1
|
Kashyap A, Dai J, Ni X. Therapeutic Targeting of the Janus Kinase/Signal Transducer and Activator of Transcription Pathway in Cutaneous T-Cell Lymphoma. Cancers (Basel) 2025; 17:568. [PMID: 40002165 PMCID: PMC11853177 DOI: 10.3390/cancers17040568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Cutaneous T-cell lymphoma (CTCL) is a rare group of non-Hodgkin lymphomas characterized by the clonal expansion of malignant T cells. While current treatments can alleviate symptoms and significant progress has been made in treating leukemic CTCL, a definitive cure remains elusive. Dysregulation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is a key driver of CTCL pathogenesis. As a result, therapeutic strategies targeting JAK/STAT signaling have gained momentum, with the increasing use of JAK inhibitors and other agents that effectively suppress this pathway. These immune-modulating therapies have broad effects on physiological processes, inflammation, and the pathological changes associated with both inflammatory diseases and cancers. Several JAK inhibitors, originally FDA-approved for inflammatory conditions, are now being investigated for cancer treatment. Methods: In this paper, a brief review of the literature on JAK/STAT pathway dysregulation in CTCL is provided, highlighting both clinical and preclinical studies involving JAK inhibitors and other agents that target this pathway. Results: Specifically, we focus on six JAK inhibitors currently under clinical investigation-golidocitinib, ruxolitinib, cerdulatinib, tofacitinib, upadacitinib, and abrocitinib. Additionally, we discuss preclinical studies that explore the mechanisms underlying JAK/STAT pathway inhibition in CTCL. Furthermore, we review reported cases in which CTCL relapsed or emerged following JAK inhibitor treatment. Conclusions: Collectively, these findings support the potential clinical utility of targeting the JAK/STAT pathway in CTCL. However, further research is needed to evaluate safety risks, minimize adverse effects, and optimize these therapeutic strategies.
Collapse
Affiliation(s)
- Alisha Kashyap
- John P. and Kathrine G. McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Julia Dai
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiao Ni
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Pieniawska M, Rassek K, Skwara B, Żurawek M, Ziółkowska-Suchanek I, Visser L, Lodewijk M, Sokołowska-Wojdyło M, Olszewska B, Nowicki RJ, Stein T, Dańczak-Pazdrowska A, Polańska A, Szymoniak-Lipska M, Rozwadowska N, Iżykowska K. HDAC10 and its implications in Sézary syndrome pathogenesis. Front Cell Dev Biol 2025; 13:1480192. [PMID: 39958888 PMCID: PMC11825767 DOI: 10.3389/fcell.2025.1480192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/09/2025] [Indexed: 02/18/2025] Open
Abstract
Cutaneous T-cell lymphomas (CTCL) are a group of rare hematological malignancies characterized by infiltration of malignant T-cells into the skin. Two main types of CTCL constitute of Mycosis Fungoides (MF), a more indolent form of the disease, and Sézary syndrome (SS), the aggressive and leukemic variant with blood involvement. Sézary syndrome presents a significant clinical challenge due to its very aggressive nature, poor prognosis, and treatment resistance, and to date, the disease remains incurable. Histone deacetylase inhibitors have gained attention in CTCL treatment with promising results, but they expose limited specificity and strong side effects. Recent genomic studies underscore the role of epigenetic modifiers in CTCL pathogenesis, prompting an investigation into HDAC10, a member of class IIb HDACs, in SS. HDAC10 was investigated in different cancers, revealing its involvement in cell cycle regulation, apoptosis, and autophagy, but its role in CTCL is unknown. In this study we aimed to determine the role of HDAC10 in SS, focusing on its cellular localization, role in cell growth, and therapeutic potential. We indicated that HDAC10 is overexpressed in SS patients and located mainly in the cytoplasm. Its overexpression leads to an inhibitory effect on apoptosis progression when exposed to the pro-apoptotic compound Camptothecin (CPT). Knockdown of HDAC10 resulted in reduced cell growth and induction of apoptosis and autophagy, highlighting its potential importance in CTCL pathogenesis. Whole transcriptome analysis indicated that HDAC10 is associated with crucial cancer-related pathways, for example, hematopoietic cell lineage, PI3K-Akt signaling pathway, Ras signaling pathway, MAPK signaling pathway or JAK-STAT signaling pathway, which are critical for the survival and proliferation of malignant T cells. Inhibition of HDAC10 with selective HDAC10i increased the sensitivity of Sézary cells to the pro-apoptotic CPT. Our findings demonstrate that HDAC10 plays a key role in the molecular background of Sézary syndrome, highlighting its importance in the cellular mechanisms of the disease.
