1
|
Shmagel K, Saidakova E, Korolevskaya L, Vlasova V, Younes SA. Activated/Cycling Treg Deficiency and Mitochondrial Alterations in Immunological Non-Responders to Antiretroviral Therapy. FRONT BIOSCI-LANDMRK 2024; 29:429. [PMID: 39735996 DOI: 10.31083/j.fbl2912429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, but their dynamics are altered in a subset of people living with Human Immunodeficiency Virus (HIV) known as immunological non-responders (INRs). INRs fail to reconstitute CD4+ T-cell counts despite viral suppression. This study aimed to examine Treg dysregulation in INRs, comparing them to immunological responders (IRs) and healthy controls (HCs). METHODS The study included 40 INRs, 42 IRs, and 23 HCs. Peripheral blood mononuclear cells were isolated and analyzed by flow cytometry. Conventional CD4+ T-cells (Tconvs) were identified as CD25-/loFOXP3- cells, while Tregs were identified as CD25+CD127loFOXP3+ CD4+ T-cells. Cells were further divided into naive, central memory, effector memory, and effector memory cells re-expressing CD45RA (TEMRA) subsets. Activated/cycling cells were identified as CD71+ and quiescent cells were CD71-. Mitochondrial mass and transmembrane potential were measured using MitoTracker Green and MitoTracker Orange dyes, respectively. Statistical comparisons were made using the Kruskal-Wallis test with Dunn's post-hoc analysis and Mann-Whitney U-test. RESULTS INRs exhibited the highest frequencies of activated/cycling CD4+ T-cells. The proportion of activated/cycling cells was higher in Tregs compared to Tconvs in all groups. Cycling rates of Tregs and Tconvs were correlated, suggesting Tregs help control Tconv proliferation. Despite high overall Treg frequencies in INRs, they showed a Treg deficiency in activated/cycling CD4+ T-cells, specifically in naive and central memory subsets, causing an imbalance in the Tconv/Treg ratio. This deficiency was hidden by increased Treg frequencies in quiescent effector memory CD4+ T-cells. Activated/cycling naive and memory Tregs from INRs had normal forkhead box P3 (FOXP3) and CD25 expression, but activated/cycling memory Tregs showed decreased ability to regulate mitochondrial transmembrane potential, indicating impaired mitochondrial fitness. These mitochondrial abnormalities were similar to those observed in memory conventional T-cells. CONCLUSIONS The complex Treg dysregulation in immunological non-responders involves quantitative and functional alterations, including a Treg deficiency within activated/cycling naive and central memory CD4+ T-cells, impaired mitochondrial fitness of activated/cycling memory Tregs, and functional disorders of the parent conventional T-lymphocytes. These findings underscore the need for a nuanced understanding of Treg dynamics in suboptimal CD4+ T-cell reconstitution during HIV-infection.
Collapse
Affiliation(s)
- Konstantin Shmagel
- Institute of Ecology and Genetics of Microorganisms UB RAS, Perm Federal Research Center UB RAS, 614081 Perm, Russian Federation
| | - Evgeniya Saidakova
- Institute of Ecology and Genetics of Microorganisms UB RAS, Perm Federal Research Center UB RAS, 614081 Perm, Russian Federation
- Biological Faculty, Perm State University, 614000 Perm, Russian Federation
| | - Larisa Korolevskaya
- Institute of Ecology and Genetics of Microorganisms UB RAS, Perm Federal Research Center UB RAS, 614081 Perm, Russian Federation
| | - Violetta Vlasova
- Institute of Ecology and Genetics of Microorganisms UB RAS, Perm Federal Research Center UB RAS, 614081 Perm, Russian Federation
| | - Souheil-Antoine Younes
- Pathology Advanced Translational Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Zhao SJ, Hu XH, Lin XX, Zhang YJ, Wang J, Wang H, Gong GS, Mor G, Liao AH. IL-27/Blimp-1 axis regulates the differentiation and function of Tim-3+ Tregs during early pregnancy. JCI Insight 2024; 9:e179233. [PMID: 39171524 PMCID: PMC11343602 DOI: 10.1172/jci.insight.179233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024] Open
Abstract
Decidual regulatory T cells (Tregs) are essential for successful pregnancy outcome. A subset of Tregs, T cell immunoglobulin and mucin domain-containing protein 3-positive regulatory T cells (TregsTim-3+), plays a central role in the acceptance of the fetus during early stages of normal pregnancy. The molecular mechanism regulating the differentiation and function of TregsTim-3+ is unknown. Here, we investigated the role of the transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) on decidual TregTim-3+ differentiation. We demonstrated that Blimp-1 enhanced the coexpression of negative costimulatory molecules (Tim-3, T cell immunoreceptor with Ig and ITIM domains, and programmed cell death protein 1) on Tregs and improved their immunosuppressive functions, including increased IL-10 secretion, suppression of effector T cell proliferation, and promotion of macrophage polarization toward the M2 phenotype. Furthermore, we showed that IL-27 regulated the expression of Tim-3 and Blimp-1 through the STAT1 signaling pathway and that transfer of TregsBlimp-1+ into an abortion-prone mouse model effectively reduced embryo absorption rate. We postulated that abnormalities in the IL-27/Blimp-1 axis might be associated with recurrent pregnancy loss (RPL). These findings provided insights for developing more efficient immunotherapies for women with RPL.
Collapse
Affiliation(s)
- Si-Jia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Hui Hu
- Department of Obstetrics and Gynecology, First Clinical College Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Xiu Lin
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang-Shun Gong
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Laha A, Nasra S, Bhatia D, Kumar A. Advancements in rheumatoid arthritis therapy: a journey from conventional therapy to precision medicine via nanoparticles targeting immune cells. NANOSCALE 2024; 16:14975-14993. [PMID: 39056352 DOI: 10.1039/d4nr02182g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease that mainly affects the inner lining of the synovial joints and leads to chronic inflammation. While RA is not known as lethal, recent research indicates that it may be a silent killer because of its strong association with an increased risk of chronic lung and heart diseases. Patients develop these systemic consequences due to the regular uptake of heavy drugs such as disease-modifying antirheumatic medications (DMARDs), glucocorticoids (GCs), nonsteroidal anti-inflammatory medicines (NSAIDs), etc. Nevertheless, a number of these medications have off-target effects, which might cause adverse toxicity, and have started to become resistant in patients as well. Therefore, alternative and promising therapeutic techniques must be explored and adopted, such as post-translational modification inhibitors (like protein arginine deiminase inhibitors), RNA interference by siRNA, epigenetic drugs, peptide therapy, etc., specifically in macrophages, neutrophils, Treg cells and dendritic cells (DCs). As the target cells are specific, ensuring targeted delivery is also equally important, which can be achieved with the advent of nanotechnology. Furthermore, these nanocarriers have fewer off-site side effects, enable drug combinations, and allow for lower drug dosages. Among the nanoparticles that can be used for targeting, there are both inorganic and organic nanomaterials such as solid-lipid nanoparticles, liposomes, hydrogels, dendrimers, and biomimetics that have been discussed. This review highlights contemporary therapy options targeting macrophages, neutrophils, Treg cells, and DCs and explores the application of diverse nanotechnological techniques to enhance precision RA therapies.
