1
|
Berchtold MW, Villalobo A. Ca 2+/calmodulin signaling in organismal aging and cellular senescence: Impact on human diseases. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167583. [PMID: 39579800 DOI: 10.1016/j.bbadis.2024.167583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Molecular mechanisms of aging processes at the level of organisms and cells are in the focus of a large number of research laboratories. This research culminated in recent breakthroughs, which contributed to the better understanding of the natural aging process and aging associated malfunctions leading to age-related diseases. Ca2+ in connection with its master intracellular sensor protein calmodulin (CaM) regulates a plethora of crucial cellular processes orchestrating a wide range of signaling processes. This review focuses on the involvement of Ca2+/CaM in cellular mechanisms, which are associated with normal aging, as well as playing a role in the development of diseases connected with signaling processes during aging. We specifically highlight processes that involve inactivation of proteins, which take part in Ca2+/CaM regulatory systems by oxygen or nitrogen free radical species, during organismal aging and cellular senescence. As examples of organs where aging processes have recently been investigated, we chose to review the literature on molecular aging processes with involvement of Ca2+/CaM in heart and neuronal diseases, as well as in cancer and metabolic diseases, all deeply affected by aging. In addition, this article focuses on cellular senescence, a mechanism that may contribute to aging processes and therefore has been proposed as a target to interfere with the progression of age-associated diseases.
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| | - Antonio Villalobo
- Cancer and Human Molecular Genetics Area, Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain.
| |
Collapse
|
2
|
Turan Butun T, Özen N, Ozturk N, Yildirim A, Kilavuz E, Karadag C, Aykan Yuksel B, Basrali F, Karadag B, Ulker P. Red blood cell in preeclampsia: attenuated nitric oxide generation and enhanced reactive oxygen species formation and eryptosis. Scand J Clin Lab Invest 2024; 84:379-390. [PMID: 39321099 DOI: 10.1080/00365513.2024.2394982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 08/18/2024] [Indexed: 09/27/2024]
Abstract
Preeclampsia (PE) pathogenesis is strongly related to diminished nitric oxide (NO) bioavailability and enhanced oxidative stress. Emerging evidence suggests that red blood cells (RBCs) eNOS enzyme contributes to systemic NO bioavailability by its ability of both NO and ROS generation. We aimed to investigate RBC eNOS enzyme activity, NO and ROS generation capacity, eryptosis index and aggregation levels in preeclamptic and uncomplicated pregnant women. Fifty-eight PE patients and 36 healthy pregnant women were included to the investigation. RBC eNOS enzyme activity, intracellular NO, calcium and ROS concentrations and eryptosis levels were determined via flow cytometric methods. RBC deformability and aggregation were measured via LORRCA. Intracellular NO and phosphorylated RBC eNOS levels decreased in PE group compared to healthy pregnant group (p < 0.05, p < 0.001 respectively). Intracellular ROS and calcium levels, eryptosis values and aggregation indexes in the PE group were significantly higher than healthy pregnant group (p < 0.05, p < 0.01, p < 0.05, p < 0.05 respectively). Our results demonstrate for the first time that RBC produce lower NO and higher ROS under PE conditions. Further, RBC of PE patients were more prone to eryptosis and aggregation compared to control group. Our results suggest that, in addition to endothelial cells, RBC also contribute to decreased plasma NO bioavailability via producing less NO and high ROS in PE. Considering increased tendency to eryptosis and aggregation, RBC seem to play role in haemodynamic changes of PE pathogenesis.