Collapse
Affiliation(s)
- Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Karolina Rassek
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Bogumiła Skwara
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Magdalena Żurawek
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | | | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Monique Lodewijk
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Małgorzata Sokołowska-Wojdyło
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
- Department of Dermatology, Venereology and Allergology, University Clinical Centre, Gdańsk, Poland
| | - Berenika Olszewska
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
- Department of Dermatology, Venereology and Allergology, University Clinical Centre, Gdańsk, Poland
| | - Tomasz Stein
- Department of Dermatology, Poznań University of Medical Sciences, Poznań, Poland
| | | | - Adriana Polańska
- Department of Dermatology and Venereology, Poznań University of Medical Sciences, Poznań, Poland
| | | | | | | |
Collapse
|
3
|
Suhl S, Lapolla B, Kaminsky A, Geskin LJ. Treatment of Sezary syndrome with combination romidepsin and tofacitinib: A case report. JAAD Case Rep 2025; 55:69-72. [PMID: 39802947 PMCID: PMC11722610 DOI: 10.1016/j.jdcr.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Affiliation(s)
- Sara Suhl
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Brigit Lapolla
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York
| | - Alexander Kaminsky
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Larisa J. Geskin
- Department of Dermatology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
4
|
Swallow MA, Edelson R, Girardi M. A Yale dermatology perspective on cutaneous T cell lymphoma: Historic reflection to emerging therapies. Clin Dermatol 2024:S0738-081X(24)00271-2. [PMID: 39694197 DOI: 10.1016/j.clindermatol.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Cutaneous T cell lymphoma (CTCL) is a form of non-Hodgkin lymphoma that can involve the skin, along with lymph nodes and blood. The two most common subtypes of CTCL are mycosis fungoides and Sézary syndrome. Since the initial description of mycosis fungoides by Dr Jean-Louis Alibert in 1806, there have been significant advances in our understanding of the pathogenesis of CTCL, its diverse clinical and histologic variants, and the evolving treatment landscape. One major contributor to this story has been Dr Irwin Braverman, former vice chair of Dermatology at the Yale School of Medicine. Herein, we provide tribute to his discoveries, teaching, mentorship, and clinical care that have influenced our insights into CTCL and emerging treatments for this challenging malignancy.
Collapse
Affiliation(s)
| | - Richard Edelson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
5
|
Shih BB, Ma C, Cortes JR, Reglero C, Miller H, Quinn SA, Albero R, Laurent AP, Mackey A, Ferrando AA, Geskin L, Palomero T. Romidepsin and Afatinib Abrogate Jak-Signal Transducer and Activator of Transcription Signaling and Elicit Synergistic Antitumor Effects in Cutaneous T-Cell Lymphoma. J Invest Dermatol 2024; 144:1579-1589.e8. [PMID: 38219917 PMCID: PMC11193653 DOI: 10.1016/j.jid.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Cutaneous T-cell lymphomas are mature lymphoid neoplasias resulting from the malignant transformation of skin-resident T-cells. A distinctive clinical feature of cutaneous T-cell lymphomas is their sensitivity to treatment with histone deacetylase inhibitors. However, responses to histone deacetylase inhibitor therapy are universally transient and noncurative, highlighting the need for effective and durable drug combinations. In this study, we demonstrate that the combination of romidepsin, a selective class I histone deacetylase inhibitor, with afatinib, an EGFR family inhibitor, induces strongly synergistic antitumor effects in cutaneous T-cell lymphoma models in vitro and in vivo through abrogation of Jak-signal transducer and activator of transcription signaling. These results support a previously unrecognized potential role for histone deacetylase inhibitor plus afatinib combination in the treatment of cutaneous T-cell lymphomas.
Collapse
Affiliation(s)
- Bobby B Shih
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Cindy Ma
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Jose R Cortes
- Institute for Cancer Genetics, Columbia University, New York, New York, USA; Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Clara Reglero
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Hannah Miller
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Robert Albero
- Institute for Cancer Genetics, Columbia University, New York, New York, USA; Biomedical Research Institute August Pi y Sunyer (IDIBAPS), Barcelona, Spain
| | - Anouchka P Laurent
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Adam Mackey
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, New York, USA; Regeneron Pharmaceuticals, Tarrytown, New York, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA; Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Department of Systems Biology, Columbia University Medical Center, New York, New York, USA
| | - Larisa Geskin
- Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, New York, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA.
| |
Collapse
|
6
|
Ma T, Chen Y, Yi ZG, Li YH, Bai J, Li LJ, Zhang LS. BET in hematologic tumors: Immunity, pathogenesis, clinical trials and drug combinations. Genes Dis 2023; 10:2306-2319. [PMID: 37554207 PMCID: PMC10404881 DOI: 10.1016/j.gendis.2022.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
The bromodomain and extra-terminal (BET) proteins act as "readers" for lysine acetylation and facilitate the recruitment of transcriptional elongation complexes. BET protein is associated with transcriptional elongation of genes such as c-MYC and BCL-2, and is involved in the regulation of cell cycle and apoptosis. Meanwhile, BET inhibitors (BETi) have regulatory effects on immune checkpoints, immune cells, and cytokine expression. The role of BET proteins and BETi in a variety of tumors has been studied. This paper reviews the recent research progress of BET and BETi in hematologic tumors (mainly leukemia, lymphoma and multiple myeloma) from cellular level studies, animal studies, clinical trials, drug combination, etc. BETi has a promising future in hematologic tumors, and future research directions may focus on the combination with other drugs to improve the efficacy.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhi-Gang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Yan-Hong Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Jun Bai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Li-Juan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Lian-Sheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| |
Collapse
|
7
|
Hamilton EP, Wang JS, Oza AM, Patel MR, Ulahannan SV, Bauer T, Karlix JL, Zeron-Medina J, Fabbri G, Marco-Casanova P, Moorthy G, Hattersley MM, Littlewood GM, Mitchell P, Saeh J, Pouliot GP, Moore KN. First-in-human Study of AZD5153, A Small-molecule Inhibitor of Bromodomain Protein 4, in Patients with Relapsed/Refractory Malignant Solid Tumors and Lymphoma. Mol Cancer Ther 2023; 22:1154-1165. [PMID: 37486983 PMCID: PMC10544002 DOI: 10.1158/1535-7163.mct-23-0065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
AZD5153, a reversible, bivalent inhibitor of the bromodomain and extraterminal family protein BRD4, has preclinical activity in multiple tumors. This first-in-human, phase I study investigated AZD5153 alone or with olaparib in patients with relapsed/refractory solid tumors or lymphoma. Adults with relapsed tumors intolerant of, or refractory to, prior therapies received escalating doses of oral AZD5153 once daily or twice daily continuously (21-day cycles), or AZD5153 once daily/twice daily continuously or intermittently plus olaparib 300 mg twice daily, until disease progression or unacceptable toxicity. Between June 30, 2017 and April 19, 2021, 34 patients received monotherapy and 15 received combination therapy. Dose-limiting toxicities were thrombocytopenia/platelet count decreased (n = 4/n = 2) and diarrhea (n = 1). The recommended phase II doses (RP2D) were AZD5153 30 mg once daily or 15 mg twice daily (monotherapy) and 10 mg once daily (intermittent schedule) with olaparib. With AZD5153 monotherapy, common treatment-emergent adverse events (TEAE) included fatigue (38.2%), thrombocytopenia, and diarrhea (each 32.4%); common grade ≥ 3 TEAEs were thrombocytopenia (14.7%) and anemia (8.8%). With the combination, common TEAEs included nausea (66.7%) and fatigue (53.3%); the most common grade ≥ 3 TEAE was thrombocytopenia (26.7%). AZD5153 had dose-dependent pharmacokinetics, with minimal accumulation, and demonstrated dose-dependent modulation of peripheral biomarkers, including upregulation of HEXIM1. One patient with metastatic pancreatic cancer receiving combination treatment had a partial response lasting 4.2 months. These results show AZD5153 was tolerable as monotherapy and in combination at the RP2Ds; common toxicities were fatigue, hematologic AEs, and gastrointestinal AEs. Strong evidence of peripheral target engagement was observed.