Collapse
Affiliation(s)
- Anwesha Laha
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Dhiraj Bhatia
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar - 382055, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
4
|
Mashayekhi K, Khazaie K, Faubion WA, Kim GB. Biomaterial-enhanced treg cell immunotherapy: A promising approach for transplant medicine and autoimmune disease treatment. Bioact Mater 2024; 37:269-298. [PMID: 38694761 PMCID: PMC11061617 DOI: 10.1016/j.bioactmat.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Regulatory T cells (Tregs) are crucial for preserving tolerance in the body, rendering Treg immunotherapy a promising treatment option for both organ transplants and autoimmune diseases. Presently, organ transplant recipients must undergo lifelong immunosuppression to prevent allograft rejection, while autoimmune disorders lack definitive cures. In the last years, there has been notable advancement in comprehending the biology of both antigen-specific and polyclonal Tregs. Clinical trials involving Tregs have demonstrated their safety and effectiveness. To maximize the efficacy of Treg immunotherapy, it is essential for these cells to migrate to specific target tissues, maintain stability within local organs, bolster their suppressive capabilities, and ensure their intended function's longevity. In pursuit of these goals, the utilization of biomaterials emerges as an attractive supportive strategy for Treg immunotherapy in addressing these challenges. As a result, the prospect of employing biomaterial-enhanced Treg immunotherapy holds tremendous promise as a treatment option for organ transplant recipients and individuals grappling with autoimmune diseases in the near future. This paper introduces strategies based on biomaterial-assisted Treg immunotherapy to enhance transplant medicine and autoimmune treatments.
Collapse
Affiliation(s)
- Kazem Mashayekhi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - William A. Faubion
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gloria B. Kim
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, USA
| |
Collapse
|
5
|
Muñoz-Melero M, Biswas M. Role of FoxP3 + Regulatory T Cells in Modulating Immune Responses to Adeno-Associated Virus Gene Therapy. Hum Gene Ther 2024; 35:439-450. [PMID: 38450566 PMCID: PMC11302314 DOI: 10.1089/hum.2023.227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/04/2024] [Indexed: 03/08/2024] Open
Abstract
Adeno-associated virus (AAV) gene therapy is making rapid strides owing to its wide range of therapeutic applications. However, development of serious immune responses to the capsid antigen or the therapeutic transgene product hinders its full clinical impact. Immune suppressive (IS) drug treatments have been used in various clinical trials to prevent the deleterious effects of cytotoxic T cells to the viral vector or transgene, although there is no consensus on the best treatment regimen, dosage, or schedule. Regulatory T cells (Tregs) are crucial for maintaining tolerance against self or nonself antigens. Of importance, Tregs also play an important role in dampening immune responses to AAV gene therapy, including tolerance induction to the transgene product. Approaches to harness the tolerogenic effect of Tregs include the use of selective IS drugs that expand existing Tregs, and skew activated conventional T cells into antigen-specific peripherally induced Tregs. In addition, Tregs can be expanded ex vivo and delivered as cellular therapy. Furthermore, receptor engineering can be used to increase the potency and specificity of Tregs allowing for suppression at lower doses and reducing the risk of disrupting protective immunity. Because immune-mediated toxicities to AAV vectors are a concern in the clinic, strategies that can enhance or preserve Treg function should be considered to improve both the safety and efficacy of AAV gene therapy.
Collapse
Affiliation(s)
- Maite Muñoz-Melero
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| | - Moanaro Biswas
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
6
|
Zhang J, Liu H, Chen Y, Liu H, Zhang S, Yin G, Xie Q. Augmenting regulatory T cells: new therapeutic strategy for rheumatoid arthritis. Front Immunol 2024; 15:1312919. [PMID: 38322264 PMCID: PMC10844451 DOI: 10.3389/fimmu.2024.1312919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune condition marked by inflammation of the joints, degradation of the articular cartilage, and bone resorption. Recent studies found the absolute and relative decreases in circulating regulatory T cells (Tregs) in RA patients. Tregs are a unique type of cells exhibiting immunosuppressive functions, known for expressing the Foxp3 gene. They are instrumental in maintaining immunological tolerance and preventing autoimmunity. Increasing the absolute number and/or enhancing the function of Tregs are effective strategies for treating RA. This article reviews the studies on the mechanisms and targeted therapies related to Tregs in RA, with a view to provide better ideas for the treatment of RA.
Collapse
Affiliation(s)
- Jiaqian Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongjiang Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Shengxiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
8
|
Zemanek T, Nova Z, Nicodemou A. Tumor-Infiltrating Lymphocytes and Adoptive Cell Therapy: State of the Art in Colorectal, Breast and Lung Cancer. Physiol Res 2023; 72:S209-S224. [PMID: 37888965 PMCID: PMC10669950 DOI: 10.33549/physiolres.935155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 12/01/2023] Open
Abstract
Our knowledge of tumor-infiltrating lymphocytes (TILs) is dramatically expanding. These cells have proven prognostic and therapeutic value for many cancer outcomes and potential to treat also disseminated breast, colorectal, or lung cancer. However, the therapeutical outcome of TILs is negatively affected by tumor mutational burden and neoantigens. On the other hand, it can be improved in combination with checkpoint blockade therapy. This knowledge and rapid detection techniques alongside gene editing allow us to classify and modify T cells in many ways. Hence, to tailor them precisely to the patient´s needs as to program T cell receptors to recognize specific tumor-associated neoantigens and to insert them into lymphocytes or to select tumor neoantigen-specific T cells, for the development of vaccines that recognize tumor-specific antigens in tumors or metastases. Further studies and clinical trials in the field are needed for an even better-detailed understanding of TILs interactions and aiming in the fight against multiple cancers.