Collapse
Affiliation(s)
- Tülay Turan Butun
- Department of Obstetrics and Gynecology, Antalya Training and Research Hospital, Antalya, Türkiye
| | - Nur Özen
- Department of Basic Medical Sciences, Dentistry Faculty, Antalya Bilim University, Antalya, Türkiye
| | - Nihal Ozturk
- Department of Biophysics, Medical Faculty, Akdeniz University, Antalya, Türkiye
| | - Ahmet Yildirim
- Department of Physiology, Medical Faculty, Akdeniz University, Antalya, Türkiye
| | - Ece Kilavuz
- Department of Physiology, Medical Faculty, Akdeniz University, Antalya, Türkiye
| | - Ceyda Karadag
- Department of Obstetrics and Gynecology, Antalya Training and Research Hospital, Antalya, Türkiye
| | - Burcu Aykan Yuksel
- Department of Obstetrics and Gynecology, Antalya Training and Research Hospital, Antalya, Türkiye
| | - Filiz Basrali
- Department of Physiology, Medical Faculty, Akdeniz University, Antalya, Türkiye
| | - Burak Karadag
- Department of Obstetrics and Gynecology, Antalya Training and Research Hospital, Antalya, Türkiye
| | - Pinar Ulker
- Department of Physiology, Medical Faculty, Akdeniz University, Antalya, Türkiye
| |
Collapse
|
3
|
Kuck L, McNamee AP, Bordukova M, Sadafi A, Marr C, Peart JN, Simmonds MJ. Lysis of human erythrocytes due to Piezo1-dependent cytosolic calcium overload as a mechanism of circulatory removal. Proc Natl Acad Sci U S A 2024; 121:e2407765121. [PMID: 39207733 PMCID: PMC11388408 DOI: 10.1073/pnas.2407765121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Hematopoietic stem cells surrender organelles during differentiation, leaving mature red blood cells (RBC) devoid of transcriptional machinery and mitochondria. The resultant absence of cellular repair capacity limits RBC circulatory longevity, and old cells are removed from circulation. The specific age-dependent alterations required for this apparently targeted removal of RBC, however, remain elusive. Here, we assessed the function of Piezo1, a stretch-activated transmembrane cation channel, within subpopulations of RBC isolated based on physical properties associated with aging. We subsequently investigated the potential role of Piezo1 in RBC removal, using pharmacological and mechanobiological approaches. Dense (old) RBC were separated from whole blood using differential density centrifugation. Tolerance of RBC to mechanical forces within the physiological range was assessed on single-cell and cell population levels. Expression and function of Piezo1 were investigated in separated RBC populations by monitoring accumulation of cytosolic Ca2+ and changes in cell morphology in response to pharmacological Piezo1 stimulation and in response to physical forces. Despite decreased Piezo1 activity with increasing cell age, tolerance to prolonged Piezo1 stimulation declined sharply in older RBC, precipitating lysis. Cell lysis was immediately preceded by an acute reversal of density. We propose a Piezo1-dependent mechanism by which RBC may be removed from circulation: Upon adherence of these RBC to other tissues, they are uniquely exposed to prolonged mechanical forces. The resultant sustained activation of Piezo1 leads to a net influx of Ca2+, overpowering the Ca2+-removal capacity of specifically old RBC, which leads to reversal of ion gradients, dysregulated cell hydration, and ultimately osmotic lysis.
Collapse
Affiliation(s)
- Lennart Kuck
- Biorheology Research Laboratory, Griffith University, QLD 4215, Australia
| | - Antony P McNamee
- Biorheology Research Laboratory, Griffith University, QLD 4215, Australia
| | - Maria Bordukova
- Institute of Computational Biology, Computational Health Center, Helmholtz Munich, Munich 85764, Germany
- Department of Biology, Ludwig-Maximilians University Munich, Munich 80539, Germany
- Data and Analytics, Pharmaceutical Research and Early Development, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Ario Sadafi
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
- Computer Aided Medical Procedures, Technical University of Munich 85748, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Jason N Peart
- School of Pharmacy and Medical Sciences, Griffith University Gold Coast, QLD 4215, Australia
| | - Michael J Simmonds
- Biorheology Research Laboratory, Griffith University, QLD 4215, Australia
| |
Collapse
|
4
|
Jin J, Guo Q, Yan Z. The Role of Lutheran/Basal Cell Adhesion Molecule in Hematological Diseases and Tumors. Int J Mol Sci 2024; 25:7268. [PMID: 39000374 PMCID: PMC11242806 DOI: 10.3390/ijms25137268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Cell adhesion is a dynamic process that plays a fundamental role in cell proliferation, maintenance, differentiation, and migration. Basal cell adhesion molecule (BCAM), also known as Lutheran (Lu), belongs to the immunoglobulin superfamily of cell adhesion molecules. Lu/BCAM, which is widely expressed in red blood cells, endothelial cells, smooth muscle cells and epithelial cells across various tissues, playing a crucial role in many cellular processes, including cell adhesion, cell motility and cell migration. Moreover, Lu/BCAM, dysregulated in many diseases, such as blood diseases and various types of cancer, may act as a biomarker and target for the treatment of these diseases. This review explores the significance of Lu/BCAM in cell adhesion and its potential as a novel target for treating hematological diseases and tumors.
