key cytogenetic and molecular features of pediatric AML and how new therapies are being used to improve outcomes. RECENT FINDINGS Recent studies have revealed an increasing number of mutations, including WT1, CBFA2T3-GLIS2, and KAT6A fusions, DEK-NUP214 and NUP98 fusions, and specific KMT2A rearrangements, which are associated with poor outcomes. However, outcomes are starting to improve with the addition of therapies such as gemtuzumab ozogamicin and FLT3 inhibitors, initially developed in adult AML. The combination of advanced risk stratification and ongoing improvements and innovations in treatment strategy will undoubtedly lead to better outcomes for children with AML.
Collapse
Affiliation(s)
- Shannon E Conneely
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, 6701 Fannin, Suite 1510, Houston, TX, 77030, USA.
| | - Alexandra M Stevens
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, 6701 Fannin, Suite 1510, Houston, TX, 77030, USA
| |
Collapse
|
31
|
Fu C, Xiao X, Xu H, Lu W, Wang Y. Efficacy of atovaquone on EpCAM +CD44 + HCT-116 human colon cancer stem cells under hypoxia. Exp Ther Med 2020; 20:286. [PMID: 33209130 PMCID: PMC7668131 DOI: 10.3892/etm.2020.9416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor hypoxia contributes to the development of resistance to chemotherapeutic drugs in several human cancer cell lines. Atovaquone, an anti-malaria drug approved by the US Food and Drug Administration, has recently demonstrated anti-cancer effects in vitro and in vivo in several cancer models. To assess the potential of atovaquone as an anti-cancer agent under hypoxia in colorectal carcinoma, EpCAM+CD44+ colon cancer stem cells were isolated from HCT-116 human colon cancer cells through magnetic-activated cell sorting. The efficacy of atovaquone on cytotoxicity, tumorsphere formation, apoptosis, invasion and cell-cycle progression under hypoxic conditions were evaluated. MTS assays indicated that atovaquone inhibited the proliferation of EpCAM+CD44+ HCT-116 cells with a half-maximal inhibitory concentration of 15 µM. Atovaquone inhibited tumorsphere formation and cell proliferation by causing cell-cycle arrest in S-phase, which induced apoptosis of EpCAM+CD44+ HCT-116 cells, as detected by Annexin V-FITC/PI double staining assays, and caused mitochondrial membrane potential depolarization, as determined by a JC-1 staining assay. Reverse transcription-quantitative PCR demonstrated increased expression of Bax and downregulation of Bcl-2. Transwell invasion assays indicated that atovaquone inhibited the invasiveness of EpCAM+CD44+ HCT-116 cells under hypoxia, which was associated with upregulation of MMP-2 and -9 and increased expression of tissue inhibitor of MMPs (TIMP)-1. Taken together, atovaquone reduced the tumorsphere formation and invasion ability of EpCAM+CD44+ HCT-116 cells, at least in part by increasing the expression of TIMP-1 and downregulating the expression of MMP-2 and -9, as well as the cells' viability by inducing cell-cycle arrest in S-phase and induction of apoptosis via the Bcl-2/Bax pathway under hypoxic conditions. Further studies are warranted to explore the mechanisms of action of atovaquone as a promising anticancer agent in the treatment of colorectal carcinoma.
Collapse
Affiliation(s)
- Changhao Fu
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China.,Department of Endocrinology, Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xu Xiao
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China.,Department of Pharmacy, Siping Central People's Hospital, Siping, Jilin 136000, P.R. China
| | - Hao Xu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Weifei Lu
- Department of Animal Biotechnology, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, P.R. China
| | - Yi Wang
- Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
32
|
Teoh XY, Goh CF, Aminu N, Chan SY. Quantification of atovaquone from amorphous solid dispersion formulation using HPLC: An in vitro and ex vivo investigation. J Pharm Biomed Anal 2020; 192:113631. [PMID: 33011581 DOI: 10.1016/j.jpba.2020.113631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/23/2020] [Accepted: 08/29/2020] [Indexed: 10/23/2022]
Abstract
Atovaquone (ATQ) is a poorly soluble drug. Therefore, formulating ATQ into its supersaturated state through solid dispersion for bioavailability enhancement can be of great value. However, due to fast crystallising properties of ATQ, the quantification of ATQ in a supersaturated solid dispersion system can be complicated. Therefore, in pursuit of accurate quantification of such sample, a simple HPLC analytical method utilising a C18 column (250 × 4.6 mm ID, 5 μm) for the quantitation of ATQ has been developed and validated. Atovaquone elution using the proposed method demonstrated a retention time around 7.6 min with good linearity (R2 > 0.999). The system suitability is also detailed with the tailing factor at 1.365 ± 0.002. The addition of solubilising agent as sample treatment step aided in ensuring the accurate quantitation of the fast crystallising ATQ. The developed HPLC quantitation method has been successfully employed in the analysis of ATQ from solid dispersion samples in in vitro dissolution as well as ex vivo permeation studies for formulation development.