Collapse
Affiliation(s)
- Erika P. Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Judy S. Wang
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| | - Amit M. Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre/University Health Network/Sinai Health Systems, Toronto, Ontario, Canada
| | - Manish R. Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| | - Susanna V. Ulahannan
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Todd Bauer
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | | | | | | | | | - Ganesh Moorthy
- Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, Boston, Massachusetts
| | | | | | | | - Jamal Saeh
- Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | | | - Kathleen N. Moore
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
8
|
Xu S, Ren J, Lewis JM, Carlson KR, Girardi M. Proteasome Inhibitors Interact Synergistically with BCL2, Histone Deacetylase, BET, and Jak Inhibitors against Cutaneous T-Cell Lymphoma Cells. J Invest Dermatol 2023; 143:1322-1325.e3. [PMID: 36642402 DOI: 10.1016/j.jid.2022.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/25/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023]
Affiliation(s)
- Suzanne Xu
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jingjing Ren
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kacie R Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
9
|
Ren J, Qu R, Rahman NT, Lewis JM, King ALO, Liao X, Mirza FN, Carlson KR, Huang Y, Gigante S, Evans B, Rajendran BK, Xu S, Wang G, Foss FM, Damsky W, Kluger Y, Krishnaswamy S, Girardi M. Integrated transcriptome and trajectory analysis of cutaneous T-cell lymphoma identifies putative precancer populations. Blood Adv 2023; 7:445-457. [PMID: 35947128 PMCID: PMC9979716 DOI: 10.1182/bloodadvances.2022008168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
The incidence of cutaneous T-cell lymphoma (CTCL) increases with age, and blood involvement portends a worse prognosis. To advance our understanding of the development of CTCL and identify potential therapeutic targets, we performed integrative analyses of paired single-cell RNA and T-cell receptor (TCR) sequencing of peripheral blood CD4+ T cells from patients with CTCL to reveal disease-unifying features. The malignant CD4+ T cells of CTCL showed highly diverse transcriptomic profiles across patients, with most displaying a mature Th2 differentiation and T-cell exhaustion phenotype. TCR-CDR3 peptide prediction analysis suggested limited diversity between CTCL samples, consistent with a role for a common antigenic stimulus. Potential of heat diffusion for affinity-based trajectory embedding transition analysis identified putative precancerous circulating populations characterized by an intermediate stage of gene expression and mutation level between the normal CD4+ T cells and malignant CTCL cells. We further revealed the therapeutic potential of targeting CD82 and JAK that endow the malignant CTCL cells with survival and proliferation advantages.
Collapse
Affiliation(s)
- Jingjing Ren
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Rihao Qu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Nur-Taz Rahman
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT
| | - Julia M. Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | | | - Xiaofeng Liao
- Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT
| | - Fatima N. Mirza
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Kacie R. Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Yaqing Huang
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Scott Gigante
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT
| | - Benjamin Evans
- Yale Center for Research Computing, Yale University, New Haven, CT
| | | | - Suzanne Xu
- Department of Dermatology, Yale School of Medicine, New Haven, CT
| | - Guilin Wang
- Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT
| | - Francine M. Foss
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | | | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, CT
- Correspondence: Michael Girardi, Department of Dermatology, Yale University School of Medicine, 333 Cedar St, PO Box 208059, New Haven, CT 06520;
| |
Collapse
|
10
|
Zhang Y, Gao Z, Jiang F, Yan H, Yang B, He Q, Luo P, Xu Z, Yang X. JAK-STAT signaling as an ARDS therapeutic target: Status and future trends. Biochem Pharmacol 2023; 208:115382. [PMID: 36528067 DOI: 10.1016/j.bcp.2022.115382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by noncardiogenic pulmonary edema. It has a high mortality rate and lacks effective pharmacotherapy. With the outbreak of COVID-19 worldwide, the mortality of ARDS has increased correspondingly, which makes it urgent to find effective targets and strategies for the treatment of ARDS. Recent clinical trials of Janus kinase (JAK) inhibitors in treating COVID-19-induced ARDS have shown a positive outcome, which makes the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway a potential therapeutic target for treating ARDS. Here, we review the complex cause of ARDS, the molecular JAK/STAT pathway involved in ARDS pathology, and the progress that has been made in strategies targeting JAK/STAT to treat ARDS. Specifically, JAK/STAT signaling directly participates in the progression of ARDS or colludes with other pathways to aggravate ARDS. We summarize JAK and STAT inhibitors with ARDS treatment benefits, including inhibitors in clinical trials and preclinical studies and natural products, and discuss the side effects of the current JAK inhibitors to reveal future trends in the design of JAK inhibitors, which will help to develop effective treatment strategies for ARDS in the future.
