1
|
Usuki K, Miyamoto T, Yamauchi T, Ando K, Ogawa Y, Onozawa M, Yamauchi T, Kiyoi H, Yokota A, Ikezoe T, Katsuoka Y, Takada S, Aotsuka N, Morita Y, Ishikawa T, Asada N, Ota S, Dohi A, Morimoto K, Imai S, Kishimoto U, Akashi K, Miyazaki Y. A phase 1/2 study of NS-87/CPX-351 (cytarabine and daunorubicin liposome) in Japanese patients with high-risk acute myeloid leukemia. Int J Hematol 2024; 119:647-659. [PMID: 38532078 PMCID: PMC11136735 DOI: 10.1007/s12185-024-03733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVES NS-87/CPX-351 is a dual-drug liposomal encapsulation of cytarabine and daunorubicin. NS-87/CPX-351 exerts antileukemic action by maintaining a synergistic molar ratio of cytarabine to daunorubicin of 5:1 within the liposome while in circulation. Patients with high-risk acute myeloid leukemia (AML), which includes therapy-related AML and AML with myelodysplasia-related changes (AML-MRC), have poorer outcomes than those with other AML. METHODOLOGY This open-label phase 1/2 (P1/2) study was conducted in 47 Japanese patients aged 60-75 years with newly diagnosed high-risk AML to evaluate the pharmacokinetics, safety, and efficacy of NS-87/CPX-351. RESULTS In the 6 patients enrolled in the P1 portion, no dose-limiting toxicities (DLTs) were reported, and 100 units/m2 during the induction cycle was found to be acceptable. Cytarabine and daunorubicin had a long half-life in the terminal phase (32.8 and 28.7 h, respectively). In the 35 patients enrolled in the P2 portion, composite complete remission (CRc; defined as complete remission [CR] or CR with incomplete hematologic recovery [CRi]) was achieved in 60.0% (90% CI: 44.7-74.0) of the patients. Adverse events due to NS-87/CPX-351 were well tolerated. OUTCOMES NS-87/CPX-351 can be considered as a frontline treatment option for Japanese patients with high-risk AML.
Collapse
Affiliation(s)
- Kensuke Usuki
- Department of Hematology, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-Ku, Tokyo, 141-8625, Japan.
| | - Toshihiro Miyamoto
- Department of Hematology, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takuji Yamauchi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Kiyoshi Ando
- Department of Hematology and Onclogy, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Department of Hematology, Hiroshima University School of Medicine, Hiroshima, Japan
| | - Yoshiaki Ogawa
- Department of Hematology and Onclogy, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masahiro Onozawa
- Department of Hematology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takahiro Yamauchi
- Department of Hematology and Oncology, University of Fukui, Fukui, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Akira Yokota
- Department of Hematology, Chiba Aoba Municipal Hospital, Chiba, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, Japan
| | - Yuna Katsuoka
- Department of Hematology, National Hospital Organization Sendai Medical Center, Sendai, Miyagi, Japan
| | - Satoru Takada
- Department of Hematology, Saiseikai Maebashi Hospital, Maebashi, Gunma, Japan
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Society Narita Hospital, Narita, Chiba, Japan
| | - Yasuyoshi Morita
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Sayama, Osaka, Japan
| | - Takayuki Ishikawa
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Hokkaido, Japan
| | - Atsushi Dohi
- Clinical Development Department, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | | | - Shunji Imai
- Drug Metabolism and Pharmacokinetics Research Department, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | - Umi Kishimoto
- Clinical Development Department, Nippon Shinyaku Co., Ltd, Kyoto, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Sackstein P, Williams A, Zemel R, Marks JA, Renteria AS, Rivero G. Transplant Eligible and Ineligible Elderly Patients with AML-A Genomic Approach and Next Generation Questions. Biomedicines 2024; 12:975. [PMID: 38790937 PMCID: PMC11117792 DOI: 10.3390/biomedicines12050975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
The management of elderly patients diagnosed with acute myelogenous leukemia (AML) is complicated by high relapse risk and comorbidities that often preclude access to allogeneic hematopoietic cellular transplantation (allo-HCT). In recent years, fast-paced FDA drug approval has reshaped the therapeutic landscape, with modest, albeit promising improvement in survival. Still, AML outcomes in elderly patients remain unacceptably unfavorable highlighting the need for better understanding of disease biology and tailored strategies. In this review, we discuss recent modifications suggested by European Leukemia Network 2022 (ELN-2022) risk stratification and review recent aging cell biology advances with the discussion of four AML cases. While an older age, >60 years, does not constitute an absolute contraindication for allo-HCT, the careful patient selection based on a detailed and multidisciplinary risk stratification cannot be overemphasized.