Collapse
Affiliation(s)
| | | | - Zhibin Yan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (J.J.); (Q.G.)
| |
Collapse
|
5
|
Michelucci A, Catacuzzeno L. Piezo1, the new actor in cell volume regulation. Pflugers Arch 2024; 476:1023-1039. [PMID: 38581527 PMCID: PMC11166825 DOI: 10.1007/s00424-024-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.
Collapse
Affiliation(s)
- A Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - L Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
6
|
Tkachenko A. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review). Toxicol In Vitro 2024; 98:105814. [PMID: 38582230 DOI: 10.1016/j.tiv.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Hemocompatibility evaluation is an important step in nanotoxicological studies. It is generally accepted that nanomaterials promote lysis of erythrocytes, blood clotting, alter phagocytosis, and upregulate pro-inflammatory cytokines. However, there are no standardized guidelines for testing nanomaterials hemocompatibility despite the fact that nanomaterials enter the bloodstream and interact with blood cells. In this review, the current knowledge on the ability of nanomaterials to induce distinct cell death modalities of erythrocytes is highlighted primarily focusing on hemolysis and eryptosis. This review aims to summarize the molecular mechanisms underlying erythrotoxicity of nanomaterials and critically compare the sensitivity and efficiency of hemolysis or eryptosis assays for nanomaterials blood compatibility testing. The list of eryptosis-inducing nanomaterials is growing, but it is still difficult to generalize how physico-chemical properties of nanoparticles affect eryptosis degree and molecular mechanisms involved. Thus, another aim of this review is to raise the awareness of eryptosis as a nanotoxicological tool to encourage the corresponding studies. It is worthwhile to consider adding eryptosis to in vitro nanomaterials hemocompatibility testing protocols and guidelines.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 25250 Vestec, Czech Republic.
| |
Collapse
|
7
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
8
|
Petkova-Kirova P, Murciano N, Iacono G, Jansen J, Simionato G, Qiao M, Van der Zwaan C, Rotordam MG, John T, Hertz L, Hoogendijk AJ, Becker N, Wagner C, Von Lindern M, Egee S, Van den Akker E, Kaestner L. The Gárdos Channel and Piezo1 Revisited: Comparison between Reticulocytes and Mature Red Blood Cells. Int J Mol Sci 2024; 25:1416. [PMID: 38338693 PMCID: PMC10855361 DOI: 10.3390/ijms25031416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 02/12/2024] Open
Abstract
The Gárdos channel (KCNN4) and Piezo1 are the best-known ion channels in the red blood cell (RBC) membrane. Nevertheless, the quantitative electrophysiological behavior of RBCs and its heterogeneity are still not completely understood. Here, we use state-of-the-art biochemical methods to probe for the abundance of the channels in RBCs. Furthermore, we utilize automated patch clamp, based on planar chips, to compare the activity of the two channels in reticulocytes and mature RBCs. In addition to this characterization, we performed membrane potential measurements to demonstrate the effect of channel activity and interplay on the RBC properties. Both the Gárdos channel and Piezo1, albeit their average copy number of activatable channels per cell is in the single-digit range, can be detected through transcriptome analysis of reticulocytes. Proteomics analysis of reticulocytes and mature RBCs could only detect Piezo1 but not the Gárdos channel. Furthermore, they can be reliably measured in the whole-cell configuration of the patch clamp method. While for the Gárdos channel, the activity in terms of ion currents is higher in reticulocytes compared to mature RBCs, for Piezo1, the tendency is the opposite. While the interplay between Piezo1 and Gárdos channel cannot be followed using the patch clamp measurements, it could be proved based on membrane potential measurements in populations of intact RBCs. We discuss the Gárdos channel and Piezo1 abundance, interdependencies and interactions in the context of their proposed physiological and pathophysiological functions, which are the passing of small constrictions, e.g., in the spleen, and their active participation in blood clot formation and thrombosis.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
- Department of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Nicoletta Murciano
- Nanion Technologies, 80339 Munich, Germany; (N.M.); (M.G.R.); (N.B.)