Collapse
Affiliation(s)
- Yuanteng Zhang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zizheng Gao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Feng Jiang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, Zhejiang, China; Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
11
|
Zhao L, Hsiao T, Stonesifer C, Daniels J, Garcia-Saleem TJ, Choi J, Geskin L, Rook AH, Wood GS. The Robust Tumoricidal Effects of Combined BET/HDAC Inhibition in Cutaneous T-Cell Lymphoma Can Be Reproduced by ΔNp73 Depletion. J Invest Dermatol 2022; 142:3253-3261.e4. [PMID: 35787399 PMCID: PMC9691518 DOI: 10.1016/j.jid.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 01/05/2023]
Abstract
Combined BET inhibitor/histone deacetylase inhibitor treatment induces marked apoptosis of cutaneous T-cell lymphoma (CTCL) with minimal normal T-cell toxicity. At 96 hours when apoptosis was extensive, a majority of CTCL lines showed ≥2-fold suppression of T-cell survival factors (e.g., AKT1, BCL2 antiapoptotic factors, BIRC5, CD40, CD70, GADD45A, PRKCA, TNFRSF1B, ΔNp73) and ≥2-fold upregulation of proapoptotic factors and tumor suppressors (e.g., ATM, BAK, BIM, multiple caspases, FHIT, HIC1, MGMT, NOD1) (P < 0.05). The largest alterations were in TP73 isoform expression, resulting in increased TAp73/ΔNp73 ratios in CTCL lines and leukemic Sézary cells. Targeted ΔNp73 inhibition by small interfering RNA knockdown resulted in robust CTCL apoptosis comparable with that induced by BET inhibitor/histone deacetylase inhibitor with minimal normal T-cell toxicity. Chromatin immunoprecipitation analysis showed that BET inhibitor/histone deacetylase inhibitor treatment reduced RNA polymerase II binding to ΔNp73, MYC, and AKT1 while increasing its binding to TAp73. CTCL skin lesions expressed both TAp73 and ΔNp73 isoforms in situ. In aggregate, these findings implicate TAp73/ΔNp73 balance as a major factor governing CTCL survival, show that the expression of p73 isoforms can be altered by molecular biological and pharmaceutical means, show that p73 isoforms are expressed across the entire CTCL clinical spectrum, and identify the p73 pathway as a potential target for therapeutics.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tony Hsiao
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Connor Stonesifer
- Department of Dermatology, Columbia University, New York, New York, USA
| | - Jay Daniels
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Ilinois, USA
| | | | - Jaehyuk Choi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Ilinois, USA
| | - Larisa Geskin
- Department of Dermatology, Columbia University, New York, New York, USA
| | - Alain H Rook
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary S Wood
- Department of Dermatology, The School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
12
|
Steinhoff M, Alam M, Ahmad A, Uddin S, Buddenkotte J. Targeting oncogenic transcription factors in skin malignancies: An update on cancer stemness and therapeutic outcomes. Semin Cancer Biol 2022; 87:98-116. [PMID: 36372325 DOI: 10.1016/j.semcancer.2022.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The skin is the largest organ of the human body and prone to various diseases, including cancer; thus, provides the first line of defense against exogenous biological and non-biological agents. Skin cancer, a complex and heterogenic process, with steep incidence rate often metastasizes due to poor understanding of the underlying mechanisms of pathogenesis and clinical challenges. Indeed, accumulating evidence indicates that deregulation of transcription factors (TFs) due to genetic, epigenetic and signaling distortions plays essential role in the development of cutaneous malignancies and therapeutic challenges including cancer stemness features and reprogramming. This review highlights the recent developments exploring underlying mechanisms how deregulated TFs (e.g., NF-κB, AP-1, STAT etc.,) orchestrates cutaneous onco-pathogenesis, reprogramming, stemness and poor clinical outcomes. Along this line, bioactive drugs, and their derivatives from natural and or synthetic origin has gained attention due to their multitargeting potential, potentially safer and effective therapeutic outcome for human malignancies. We also discussed therapeutic importance of targeting aberrantly expressed TFs in skin cancers with bioactive natural products and or synthetic agents.
Collapse
Affiliation(s)
- Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar.