Collapse
Affiliation(s)
- Paul Sackstein
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| | - Alexis Williams
- Department of Medicine, New York University, New York, NY 10016, USA;
| | - Rachel Zemel
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| | - Jennifer A. Marks
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| | - Anne S. Renteria
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| | - Gustavo Rivero
- Lombardi Cancer Institute, School of Medicine, Georgetown University, Washington, DC 20007, USA; (P.S.); (R.Z.); (J.A.M.)
| |
Collapse
|
3
|
Palmieri R, Billio A, Ferrara F, Galimberti S, Lemoli RM, Todisco E, Moretti F, Venditti A. Literature review and expert opinion on the treatment of high-risk acute myeloid leukemia in patients who are eligible for intensive chemotherapy. Front Oncol 2024; 14:1367393. [PMID: 38444680 PMCID: PMC10912626 DOI: 10.3389/fonc.2024.1367393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
In patients with Acute Myeloid Leukemia (AML), the assessment of disease risk plays a central role in the era of personalized medicine. Indeed, integrating baseline clinical and biological features on a case-by-case basis is not only essential to select which treatment would likely result in a higher probability of achieving complete remission, but also to dynamically customize any subsequent therapeutic intervention. For young high-risk patients with low comorbidities burden and in good general conditions (also called "fit" patients), intensive chemotherapy followed by allogeneic stem cell transplantation still represents the backbone of any therapeutic program. However, with the approval of novel promising agents in both the induction/consolidation and the maintenance setting, the algorithms for the management of AML patients considered eligible for intensive chemotherapy are in constant evolution. In this view, we selected burning issues regarding the identification and management of high-risk AML, aiming to provide practical advice to facilitate their daily clinical management in patients considered eligible for intensive chemotherapy.
Collapse
Affiliation(s)
- Raffaele Palmieri
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Atto Billio
- Division of Hematology and Bone Marrow Transplant (BMT), Hospital S. Maurizio, Bolzano, Italy
| | | | - Sara Galimberti
- Hematology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto M. Lemoli
- Cattedra di Ematologia, Dipartimento di Medicina Interna (DiMI), Università di Genova, Genova, Italy
- Clinica Ematologica, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Martino, Genova, Italy
| | - Elisabetta Todisco
- Struttura Complessa (SC) Ematologia, Ospedale Busto Arsizio, Azienda Socio Sanitaria Territoriale (ASST) Valle Olona, Varese, Italy
| | - Federico Moretti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
5
|
Yang R, Wang L, Wu Z, Yin Y, Jiang SW. How Nanotechniques Could Vitalize the O-GlcNAcylation-Targeting Approach for Cancer Therapy. Int J Nanomedicine 2022; 17:1829-1841. [PMID: 35498390 PMCID: PMC9049135 DOI: 10.2147/ijn.s360488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Accumulated data indicated that many types of cancers have increased protein O-GlcNAcylation at cell surface and inside cells. The aberrant O-GlcNAcylation is considered a potential therapeutic target. Although several types of compounds capable of inhibiting O-GlcNAcylation have been developed, their low solubility, poor permeability and delivery efficiency have impeded the application for in vivo and pre-clinical studies. Nanocarriers have the advantages of controllable drug release and active cancer-targeting capability. Moreover, nanoparticles can improve drug delivery efficiency and reduce the non-specific distribution in normal tissues by the enhanced permeability and retention (EPR) effect in cancer. Taking the advantage of O-GlcNAc-specific antibodies or lectins, nanoparticles could further improve their cancer-targeting capability. Although nanocarriers targeting the canonical N- and O-linked glycosylation have been extensively investigated for cancer detection and therapy, application of nanotechniques for the specific targeting of O-GlcNAcylation has not been actively pursued. This review summarizes the general features of GlcNAcylation and its alterations in cancers. Analyses are focused on the following areas: How the nanocarriers may improve the solubility and/or cell permeability of O-GlcNAc transferase (OGT) inhibitors; The modification of nanocarriers with lectins or antibodies for active targeting of O-GlcNAc; The nanocarriers-mediated co-delivery of OGT inhibitors and conventional drugs, which may lead to synergistic effects. Unsolved issues impeding the research progression on O-GlcNAcylation-targeting scheme are also discussed.