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
| | - Giulia Iacono
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Julia Jansen
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| | - Greta Simionato
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
- Department of Experimental Surgery, Campus University Hospital, Saarland University, 66421 Homburg, Germany
| | - Min Qiao
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| | - Carmen Van der Zwaan
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | | | - Thomas John
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| | - Laura Hertz
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| | - Arjan J. Hoogendijk
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Nadine Becker
- Nanion Technologies, 80339 Munich, Germany; (N.M.); (M.G.R.); (N.B.)
| | - Christian Wagner
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Marieke Von Lindern
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Stephane Egee
- Biological Station Roscoff, Sorbonne University, CNRS, UMR8227 LBI2M, F-29680 Roscoff, France;
- Laboratory of Excellence GR-Ex, F-75015 Paris, France
| | - Emile Van den Akker
- Department of Hematopoiesis, Sanquin Research, 1066 CX Amsterdam, The Netherlands; (G.I.); (C.V.d.Z.); (A.J.H.); (M.V.L.); (E.V.d.A.)
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1007 MB Amsterdam, The Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Campus University Hospital, Saarland University, 66421 Homburg, Germany; (J.J.); (M.Q.); (L.H.)
- Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany (T.J.); (C.W.)
| |
Collapse
|
9
|
Baro B, Kim CY, Lin C, Kongsomboonvech AK, Tetard M, Peterson NA, Salinas ND, Tolia NH, Egan ES. Plasmodium falciparum exploits CD44 as a coreceptor for erythrocyte invasion. Blood 2023; 142:2016-2028. [PMID: 37832027 PMCID: PMC10783654 DOI: 10.1182/blood.2023020831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/08/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
The malaria parasite Plasmodium falciparum invades and replicates asexually within human erythrocytes. CD44 expressed on erythrocytes was previously identified as an important host factor for P falciparum infection through a forward genetic screen, but little is known about its regulation or function in these cells, nor how it may be used by the parasite. We found that CD44 can be efficiently deleted from primary human hematopoietic stem cells using CRISPR/Cas9 genome editing, and that the efficiency of ex vivo erythropoiesis to enucleated cultured red blood cells (cRBCs) is not affected by lack of CD44. However, the rate of P falciparum invasion was reduced in CD44-null cRBCs relative to isogenic wild-type control cells, validating CD44 as an important host factor for this parasite. We identified 2 P falciparum invasion ligands as binding partners for CD44, erythrocyte binding antigen 175 (EBA-175) and EBA-140 and demonstrated that their ability to bind to human erythrocytes relies primarily on their canonical receptors, glycophorin A and glycophorin C, respectively. We further show that EBA-175 induces phosphorylation of erythrocyte cytoskeletal proteins in a CD44-dependent manner. Our findings support a model in which P falciparum exploits CD44 as a coreceptor during invasion of human erythrocytes, stimulating CD44-dependent phosphorylation of host cytoskeletal proteins that alter host cell deformability and facilitate parasite entry.
Collapse
Affiliation(s)
- Barbara Baro
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Chi Yong Kim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Carrie Lin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | | | - Marilou Tetard
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | | | - Nichole D. Salinas
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Niraj H. Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Elizabeth S. Egan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA
- Chan Zuckerberg Biohub–San Francisco, San Francisco, CA
| |
Collapse
|
10
|
Baro-Sastre B, Kim CY, Lin C, Kongsomboonvech AK, Tetard M, Salinas ND, Tolia NH, Egan ES. Plasmodium falciparum exploits CD44 as a co-receptor for erythrocyte invasion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536503. [PMID: 37090581 PMCID: PMC10120705 DOI: 10.1101/2023.04.12.536503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The malaria parasite Plasmodium falciparum invades and replicates asexually within human erythrocytes. CD44 expressed on erythrocytes was previously identified as an important host factor for P. falciparum infection through a forward genetic screen, but little is known about its regulation or function in these cells, nor how it may be utilized by the parasite. We found that CD44 can be efficiently deleted from primary human hematopoietic stem cells using CRISPR/Cas9 genome editing, and that the efficiency of ex-vivo erythropoiesis to enucleated cultured red blood cells (cRBCs) is not impacted by lack of CD44. However, the rate of P. falciparum invasion was substantially reduced in CD44-null cRBCs relative to isogenic wild-type (WT) control cells, validating CD44 as an important host factor for this parasite. We identified two P. falciparum invasion ligands as binding partners for CD44, Erythrocyte Binding Antigen-175 (EBA-175) and EBA-140, and demonstrated that their ability to bind to human erythrocytes relies primarily on their canonical receptors-glycophorin A and glycophorin C, respectively. We further show that EBA-175 induces phosphorylation of erythrocyte cytoskeletal proteins in a CD44-dependent manner. Our findings support a model where P. falciparum exploits CD44 as a co-receptor during invasion of human erythrocytes, stimulating CD44-dependent phosphorylation of host cytoskeletal proteins that alter host cell deformability and facilitate parasite entry.