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
13
|
Jiang Y, Liu L, Jiang Y, Li Z, Feng L, Zhuang X, Lin Z, Chen Q, Chen G, He J, Li G, Zha J, Xu B. Preclinical Evaluation of the Multiple Tyrosine Kinases Inhibitor Anlotinib in Leukemia Stem Cells. Pharmaceuticals (Basel) 2022; 15:1313. [PMID: 36355485 PMCID: PMC9697152 DOI: 10.3390/ph15111313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 10/05/2023] Open
Abstract
Leukemia stem cells (LSCs) constitute the critical barrier to the cure of acute myeloid leukemia (AML) due to their chemoresistance and immune evasion property. Herein, the role of anlotinib, a multiple tyrosine kinase inhibitor, in killing LSCs and regulating chemoresistance and immune evasion was explored. Anlotinib treatment induced apoptosis of LSC-like cells as well as primary AML LSCs, while sparing the normal mononuclear cells in vitro. Moreover, anlotinib could impair the regeneration capacity of LSCs in the patient-derived leukemia xenograft mouse model. Mechanistically, anlotinib inhibited phosphorylation of c-kit, JAK2/STAT3, and STAT5, and downregulated STAT3 and STAT5 expression. In addition, anlotinib downregulated the anti-apoptotic proteins Bcl-2 and Bcl-xL, and upregulated Bax, thereby enhancing the sensitivity of LSCs to idarubicin in vitro. Intriguingly, anlotinib could also partially rescue the interferon-g production of T cells cocultured with LSCs by downregulating PD-L1 expression. In conclusion, anlotinib showed anti-LSC activity and the potential to enhance the sensitivity to idarubicin and inhibit the immunosuppressive feature of LSCs via JAK2/STAT signaling pathway downregulation in the preclinical study. Our results provided a rational basis for combinatory strategies involving anlotinib and chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Yuelong Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Diagnosis and Therapy for Hematological Malignancies, Xiamen 361003, China
| | - Long Liu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Diagnosis and Therapy for Hematological Malignancies, Xiamen 361003, China
| | - Yirong Jiang
- Department of Hematology, Affiliated Dongguan People’s Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Zhifeng Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Diagnosis and Therapy for Hematological Malignancies, Xiamen 361003, China
| | - Liying Feng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Diagnosis and Therapy for Hematological Malignancies, Xiamen 361003, China
| | - Xinguo Zhuang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Diagnosis and Therapy for Hematological Malignancies, Xiamen 361003, China
| | - Zhijuan Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Diagnosis and Therapy for Hematological Malignancies, Xiamen 361003, China
| | - Qiuling Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Diagnosis and Therapy for Hematological Malignancies, Xiamen 361003, China
| | - Guoshu Chen
- Department of Hematology, Huizhou Municipal Central Hospital, Huizhou 516001, China
| | - Jixiang He
- Department of Hematology, Affiliated Dongguan People’s Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Guowei Li
- Department of Hematology, Huizhou Municipal Central Hospital, Huizhou 516001, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Diagnosis and Therapy for Hematological Malignancies, Xiamen 361003, China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361003, China
- Xiamen Key Laboratory of Diagnosis and Therapy for Hematological Malignancies, Xiamen 361003, China
| |
Collapse
|
14
|
Castillo DE, Romanelli P, Lev-Tov H, Kerdel F. A case of erythrodermic mycosis fungoides responding to upadacitinib. JAAD Case Rep 2022; 30:91-93. [DOI: 10.1016/j.jdcr.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
15
|
Novel Targeted Therapies for T-Cell Malignancies. Cancers (Basel) 2022; 14:cancers14163955. [PMID: 36010948 PMCID: PMC9406054 DOI: 10.3390/cancers14163955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
|
16
|
Zhu M, Liu Y, Lei P, Shi X, Tang W, Huang X, Pan X, Wang C, Ma W. ND-16: A Novel Compound for Inhibiting the Growth of Cutaneous T Cell
Lymphoma by Targeting JAK2. Curr Cancer Drug Targets 2022; 22:328-339. [DOI: 10.2174/1568009622666220225121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Objective:
Cutaneous T cell lymphoma (CTCL) is a kind of extranodal non-Hodgkin Tcell lymphoma without healable treatment in the clinic. JAK2 amplification in CTCL patients
makes it a potential target for CTCL treatment. In the present study, we aimed to evaluate the anticancer effect of ND-16, a novel nilotinib derivate, on CTCL cells and the underlying mechanism
targeting JAK2.
Methods and Results:
We found that ND-16 was capable of regulating JAK2 and had a selective
inhibitory effect on CTCL H9 cells. The surface plasmon resonance and molecular docking study
indicated ND-16 bound to JAK2 with a high binding affinity. Further investigation revealed that
ND-16 inhibited the downstream cascades of JAK2, including STATs, PI3K/AKT/mTOR, and
MAPK pathways, followed by regulation of Bcl-2 family members and cell cycle proteins CDK/-
Cyclins. Flow cytometry analysis confirmed these results that ND-16-treated H9 cells showed cell
apoptosis and cell cycle arrest at S-phase.
Conclusion:
ND-16 may be of value in a potential therapy for the management of CTCL
Collapse
Affiliation(s)
- Man Zhu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Yanhong Liu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Panpan Lei
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xianpeng Shi
- Shaanxi Provincial People’s Hospital, Xi’an, 710068, P.R. China
| | - Wenjuan Tang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xiaoyue Huang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Cheng Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Weina Ma
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, P.R. China
| |
Collapse
|
17
|
Karagianni F, Piperi C, Casar B, de la Fuente-Vivas D, García-Gómez R, Lampadaki K, Pappa V, Papadavid E. Combination of Resminostat with Ruxolitinib Exerts Antitumor Effects in the Chick Embryo Chorioallantoic Membrane Model for Cutaneous T Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14041070. [PMID: 35205818 PMCID: PMC8870185 DOI: 10.3390/cancers14041070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The combination of Resminostat (HDACi) and Ruxolitinib (JAKi) exerted cytotoxic effects and inhibited proliferation of CTCL cell lines (MyLa, SeAx) in vitro. The aim of the present study was to validate their antitumor effects in vivo using the chick embryo chorioallantoic membrane (CAM) model, which allows quick and efficient monitoring of tumor growth, migration, invasion, and metastatic potential. The drug combination exhibited a significant inhibition of primary tumor size, and inhibited intravasation and extravasation of tumor cells to the liver and lung. It also exerted an inhibitory effect in the migration and invasion of tumor cells and significantly reduced key signaling pathway activation. Our data demonstrate that the CAM assay could be employed as a preclinical in vivo model in CTCL for pharmacological testing, and that the combination of Resminostat and Ruxolitinib exerts significant antitumor effects in CTCL progression that need to be further evaluated in a clinical setting. Abstract The combination of Resminostat (HDACi) and Ruxolitinib (JAKi) exerted cytotoxic effects and inhibited proliferation of CTCL cell lines (MyLa, SeAx) in previously published work. A xenograft tumor formation was produced by implanting the MyLa or SeAx cells on top of the chick embryo chorioallantoic membrane (CAM). The CAM assay protocol was developed to monitor the metastatic properties of CTCL cells and the effects of Resminostat and/or Ruxolitinib in vivo. In the spontaneous CAM assays, Resminostat and Ruxolitinib treatment inhibited the cell proliferation (p < 0.001) of MyLa and SeAx, and induced cell apoptosis (p < 0.005, p < 0.001, respectively). Although monotherapies reduced the size of primary tumors in the metastasis CAM assay, the drug combination exhibited a significant inhibition of primary tumor size (p < 0.0001). Furthermore, the combined treatment inhibited the intravasation of MyLa (p < 0.005) and SeAx cells (p < 0.0001) in the organs, as well as their extravasation to the liver (p < 0.0001) and lung (p < 0.0001). The drug combination also exerted a stronger inhibitory effect in migration (p < 0.0001) rather in invasion (p < 0.005) of both MyLa and SeAx cells. It further reduced p-p38, p-ERK, p-AKT, and p-STAT in MyLa cells, while it decreased p-ERK and p-STAT in SeAx cells in CAM tumors. Our data demonstrated that the CAM assay could be employed as a preclinical in vivo model in CTCL for pharmacological testing. In agreement with previous in vitro data, the combination of Resminostat and Ruxolitinib was shown to exert antitumor effects in CTCL in vivo.