Collapse
Affiliation(s)
- Rui Yang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People’s Republic of China
| | - Leilei Wang
- Department of Medical Genetics, Lianyungang Maternal and Child Health Hospital Affiliated to Yangzhou University, Lianyungang, 222000, Jiangsu, People’s Republic of China
| | - Zhifeng Wu
- Department of Ophthalmology, The Affiliated Wuxi Clinical College of Nantong University, Wuxi, 214002, Jiangsu, People’s Republic of China
| | - Yongxiang Yin
- Department of Pathology, The Affiliated Maternity and Child Health Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People’s Republic of China
| | - Shi-Wen Jiang
- Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Evolving Therapeutic Approaches for Older Patients with Acute Myeloid Leukemia in 2021. Cancers (Basel) 2021; 13:cancers13205075. [PMID: 34680226 PMCID: PMC8534216 DOI: 10.3390/cancers13205075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The better understanding of disease biology, the availability of new effective drugs and the increased awareness of patients’ heterogeneity in terms of fitness and personal expectations has made the current treatment paradigm of AML in the elderly very challenging. Here, we discuss the evolving criteria used to define eligibility for induction chemotherapy and transplantation, the introduction of new agents in the treatment of patients with very different clinical conditions, the implications of precision medicine and the importance of quality of life and supportive care, proposing a simplified algorithm that we follow in 2021. Abstract Acute myeloid leukemia (AML) in older patients is characterized by unfavorable prognosis due to adverse disease features and a high rate of treatment-related complications. Classical therapeutic options range from intensive chemotherapy in fit patients, potentially followed by allogeneic hematopoietic cell transplantation (allo-HCT), to hypomethylating agents or palliative care alone for unfit/frail ones. In the era of precision medicine, the treatment paradigm of AML is rapidly changing. On the one hand, a plethora of new targeted drugs with good tolerability profiles are becoming available, offering the possibility to achieve a prolonged remission to many patients not otherwise eligible for more intensive therapies. On the other hand, better tools to assess patients’ fitness and improvements in the selection and management of those undergoing allo-HCT will hopefully reduce treatment-related mortality and complications. Importantly, a detailed genetic characterization of AML has become of paramount importance to choose the best therapeutic option in both intensively treated and unfit patients. Finally, improving supportive care and quality of life is of major importance in this age group, especially for the minority of patients that are still candidates for palliative care because of very poor clinical conditions or unwillingness to receive active treatments. In the present review, we discuss the evolving approaches in the treatment of older AML patients, which is becoming increasingly challenging following the advent of new effective drugs for a very heterogeneous and complex population.
Collapse
|
7
|
Better the cure you know: why patients with AML ≥60 years of age should be offered early allogeneic stem cell transplantation. Blood Adv 2021; 6:1619-1622. [PMID: 34607349 PMCID: PMC8905700 DOI: 10.1182/bloodadvances.2021004829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Real-world experience of CPX-351 as first-line treatment for patients with acute myeloid leukemia. Blood Cancer J 2021; 11:164. [PMID: 34608129 PMCID: PMC8490353 DOI: 10.1038/s41408-021-00558-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
To investigate the efficacy and toxicities of CPX-351 outside a clinical trial, we analyzed 188 patients (median age 65 years, range 26–80) treated for therapy-related acute myeloid leukemia (t-AML, 29%) or AML with myelodysplasia-related changes (AML-MRC, 70%). Eighty-six percent received one, 14% two induction cycles, and 10% received consolidation (representing 22% of patients with CR/CRi) with CPX-351. Following induction, CR/CRi rate was 47% including 64% of patients with available information achieving measurable residual disease (MRD) negativity (<10−3) as measured by flow cytometry. After a median follow-up of 9.3 months, median overall survival (OS) was 21 months and 1-year OS rate 64%. In multivariate analysis, complex karyotype predicted lower response (p = 0.0001), while pretreatment with hypomethylating agents (p = 0.02) and adverse European LeukemiaNet 2017 genetic risk (p < 0.0001) were associated with lower OS. Allogeneic hematopoietic cell transplantation (allo-HCT) was performed in 116 patients (62%) resulting in promising outcome (median survival not reached, 1-year OS 73%), especially in MRD-negative patients (p = 0.048). With 69% of patients developing grade III/IV non-hematologic toxicity following induction and a day 30-mortality of 8% the safety profile was consistent with previous findings. These real-world data confirm CPX-351 as efficient treatment for these high-risk AML patients facilitating allo-HCT in many patients with promising outcome after transplantation.