Collapse
Affiliation(s)
- T Zemanek
- Lambda Life, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
9
|
Wobma H, Kapadia M, Kim HT, Alvarez-Calderon F, Baumeister SHC, Duncan C, Forrest S, Gorfinkel L, Huang J, Lehmann LE, Li H, Schwartz M, Koreth J, Ritz J, Kean LS, Whangbo JS. Real-world experience with low-dose IL-2 for children and young adults with refractory chronic graft-versus-host disease. Blood Adv 2023; 7:4647-4657. [PMID: 37603347 PMCID: PMC10448423 DOI: 10.1182/bloodadvances.2023009729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
The majority of patients with chronic graft-versus-host disease (cGVHD) are steroid refractory (SR), creating a need for safe and effective therapies. Subcutaneous low-dose interleukin-2 (LD IL-2), which preferentially expands CD4+ regulatory T cells (Tregs), has been evaluated in 5 clinical trials at our center with partial responses (PR) in ∼50% of adults and 82% of children by week 8. We now report additional real-world experience with LD IL-2 in 15 children and young adults. We conducted a retrospective chart review of patients with SR-cGVHD at our center who received LD IL-2 from August 2016 to July 2022 not on a research trial. The median age at start of LD IL-2 was 10.4 years (range, 1.2-23.2 years) at a median of 234 days from cGVHD diagnosis (range, 11-542 days). Patients had a median of 2.5 (range, 1-3) active organs at LD IL-2 start and received a median of 3 (range, 1-5) prior therapies. The median duration of LD IL-2 therapy was 462 days (range, 8-1489 days). Most patients received 1 × 106 IU/m2 per day. There were no serious adverse effects. The overall response rate in 13 patients who received >4 weeks of therapy was 85% (complete response, n = 5; PR, n = 6) with responses in diverse organs. Most patients significantly weaned corticosteroids. Tregs preferentially expanded with a median peak fold increase of 2.8 in the ratio of Tregs to CD4+ conventional T cells (range, 2.0-19.8) by 8 weeks on therapy. LD IL-2 is a well-tolerated, steroid-sparing agent with a high response rate in children and young adults with SR-cGVHD.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children’s Hospital, Boston, MA
| | - Malika Kapadia
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Haesook T. Kim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Francesca Alvarez-Calderon
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Susanne H. C. Baumeister
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Christine Duncan
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Suzanne Forrest
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Lev Gorfinkel
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer Huang
- Division of Immunology, Boston Children’s Hospital, Boston, MA
| | - Leslie E. Lehmann
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Hojun Li
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Marc Schwartz
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - John Koreth
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Leslie S. Kean
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer S. Whangbo
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
10
|
Shen G, Moua KTY, Perkins K, Johnson D, Li A, Curtin P, Gao W, McCune JS. Precision sirolimus dosing in children: The potential for model-informed dosing and novel drug monitoring. Front Pharmacol 2023; 14:1126981. [PMID: 37021042 PMCID: PMC10069443 DOI: 10.3389/fphar.2023.1126981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/14/2023] [Indexed: 04/07/2023] Open
Abstract
The mTOR inhibitor sirolimus is prescribed to treat children with varying diseases, ranging from vascular anomalies to sporadic lymphangioleiomyomatosis to transplantation (solid organ or hematopoietic cell). Precision dosing of sirolimus using therapeutic drug monitoring (TDM) of sirolimus concentrations in whole blood drawn at the trough (before the next dose) time-point is the current standard of care. For sirolimus, trough concentrations are only modestly correlated with the area under the curve, with R 2 values ranging from 0.52 to 0.84. Thus, it should not be surprising, even with the use of sirolimus TDM, that patients treated with sirolimus have variable pharmacokinetics, toxicity, and effectiveness. Model-informed precision dosing (MIPD) will be beneficial and should be implemented. The data do not suggest dried blood spots point-of-care sampling of sirolimus concentrations for precision dosing of sirolimus. Future research on precision dosing of sirolimus should focus on pharmacogenomic and pharmacometabolomic tools to predict sirolimus pharmacokinetics and wearables for point-of-care quantitation and MIPD.
Collapse
Affiliation(s)
- Guofang Shen
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Kao Tang Ying Moua
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kathryn Perkins
- Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Deron Johnson
- Clinical Informatics, City of Hope Medical Center, Duarte, CA, United States
| | - Arthur Li
- Division of Biostatistics, City of Hope, Duarte, CA, United States
| | - Peter Curtin
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| | - Wei Gao
- Division of Engineering and Applied Science, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jeannine S. McCune
- Department of Hematologic Malignancies Translational Sciences, City of Hope, and Department of Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, United States
| |
Collapse
|
11
|
Ramos TL, Bolivar-Wagers S, Jin S, Thangavelu G, Simonetta F, Lin PY, Hirai T, Saha A, Koehn B, Su LL, Picton LK, Baker J, Lohmeyer JK, Riddle M, Eide C, Tolar J, Panoskaltsis-Mortari A, Wagner JE, Garcia KC, Negrin RS, Blazar BR. Prevention of acute GVHD using an orthogonal IL-2/IL-2Rβ system to selectively expand regulatory T cells in vivo. Blood 2023; 141:1337-1352. [PMID: 36564052 PMCID: PMC10082364 DOI: 10.1182/blood.2022018440] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative option for patients with hematological disorders and bone marrow (BM) failure syndromes. Graft-versus-host disease (GVHD) remains a leading cause of morbidity posttransplant. Regulatory T cell (Treg) therapies are efficacious in ameliorating GVHD but limited by variable suppressive capacities and the need for a high therapeutic dose. Here, we sought to expand Treg in vivo by expressing an orthogonal interleukin 2 receptor β (oIL-2Rβ) that would selectively interact with oIL-2 cytokine and not wild-type (WT) IL-2. To test whether the orthogonal system would preferentially drive donor Treg expansion, we used a murine major histocompatibility complex-disparate GVHD model of lethally irradiated BALB/c mice given T cell-depleted BM from C57BL/6 (B6) mice alone or together with B6Foxp3+GFP+ Treg or oIL-2Rβ-transduced Treg at low cell numbers that typically do not control GVHD with WT Treg. On day 2, B6 activated T cells (Tcons) were injected to induce GVHD. Recipients were treated with phosphate-buffered saline (PBS) or oIL-2 daily for 14 days, then 3 times weekly for an additional 14 days. Mice treated with oIL-2Rβ Treg and oIL-2 compared with those treated with PBS had enhanced GVHD survival, in vivo selective expansion of Tregs, and greater suppression of Tcon expansion in secondary lymphoid organs and intestines. Importantly, oIL-2Rβ Treg maintained graft-versus-tumor (GVT) responses in 2 distinct tumor models (A20 and MLL-AF9). These data demonstrate a novel approach to enhance the efficacy of Treg therapy in allo-HSCT using an oIL-2/oIL-2Rβ system that allows for selective in vivo expansion of Treg leading to GVHD protection and GVT maintenance.
Collapse
Affiliation(s)
- Teresa L. Ramos
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Sujeong Jin
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Govindarajan Thangavelu
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
- Translational Research Center for Oncohematology, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Po-Yu Lin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Toshihito Hirai
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Asim Saha
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Brent Koehn
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Leon L. Su
- Department of Molecular and Cellular Physiology, Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA
| | - Lora K. Picton
- Department of Molecular and Cellular Physiology, Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Juliane K. Lohmeyer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Megan Riddle
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Cindy Eide
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Jakub Tolar
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - John E. Wagner
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA
| | - Robert S. Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
12
|
Siewe N, Friedman A. Cancer therapy with immune checkpoint inhibitor and CSF-1 blockade: A mathematical model. J Theor Biol 2023; 556:111297. [PMID: 36228716 DOI: 10.1016/j.jtbi.2022.111297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
Abstract
Immune checkpoint inhibitors (ICIs) introduced in recent years have revolutionized the treatment of many metastatic cancers. However, data suggest that treatment has benefits only in a limited percentage of patients, and that this is due to immune suppression of the tumor microenvironment (TME). Anti-tumor inflammatory macrophages (M1), which are attracted to the TME, are converted by tumor secreted cytokines, such as CSF-1, to pro-tumor anti-inflammatory macrophages (M2), or tumor associated macrophages (TAMs), which block the anti-tumor T cells. In the present paper we develop a mathematical model that represents the interactions among the immune cells and cancer in terms of differential equations. The model can be used to assess treatments of combination therapy of anti-PD-1 with anti-CSF-1. Examples are given in comparing the efficacy among different strategies for anti-CSF-1 dosing in a setup of clinical trials.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, USA.