Collapse
|
11
|
Nader E, Conran N, Leonardo FC, Hatem A, Boisson C, Carin R, Renoux C, Costa FF, Joly P, Brito PL, Esperti S, Bernard J, Gauthier A, Poutrel S, Bertrand Y, Garcia C, Saad STO, Egée S, Connes P. Piezo1 activation augments sickling propensity and the adhesive properties of sickle red blood cells in a calcium-dependent manner. Br J Haematol 2023. [PMID: 37011913 DOI: 10.1111/bjh.18799] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Haemoglobin S polymerization in the red blood cells (RBCs) of individuals with sickle cell anaemia (SCA) can cause RBC sickling and cellular alterations. Piezo1 is a mechanosensitive protein that modulates intracellular calcium (Ca2+ ) influx, and its activation has been associated with increased RBC surface membrane phosphatidylserine (PS) exposure. Hypothesizing that Piezo1 activation, and ensuing Gárdos channel activity, alter sickle RBC properties, RBCs from patients with SCA were incubated with the Piezo1 agonist, Yoda1 (0.1-10 μM). Oxygen-gradient ektacytometry and membrane potential measurement showed that Piezo1 activation significantly decreased sickle RBC deformability, augmented sickling propensity, and triggered pronounced membrane hyperpolarization, in association with Gárdos channel activation and Ca2+ influx. Yoda1 induced Ca2+ -dependent adhesion of sickle RBCs to laminin, in microfluidic assays, mediated by increased BCAM binding affinity. Furthermore, RBCs from SCA patients that were homo-/heterozygous for the rs59446030 gain-of-function Piezo1 variant demonstrated enhanced sickling under deoxygenation and increased PS exposure. Thus, Piezo1 stimulation decreases sickle RBC deformability, and increases the propensities of these cells to sickle upon deoxygenation and adhere to laminin. Results support a role of Piezo1 in some of the RBC properties that contribute to SCA vaso-occlusion, indicating that Piezo1 may represent a potential therapeutic target molecule for this disease.
Collapse
Affiliation(s)
- Elie Nader
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Nicola Conran
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Flavia C Leonardo
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Aline Hatem
- Sorbonne Université, CNRS, UMR 8227 LBI2M, Station Biologique de Roscoff SBR, Roscoff, France
| | - Camille Boisson
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Romain Carin
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Céline Renoux
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Fernando F Costa
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Philippe Joly
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Pamela L Brito
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Sofia Esperti
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Erytech Pharma, Lyon, France
| | - Joelle Bernard
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Alexandra Gauthier
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Institut d'Hématologique et d'Oncologique Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Solene Poutrel
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
- Service de Médecine Interne, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Yves Bertrand
- Institut d'Hématologique et d'Oncologique Pédiatrique, Hospices Civils de Lyon, Lyon, France
| | - Caroline Garcia
- Service de Biochimie et Biologie Moléculaire, Laboratoire de Biologie Médicale Multi-site, Hospices Civils de Lyon, Lyon, France
| | - Sara T O Saad
- Hematology and Transfusion Center, University of Campinas, Campinas, Brazil
| | - Stéphane Egée
- Sorbonne Université, CNRS, UMR 8227 LBI2M, Station Biologique de Roscoff SBR, Roscoff, France
| | - Philippe Connes
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| |
Collapse
|
12
|
Yefimova S, Onishchenko A, Klochkov V, Myasoedov V, Kot Y, Tryfonyuk L, Knigavko O, Maksimchuk P, Kökbaş U, Kalashnyk-Vakulenko Y, Arkatov A, Khanzhyn V, Prokopyuk V, Vyshnytska I, Tkachenko A. Rare-earth orthovanadate nanoparticles trigger Ca 2+-dependent eryptosis. NANOTECHNOLOGY 2023; 34:205101. [PMID: 36780664 DOI: 10.1088/1361-6528/acbb7f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Introduction. Rare-earth orthovanadate nanoparticles (ReVO4:Eu3+, Re = Gd, Y or La) are promising agents for photodynamic therapy of cancer due to their modifiable redox properties. However, their toxicity limits their application.Objective. The aim of this research was to elucidate pro-eryptotic effects of GdVO4:Eu3+and LaVO4:Eu3+nanoparticles with identification of underlying mechanisms of eryptosis induction and to determine their