Collapse
|
9
|
Measurable residual disease including AML leukemia stem cell flow evaluation of CPX-351 therapy by multi-parameter flow cytometry. Leuk Res 2021; 111:106673. [PMID: 34364023 DOI: 10.1016/j.leukres.2021.106673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 11/23/2022]
|
10
|
Cortes JE, Lin TL, Uy GL, Ryan RJ, Faderl S, Lancet JE. Quality-adjusted Time Without Symptoms of disease or Toxicity (Q-TWiST) analysis of CPX-351 versus 7 + 3 in older adults with newly diagnosed high-risk/secondary AML. J Hematol Oncol 2021; 14:110. [PMID: 34256819 PMCID: PMC8276472 DOI: 10.1186/s13045-021-01119-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CPX-351 (United States: Vyxeos®; Europe: Vyxeos® Liposomal), a dual-drug liposomal encapsulation of daunorubicin and cytarabine in a synergistic 1:5 molar ratio, is approved by the US FDA and the EMA for the treatment of adults with newly diagnosed therapy-related acute myeloid leukemia or acute myeloid leukemia with myelodysplasia-related changes. In a pivotal phase 3 study that evaluated 309 patients aged 60 to 75 years with newly diagnosed high-risk/secondary acute myeloid leukemia, CPX-351 significantly improved median overall survival versus conventional 7 + 3 chemotherapy (cytarabine continuous infusion for 7 days plus daunorubicin for 3 days), with a comparable safety profile. A Quality-adjusted Time Without Symptoms of disease or Toxicity (Q-TWiST) analysis of the phase 3 study was performed to compare survival quality between patients receiving CPX-351 versus conventional 7 + 3 after 5 years of follow-up. METHODS Patients were randomized 1:1 between December 20, 2012 and November 11, 2014 to receive induction with CPX-351 or 7 + 3. Survival time for each patient was partitioned into 3 health states: TOX (time with any grade 3 or 4 toxicity or prior to remission), TWiST (time in remission without relapse or grade 3 or 4 toxicity), and REL (time after relapse). Within each treatment arm, Q-TWiST was calculated by adding the mean time spent in each health state weighted by its respective quality-of-life, represented by health utility. The relative Q-TWiST gain, calculated as the difference in Q-TWiST between treatment arms divided by the mean survival of the 7 + 3 control arm, was determined in order to evaluate results in the context of other Q-TWiST analyses. RESULTS The relative Q-TWiST gain with CPX-351 versus 7 + 3 was 53.6% in the base case scenario and 39.8% among responding patients. Across various sensitivity analyses, the relative Q-TWiST gains for CPX-351 ranged from 48.0 to 57.6%, remaining well above the standard clinically important difference threshold of 15% for oncology. CONCLUSIONS This post hoc analysis demonstrates that CPX-351 improved quality-adjusted survival, further supporting the clinical benefit in patients with newly diagnosed high-risk/secondary acute myeloid leukemia. Trial registration This trial was registered on September 28, 2012 at www.clinicaltrials.gov as NCT01696084 ( https://clinicaltrials.gov/ct2/show/NCT01696084 ) and is complete.
Collapse
Affiliation(s)
- Jorge E Cortes
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Rd., CN2116, Augusta, GA, 30912, USA.
| | - Tara L Lin
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Geoffrey L Uy
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Jeffrey E Lancet
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
11
|
Phillips DF, Zeidner JF. Emerging therapies for AML with myelodysplasia-related changes: slowly but surely moving the needle. Expert Opin Emerg Drugs 2021; 26:245-257. [PMID: 34227451 DOI: 10.1080/14728214.2021.1950689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Patients with acute myeloid leukemia with myelodysplasia-related changes (AML-MRC) have historically poor outcomes with conventional chemotherapy regimens. Current treatment strategies focus on intensive induction therapy followed by allogeneic stem cell transplant or a less intensive approach with hypomethylating agents with or without venetoclax. CPX-351 is a liposomal formulation of cytarabine and daunorubicin that has been shown to significantly improve response rates and survival compared with 7 + 3 (continuous infusion cytarabine plus anthracyclines). Despite the approval of CPX-351 for AML-MRC, overall prognosis remains poor with an unmet need to develop novel therapeutic strategies for this patient population.Areas covered: This article reviews the data for existing therapeutic options for patients with AML-MRC and the emerging therapies undergoing clinical trial development for this patient population.Expert opinion: The development of CPX-351 as a more effective induction therapeutic backbone for patients with AML-MRC presents an opportunity to investigate novel combination regimens in order to further improve outcomes. Promising emerging therapeutic modalities include immunotherapeutic strategies, small-molecule inhibitors and targeted agents. Unfortunately, there have been few clinical trials focusing on patients with AML-MRC with reliance instead on subgroup analyses. Clinical trials focused specifically on this patient population are urgently needed.
Collapse
Affiliation(s)
- Davis F Phillips
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Joshua F Zeidner
- University of North Carolina School of Medicine, Chapel Hill, NC, USA.,University of North Carolina School of Medicine, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA.,Department of Medicine, Division of Hematology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|