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
Siewe N, Friedman A. Optimal timing of steroid initiation in response to CTLA-4 antibody in metastatic cancer: A mathematical model. PLoS One 2022; 17:e0277248. [PMID: 36355837 PMCID: PMC9648769 DOI: 10.1371/journal.pone.0277248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2022] Open
Abstract
Immune checkpoint inhibitors, introduced in recent years, have revolutionized the treatment of many cancers. However, the toxicity associated with this therapy may cause severe adverse events. In the case of advanced lung cancer or metastatic melanoma, a significant number (10%) of patients treated with CTLA-4 inhibitor incur damage to the pituitary gland. In order to reduce the risk of hypophysitis and other severe adverse events, steroids may be combined with CTLA-4 inhibitor; they reduce toxicity, but they also diminish the anti-cancer effect of the immunotherapy. This trade-off between tumor reduction and the risk of severe adverse events poses the following question: What is the optimal time to initiate treatment with steroid. We address this question with a mathematical model from which we can also evaluate the comparative benefits of each schedule of steroid administration. In particular, we conclude that treatment with steroid should not begin too early, but also not very late, after immunotherapy began; more precisely, it should start as soon as tumor volume, under the effect of CTLA-4 inhibitor alone, begins to decrease. We can also compare the benefits of short term treatment of steroid at high doses to a longer term treatment with lower doses.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, New York, United States of America
- * E-mail:
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
14
|
Apfelbaum AA, Wu F, Hawkins AG, Magnuson B, Jiménez JA, Taylor SD, Wrenn ED, Waltner O, Pfaltzgraff ER, Song JY, Hall C, Wellik DM, Ljungman M, Furlan SN, Ryan RJ, Sarthy JF, Lawlor ER. EWS::FLI1 and HOXD13 Control Tumor Cell Plasticity in Ewing Sarcoma. Clin Cancer Res 2022; 28:4466-4478. [PMID: 35653119 PMCID: PMC9588607 DOI: 10.1158/1078-0432.ccr-22-0384] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE Propagation of Ewing sarcoma requires precise regulation of EWS::FLI1 transcriptional activity. Determining the mechanisms of fusion regulation will advance our understanding of tumor progression. Here we investigated whether HOXD13, a developmental transcription factor that promotes Ewing sarcoma metastatic phenotypes, influences EWS::FLI1 transcriptional activity. EXPERIMENTAL DESIGN Existing tumor and cell line datasets were used to define EWS::FLI1 binding sites and transcriptional targets. Chromatin immunoprecipitation and CRISPR interference were employed to identify enhancers. CUT&RUN and RNA sequencing defined binding sites and transcriptional targets of HOXD13. Transcriptional states were investigated using bulk and single-cell transcriptomic data from cell lines, patient-derived xenografts, and patient tumors. Mesenchymal phenotypes were assessed by gene set enrichment, flow cytometry, and migration assays. RESULTS We found that EWS::FLI1 creates a de novo GGAA microsatellite enhancer in a developmentally conserved regulatory region of the HOXD locus. Knockdown of HOXD13 led to widespread changes in expression of developmental gene programs and EWS::FLI1 targets. HOXD13 binding was enriched at established EWS::FLI1 binding sites where it influenced expression of EWS::FLI1-activated genes. More strikingly, HOXD13 bound and activated EWS::FLI1-repressed genes, leading to adoption of mesenchymal and migratory cell states that are normally suppressed by the fusion. Single-cell analysis confirmed that direct transcriptional antagonism between HOXD13-mediated gene activation and EWS::FLI1-dependent gene repression defines the state of Ewing sarcoma cells along a mesenchymal axis. CONCLUSIONS Ewing sarcoma tumors are comprised of tumor cells that exist along a mesenchymal transcriptional continuum. The identity of cells along this continuum is, in large part, determined by the competing activities of EWS::FLI1 and HOXD13. See related commentary by Weiss and Bailey, p. 4360.
Collapse
Affiliation(s)
- April A. Apfelbaum
- Cancer Biology PhD Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Feinan Wu
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Allegra G. Hawkins
- Childhood Cancer Data Lab Alex’s Lemonade Stand Foundation, Philadelphia, PA, USA
| | - Brian Magnuson
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jennifer A. Jiménez
- Cancer Biology PhD Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sean D. Taylor
- Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Emma D. Wrenn
- Seattle Children’s Research Institute, Seattle, WA, 98101, USA
| | - Olivia Waltner
- Fred Hutch Cancer Research Center, Seattle, WA, 98109, USA
| | | | - Jane Y. Song
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cody Hall
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Deneen M. Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, 53705
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott N. Furlan
- Fred Hutch Cancer Research Center, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| | - Russell J.H. Ryan
- Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jay F. Sarthy
- Fred Hutch Cancer Research Center, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| | - Elizabeth R. Lawlor
- Seattle Children’s Research Institute, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
| |
Collapse
|
15
|
Hippen KL, Hefazi M, Larson JH, Blazar BR. Emerging translational strategies and challenges for enhancing regulatory T cell therapy for graft-versus-host disease. Front Immunol 2022; 13:926550. [PMID: 35967386 PMCID: PMC9366169 DOI: 10.3389/fimmu.2022.926550] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/27/2022] [Indexed: 02/03/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for many types of cancer. Genetic disparities between donor and host can result in immune-mediated attack of host tissues, known as graft versus host disease (GVHD), a major cause of morbidity and mortality following HSCT. Regulatory CD4+ T cells (Tregs) are a rare cell type crucial for immune system homeostasis, limiting the activation and differentiation of effector T cells (Teff) that are self-reactive or stimulated by foreign antigen exposure. Adoptive cell therapy (ACT) with Treg has demonstrated, first in murine models and now in patients, that prophylactic Treg infusion can also suppress GVHD. While clinical trials have demonstrated Treg reduce severe GVHD occurrence, several impediments remain, including Treg variability and practical need for individualized Treg production for each patient. Additionally, there are challenges in the use of in vitro expansion techniques and in achieving in vivo Treg persistence in context of both immune suppressive drugs and in lymphoreplete patients being treated for GVHD. This review will focus on 3 main translational approaches taken to improve the efficacy of tTreg ACT in GVHD prophylaxis and development of treatment options, following HSCT: genetic modification, manipulating TCR and cytokine signaling, and Treg production protocols. In vitro expansion for Treg ACT presents a multitude of approaches for gene modification to improve efficacy, including: antigen specificity, tissue targeting, deletion of negative regulators/exhaustion markers, resistance to immunosuppressive drugs common in GVHD treatment. Such expansion is particularly important in patients without significant lymphopenia that can drive Treg expansion, enabling a favorable Treg:Teff ratio in vivo. Several potential therapeutics have also been identified that enhance tTreg stability or persistence/expansion following ACT that target specific pathways, including: DNA/histone methylation status, TCR/co-stimulation signaling, and IL-2/STAT5 signaling. Finally, this review will discuss improvements in Treg production related to tissue source, Treg subsets, therapeutic approaches to increase Treg suppression and stability during tTreg expansion, and potential for storing large numbers of Treg from a single production run to be used as an off-the-shelf infusion product capable of treating multiple recipients.