Collapse
Affiliation(s)
- Xin-Yi Teoh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Choon Fu Goh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Nafiu Aminu
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P.M.B, 2346, Sokoto, Nigeria
| | - Siok-Yee Chan
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
33
|
Britto FA, Dumas K, Giorgetti-Peraldi S, Ollendorff V, Favier FB. Is REDD1 a metabolic double agent? Lessons from physiology and pathology. Am J Physiol Cell Physiol 2020; 319:C807-C824. [PMID: 32877205 DOI: 10.1152/ajpcell.00340.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Akt/mechanistic target of rapamycin (mTOR) signaling pathway governs macromolecule synthesis, cell growth, and metabolism in response to nutrients and growth factors. Regulated in development and DNA damage response (REDD)1 is a conserved and ubiquitous protein, which is transiently induced in response to multiple stimuli. Acting like an endogenous inhibitor of the Akt/mTOR signaling pathway, REDD1 protein has been shown to regulate cell growth, mitochondrial function, oxidative stress, and apoptosis. Recent studies also indicate that timely REDD1 expression limits Akt/mTOR-dependent synthesis processes to spare energy during metabolic stresses, avoiding energy collapse and detrimental consequences. In contrast to this beneficial role for metabolic adaptation, REDD1 chronic expression appears involved in the pathogenesis of several diseases. Indeed, REDD1 expression is found as an early biomarker in many pathologies including inflammatory diseases, cancer, neurodegenerative disorders, depression, diabetes, and obesity. Moreover, prolonged REDD1 expression is associated with cell apoptosis, excessive reactive oxygen species (ROS) production, and inflammation activation leading to tissue damage. In this review, we decipher several mechanisms that make REDD1 a likely metabolic double agent depending on its duration of expression in different physiological and pathological contexts. We also discuss the role played by REDD1 in the cross talk between the Akt/mTOR signaling pathway and the energetic metabolism.
Collapse
Affiliation(s)
| | - Karine Dumas
- Université Cote d'Azur, INSERM, UMR1065, C3M, Nice, France
| | | | | | | |
Collapse
|
34
|
Donoso-Bustamante V, Borrego EA, Schiaffino-Bustamante Y, Gutiérrez DA, Millas-Vargas JP, Fuentes-Retamal S, Correa P, Carrillo I, Aguilera RJ, Miranda D, Chávez-Báez I, Pulgar R, Urra FA, Varela-Ramírez A, Araya-Maturana R. An acylhydroquinone derivative produces OXPHOS uncoupling and sensitization to BH3 mimetic ABT-199 (Venetoclax) in human promyelocytic leukemia cells. Bioorg Chem 2020; 100:103935. [PMID: 32454391 DOI: 10.1016/j.bioorg.2020.103935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/02/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022]
Abstract
Since cancer cells have different mitochondrial bioenergetic requirements than non-cancerous cells, therapeutic inhibition of its mitochondrial functionality continues to be an important target for anticancer drug discovery. In this study, a series of acylhydroquinones with different acyl-chain length, and their chlorinated derivatives, in the aromatic ring, synthesized by Fries rearrangement under microwave irradiation, were evaluated for their anticancer activity in two leukemia cell lines. Findings from the primary and secondary screening of the 18 acylhydroquinones, tested at 5 µM on acute promyelocytic leukemia HL-60 and acute lymphoblastic leukemia CEM cells lines, identified an acylchlorohydroquinone (12) with a highly selective anti-proliferative effect toward HL-60 cells. This compound induced S-phase arrest in the cell cycle progression of HL-60 cells with insignificant toxicity on leukemic CEM cells and non-cancerous Hs27 cells. In HL-60 leukemic cells, 12 triggered increased mitochondrial NADH oxidation, increased respiration in presence of oligomycin (state 4o), mitochondrial depolarization, and ROS production, suggesting an uncoupling of OXPHOS. This provoked a metabolic adaptation dependent on AMPK/ACC/autophagy axis, having the mitochondrial β-oxidation a pro-survival role since the combination of 12 and etomoxir, a carnitine palmitoyl-transferase (CPT) inhibitor promoted extensive HL-60 cell death. Finally, 12-induced metabolic stress sensitized to HL-60 cells to cell death by the FDA-approved anti-leukemic drug ABT-199, a BH3 mimetic. Therefore, our results suggest that acylchlorohydroquinone is a promising scaffold in anti-promyelocytic leukemia drug research.
Collapse
Affiliation(s)
- Viviana Donoso-Bustamante
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Chile
| | - Edgar A Borrego
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | | | - Denisse A Gutiérrez
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | - Juan Pablo Millas-Vargas
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Sebastián Fuentes-Retamal
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Programa de Investigación Asociativa en Cáncer Gástrico, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Pablo Correa
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile
| | - Ileana Carrillo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Renato J Aguilera
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA
| | - Dante Miranda
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ignacio Chávez-Báez
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile; Laboratorio de Genómica y Genética de Interacciones Biológicas, INTA-Universidad de Chile, Santiago, Chile
| | - Rodrigo Pulgar
- Network for Snake Venom Research and Drug Discovery, Santiago, Chile; Laboratorio de Genómica y Genética de Interacciones Biológicas, INTA-Universidad de Chile, Santiago, Chile
| | - Félix A Urra
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| | - Armando Varela-Ramírez
- Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, USA.
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Universidad de Talca, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, Chile.
| |
Collapse
|