pharmacological potential in eryptosis-related diseases.Methods. Blood samples (n= 9) were incubated for 24 h with 0-10-20-40-80 mg l-1GdVO4:Eu3+or LaVO4:Eu3+nanoparticles, washed and used to prepare erythrocyte suspensions to analyze the cell membrane scrambling (annexin-V-FITC staining), cell shrinkage (forward scatter signaling), reactive oxygen species (ROS) generation through 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) staining and intracellular Ca2+levels via FLUO4 AM staining by flow cytometry. Internalization of europium-enabled luminescent GdVO4:Eu3+and LaVO4:Eu3+nanoparticles was assessed by confocal laser scanning microscopy.Results.Both nanoparticles triggered eryptosis at concentrations of 80 mg l-1. ROS-mediated mechanisms were not involved in rare-earth orthovanadate nanoparticles-induced eryptosis. Elevated cytosolic Ca2+concentrations were revealed even at subtoxic concentrations of nanoparticles. LaVO4:Eu3+nanoparticles increased intracellular calcium levels in a more pronounced way compared with GdVO4:Eu3+nanoparticles. Our data disclose that the small-sized (15 nm) GdVO4:Eu3+nanoparticles were internalized after a 24 h incubation, while the large-sized (∼30 nm) LaVO4:Eu3+nanoparticles were localized preferentially around erythrocytes.Conclusions.Both internalized GdVO4:Eu3+and non-internalized LaVO4:Eu3+nanoparticles (80 mg l-1) promote eryptosis of erythrocytes after a 24 h exposurein vitrovia Ca2+signaling without involvement of oxidative stress. Eryptosis is a promising model for assessing nanotoxicity.
Collapse
Affiliation(s)
- Svetlana Yefimova
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| | - Vladimir Klochkov
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Valeriy Myasoedov
- Department of Medical Biology, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| | - Yurii Kot
- Department of Biochemistry, V.N. Karazin Kharkiv National University, 4 Svobody sq, 61022 Kharkiv , Ukraine
| | - Liliya Tryfonyuk
- Institute of Health, National University of Water and Environmental Engineering, 11 Soborna st,33000 Rivne, Ukraine
| | - Oleksandr Knigavko
- Department of Urology, Nephrology and Andrology, Kharkiv National Medical University, 195 Moskovsky ave, 61002 Kharkiv, Ukraine
| | - Pavel Maksimchuk
- Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky ave, 61072 Kharkiv, Ukraine
| | - Umut Kökbaş
- Medical Biochemistry Department, Nevsehir Haci Bektas Veli University, 2000 Evler Mah. Zübeyde Hanım Cad. 50300 / Nevşehir, Turkey
| | - Yuliia Kalashnyk-Vakulenko
- Department of Otorhinolaryngology, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| | - Andrii Arkatov
- Department of Urology, Nephrology and Andrology, Kharkiv National Medical University, 195 Moskovsky ave, 61002 Kharkiv, Ukraine
| | - Vladyslav Khanzhyn
- Department of Urology, Nephrology and Andrology, Kharkiv National Medical University, 195 Moskovsky ave, 61002 Kharkiv, Ukraine
| | - Volodymyr Prokopyuk
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, 23 Pereyaslavskaya st, 61015 Kharkiv, Ukraine
| | - Iryna Vyshnytska
- Saint James School of Medicine, Albert Lake Drive, The Quarter, A-1 2640, Anguilla
| | - Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022 Kharkiv, Ukraine
| |
Collapse
|
13
|
Abstract
Eryptosis is a coordinated non-lytic cell death of erythrocytes characterized by cell shrinkage, cell membrane scrambling, Ca2+ influx, ceramide accumulation, oxidative stress, activation of calpain and caspases. Physiologically, it aims at removing damaged or aged erythrocytes from circulation. A plethora of diseases are associated with enhanced eryptosis, including metabolic diseases, cardiovascular pathology, renal and hepatic diseases, hematological disorders, systemic autoimmune pathology, and cancer. This makes eryptosis and eryptosis-regulating signaling pathways a target for therapeutic interventions. This review highlights the eryptotic signaling machinery containing several protein kinases and its small molecular inhibitors with a special emphasis on casein kinase 1α (CK1α), a serine/threonine protein kinase with a broad spectrum of activity. In this review article, we provide a critical analysis of the regulatory role of CK1α in eryptosis, highlight triggers of CK1α-mediated suicidal death of red blood cells, cover the knowledge gaps in understanding CK1α-driven eryptosis and discover the opportunity of CK1α-targeted pharmacological modulation of eryptosis. Moreover, we discuss the directions of future research focusing on uncovering crosstalks between CK1α and other eryptosis-regulating kinases and pathways.