Collapse
Affiliation(s)
- Keli L. Hippen
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN, United States
| | - Jemma H. Larson
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| | - Bruce R. Blazar
- University of Minnesota Cancer Center and the Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, Minneapolis, MN, United States
| |
Collapse
|
16
|
Ellis GI, Coker KE, Winn DW, Deng MZ, Shukla D, Bhoj V, Milone MC, Wang W, Liu C, Naji A, Duran-Struuck R, Riley JL. Trafficking and persistence of alloantigen-specific chimeric antigen receptor regulatory T cells in Cynomolgus macaque. Cell Rep Med 2022; 3:100614. [PMID: 35551746 PMCID: PMC9133392 DOI: 10.1016/j.xcrm.2022.100614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/16/2022] [Accepted: 03/29/2022] [Indexed: 01/13/2023]
Abstract
Adoptive transfer of chimeric antigen receptor regulatory T cells (CAR Tregs) is a promising way to prevent allograft loss without the morbidity associated with current therapies. Non-human primates (NHPs) are a clinically relevant model to develop transplant regimens, but manufacturing and engraftment of NHP CAR Tregs have not been demonstrated yet. Here, we describe a culture system that massively expands CAR Tregs specific for the Bw6 alloantigen. In vitro, these Tregs suppress in an antigen-specific manner without pro-inflammatory cytokine secretion or cytotoxicity. In vivo, Bw6-specific CAR Tregs preferentially traffic to and persist in bone marrow for at least 1 month. Following transplant of allogeneic Bw6+ islets and autologous CAR Tregs into the bone marrow of diabetic recipients, CAR Tregs traffic to the site of islet transplantation and maintain a phenotype of suppressive Tregs. Our results establish a framework for the optimization of CAR Treg therapy in NHP disease models.
Collapse
Affiliation(s)
- Gavin I Ellis
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly E Coker
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Delaine W Winn
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Mosha Z Deng
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Divanshu Shukla
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Vijay Bhoj
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Milone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Wang
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Ali Naji
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | - James L Riley
- Department of Microbiology and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Anggelia MR, Cheng HY, Lai PC, Hsieh YH, Lin CH, Lin CH. Cell Therapy in Vascularized Composite Allotransplantation. Biomed J 2022; 45:454-464. [PMID: 35042019 PMCID: PMC9422067 DOI: 10.1016/j.bj.2022.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Allograft rejection is one of the obstacles in achieving a successful vascularized composite allotransplantation (VCA). Treatments of graft rejection with lifelong immunosuppression (IS) subject the recipients to a lifelong risk of cancer development and opportunistic infections. Cell therapy has recently emerged as a promising strategy to modulate the immune system, minimize immunosuppressant drug dosages, and induce allograft tolerance. In this review, the recent works regarding the use of cell therapy to improve allograft outcomes are discussed. The current data supports the safety of cell therapy. The suitable type of cell therapy in allotransplantation is clinically dependent. Bone marrow cell therapy is more suitable for the induction phase, while other cell therapies are more feasible in either the induction or maintenance phase, or for salvage of allograft rejection. Immune cell therapy focuses on modulating the immune response, whereas stem cells may have an additional role in promoting structural regenerations, such as nerve regeneration. Source, frequency, dosage, and route of cell therapy delivery are also dependent on the specific need in the clinical setting.
Collapse
Affiliation(s)
- Madonna Rica Anggelia
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ping-Chin Lai
- The Kidney Institute and Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
| | - Yun-Huan Hsieh
- Department of Plastic and Reconstructive Surgery, Epworth Eastern Hospital, Victoria, Australia
| | - Chih-Hung Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
18
|
Michniacki TF, Choi SW, Peltier DC. Immune Suppression in Allogeneic Hematopoietic Stem Cell Transplantation. Handb Exp Pharmacol 2022; 272:209-243. [PMID: 34628553 PMCID: PMC9055779 DOI: 10.1007/164_2021_544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for high-risk hematologic disorders. There are multiple immune-mediated complications following allo-HSCT that are prevented and/or treated by immunosuppressive agents. Principal among these immune-mediated complications is acute graft-versus-host disease (aGVHD), which occurs when the new donor immune system targets host tissue antigens. The immunobiology of aGVHD is complex and involves all aspects of the immune system. Due to the risk of aGVHD, immunosuppressive aGVHD prophylaxis is required for nearly all allogeneic HSCT recipients. Despite prophylaxis, aGVHD remains a major cause of nonrelapse mortality. Here, we discuss the clinical features of aGVHD, the immunobiology of aGVHD, the immunosuppressive therapies used to prevent and treat aGVHD, how to mitigate the side effects of these immunosuppressive therapies, and what additional immune-mediated post-allo-HSCT complications are also treated with immunosuppression.
Collapse
Affiliation(s)
- Thomas F Michniacki
- Division of Hematology/Oncology, Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, USA
| | - Sung Won Choi
- Division of Hematology/Oncology, Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| | - Daniel C Peltier
- Division of Hematology/Oncology, Department of Pediatrics, Blood and Marrow Transplantation Program, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
19
|
Hefazi M, Bolivar-Wagers S, Blazar BR. Regulatory T Cell Therapy of Graft-versus-Host Disease: Advances and Challenges. Int J Mol Sci 2021; 22:9676. [PMID: 34575843 PMCID: PMC8469916 DOI: 10.3390/ijms22189676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
Graft-versus-host disease (GVHD) is the leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Immunomodulation using regulatory T cells (Tregs) offers an exciting option to prevent and/or treat GVHD as these cells naturally function to maintain immune homeostasis, can induce tolerance following HSCT, and have a tissue reparative function. Studies to date have established a clinical safety profile for polyclonal Tregs. Functional enhancement through genetic engineering offers the possibility of improved potency, specificity, and persistence. In this review, we provide the most up to date preclinical and clinical data on Treg cell therapy with a particular focus on GVHD. We discuss the different Treg subtypes and highlight the pharmacological and genetic approaches under investigation to enhance the application of Tregs in allo-HSCT. Lastly, we discuss the remaining challenges for optimal clinical translation and provide insights as to future directions of the field.