Collapse
Affiliation(s)
- Fani Karagianni
- National Center of Rare Diseases-Cutaneous Lymphoma—Member of EuroBloodNet, Second Department of Dermatology and Venereal Diseases, Attikon University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (F.K.); (K.L.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School of Athens, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Berta Casar
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, 39011 Santander, Spain; (D.d.l.F.-V.); (R.G.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (B.C.); (E.P.)
| | - Dalia de la Fuente-Vivas
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, 39011 Santander, Spain; (D.d.l.F.-V.); (R.G.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Cantabria, 39011 Santander, Spain; (D.d.l.F.-V.); (R.G.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Kyriaki Lampadaki
- National Center of Rare Diseases-Cutaneous Lymphoma—Member of EuroBloodNet, Second Department of Dermatology and Venereal Diseases, Attikon University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (F.K.); (K.L.)
| | - Vasiliki Pappa
- 2nd Department of Internal Medicine—Propaedeutic and Research Unit, National and Kapodistrian University of Athens, Medical School of Athens, University General Hospital Attikon, 124 62 Athens, Greece;
| | - Evangelia Papadavid
- National Center of Rare Diseases-Cutaneous Lymphoma—Member of EuroBloodNet, Second Department of Dermatology and Venereal Diseases, Attikon University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (F.K.); (K.L.)
- Correspondence: (B.C.); (E.P.)
| |
Collapse
|
18
|
Kołkowski K, Trzeciak M, Sokołowska-Wojdyło M. Safety and Danger Considerations of Novel Treatments for Atopic Dermatitis in Context of Primary Cutaneous Lymphomas. Int J Mol Sci 2021; 22:13388. [PMID: 34948183 PMCID: PMC8703592 DOI: 10.3390/ijms222413388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
The impact of new and emerging therapies on the microenvironment of primary cutaneous lymphomas (PCLs) has been recently raised in the literature. Concomitantly, novel treatments are already used or registered (dupilumab, upadacitinib) and others seem to be added to the armamentarium against atopic dermatitis. Our aim was to review the literature on interleukins 4, 13, 22, and 31, and JAK/STAT pathways in PCLs to elucidate the safety of using biologics (dupilumab, tralokinumab, fezakinumab, nemolizumab) and small molecule inhibitors (upadacitinib, baricitinib, abrocitinib, ruxolitinib, tofacitinib) in the treatment of atopic dermatitis. We summarized the current state of knowledge on this topic based on the search of the PubMed database and related references published before 21 October 2021. Our analysis suggests that some of the mentioned agents (dupilumab, ruxolitinib) and others may have a direct impact on the progression of cutaneous lymphomas. This issue requires further study and meticulous monitoring of patients receiving these drugs to ensure their safety, especially in light of the FDA warning on tofacitinib. In conclusion, in the case of the rapid progression of atopic dermatitis/eczema, especially in patients older than 40 years old, there is a necessity to perform a biopsy followed by a very careful pathological examination.
Collapse
Affiliation(s)
- Karol Kołkowski
- Dermatological Students Scientific Association, Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Magdalena Trzeciak
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.T.); (M.S.-W.)
| | - Małgorzata Sokołowska-Wojdyło
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.T.); (M.S.-W.)
| |
Collapse
|
19
|
Malignant and Benign T Cells Constituting Cutaneous T-Cell Lymphoma. Int J Mol Sci 2021; 22:ijms222312933. [PMID: 34884736 PMCID: PMC8657644 DOI: 10.3390/ijms222312933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of non-Hodgkin lymphoma, including various clinical manifestations, such as mycosis fungoides (MF) and Sézary syndrome (SS). CTCL mostly develops from CD4 T cells with the skin-tropic memory phenotype. Malignant T cells in MF lesions show the phenotype of skin resident memory T cells (TRM), which reside in the peripheral tissues for long periods and do not recirculate. On the other hand, malignant T cells in SS represent the phenotype of central memory T cells (TCM), which are characterized by recirculation to and from the blood and lymphoid tissues. The kinetics and the functional characteristics of malignant cells in CTCL are still unclear due, in part, to the fact that both the malignant cells and the T cells exerting anti-tumor activity possess the same characteristics as T cells. Capturing the features of both the malignant and the benign T cells is necessary for understanding the pathogenesis of CTCL and would lead to new therapeutic strategies specifically targeting the skin malignant T cells or benign T cells.