Collapse
Affiliation(s)
- Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine.
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
| |
Collapse
|
14
|
Yurinskaya VE, Moshkov AV, Marakhova II, Vereninov AA. Unidirectional fluxes of monovalent ions in human erythrocytes compared with lymphoid U937 cells: Transient processes after stopping the sodium pump and in response to osmotic challenge. PLoS One 2023; 18:e0285185. [PMID: 37141334 PMCID: PMC10159352 DOI: 10.1371/journal.pone.0285185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/11/2023] [Indexed: 05/06/2023] Open
Abstract
Recently, we have developed software that allows, using a minimum of required experimental data, to find the characteristics of ion homeostasis and a list of all unidirectional fluxes of monovalent ions through the main pathways in the cell membrane both in a balanced state and during the transient processes. Our approach has been successfully validated in human proliferating lymphoid U937 cells during transient processes after stopping the Na/K pump by ouabain and for staurosporine-induced apoptosis. In present study, we used this approach to find the characteristics of ion homeostasis and the monovalent ion fluxes through the cell membrane of human erythrocytes in a resting state and during the transient processes after stopping the Na/K pump with ouabain and in response to osmotic challenge. Due to their physiological significance, erythrocytes remain the object of numerous studies, both experimental and computational methods. Calculations showed that, under physiological conditions, the K+ fluxes through electrodiffusion channels in the entire erythrocyte ion balance is small compared to the fluxes through the Na/K pump and cation-chloride cotransporters. The proposed computer program well predicts the dynamics of the erythrocyte ion balance disorders after stopping the Na/K pump with ouabain. In full accordance with predictions, transient processes in human erythrocytes are much slower than in proliferating cells such as lymphoid U937 cells. Comparison of real changes in the distribution of monovalent ions under osmotic challenge with the calculated ones indicates a change in the parameters of the ion transport pathways through the plasma membrane of erythrocytes in this case. The proposed approach may be useful in studying the mechanisms of various erythrocyte dysfunctions.
Collapse
Affiliation(s)
| | - Alexey V Moshkov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Irina I Marakhova
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Alexey A Vereninov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
15
|
|
16
|
The RBC's road to ghost and removal: splenic clearance. Blood Adv 2021; 5:4422-4425. [PMID: 34570212 PMCID: PMC8579252 DOI: 10.1182/bloodadvances.2021005194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022] Open
|
17
|
Abstract
PURPOSE OF REVIEW Red blood cell (RBC) clearance has been studied for decades in many different pathologies, which has revealed different routes of RBC degradation, depending on the situation. This review summarizes the latest mechanistic insights on RBC clearance in different contexts; during homeostatic removal, immune-mediated destruction, and systemic inflammation. RECENT FINDINGS Besides the recognition of a variety of potential 'eat me' signals on RBCs, recent evidence suggests that normal RBC degradation is driven by the increase of the adhesive properties of RBCs, mediating the retention in the spleen and leading to RBC hemolysis. Furthermore, immune-mediated degradation of RBCs seems to be fine-tuned by the balance between the density of the antigens expressed on RBCs and the presence of 'don't eat me' signals. Moreover, besides RBC clearance by macrophages, neutrophils seem to play a much more prominent role in immune-mediated RBC removal than anticipated. Lastly, RBC clearance during systemic inflammation appears to be driven by a combination of extreme macrophage activity in response to proinflammatory cytokines as well as direct damage of RBC by the inflammation or inflammatory agent. SUMMARY Recent studies on RBC clearance have expanded our knowledge on their destruction in different contexts.