Collapse
Affiliation(s)
- Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| |
Collapse
|
20
|
Cryopreservation of NK and T Cells Without DMSO for Adoptive Cell-Based Immunotherapy. BioDrugs 2021; 35:529-545. [PMID: 34427899 DOI: 10.1007/s40259-021-00494-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
Dimethylsufoxide (DMSO) being universally used as a cryoprotectant in clinical adoptive cell-therapy settings to treat hematological malignancies and solid tumors is a growing concern, largely due to its broad toxicities. Its use has been associated with significant clinical side effects-cardiovascular, neurological, gastrointestinal, and allergic-in patients receiving infusions of cell-therapy products. DMSO has also been associated with altered expression of natural killer (NK) and T-cell markers and their in vivo function, not to mention difficulties in scaling up DMSO-based cryoprotectants, which introduce manufacturing challenges for autologous and allogeneic cellular therapies, including chimeric antigen receptor (CAR)-T and CAR-NK cell therapies. Interest in developing alternatives to DMSO has resulted in the evaluation of a variety of sugars, proteins, polymers, amino acids, and other small molecules and osmolytes as well as modalities to efficiently enable cellular uptake of these cryoprotectants. However, the DMSO-free cryopreservation of NK and T cells remains difficult. They represent heterogeneous cell populations that are sensitive to freezing and thawing. As a result, clinical use of cryopreserved cell-therapy products has not moved past the use of DMSO. Here, we present the state of the art in the development and use of cryopreservation options that do not contain DMSO toward clinical solutions to enable the global deployment of safer adoptively transferred cell-based therapies.
Collapse
|
21
|
Kwon SP, Hwang BH, Park EH, Kim HY, Lee JR, Kang M, Song SY, Jung M, Sohn HS, Kim E, Kim CW, Lee KY, Oh GC, Choo E, Lim S, Chung Y, Chang K, Kim BS. Nanoparticle-Mediated Blocking of Excessive Inflammation for Prevention of Heart Failure Following Myocardial Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101207. [PMID: 34216428 DOI: 10.1002/smll.202101207] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Indexed: 06/13/2023]
Abstract
Severe cardiac damage following myocardial infarction (MI) causes excessive inflammation, which sustains tissue damage and often induces adverse cardiac remodeling toward cardiac function impairment and heart failure. Timely resolution of post-MI inflammation may prevent cardiac remodeling and development of heart failure. Cell therapy approaches for MI are time-consuming and costly, and have shown marginal efficacy in clinical trials. Here, nanoparticles targeting the immune system to attenuate excessive inflammation in infarcted myocardium are presented. Liposomal nanoparticles loaded with MI antigens and rapamycin (L-Ag/R) enable effective induction of tolerogenic dendritic cells presenting the antigens and subsequent induction of antigen-specific regulatory T cells (Tregs). Impressively, intradermal injection of L-Ag/R into acute MI mice attenuates inflammation in the myocardium by inducing Tregs and an inflammatory-to-reparative macrophage polarization, inhibits adverse cardiac remodeling, and improves cardiac function. Nanoparticle-mediated blocking of excessive inflammation in infarcted myocardium may be an effective intervention to prevent the development of post-MI heart failure.
Collapse
Affiliation(s)
- Sung Pil Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Hee Hwang
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Eun-Hye Park
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Han Young Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ju-Ro Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mikyung Kang
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seuk Young Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mungyo Jung
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Su Sohn
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Eunmin Kim
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Chan Woo Kim
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Kwan Yong Lee
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Gyu Chul Oh
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Eunho Choo
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Songhyun Lim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kiyuk Chang
- Cardiovascular Research Institute for Intractable Disease, Division of Cardiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Chemical Processes, Institute of Engineering Research, BioMAX, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
22
|
Thomson AW, Sasaki K, Ezzelarab MB. Non-human Primate Regulatory T Cells and Their Assessment as Cellular Therapeutics in Preclinical Transplantation Models. Front Cell Dev Biol 2021; 9:666959. [PMID: 34211972 PMCID: PMC8239398 DOI: 10.3389/fcell.2021.666959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Non-human primates (NHP) are an important resource for addressing key issues regarding the immunobiology of regulatory T cells (Treg), their in vivo manipulation and the translation of adoptive Treg therapy to clinical application. In addition to their phenotypic and functional characterization, particularly in cynomolgus and rhesus macaques, NHP Treg have been isolated and expanded successfully ex vivo. Their numbers can be enhanced in vivo by administration of IL-2 and other cytokines. Both polyclonal and donor antigen (Ag) alloreactive NHP Treg have been expanded ex vivo and their potential to improve long-term outcomes in organ transplantation assessed following their adoptive transfer in combination with various cytoreductive, immunosuppressive and "Treg permissive" agents. In addition, important insights have been gained into the in vivo fate/biodistribution, functional stability, replicative capacity and longevity of adoptively-transferred Treg in monkeys. We discuss current knowledge of NHP Treg immunobiology, methods for their in vivo expansion and functional validation, and results obtained testing their safety and efficacy in organ and pancreatic islet transplantation models. We compare and contrast results obtained in NHP and mice and also consider prospects for future, clinically relevant studies in NHP aimed at improved understanding of Treg biology, and innovative approaches to promote and evaluate their therapeutic potential.
Collapse
Affiliation(s)
- Angus W. Thomson
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kazuki Sasaki
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mohamed B. Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Hill GR, Betts BC, Tkachev V, Kean LS, Blazar BR. Current Concepts and Advances in Graft-Versus-Host Disease Immunology. Annu Rev Immunol 2021; 39:19-49. [PMID: 33428454 PMCID: PMC8085043 DOI: 10.1146/annurev-immunol-102119-073227] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Worldwide, each year over 30,000 patients undergo an allogeneic hema-topoietic stem cell transplantation with the intent to cure high-risk hematologic malignancy, immunodeficiency, metabolic disease, or a life-threatening bone marrow failure syndrome. Despite substantial advances in donor selection and conditioning regimens and greater availability of allograft sources, transplant recipients still endure the morbidity and mortality of graft-versus-host disease (GVHD). Herein, we identify key aspects of acute and chronic GVHD pathophysiology, including host/donor cell effectors, gut dysbiosis, immune system and cytokine imbalance, and the interface between inflammation and tissue fibrosis. In particular, we also summarize the translational application of this heightened understanding of immune dysregulation in the design of novel therapies to prevent and treat GVHD.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
- Division of Medical Oncology University of Washington, Seattle, Washington 98109, USA
| | - Brian C Betts
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Victor Tkachev
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leslie S Kean
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; ,
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
24
|
Qin SS, Melucci AD, Chacon AC, Prieto PA. Adoptive T Cell Therapy for Solid Tumors: Pathway to Personalized Standard of Care. Cells 2021; 10:cells10040808. [PMID: 33916369 PMCID: PMC8067276 DOI: 10.3390/cells10040808] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Adoptive cell therapy (ACT) with tumor-infiltrating T cells (TILs) has emerged as a promising therapy for the treatment of unresectable or metastatic solid tumors. One challenge to finding a universal anticancer treatment is the heterogeneity present between different tumors as a result of genetic instability associated with tumorigenesis. As the epitome of personalized medicine, TIL-ACT bypasses the issue of intertumoral heterogeneity by utilizing the patient’s existing antitumor immune response. Despite being one of the few therapies capable of inducing durable, complete tumor regression, many patients fail to respond. Recent research has focused on increasing therapeutic efficacy by refining various aspects of the TIL protocol, which includes the isolation, ex vivo expansion, and subsequent infusion of tumor specific lymphocytes. This review will explore how the therapy has evolved with time by highlighting various resistance mechanisms to TIL therapy and the novel strategies to overcome them.