Collapse
|
20
|
Li B, Wan Q, Li Z, Chng WJ. Janus Kinase Signaling: Oncogenic Criminal of Lymphoid Cancers. Cancers (Basel) 2021; 13:cancers13205147. [PMID: 34680295 PMCID: PMC8533975 DOI: 10.3390/cancers13205147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Janus kinases (JAKs) are transmembrane receptors that pass signals from extracellular ligands to downstream. Increasing evidence has suggested that JAK family aberrations promote lymphoid cancer pathogenesis and progression through mediating gene expression via the JAK/STAT pathway or noncanonical JAK signaling. We are here to review how canonical JAK/STAT and noncanonical JAK signalings are represented and deregulated in lymphoid malignancies and how to target JAK for therapeutic purposes. Abstract The Janus kinase (JAK) family are known to respond to extracellular cytokine stimuli and to phosphorylate and activate signal transducers and activators of transcription (STAT), thereby modulating gene expression profiles. Recent studies have highlighted JAK abnormality in inducing over-activation of the JAK/STAT pathway, and that the cytoplasmic JAK tyrosine kinases may also have a nuclear role. A couple of anti-JAK therapeutics have been developed, which effectively harness lymphoid cancer cells. Here we discuss mutations and fusions leading to JAK deregulations, how upstream nodes drive JAK expression, how classical JAK/STAT pathways are represented in lymphoid malignancies and the noncanonical and nuclear role of JAKs. We also summarize JAK inhibition therapeutics applied alone or synergized with other drugs in treating lymphoid malignancies.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
| | - Qin Wan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
- Correspondence: or (Z.L.); (W.-J.C.)
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore 119074, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: or (Z.L.); (W.-J.C.)
| |
Collapse
|
21
|
Islam S, Espitia CM, Persky DO, Carew JS, Nawrocki ST. Targeting JAK/STAT Signaling Antagonizes Resistance to Oncolytic Reovirus Therapy Driven by Prior Infection with HTLV-1 in Models of T-Cell Lymphoma. Viruses 2021; 13:1406. [PMID: 34372612 PMCID: PMC8310324 DOI: 10.3390/v13071406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus that infects at least 10 million people worldwide and is associated with the development of T-cell lymphoma (TCL). The treatment of TCL remains challenging and new treatment options are urgently needed. With the goal of developing a novel therapeutic approach for TCL, we investigated the activity of the clinical formulation of oncolytic reovirus (Reolysin, Pelareorep) in TCL models. Our studies revealed that HTLV-1-negative TCL cells were highly sensitive to Reolysin-induced cell death, but HTLV-1-positive TCL cells were resistant. Consistent with these data, reovirus displayed significant viral accumulation in HTLV-1-negative cells, but failed to efficiently replicate in HTLV-1-positive cells. Transcriptome analyses of HTLV-1-positive vs. negative cells revealed a significant increase in genes associated with retroviral infection including interleukin-13 and signal transducer and activator of transcription 5 (STAT5). To investigate the relationship between HTLV-1 status and sensitivity to Reolysin, we infected HTLV-1-negative cells with HTLV-1. The presence of HTLV-1 resulted in significantly decreased sensitivity to Reolysin. Treatment with the JAK inhibitor ruxolitinib suppressed STAT5 phosphorylation and expression of the key anti-viral response protein MX1 and enhanced the anti-TCL activity of Reolysin in both HTLV-1-positive and negative cells. Our data demonstrate that the inhibition of the JAK/STAT pathway can be used as a novel approach to antagonize the resistance of HTLV-1-positive cells to oncolytic virus therapy.
Collapse
Affiliation(s)
- Shariful Islam
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| | - Claudia M. Espitia
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| | - Daniel O. Persky
- Division of Hematology and Oncology, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA;
| | - Jennifer S. Carew
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| | - Steffan T. Nawrocki
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724, USA; (S.I.); (C.M.E.); (J.S.C.)
| |
Collapse
|
22
|
King ALO, Mirza FN, Lewis JM, Umlauf S, Surosteva Y, Carlson KR, Foss FM, Girardi M. Uncovering the potential of PI3K inhibitors in cutaneous T cell lymphoma: insights from high throughput in vitro screenings. J Invest Dermatol 2021; 142:254-257. [PMID: 34293349 DOI: 10.1016/j.jid.2021.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/06/2021] [Accepted: 04/28/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Amber Loren O King
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Fatima N Mirza
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shiela Umlauf
- Yale Center for Molecular Discovery, Yale University, New Haven, Connecticut, USA
| | - Yulia Surosteva
- Yale Center for Molecular Discovery, Yale University, New Haven, Connecticut, USA
| | - Kacie R Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Francine M Foss
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
23
|
Lin M, Kowolik CM, Xie J, Yadav S, Overman LE, Horne DA. Potent Anticancer Effects of Epidithiodiketopiperazine NT1721 in Cutaneous T Cell Lymphoma. Cancers (Basel) 2021; 13:cancers13133367. [PMID: 34282785 PMCID: PMC8268131 DOI: 10.3390/cancers13133367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Cutaneous T cell lymphomas (CTCLs) are a group of blood cancers that cannot be cured with current chemotherapeutical or biological drugs. Patients with advanced disease are severely immunocompromised due to the unchecked expansion of malignant T cells and have low survival rates of less than four years. Hence, new treatment options for CTCLs are urgently needed. In this study the anti-CTCL activity of a new compound, NT1721, was determined in vitro and in two CTCL mouse models. We found that NT1721 increased apoptosis (programmed cell death) in the malignant T cells and reduced tumor growth better than two drugs that are currently clinically used for CTCL treatment (i.e., gemcitabine, romidepsin). These results suggest that NT1721 may represent a potent new agent for the treatment of advanced CTCL. Abstract Cutaneous T cell lymphomas (CTCLs) are a heterogeneous group of debilitating, incurable malignancies. Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common subtypes, accounting for ~65% of CTCL cases. Patients with advanced disease have a poor prognosis and low median survival rates of four years. CTCLs develop from malignant skin-homing CD4+ T cells that spread to lymph nodes, blood, bone marrow and viscera in advanced stages. Current treatments options for refractory or advanced CTCL, including chemotherapeutic and biological approaches, rarely lead to durable responses. The exact molecular mechanisms of CTCL pathology remain unclear despite numerous genomic and gene expression profile studies. However, apoptosis resistance is thought to play a major role in the accumulation of malignant T cells. Here we show that NT1721, a synthetic epidithiodiketopiperazine based on a natural product, reduced cell viability at nanomolar concentrations in CTCL cell lines, while largely sparing normal CD4+ cells. Treatment of CTCL cells with NT1721 reduced proliferation and potently induced apoptosis. NT1721 mediated the downregulation of GLI1 transcription factor, which was associated with decreased STAT3 activation and the reduced expression of downstream antiapoptotic proteins (BCL2 and BCL-xL). Importantly, NT1721, which is orally available, reduced tumor growth in two CTCL mouse models significantly better than two clinically used drugs (romidepsin, gemcitabine). Moreover, a combination of NT1721 with gemcitabine reduced the tumor growth significantly better than the single drugs. Taken together, these results suggest that NT1721 may be a promising new agent for the treatment of CTCLs.