Collapse
Affiliation(s)
- Silvia Neri
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam
| | - Dorine W Swinkels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, RadboudUMC, Nijmegen, The Netherlands
| | - Hanke L Matlung
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam
| | - Robin van Bruggen
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam
| |
Collapse
|
18
|
Ex Vivo Activation of Red Blood Cell Senescence by Plasma from Sickle-Cell Disease Patients: Correlation between Markers and Adhesion Consequences during Acute Disease Events. Biomolecules 2021; 11:biom11070963. [PMID: 34208829 PMCID: PMC8301992 DOI: 10.3390/biom11070963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND: Blood transfusion remains a key treatment for managing occlusive episodes and painful crises in sickle-cell disease (SCD). In that clinical context, red blood cells (RBCs) from donors and transfused to patients, may be affected by plasma components in the recipients’ blood. Senescence lesion markers appear on the red cells after transfusion, shortening the RBC lifespan in circulation. In the specific context of SCD, senescence signals can also trigger the occlusive painful events, typical of the disease. This work follows through our previous data that described a RBC senescence process, rapidly detected after challenge with SCD pathological plasmas. In this clinical context, we wanted here to further explore the characteristics and physiologic consequences of AA RBC lesions associated with senescence, as lesions caused by RBCs after transfusion may have adverse consequences for SCD patients. METHODS: Plasma samples from SCD patients, with acute symptoms (n = 20) or steady-state disease (n = 34) were co-incubated with donor AA RBCs from blood units for 24 to 48 h. Specific markers signing RBC senescence were quantified after the incubation with SCD plasma samples. The physiologic in-flow adhesion was investigated on senescent RBCs, an in vitro technic into biochips that mimic adherence of RBCs during the occlusive events of SCD. RESULTS: Senescence markers on AA RBCs, together with their in-flow adhesion to the plasma-bridging protein thrombospondin, were associated with the clinical status of the SCD patients from whom plasma was obtained. In these experiments, the highest values were obtained for SCD acute plasma samples. Adhesion of senescent RBCs into biochips, which is not reversed by a pre-treatment with recombinant Annexin V, can be reproduced with the use of chemical agents acting on RBC membrane channels that regulate either Ca2+ entry or modulating RBC hydration. CONCLUSION: We found that markers on red cells are correlated, and that the senescence induced by SCD plasma provokes the adhesion of RBCs to the vessel wall protein thrombospondin. In-flow adhesion of senescent red cells after plasma co-incubations can be reproduced with the use of modulators of RBC membrane channels; activating the Piezo1 Ca2+ mechanosensitive channel provokes RBC adhesion of normal (non-senescent) RBCs, while blocking the Ca2+-dependent K+ Gardos channel, can reverse it. Clinically modulating the RBC adhesion to vascular wall proteins might be a promising avenue for the treatment of painful occlusive events in SCD.
Collapse
|
19
|
Pérès L, Monedero Alonso D, Nudel M, Figeac M, Bruge J, Sebda S, Picard V, El Nemer W, Preudhomme C, Rose C, Egée S, Bouyer G. Characterisation of Asp669Tyr Piezo1 cation channel activity in red blood cells: an unexpected phenotype. Br J Haematol 2021; 194:e51-e55. [PMID: 33973227 DOI: 10.1111/bjh.17467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Laurent Pérès
- Sorbonne Université, CNRS, UMR8227, Station Biologique de Roscoff, Roscoff, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - David Monedero Alonso
- Sorbonne Université, CNRS, UMR8227, Station Biologique de Roscoff, Roscoff, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Morgane Nudel
- Hôpital Saint Vincent de Paul, Université Catholique, Lille, France
| | - Martin Figeac
- Univ-Lille, Plate-forme de Génomique Fonctionnelle et Structurale, Lille, France.,CHU Lille, cellule bioinformatique, plateau commun de séquençage, Lille, France
| | - Judith Bruge
- Hôpital Saint Vincent de Paul, Université Catholique, Lille, France
| | - Shéhérazade Sebda
- Univ-Lille, Plate-forme de Génomique Fonctionnelle et Structurale, Lille, France
| | | | - Wassim El Nemer
- Inserm, UMR_S 1134, Institut National de la Transfusion Sanguine INTS, Paris, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Claude Preudhomme
- Univ-Lille, Plate-forme de Génomique Fonctionnelle et Structurale, Lille, France
| | - Christian Rose
- Hôpital Saint Vincent de Paul, Université Catholique, Lille, France
| | - Stéphane Egée
- Sorbonne Université, CNRS, UMR8227, Station Biologique de Roscoff, Roscoff, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| | - Guillaume Bouyer
- Sorbonne Université, CNRS, UMR8227, Station Biologique de Roscoff, Roscoff, France.,Laboratoire d'Excellence GR-Ex, Paris, France
| |
Collapse
|