Collapse
Affiliation(s)
- Shuyang S. Qin
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642, USA;
| | - Alexa D. Melucci
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.D.M.); (A.C.C.)
| | - Alexander C. Chacon
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.D.M.); (A.C.C.)
| | - Peter A. Prieto
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA; (A.D.M.); (A.C.C.)
- Correspondence: ; Tel.: +1-(585)-703-4655
| |
Collapse
|
25
|
Tiriveedhi V, Ivy MT, Myles EL, Zent R, Rathmell JC, Titze J. Ex Vivo High Salt Activated Tumor-Primed CD4+T Lymphocytes Exert a Potent Anti-Cancer Response. Cancers (Basel) 2021; 13:1690. [PMID: 33918403 PMCID: PMC8038238 DOI: 10.3390/cancers13071690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023] Open
Abstract
Cell based immunotherapy is rapidly emerging as a promising cancer treatment. A modest increase in salt (sodium chloride) concentration in immune cell cultures is known to induce inflammatory phenotypic differentiation. In our current study, we analyzed the ability of salt treatment to induce ex vivo expansion of tumor-primed CD4 (cluster of differentiation 4)+T cells to an effector phenotype. CD4+T cells were isolated using immunomagnetic beads from draining lymph nodes and spleens from tumor bearing C57Bl/6 mice, 28 days post-injection of Py230 syngeneic breast cancer cells. CD4+T cells from non-tumor bearing mice were isolated from splenocytes of 12-week-old C57Bl/6 mice. These CD4+T cells were expanded ex vivo with five stimulation cycles, and each cycle comprised of treatment with high salt (Δ0.035 M NaCl) or equimolar mannitol controls along with anti-CD3/CD28 monoclonal antibodies for the first 3 days, followed by the addition of interleukin (IL)-2/IL-7 cytokines and heat killed Py230 for 4 days. Ex vivo high salt treatment induced a two-fold higher Th1 (T helper type 1) expansion and four-fold higher Th17 expansion compared to equimolar mannitol treatment. Importantly, the high salt expanded CD4+T cells retained tumor-specificity, as demonstrated by higher in vitro cytotoxicity against Py230 breast cancer cells and reduced in vivo syngeneic tumor growth. Metabolic studies revealed that high salt treatment enhanced the glycolytic reserve and basal mitochondrial oxidation of CD4+T cells, suggesting a role of high salt in enhanced pro-growth anabolic metabolism needed for inflammatory differentiation. Mechanistic studies demonstrated that the high salt induced switch to the effector phenotype was mediated by tonicity-dependent transcription factor, TonEBP/NFAT5. Using a transgenic murine model, we demonstrated that CD4 specific TonEBP/NFAT5 knock out (CD4cre/creNFAT5flox/flox) abrogated the induction of the effector phenotype and anti-tumor efficiency of CD4+T cells following high salt treatment. Taken together, our data suggest that high salt-mediated ex vivo expansion of tumor-primed CD4+T cells could induce effective tumor specific anti-cancer responses, which may have a novel cell-based cancer immunotherapeutic application.
Collapse
Affiliation(s)
- Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA; (M.T.I.); (E.L.M.)
- Division of Pharmacology, Vanderbilt University, Nashville, TN 37212, USA
| | - Michael T. Ivy
- Department of Biological Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA; (M.T.I.); (E.L.M.)
| | - Elbert L. Myles
- Department of Biological Sciences, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA; (M.T.I.); (E.L.M.)
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Jeffrey C. Rathmell
- Department Pathology, Microbiology and Immunology, Vanderbilt University Medical Center North, Nashville, TN 37232, USA;
| | - Jens Titze
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore 169857, Singapore;
- Division of Nephrology, Duke University School of Medicine, 2 Genome Court, Durham, NC 27710, USA
| |
Collapse
|
26
|
Ritacco C, Ehx G, Grégoire C, Daulne C, Willems E, Servais S, Beguin Y, Baron F. High proportion of terminally differentiated regulatory T cells after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2021; 56:1828-1841. [PMID: 33664462 DOI: 10.1038/s41409-021-01221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 01/08/2021] [Indexed: 11/09/2022]
Abstract
It is now well-established that regulatory T cells (Treg) represent a heterogeneous group of CD4+ T cells. Previous studies have demonstrated that Treg homeostasis was impacted by allogeneic hematopoietic cell transplantation (allo-HCT) and particularly so in patients with chronic graft-versus-host disease (GVHD). Here, we first assessed the ability of various Treg subsets to phosphorylate STAT5 in response to IL-2 or IL-7 stimulation in vitro. We then compared the frequencies of different Treg subtypes in healthy controls as well as in allo-HCT patients with or without chronic GVHD. The highest phosphorylated STAT5 (pSTAT5) signal in response to IL-2 was observed in the CD45RO+CD26-CD39+HLA-DR+ Treg fraction. In contrast, naive Treg were mostly less susceptible to IL-2 stimulation in vitro. Following IL-7 stimulation, most Treg subpopulations upregulated pSTAT5 expression but to a lesser extent than conventional T cells. Compared to healthy controls, allo-HCT patients had lower frequencies of the naive CD45RAbrightCD26+ Treg subpopulation but higher frequencies of the most differentiated memory CD45RO+CD26-CD39+ Treg subpopulations. Further, unbiased analysis revealed that six Treg clusters characterized by high expression of CD25, HLA-DR, and ICOS were significantly more frequent in patients with no or with limited chronic GVHD than in those with moderate/severe chronic GVHD.
Collapse
Affiliation(s)
- Caroline Ritacco
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium
| | - Grégory Ehx
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium
| | - Céline Grégoire
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Coline Daulne
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium
| | - Evelyne Willems
- Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Sophie Servais
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Yves Beguin
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Frédéric Baron
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium. .,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium.
| |
Collapse
|
27
|
Pilat N, Sprent J. Treg Therapies Revisited: Tolerance Beyond Deletion. Front Immunol 2021; 11:622810. [PMID: 33633742 PMCID: PMC7902070 DOI: 10.3389/fimmu.2020.622810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 02/02/2023] Open
Abstract
Induction of immune tolerance is the Holy Grail in transplantation medicine and autoimmunity. Currently, patients are required to use immunosuppressive drugs for the rest of their lives, resulting in unwanted side effects and complication from global suppression of the immune response. It is well established that regulatory T cells (Tregs) are critical for the maintenance of immune tolerance towards self-antigens by several mechanisms of immune regulation, in parallel with intrathymic deletion of self-reactive T cells during ontogeny. Therefore, approaches for increasing Treg numbers or function in vivo could provide an all-purpose solution for tolerance induction. Currently, most state-of-the-art therapeutics for treating autoimmune diseases or preventing allograft rejection work either by general immunosuppression or blocking inflammatory reactions and are non-specific. Hence, these approaches cannot provide satisfactory long-term results, let alone a cure. However, in animal models the therapeutic potential of Treg expansion for inducing effective tolerance has now been demonstrated in various models of autoimmunity and allogeneic transplantation. Here, we focus on therapies for increasing the size of the Treg pool by expanding endogenous Treg numbers in vivo or by adoptive transfer of Tregs. In particular, we discuss IL-2 based approaches (low dose IL-2, IL-2 complexes) for inducing Treg expansion in vivo as well as cell-based approaches (polyclonal, antigen specific, or cell engineered) for adoptive Treg therapy. We also mention new questions arising from the first clinical studies on Treg therapy in the fields of transplantation and autoimmunity.