Collapse
Affiliation(s)
- Min Lin
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
| | - Claudia M. Kowolik
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
- Correspondence: (C.M.K.); (D.A.H.)
| | - Jun Xie
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
| | - Sushma Yadav
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
- Department of Translational Research and Cellular Therapeutics, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Larry E. Overman
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA;
| | - David A. Horne
- Department of Molecular Medicine, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA; (M.L.); (J.X.); (S.Y.)
- Correspondence: (C.M.K.); (D.A.H.)
| |
Collapse
|
24
|
Research Techniques Made Simple: Preclinical Development of Combination Antitumor Targeted Therapies in Dermatology. J Invest Dermatol 2021; 140:2319-2325.e1. [PMID: 33222758 DOI: 10.1016/j.jid.2020.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 10/22/2022]
Abstract
The identification and application of targeted therapies that inhibit critical pathways in malignant cells have shown tremendous promise for improving clinical outcomes for patients with advanced cutaneous malignancies. However, tumor cell heterogeneity, development of drug resistance, and risks of off-target effects remain barriers to prolonged remission and definitive cure. Herein, we describe the potential that combinations of antitumor targeted agents may offer in overcoming these challenges and detail techniques whereby promising combination regimens can be identified and further evaluated preclinically. Cancer cell lines and primary patient-derived malignant cells can be utilized to perform dose-response screenings in vitro for individual targeted agents before moving toward the evaluation of potential synergistic combinations. Mathematical analyses, including the Chou-Talalay method, determine combination indices and Hill slopes that permit relative comparisons among various drug combinations by quantification of synergistic activities. Further preclinical in vivo evaluation of promising single versus combination regimens may be studied in relevant mouse models of cutaneous malignancy. Ultimately, the formulation of combination targeted therapy regimens may be more broadly effective and less toxic, helping to better inform clinical trial design and prioritization.
Collapse
|
25
|
Reneau JC, Wilcox RA. Novel therapies targeting cutaneous T cell lymphomas and their microenvironment. Semin Hematol 2021; 58:103-113. [PMID: 33906720 DOI: 10.1053/j.seminhematol.2021.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
Cutaneous T-cell lymphomas (CTCL) are rare non-Hodgkin lymphomas with a generally indolent course managed with topical, skin-directed therapies. A small subset, however, will progress to advanced stage disease necessitating systemic therapy for disease control. Currently approved therapies have low response rates and generally short durations of response. Novel therapies, therefore, are urgently needed to address this unmet need. In this review, the mechanisms of CTCL pathogenesis and progression, including the role of the tumor microenvironment and molecular alterations, are summarized. Based on these biologic insights, novel therapies currently under investigation and those with a strong preclinical biologic rationale including T cell and macrophage checkpoint inhibitors, epigenetic regulators, targeted antibodies, tyrosine kinase inhibitors, and apoptosis modulating therapies are discussed.
Collapse
Affiliation(s)
- John C Reneau
- The Ohio State University, Division of Hematology, Columbus, OH.
| | - Ryan A Wilcox
- Division of Hematology/Oncology, University of Michigan Cancer Center, Ann Arbor, MI
| |
Collapse
|
26
|
Mirza FN, Yumeen S, Lewis JM, King ALO, Kim SR, Carlson KR, Umlauf S, Surovtseva YV, Foss FM, Girardi M. Screening Novel Agent Combinations to Expedite CTCL Therapeutic Development. J Invest Dermatol 2021; 141:217-221. [DOI: 10.1016/j.jid.2020.05.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/22/2023]
|
27
|
King ALO, Mirza FN, Lewis JM, Carlson KR, Huntington S, Foss FM, Girardi M. B-cell lymphoma 2 inhibitor venetoclax treatment of a patient with cutaneous T-cell lymphoma. JAAD Case Rep 2020; 8:89-92. [PMID: 33537387 PMCID: PMC7838714 DOI: 10.1016/j.jdcr.2020.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Amber Loren O King
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Fatima N Mirza
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Kacie R Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Scott Huntington
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut
| | - Francine M Foss
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, Connecticut
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|