Collapse
Affiliation(s)
- Nina Pilat
- Section of Transplantation Immunology, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia,St Vincent’s Clinical School, University of New South Wales, Sydney, NSW, Australia,*Correspondence: Jonathan Sprent,
| |
Collapse
|
28
|
Tran LM, Thomson AW. Detection and Monitoring of Regulatory Immune Cells Following Their Adoptive Transfer in Organ Transplantation. Front Immunol 2020; 11:614578. [PMID: 33381125 PMCID: PMC7768032 DOI: 10.3389/fimmu.2020.614578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Application of cell-based immunotherapy in organ transplantation to minimize the burden of immunosuppressive medication and promote allograft tolerance has expanded significantly over the past decade. Adoptively transferred regulatory immune cells prolong allograft survival and transplant tolerance in pre-clinical models. Many cell products are currently under investigation in early phase human clinical trials designed to assess feasibility and safety. Despite rapid advances in manufacturing practices, defining the appropriate protocol that will optimize in vivo conditions for tolerance induction remains a major challenge and depends heavily on understanding the fate, biodistribution, functional stability and longevity of the cell product after administration. This review focuses on in vivo detection and monitoring of various regulatory immune cell types administered for allograft tolerance induction in both pre-clinical animal models and early human clinical trials. We discuss the current status of various non-invasive methods for tracking regulatory cell products in the context of organ transplantation and implications for enhanced understanding of the therapeutic potential of cell-based therapy in the broad context of control of immune-mediated inflammatory disorders.
Collapse
Affiliation(s)
- Lillian M Tran
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W Thomson
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
29
|
Mukhatayev Z, Dellacecca ER, Cosgrove C, Shivde R, Jaishankar D, Pontarolo-Maag K, Eby JM, Henning SW, Ostapchuk YO, Cedercreutz K, Issanov A, Mehrotra S, Overbeck A, Junghans RP, Leventhal JR, Le Poole IC. Antigen Specificity Enhances Disease Control by Tregs in Vitiligo. Front Immunol 2020; 11:581433. [PMID: 33335528 PMCID: PMC7736409 DOI: 10.3389/fimmu.2020.581433] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Vitiligo is an autoimmune skin disease characterized by melanocyte destruction. Regulatory T cells (Tregs) are greatly reduced in vitiligo skin, and replenishing peripheral skin Tregs can provide protection against depigmentation. Ganglioside D3 (GD3) is overexpressed by perilesional epidermal cells, including melanocytes, which prompted us to generate GD3-reactive chimeric antigen receptor (CAR) Tregs to treat vitiligo. Mice received either untransduced Tregs or GD3-specific Tregs to test the hypothesis that antigen specificity contributes to reduced autoimmune reactivity in vitro and in vivo. CAR Tregs displayed increased IL-10 secretion in response to antigen, provided superior control of cytotoxicity towards melanocytes, and supported a significant delay in depigmentation compared to untransduced Tregs and vehicle control recipients in a TCR transgenic mouse model of spontaneous vitiligo. The latter findings were associated with a greater abundance of Tregs and melanocytes in treated mice versus both control groups. Our data support the concept that antigen-specific Tregs can be prepared, used, and stored for long-term control of progressive depigmentation.
Collapse
Affiliation(s)
- Zhussipbek Mukhatayev
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States.,Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Laboratory of Molecular immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Emilia R Dellacecca
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | - Cormac Cosgrove
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | - Rohan Shivde
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | - Dinesh Jaishankar
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | | | - Jonathan M Eby
- Oncology Research Institute, Loyola University, Maywood, IL, United States
| | - Steven W Henning
- Oncology Research Institute, Loyola University, Maywood, IL, United States
| | - Yekaterina O Ostapchuk
- Laboratory of Molecular immunology and Immunobiotechnology, M.A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Kettil Cedercreutz
- Department of Dermatology, Northwestern University, Chicago, IL, United States
| | - Alpamys Issanov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Andreas Overbeck
- Department for Surgery of Pigment Disorders, Lumiderm, Madrid, Spain
| | - Richard P Junghans
- Department of Hematology/Oncology, Boston University, Boston MA, United States
| | - Joseph R Leventhal
- Comprehensive Transplant Center, Northwestern Memorial Hospital, Chicago, IL, United States
| | - I Caroline Le Poole
- Department of Dermatology, Northwestern University, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| |
Collapse
|
30
|
Li LZ, Zhang Z, Bhoj VG. Conventional T cell therapies pave the way for novel Treg therapeutics. Cell Immunol 2020; 359:104234. [PMID: 33153708 DOI: 10.1016/j.cellimm.2020.104234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/27/2022]
Abstract
Approaches to harness the immune system to alleviate disease have become remarkably sophisticated since the crude, yet impressively-effective, attempts using live bacteria in the late 1800s. Recent evidence that engineered T cell therapy can deliver durable results in patients with cancer has spurred frenzied development in the field of T cell therapy. The myriad approaches include an innumerable variety of synthetic transgenes, multiplex gene-editing, and broader application to diseases beyond cancer. In this article, we review the preclinical studies and over a decade of clinical experience with engineered conventional T cells that have paved the way for translating engineered regulatory T cell therapies.
Collapse
Affiliation(s)
- Lucy Z Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zheng Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Orthopedics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Vijay G Bhoj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Matar AJ, Crepeau RL, Duran-Struuck R. Cellular Immunotherapies in Preclinical Large Animal Models of Transplantation. Transplant Cell Ther 2020; 27:36-44. [PMID: 33017660 DOI: 10.1016/j.bbmt.2020.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/29/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation and solid organ transplantation remain the only curative options for many hematologic malignancies and end-stage organ diseases. Unfortunately, the sequelae of long-term immunosuppression, as well as acute and chronic rejection, carry significant morbidities, including infection, malignancy, and graft loss. Numerous murine models have demonstrated the efficacy of adjunctive cellular therapies using HSCs, regulatory T cells, mesenchymal stem cells, and regulatory dendritic cells in modulating the alloimmune response in favor of graft tolerance; however, translation of such murine approaches to other preclinical models and in the clinic has yielded mixed results. Large animals, including nonhuman primates, swine, and canines, provide a more immunologically rigorous model in which to test the clinical translatability of these cellular therapies. Here, we highlight the contributions of large animal models to the development and optimization of HSCs and additional cellular therapies to improve organ transplantation outcomes.
Collapse
Affiliation(s)
- Abraham J Matar
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Rebecca L Crepeau
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Raimon Duran-Struuck
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|